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Abstract

In this paper we describe a formalism which uses the stochastic process algebra PEPA as
the inscription language for labelled stochastic Petri nets. Viewed in another way, the net
is used to provide a structure for linking related PEPA systems. The combined modelling
language naturally represents such applications as mobile code systems where the PEPA
terms are used to model the program code which moves between network hosts (the places
in the net). We describe the implementation of a tool to support this modelling formalism
and apply this to model a hierarchical cellular network.

1 Introduction

Variants of Petri nets have been widely used in the description and performance
analysis of computer, telecommunications and manufacturing systems [1]. The ap-
peal of Petri nets as a modelling formalism is easy to see. They provide a graphical
presentation of a model which has an easily accessible interpretation and they also
have the advantage of being supported by an unambiguous formal semantics.

In their use as performance modelling languages stochastic Petri nets have re-
cently been joined by stochastic process algebras such as PEPA [20], EMPA [4]
and IMC [18]. Stochastic process algebras lack the attractive graphical presenta-
tion of Petri nets and properties such as the depiction of causality and conflict in
a model. In contrast though, in stochastic process algebras an explicit composi-
tional structure is imposed on the model. This structure makes the model easy to
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understand, may alleviate problems of model construction and can be exploited for
both qualitative and quantitative analysis. A comparison of these two modelling
formalisms [11] concludes that “there is scope for future work incorporating the
attractive characteristics of the formalisms, such as structural analysis or functional
abstraction, from one paradigm into the other”. Some work has been done in this
area in beginning to develop a structural theory for process algebras [14] on the
one hand and in importing composition operations from stochastic process alge-
bras into net formalisms on the other [30,21,19]. The present work considers using
both Petri nets and process algebras together as a single, structured performance
modelling formalism. There is some reason to believe that these two formalisms
complement each other.

Petri nets have previously been combined with other modelling formalisms such
as the lazy functional programming language Haskell (used with non-stochastic
Petri nets in [29]) and queueing models (used with generalised stochastic Petri nets
in [3]). The combination of stochastic Petri nets with queueing networks in partic-
ular has been a source of inspiration to several authors. Earlier work in this area
includes Bause’s Queueing Petri nets [2] and Haverkort’s Dynamic Queueing Net-
works [17]. An extension of (non-stochastic) Petri nets which provides modelling
concepts similar to ours is Valk’s Elementary Object systems [31]. The tokens in
an elementary object system are themselves Petri nets having individual dynamic
behaviour.

Coloured Petri nets are a high-level form of classical Petri nets. The plain (indistin-
guishable) tokens of a classical Petri net are replaced by arbitrary terms which are
distinguishable. In stochastic Petri nets the evolution of the net from one marking
to another is associated with a random variable drawn from an exponential distri-
bution. Here we consider coloured stochastic Petri nets where the colours used as
the tokens of the net are PEPA components. We refer to these as PEPA nets from
here on.

Structure of this paper: Section 2 introduces the notation and terminology of
PEPA nets, to give the reader an informal explanation of the ideas. However, PEPA
is a formal language with a precise semantic definition and so in Section 3 we
present the operational semantics of PEPA nets. In Section 4 we present two small
examples, a simple mobile agent system and a Jini architecture, both modelled as
PEPA nets. Having presented the reader with examples of modelling with PEPA
nets we then compare them to the related modelling formalisms of Petri nets and
the PEPA stochastic process algebra in Section 5. In each case we seek to show that
PEPA nets offer some expressivity which is not directly offered by the other for-
malisms. Section 6 is a more detailed case study of a hierarchical cellular network.
In Section 7 we discuss tool support for PEPA nets. Related work is discussed in
Section 8. Concluding remarks and further work are presented in Section 9.
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2 PEPA nets

In this section we present the concepts and definitions used in PEPA nets. In the
following paragraphs we give a brief overview of PEPA. Readers are referred to
[20] for a more detailed introduction.

2.1 Summary of the PEPA language

The PEPA language provides a small set of combinators. These allow language
terms to be constructed defining the behaviour of components, via the activities
they undertake and the interactions between them. The syntax may be formally in-
troduced by means of the grammar shown in the lower part of Figure 1. In that
grammar � denotes a sequential component and � denotes a model component
which executes in parallel.  stands for a constant which denotes either a sequential
or a model component, as defined by a defining equation. The component com-
binators, together with their names and interpretations, are presented informally
below.

Prefix: The basic mechanism for describing the behaviour of a system is to give
a component a designated first action using the prefix combinator, denoted by a
full stop. For example, the component ������������� carries out activity ��������� , which
has action type � and an exponentially distributed duration with parameter � , and
it subsequently behaves as � .

Choice: The life cycle of a sequential component may be more complex than any
behaviour which can be expressed using the prefix combinator alone. The choice
combinator captures the possibility of competition between different possible ac-
tivities. The component ��� � represents a system which may behave either as �
or as � . The activities of both � and � are enabled. The first activity to complete
distinguishes one of them: the other is discarded. The system will behave as the
derivative resulting from the evolution of the chosen component.

Constant: It is convenient to be able to assign names to patterns of behaviour
associated with components. Constants are components whose meaning is given
by a defining equation.

Hiding: The possibility to abstract away some aspects of a component’s be-
haviour is provided by the hiding operator, denoted �"!�# . Here, the set # of visible
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action types identifies those activities which are to be considered internal or private
to the component and which will appear as the unknown type $ .

Cooperation: In PEPA direct interaction, or cooperation, between components
is the basis of compositionality. The set which is used as the subscript to the co-
operation symbol, the cooperation set # , determines those activities on which the
cooperands are forced to synchronise. For action types not in # , the components
proceed independently and concurrently with their enabled activities. However, if
a component enables an activity whose action type is in the cooperation set it will
not be able to proceed with that activity until the other component also enables an
activity of that type. The two components then proceed together to complete the
shared activity. The rate of the shared activity may be altered to reflect the work
carried out by both components to complete the activity (for details see [20]). We
write �&%(' )�� to denote cooperation between � and � over # . We write �+*"� as
an abbreviation for � %(' ) � when # is empty.

In some cases, when an activity is known to be carried out in cooperation with
another component, a component may be passive with respect to that activity. This
means that the rate of the activity is left unspecified (denoted , ) and is determined
upon cooperation, by the rate of the activity in the other component. All passive
actions must be synchronised in the final model.

Model components capture the structure of the system in terms of its static com-
ponents. The dynamic behaviour of the system is represented by the evolution of
these components, either individually or in cooperation. The form of this evolu-
tion is governed by a set of formal rules which give an operational semantics of
PEPA terms. The semantic rules, in the structured operational style, are presented
in Figure A.1 in the Appendix without further comment.

The semantics of each term in PEPA is given via a labelled multi-transition system—
the multiplicities of arcs are significant. In the transition system a state corresponds
to each syntactic term of the language, or derivative, and an arc represents the
activity which causes one derivative to evolve into another. The complete set of
reachable states is termed the derivative set of a model and these form the nodes of
the derivation graph which is formed by applying the semantic rules exhaustively.

The timing aspects of components’ behaviour are represented on each arc as the
parameter of the negative exponential distribution governing the duration of the
corresponding activity. The interpretation is as follows: when enabled an activity-/. �0������� will delay for a period sampled from the negative exponential distri-
bution which has parameter � . If several activities are enabled concurrently, either
in competition or independently, we assume that a race condition exists between
them. The evolution of the model will determine whether the other activities have
been aborted or simply interrupted by the resulting state change. In either case the
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memoryless property of the distribution eliminates the need to record the previous
execution time.

When two components carry out an activity in cooperation the rate of the shared
activity will reflect the working capacity of the slower component. We assume that
each component has a capacity for performing an activity type � , which cannot be
enhanced by working in cooperation, unless the component is passive with respect
to that activity type. For a component � and an action type � , this capacity is termed
the apparent rate [20] of � in � . It is the sum of the rates of the � type activities
enabled in � . The apparent rate of � in a cooperation between � and � over � will
be the minimum of the apparent rate of � in � and the apparent rate of � in � .

The derivation graph is the basis of the underlying Continuous Time Markov Chain
(CTMC) which is used to derive performance measures from a PEPA model. The
graph is systematically reduced to a form where it can be treated as the state transi-
tion diagram of the underlying CTMC. Each derivative is then a state in the CTMC.
The transition rate between two derivatives � and � in the derivation graph is the
rate at which the system changes from behaving as component � to behaving as � .
It is denoted by 12���3�4�5� and is the sum of the activity rates labelling arcs connecting
node � to node � . In order for the CTMC to be ergodic its derivation graph must be
strongly connected. Some necessary conditions for ergodicity, at the syntactic level
of a PEPA model, have been defined [20]. These syntactic conditions are imposed
by the grammar in Figure 1.

2.2 Introduction to PEPA nets

In PEPA, as in most performance modelling formalisms, there is a single modelling
mechanism, activities, used to represent changes of state within a system. PEPA
nets are motivated by the observation that in many systems we can identify distinct
types of change of state. A PEPA net differentiates between two types of change of
state. We refer to these as firings of the net and transitions of PEPA components.
Each are special cases of PEPA activities. Transitions of PEPA components will
typically be used to model small-scale (or local) changes of state as components
undertake activities. Firings of the net will typically be used to model macro-step
(or global) changes of state such as context switches, breakdowns and repairs, one
thread yielding to another, or a mobile software agent moving from one network
host to another.

A firing in a PEPA net causes the transfer of one token from one place to another.
The token which is moved is a PEPA component, which causes a change in the
subsequent evaluation both in the source (where existing cooperations with other
components now can no longer take place) and in the target (where previously
disabled cooperations are now enabled by the arrival of an incoming component
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which can participate in these interactions). Firings have global effect because they
involve components at more than one place in the net.

A transition in a PEPA net takes place whenever a transition of a PEPA component
can occur (either individually, or in cooperation with another component). Com-
ponents can only cooperate if they are resident in the same place in the net. The
PEPA net formalism does not allow components at different places in the net to
cooperate on a shared activity. An analogy is with message-passing distributed sys-
tems without shared-memory where software components on the same host can
exchange information without incurring a communication overhead but software
components on different hosts cannot. Additionally we do not allow a firing to co-
incide with a transition which is shared, i.e. it is not possible for two components
in one place to cooperate and transfer to another place as an atomic action. Thus
transitions in a PEPA net have local effect because they involve only components at
one place in the net. Maintaining this strict distinction between firings and transi-
tions is essential in order to provide the separation into macro- and micro-step state
changes that we are seeking to represent.

Each place has a distinct alphabet for transitions and firings, meaning that the same
action type cannot be used for both. Thus there can be no ambiguity between such
micro- and macro-scale transitions.

Within the set of firings offered at the net level of a PEPA net we allow the modeller
to assign different priorities. Note that this does not mean that more than two time-
scales of activity are being represented. This mechanism is offered as a modelling
convenience to allow one macro-step transition to be fired in preference to another
when both are enabled.

A PEPA net is made up of PEPA contexts, one at each place in the net. A context
consists of a number of static components (possibly zero) and a number of cells
(at least one). Like a memory location in an imperative program, a cell is a storage
area to be filled by a datum of a particular type. In particular in a PEPA net, a cell is
a storage area dedicated to storing a PEPA component. The components which fill
cells can circulate as the tokens of the net. In contrast, the static components cannot
move. Most variants of Petri nets do not include static tokens, the closest concept
being “self loops” where a token is deleted from a place and then immediately
replaced. Here static components provide the infrastructure of the place and act
as cooperation partners in synchronisation activities with tokens. Contexts have
previously been used in both classical process algebras [26], and in the stochastic
process algebra PEPA [9].

We use the notation �76 8 to denote a context which could be filled by the PEPA
component � or one with the same alphabet. If � has derivatives �:9 and �;9 9 only
and no other component has the same alphabet as � then there are four possible
values for such a context: �<6 8 , �<6=�>8 , �<6?�59�8 and �<6=�>9 9�8 . �76 8 enables no transitions.
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�76?�>8 enables the same transitions as � . �76?� 9 8 enables the same transitions as � 9 .
�76?� 9 9 8 enables the same transitions as � 9 9 . As usual with PEPA components we
require that the component has an ergodic definition so that it is always possible to
return to a state which one has previously reached. This has as a consequence that
if � 9 is a derivative of � then it is also the case that � is a derivative of � 9 , for any
� and �;9 .
For any token component its action type set can be partitioned in distinct subsets
corresponding to transitions and firings respectively. For a component � we will
denote these sets by @BAC�0�:� and @EDF���5� , where @GAC�0�:� is the set of local transitions
currently enabled in � and @HDF���5� is the set of firings currently enabled for � . Note
that for a firing to be enabled the token must enable the corresponding activity, it
must be in a place connected to a net-level transition of the same type and there
must be an empty cell at the output place of the transition of the correct token type.

We use capitalised names to denote PEPA components (such as � and � ) and
lowercase for PEPA transitions (such as - and I ). We use bold capitalised names
for PEPA net places (such as JHK and J:L ) and bold lowercase for PEPA net firings
(such as M and N ).

2.3 Markings in a PEPA net

The marking of a classical Petri net records the number of tokens which are resident
at each place in the net. Since the tokens of a classical Petri net are indistinguishable
it is sufficient to record their number and one could present the marking of a Petri
net with places � 
 , �PO and �PQ as �0� 
SRUT �4�PO RWV ���PQ RYX � . If an ordering is imposed
on the places of the net a more compact representation of the marking can be used.
Place names are omitted and the marking can be written using vector notation thus,
� T � V � X � .
Consider now a PEPA net with places J<K , J:L and J5Z as shown below.

[ K]\?^`_ defa ^;\?^b_ %�' ) c
[ L \?^`_ defa ^;\?^b_ %�'dfe
[ ZF\?^`_ defa ^;\?^b_ %�'d2g )ih ckj eil

From its use in the contexts at each place we see that � is a component which
can move as a token around the net whereas m and � are static components which
cannot move. There is a copy of m at place JHK and another at J5Z . There is a copy
of � at place J:L and another at J5Z .
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Given the above definitions for the places in this PEPA net, we can denote a marking
of this net by �0JEK�6=�>8���J:L�6 8(��JnZF6 8o� . In general, a context may have more than one
parameter, to be filled by PEPA components of different types. Where an ordering
is imposed on places and each context has only a single cell to be filled we can
abbreviate such a marking by �0�H� � � .
Moreover, the local state captured by a place marking will also depend on the cur-
rent state of the static components in the place. To identify these states we allow
place definitions to specify a particular state of each of the static components. Thus,
in the example above, if � can evolve to �p9 we can define Jn9L 6?�;8 def. �<6?�;8 %�'d �q9 .

2.4 Net-level transitions in a PEPA net

Transitions at the net-level of a PEPA net are labelled in a similar way to the la-
belled multi-transition system which records the unfolding of the state space of a
PEPA model. A labelling function r maps transition names into pairs of names such
as �0������� where it is possible that r��tsvut� . r��ws0xy� but svu5z. s0x . The first element of a
pair ��������� specifies an activity which must be performed in order for a component
to move from the input place of the transition to the output place. The activity type
records formally the activity which must be performed if the transition is to fire.
The second element is an exponentially-distributed random variable which quanti-
fies the rate at which the activity can progress in conjunction with the component
which is performing it.

As an example, suppose that � is a component which is currently at place J{K
and that it can perform an activity � with rate � 
 to produce the derivative �n9 .
Further, say that the net has a transition between J<K and J:L labelled by �������|O�� .
If � performs activity � in this setting it will be removed from J7K (leaving behind
an empty cell) and �;9 will be deposited into JGL (filling an empty cell there).

A priority function } maps action types to the natural numbers, and can be used
to eliminate some firings from the labelled multi-transition system: only enabled
firings with the highest priority value are considered eligible to fire. For example,
suppose that � is a component which is currently at place J<K and that it can
perform activities of types � , ~ and � where }������ . }��t~�� . T whereas }��t��� . V .
Further, suppose that there are net transitions between J7K and each of J:L , J5Z and
Jn� labelled by � , ~ and � respectively. Assuming that there are empty cells in all
places, � may perform activity � and be deposited in place JBL , or activity ~ and
be deposited in place J5Z but it cannot perform activity � and be deposited in place
Jn� . Only if there are no empty cells in places JBL and JnZ will activity � become
enabled.
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2.5 Net structure of a PEPA net

From the preceding explanation it is clear that the expression of the macro-level
structure of a PEPA net could be represented by any transition-based modelling
formalism. Indeed it would be possible to use a PEPA component to control the
possible “firings” (macro-steps) of the model. However, we feel that there are some
advantages to using a Petri net in this role.

Firstly, using a different formalism gives a clearer separation of concerns within
our model making it both easier to construct and to understand. Furthermore, this
macro-level is often of a size that can benefit from graphical representation, to
give an intuitive understanding of the coarse structure of the model. Finally, the
movement of components—to a new host, to a new context, etc.—has resonance
with the systems we study.

The class of nets that we currently use for modelling the net structure of a PEPA net
is restricted to structural state machines, i.e. nets whose transitions can have only
one input place and one output place. This means that we can represent conflicts at
the net level, while synchronisations are not allowed. This is consistent with the fact
that PEPA components cannot cooperate on a shared activity when they are resident
in different places. However, we have imposed this restriction in the interests of
developing a clear theory of PEPA nets incrementally; it is not in anyway inherent
in the formalism. Indeed we hope to relax it in due course.

It is usual with coloured Petri nets to associate functions with arcs, offering a gener-
alisation of the usual, basic “functions” offered by arc multiplicities. In PEPA nets
the arc functions are implicit. The modification of a token which takes place when
it is fired is wholly specified by the action type of the firing, the definition of the
token and the semantics. Furthermore, although we allow multiple tokens within
net places, only one token can move at each firing. Thus arc multiplicities greater
than one are not allowed.

3 Semantics

The PEPA language is formally defined by a small-step operational semantics. In
order to describe the firing rule for PEPA nets formally we need a relational oper-
ator which is to be used to express the fact that there exists a particular transition
in the net superstructure. This operator must have the properties that it identifies
the source and target of the transition and that it records the activity which is to be
performed in order for a component to cross this transition, moving from the source
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to the target. We use the notation

JEK
�������v�
��� 6 8 ��� J5L

to capture the information that there is a transition connecting place J7K to place J:L
labelled by ��������� . This relation captures static information about the structure of the
net, not dynamic information about its behaviour. We could describe the net struc-
ture in a PEPA net using a list of such declarations but the more familiar graphical
presentation of a net presents the same information in a more accessible way.

The introduction of contexts requires an extension to the syntax of PEPA. This
extension is presented in Figure 1.

����� a��:��� (net)

(definitions and marking)

� ��� a h ���q�4�4�4� l (marking) � ��� a�� defa e (component defn)

��� ��� a [ \?� �4�4�4� _ (place marking) � [ \?�`_ defa�� \?�`_ (place defn)

� [ \?� �4�4�4� _ defa�� \?�`_ %(' ) � (place defn)

(marking vectors) (identifier declarations)

e ��� a hw  �¢¡ l � e (prefix) � ��� a£� %(' ) � (cooperation) � ��� a ‘ ’ (empty)

� e<¤¥e (choice) � ��¦y§ (hiding) � e (full)

� � (identifier) � � \?�`_ (cell)

� � (identifier)

(sequential components) (concurrent components) (cell term expressions)

Fig. 1. The syntax of PEPA extended with contexts

We assume that there is a set @ of PEPA action types which can be partitioned into
disjoint subsets @ED and @GA corresponding to firings and local transitions respec-
tively.

Definition 1 A PEPA net ¨ is a tuple ¨ . �t©<�4ª{��Y�4«H�¬r]��}�¬®q�4¯°��±³²�� such that

´ © is a finite set of places;
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´ ª is a finite set of net transitions;´  R ª � © is the input function;´ « R ª � © is the output function;´ r R ª � �t@ED���µ �>¶5· ,G¸]� is the labelling function, which assigns a PEPA activity
((type, rate) pair) to each transition. The rate determines the negative exponen-
tial distribution governing the delay associated with the transition;´ } R @ED � ¹ is the priority function which assigns priorities (represented by
natural numbers) to firing action types;´ ® R © � � is the place definition function which assigns a PEPA context,
containing at least one cell, to each place;´ ¯ is the set of token component definitions;´ ±º² is the initial marking of the net.

The semantic rules for PEPA nets are provided in Figure 2. The Cell rule con-
servatively extends the PEPA semantics to define that a cell which is filled by a
component � has the same transitions as � itself. A healthiness condition on the
rule (also called a typing judgement) requires a context such as �76 8 to be filled
with a component which has the same alphabet as � . We write � .n» �;9 to state
that � and �;9 have the same alphabet. There are no rules to infer transitions for an
empty cell because an empty cell enables no transitions.

The Transition rule states that the net has local transitions which change only a
single component in the marking vector. This rule also states that these transitions
agree with the transitions which are generated by the PEPA semantics (including
the extension for contexts). Recall that the transition and firing alphabets of any
place must be distinct. We do not give priority to one alphabet of actions over the
other; the highest-priority firings and the transitions compete based on a race policy.

The Firing rule takes one marking of the net to another marking by performing a
PEPA activity and moving a PEPA component from the input place to the output
place. This has the effect that two entries in the marking vector change simultane-
ously. In order to take account of the priorities we define a number of supplementary
transition relations, one for each priority level.

A net level transition’s eligibility for firing depends on two conditions. Firstly there
must be an empty cell in the destination place into which the token can be trans-
ferred. The Enabling rule ensures that this is the case, and defines a transition rela-
tion, decorated with the priority level of the corresponding activity type. The rate at
which the activity is enabled is calculated as in the PEPA semantics of cooperation.

In order for a firing to take place it must also be the case that the type of the en-
abled firing has the highest priority level in the set of the enabled firings. This is
imposed by the Firing rule in which we discard those enabled firings which do not
have the highest priority. In other words for a firing to occur there must not be any
other firing satisfying the Enabling rule (empty destination cell) which has a higher
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priority.

Cell:

^ 9
�������v�¼�¼�¼¾½ ^ 9 9

^n\?^ 9 _
�������v�¼�¼�¼¾½ ^;\?^ 9 9 _

h ^ a » ^ 9 l

Transition:

�¿� �����À�v�¼�¼�¼¾½ � 9�
h �4�4�Á�C���q�4�4�4� l

�����À�v�¼�¼�¼¾½ h �4�4�Â�C� 9� �4�4�4� l
hw ÄÃGÅ A l

Enabling:

^
�����À�vÆ0�¼�¼�¼¾½ ^ 9 ["Ç ��È��É�ËÊ¢�¼¾½ \ _ ¼Ì½ [qÍ

h ����� ["Ç \ ����� ^ �4��� _ �4����� [qÍ \ ����� �4��� _ �4��� l
��È��ÀÎ2�¼�¼�¼¾½°Ï ����� h ����� ["Ç \ ����� �4��� _ �4����� [Í \ ����� ^ 9 �4��� _ �4��� l

hw ÄÃGÅ D l

Firing:

� �������v�¼�¼�¼¾½ÄÐ � 9 � �ÒÑ]�oÓ(�¼�¼�¼¾½°Ô � 9 9
� �������v�¼�¼�¼¾½ � 9

hÀÕ×Ö¥Ø l

Fig. 2. Additional semantic rules for PEPA nets

3.1 The net bisimulation relation

In this section we define a bisimulation relation for PEPA nets called net bisimula-
tion. This relation is important both in theory and in practice. In the evolution of the
state space of a model by our tool we only store states up to net bisimulation, i.e.
we carry out automatic aggregation over equivalent states. This provides a dramatic
reduction in the state space of the model under certain conditions.

Our relation is defined in the style of Larsen and Skou [25], based on a condi-
tional transition rate between markings, rather than the strong equivalence rela-
tion of PEPA which considers the transition rates between components. The con-
ditional transition rate from marking ± to marking ±£9 via action type � , denoted
1Ù��±���±�9o�4�q� , is the sum of the activity rates labelling arcs connecting the corre-
sponding nodes in the derivation graph which are labelled by the action type � .
The total conditional transition rate from a marking ± to a set of markings Ú is
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defined as

1Ù6=±��4ÚH�4�i8 . ÛÜSÝÉÞyß 1Ù��±���± 9 ���q�

Definition 2 An equivalence relation over markings, àâá�±äã>± , is a net bisimu-
lation if whenever �(±���±�9É�bå°à then for all ��åÄ@ and for all equivalence classes
Ú&åæ±ç!èà ,

1Ù6=±��4ÚH�4�i8 . 1Ù6=± 9 ��Ú<�4�é8

4 Examples

4.1 A mobile agent system

We present a small example to reinforce the reader’s understanding of PEPA nets.
In this example a roving agent visits three sites. It interacts with static software
components at these sites and has two kinds of interactions. When visiting a site
where a network probe is present it interrogates the probe for the data which it
has gathered on recent patterns of network traffic. When it returns to the central
co-ordinating site it dumps the data which it has harvested to the master probe.
The master probe performs a computationally expensive statistical analysis of the
data. The structure of the system allows this computation to be overlapped with
the agent’s communication and data gathering. The marshalling and unmarshalling
costs for mobile code applications are a significant expense so overlapping this with
data processing allows some of this expense to be offset.

The structure of the application is as represented by the PEPA net in Figure 3. This
marking of the net shows the mobile agent resident at the central co-ordinating site.
In this example the activities which can cause a firing of the net are êYë and ì�íïî�ðéì]ñ .

ò Æ
ò Ê

òÁó
òÁô

�ÒõÂö÷��ø�ù�� ��õ�ö÷��øÂúv�

��û(üvý¢þ|ûËÿ]���Áù��

��� �����	��
���

��û�üCýËþ|û¢ÿ]��� ú �

���

Fig. 3. A simple mobile agent system

Formally, we define the places of the net as shown in the PEPA context definitions
below. We denote the local state of the context JBL by Jn9L . This local state is arrived
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at when the static component
�����������

has evolved to
����������� 9 .

[ K]\�� �"!$#&%�_ defa � �"!$#&%4\��'�(!$#)%t_ %('*,+ -�.0/2131242576�.0/�8�9;:=<�> !
[ Lï\�� �"!$#&%�_ defa � �"!$#&%4\��'�(!$#)%t_ %('*=?�@BADC�8(EGFIH %J! :
[ 9 L \�� �"!$#&%�_ defa � �"!$#&%4\��'�(!$#)%t_ %('*=?�@BADC�8 EGFIH %J! : 9
[ Z \�� �"!$#&%�_ defa � �"!$#&%4\��'�(!$#)%t_ %('*,+ -�.0/2131242576�.0/�8�9;:=<�> !

The initial marking of the net is � �LKNM ��O�� � ��� The behaviour of the components is
given by the following PEPA definitions.

� �"!$#&% defa hQP&R �TS l � �'�(!U#&% 9 EGFVH %J! : defa h�W	X"Y[Z �T\ l � E]FIH %J! : 9
�'�(!U#&%(9 defa h�^ #&%J! :T:�< � F %J! �¢¡ u l � �'�(!$#)%�9 9 E]FIH %J! : 9 defa h F # FV_a`bH ! �¢¡ » l � EGFIH %J! :
�'�(!U#&% 9 9 defa hQcbd(ebfgcIh ��i l � � �"!$#&% 9 9 9 9j:�<�> ! defa h�Y < # ^ % <V: �¢¡ Ô l � 9j:�<�> ! ¤
� �"!$#&% 9 9 9 defa h�WVXkYNZ �¢¡�l l � �'�(!U#&% h�^ #&%J! :T:�< � F %J! �T\ l � 9;:=<�> !

The derivation of the transition system underlying the model is the first step in the
performance analysis of such a system. The transition system contains the specifi-
cation of a Continuous-Time Markov Chain model of the system. This CTMC is
solved for its stationary distribution and performance measures are calculated from
that. For a model as simple as this one we can solve it simply with Gaussian elim-
ination. We also have available solvers such as an efficient implementation of the
preconditioned biconjugate gradient method.

4.2 A Jini Federation

In this example we present a model of a Jini Federation. The Jini architecture is de-
signed to support spontaneous networking, allowing both the clients and the servers
within a network to change dynamically. In this model we consider the discovery
and use of servers by clients, and since the model is presented for illustrative pur-
poses we consider only two distinct services, a printer and an information server.

The matching of clients and servers in Jini is managed by a lookup server which
provides the discovery service. Servers wishing to accept service requests register
with one or more lookup servers. A client with no current access to a lookup server
sends a join message to a well-known IP port, and any lookup server which receives
it will respond with its own address on which it receives discovery requests. The
client can then access the discovery service and on discovery will be given a proxy
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to the service required. This allows the client to then make direct contact with the
relevant server.

In order to cope with disconnection both proxies and registration are considered to
be granted by the lookup server on a leased basis meaning that after some time the
proxy or registration is assumed to have expired and subsequently must be explic-
itly re-established. This means that if a server has crashed, then after some period
the client will no longer be granted a defunct proxy, and the proxies already held by
clients will expire. The following model could be used to experiment with the trade-
off created by the leasing mechanism. If the expiry rate is low, then clients can be
granted proxies which will not work. However if the expiry rate is high, overhead
is increased due to the delay incurred in re-registering a functioning server.

expire

release release
Printer Info_Server

Lookup
Service

Clients

pr_request i_deregister i_request i_registerpr_register pr_deregister

join

Fig. 4. The net-level description of the Jini Federation example

In the PEPA net model the net-level represents the different contexts of operation
experienced by the clients. In the place mon,ptí¾ñ�îDq , clients are assumed to be newly
connected or in possession of expired leases to a discovery service, and so without
access to servers. In the place rpë�ëtsWðvu w�íFì	xvpJy�í the presence of a client indicates
that the client has joined the service, while the presence of a server indicates that
the corresponding service is currently registered with the lookup service. Thus the
services that a client can access from the lookup service will depend on the servers
which are currently registered (i.e. have tokens currently in that place). There are
also places Jnì�p�ñ�î|í¾ì and zÁñ {Ëë w�í¾ì	xUíFì corresponding to each of the potential ser-
vices, and the presence of a client token in these places corresponds to the client
being in possession of a proxy for that service. In this model we assume that the
leasing periods are set so that the probability of a client being in possession of two
proxies simultaneously is negligible.
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The tokens of our model are the PEPA components |j} , ~[� and �U� . The |j} compo-
nent represents the evolution of the client, containing both firings (net-level transi-
tions) representing changes of context and transitions representing computational
steps within a context.

���Q� dkh�e�� \?��� � ��� � ����_ defa hU� _ \ � _ _ j � _ \ � _ _ j � _ \ � _ _ l
� _ defa h���R � h �¢¡ 
 l � � _ 9
� _ 9 defa h�Z : _ <�<I� XbZ �¢¡ O l � 9 9;:=<L� ` ¤ h�^ _ <�<I� XbZ �¢¡ Q l �0� 9j:�<L� `

¤ hQd(�t� � cId �¢¡L� l � � _
9 9;:=<L� ` defa hQ��c cId(�tfgd(�Le �¢¡�� l � 9 9;:=<�� ` 9
9'9j:�<L� ` 9 defa h�Z : ^ #&% �T\ l � 9 9;:=<�� ` 9 9
9'9j:�<L� ` 9 9 defa h�Z : ^ #&% �T\ l � 9 9;:=<�� ` 9 9 ¤ hQcId � d"���Ld �¢¡�� l � � _ 9
� 9;:=<L� ` defa h � cbd"�tf�d"�Ue �¢¡I� l �0� 9j:�<L� ` 9
� 9j:�<L� ` 9 defa h�^ #L� < �T\ l �0� 9;:=<�� ` 9 9
� 9j:�<L� ` 9 9 defa h�^ #L� < �T\ l �0� 9;:=<�� ` 9 9 ¤ hQcId � d"���Ld �¢¡�� l � � _ 9

Each of the services J5ì�p0ñ�î÷íFì and zyñv{Ëë w�íFì	xUíFì is represented as the composition
of a static service element ( ~[� ���L�"� and �L� ���L�"� respectively) and a token compo-
nent, which acts as the service proxy with the lookup service. When a client is
granted a proxy by the service proxy in the lookup service, it can make a request,
represented by moving to the service context. Once there the client cooperates with
the server directly until all its needs are satisfied or until the proxy expires. The
role of the static service element is simply to satisfy service requests from proxied
clients.

[ c � h�ebd(c \ � e � � � _ defa h 9;� ! :�� ! j 9;� \ 9j� _ l %('*�� úB  �� 8 h 9 9;:=<�� ` \ _ j 9 9;:=<L� ` \ _ j 9 9j:�<L� ` \ _ l
9j� ! :T� ! defa h�Z : ^ #&% �Q¡¾¡ l � 9j� ! :T� !

9j� defa hQ��c cId(P � �Le�d(c �¢¡�¢ l � 9;� 9
9j� 9 defa hQ��c £�d(cId(P � �Ue�d"c �¢¡�¤ l � 9;� ¤ h�Z : _ <L<I� XbZ �T\ l � 9;� 9

¥ hg¦JR §�d(cb¨)d"c \ � e � � � _ defa h � � ! :T� ! j � � \ � � _ l %�'*J+ -�©ª4,8 h � 9;:=<L� ` \ _ j � 9j:�<L� ` \ _ j � 9;:=<L� ` \ _ l
� � ! :T� ! defa h�^ #L� < ��«t¡ l �0� � ! :T� !

� � defa h � cbd"P � �Ue�d"c �¢¡ 
 ² l �0� � 9
� � 9 defa h � £gd"cbd"P � �Uebd(c �¢¡ 
¢
 l �0� � ¤ h�^ _ <L<I� XbZ �T\ l �0� � 9

The lookup service itself is represented by the place rpë�ëtsWðvu w�íFìDx¬p,y�í . This place
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has no static elements but a context for each potential server proxy and each po-
tential client. The lookup activities (  � }�®	®	¯�°	 and ± }�®	®	¯�°D ) are carried out in
cooperation between a client and a server proxy, and thus require the presence of
both in the rpë�ëtsWðvu w�íFì	xvpJy�í place.

² R�R&³tfg� §�d(cb¨ ��´ d \ � � � � � _ defa h 9j� \ _ j � � \ _ l %�'*7C,1 µ 4�4�¶�@�CT· + µ 4�4�¶�@�C¸8 hU� _ \ _ j � _ \ _ j � _ \ _ l

We have run this PEPA net model for different numbers of clients and servers. In
the simplest case of one client, one printer server, one information server, and when
considering the following ordering for the net places ( rpë�ëtsWðvu w�í¾ì	xvpJy�í , Jnì(p0ñ�î÷íFì ,
zyñv{Ëë w�íFì	xUíFì , m¹nJptíÌñUîDq ), the initial marking º¼» is

½ » a h ² R�R)³tf�� §¾d"cb¨ ��´ d \ � � _ � [ c � h�e�d"c \ 9j� � _ � ¥ hg¦JR §¾d"c�¨�d(c \ � � � _ � �¿��� dkh�e�� \?����_ l

The model has 32 states, 20 transitions and 88 firings; a portion of the transition
system, describing some possible accesses to the printer server and some possible
accesses to the information server is shown in Figure 5. For readability, many fir-
ings and transitions are omitted from the graph as well as activity rates; solid lines
represent local transitions while dotted and dashed lines represent firings.

Figure 5 also describes the markings in the path whose states are drawn as black
squares. This path shows one possible evolution of the client contacting the printer
server. Starting from the initial marking ºÀ» , the printer server registers with the
lookup server. This is obtained by moving the component ~N� from the place J5ì�p0ñ�î÷íFì
to the place rpë�ëtsWðvu w�íFì	xvpJy�í , filling the appropriate empty cell there ( ºçK ). After-
wards, the client joins the lookup server, as shown in marking ºÂÁ where the com-
ponent |j} has left place m¹nJptíÌñUî and has reached the appropriate empty cell into
r�ë�ë�s�ð u w�íFì	xvp,y�í . Now the internal transition  � }�®	®	¯�°D can take place ( º L�L ).
The client is granted the printer proxy and can move to the place Jnì�p�ñ�î|í¾ì ( º/LUÃ ).
Finally, the request can be satisfied thanks to the cooperation on action  � ± O�� per-
formed by the two components resident in the same place ( º/LUÄ ). A similar evo-
lution is possible for the path in the right part of the graph connecting markings
ºÅ»��Uº³L��Uº¼Æ��$ºÅÃ��Uº/KT»��$º/KTÄ when considering the information server instead of
the printer server.

The right part of the graph describes a situation in which both servers have reg-
istered with the lookup server and the client can choose among one of them (see
marking ºÅÇ in Figure 5).

17



m28

m22

m1

m0

m20

m23 m17

m11

release m8

m10

m7

m2m3

m5m4

m6

join

join
expire

p_deregister i_deregister

join
expire

join
expire

i_request
pr_request

pr_request i_request

pr_lookup
i_lookup

expire

i_deregister

release

release

release

pr_lookup

print info

print info

i_lookup

m18m31

m19m29
print

info

info

pr_register i_register
print

½ » � h ² R�R)³tf�� §¾d"cb¨ ��´ d \ � � _ � [ c � h�e�d"c \ 9j� � _ � ¥ hg¦JR §�d"c�¨�d(c \ � � � _ � �¿��� dkh�e�� \?���É_ l
½ K � h ² R�R)³tf�� §¾d"cb¨ ��´ d \ 9;� 9 � � _ � [ c � h�ebd(c \ � _ � ¥ hg¦JR §�d(cb¨)d"c \ � � � _ � ���Q� d"h�eb� \?����_ l
½ Á � h ² R�R)³tf�� §¾d"cb¨ ��´ d \ 9;� 9 � � � _ 9 _ � [ c � h�e�d(c \ � _ � ¥ hg¦JR §�d"c�¨�d(c \ � � � _ � �¿��� dkh�e�� \ _ l
½ L�L � h ² R�R)³tf�� §¾d"cb¨ ��´ d \ 9;� 9 � � 9 9;:=<L� ` _ � [ c � h�e�d"c \ � _ � ¥ h�¦,R §¾d"cb¨)d"c \ � � � _ � ���Q� dkh�e�� \ _ l
½ LUÃ � h ² R�R)³tf�� §¾d"cb¨ ��´ d \ 9;� 9 � � _ � [ c � h�ebd(c \ � 9 9;:=<�� ` 9 _ � ¥ hg¦JR §�d"c�¨�d(c \ � � � _ � �¿��� dkh�e�� \ _ l
½ LUÄ � h ² R�R)³tf�� §¾d"cb¨ ��´ d \ 9;�U9 � � _ � [ c � h�ebd(c \ � 9 9;:=<�� ` 9 9 _ � ¥ hg¦JR §�d(cb¨)d"c \ � � � _ � ���Q� dkh�e�� \ _ l

½ Ç � h ² R�R)³tf�� §¾d"cb¨ ��´ d \ 9;�U9 �T� �U9 � � _ 9 _ � [ c � h�e�d"c \ � _ � ¥ hg¦JR §�d"c�¨�d(c \ � _ � ���Q� d"h�eb� \ _ l

Fig. 5. Partial transition system of the Jini Federation example and marking descriptions of
selected states
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5 Relating PEPA nets to Petri nets and PEPA

If they were to be viewed purely formally as high-level description languages for
specifying continuous-time Markov chains, then PEPA nets, stochastic Petri nets
and the PEPA stochastic process algebra would be considered to be equally expres-
sive. That is to say, for a given CTMC È , it is possible to construct a high-level
model in each of these three formalisms such that the underlying CTMC derived
from the model is isomorphic to È .

In practice, the three languages present different sets of conceptual tools to the
modeller. From the pragmatic perspective of a performance modeller who wishes
to reliably encode a high-level model of a particular system then there might be
reasons to select one of the languages instead of the others for this particular mod-
elling study. In the remainder of this section we compare modelling with PEPA nets
with modelling with Petri nets and the PEPA stochastic process algebra.

5.1 Relating PEPA nets to Petri nets

To illustrate the difference between PEPA nets and Petri nets we first show how
to represent an ordinary É -safe stochastic Petri net as a PEPA net. In a classical
stochastic Petri net tokens are indistinguishable. We can replicate this in a PEPA
net by having only a single class of tokens which have only one (PEPA) state. The
definition of such a token would also need to always permit firings of the net to take
place. We define these tokens by summing over all of the transition activity names,
for all of the transitions of the net (

�,O uiåËÊ ).

Ì <I� !U# defa ÍÎ2Ï   ÞÂò h %Q#Ùu �T\ l �
Ì <I� !U#

To define a É -safe stochastic Petri net with a PEPA net we then need simply to
specify the places of the net as being capable of storing up to É of these tokens, and
making no use of static components.

["Ç \ Ì <V� !$# �4�4�4��� Ì <I� !$#2_ defa Ì <I� !U#�\ Ì <I� !$#Ì_ jNÐUÐUÐ j Ì <I� !$#W\ Ì <I� !$#Ì_

This reconstruction of ordinary É -safe stochastic Petri nets from PEPA nets points
to the difference between the two formalisms. A PEPA net can be viewed as a Petri
net where the tokens are programmable. The tokens of a PEPA net have state, can
count, can observe activities, and can even refuse to be fired from the place where
they reside. We believe that this gives the PEPA net modeller a novel conceptual
modelling tool which can be used to express natural descriptions of systems with
active, stateful mobile agents.
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5.2 Relating PEPA nets to PEPA

The relationship between PEPA nets and PEPA is straightforward. A PEPA net
with only one place and no transitions is simply a PEPA stochastic process algebra
model. To explain how a PEPA net can offer added expressive power we consider
a PEPA net with more than one place, as in Figure 6.

[ K \ � _ defa�� \ � _ %(' ) ^
Ñ&Ò
ÑÔÓ Õ×ÖÕNØÙ

Ú�Û)ÜVÝbÞ(ß)à�á�Ü ��â"ã

Ú�äUÜIÝbÞ(ß)à¾á�Ü �Jå&ã

[ Lï\ � _ defa�� \ � _

Fig. 6. Tokens in a PEPA net can decouple from a static component

In this model a token of type � moves between place J<K and place J:L . In doing
so it decouples itself from a static component � , located at J<K . The token thereby
moves out of the scope of the cooperation set # . Cooperation sets are used to con-
figure copies of components, coupling them to communication partners. In this way
they restrict the behaviour of a component, requiring it to perform some activities
(those in the cooperation set) only if they have a partner who is able to cooperate
in performing them. In the example in Figure 6 if � is unwilling to perform some
of these activities then the behaviour of � will be restricted. Even if � is willing to
perform all of the activities in the cooperation set # then it can still influence the
rate at which they are performed. In contrast when the token � is resident in JHL
then it is subject to no such restriction and can perform all of its activities at the
rates which it itself specifies.

This concept cannot be expressed in a PEPA stochastic process algebra model.
The cooperation sets used in a PEPA model impose a static communication topol-
ogy on the model. In contrast a PEPA net has dynamically varying communication
structure and, in consequence, a given action in a component might sometimes be
performed in isolation and sometimes be performed in cooperation. The ability to
express the concept of dynamically varying communication structure offers an ad-
ditional conceptual tool to the performance modeller which is not available when
modelling in PEPA.
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6 Case study: A hierarchical cellular network

Hierarchical cellular networks consist of two tiers of cells, a macrocellular level
overlaying a microcellular one. This means that a geographical point is potentially
covered by two levels of cells and a user can be assigned to one of these two lev-
els. Generally, such a network architecture takes into account two user classes ac-
cording to their speed: the pedestrians and the vehicles. Usually, macrocells are
deployed in rural areas and have good properties for fast users, whereas the micro-
cellular network concept has been developed to satisfy the high traffic demand in
the dense urban regions and is better suited to providing for services requiring low
mobility.

The objective of the hierarchical architecture is to take advantage of the wide cover-
age of macrocells and the traffic capacity of microcells. However, this architecture
suffers from the major drawback of microcellular systems, which is the handoff
problem.

The handoff is defined as the change of radio channel used by a wireless terminal.
For example, if a subscriber crosses a cell boundary to move to an adjacent cell
while the call is in progress, the call must be handed off to the new cell in order
to provide uninterrupted service to the mobile subscriber. If the new cell does not
have enough channels to support the handoff, the call is dropped. So, the handoff
procedure has an important effect on the performance of the system and the proba-
bility of forced call termination must be limited because from the point of view of a
mobile user, forced termination of an ongoing call is less acceptable than blocking
a new call.

6.1 Topology and Assumptions

The topology of the hierarchical network we study is depicted in Figure 7. In this
topology, each macrocell overlays a cluster of seven microcells.

As in an hexagonal model each microcell has six neighbouring cells, we consider
a microcell cluster model composed of a central microcell surrounded by six pe-
ripheral cells (Figure 7). We consider the Fixed Channel Allocation scheme (FCA)
[22], where a constant number æ of channels is distributed among the two layers
of cells.

Although hierarchical cellular networks are studied, we consider only one class of
users. As we focus our study on dense urban regions, we consider only services
which require low mobility such as slow-moving vehicles or pedestrians. How-
ever, we consider two types of customers within the network, the new calls and
the handover calls. Thus, external arrivals to a microcell consist either of new calls
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Fig. 7. The hierarchical cellular network and cluster model

or handover requests coming from its adjacent microcells or from the macrocell.
Similarly, external arrivals to a macrocell consist either of new calls or handover
requests coming from either its adjacent macrocells or from one of the microcells of
the cluster. Thus, new calls can be assigned at either the microcell or the macrocell
level.

For the microcell level, we consider the overflow strategy with reversible capability.
Therefore, a request, which could be either a new call or a handover, initiated at
the microcell level, is served in its originating microcell if a channel is available.
Otherwise, according to the overflow strategy, the request is overflowed to the upper
layer and is satisfied at this level if a channel is free. In the case where all channels
are busy at both levels, the request is blocked (new call) or dropped (handover).
Similarly, when a request is first initiated at the macrocellular level and there is no
available channel, the request is transferred to the microcell level where it may be
satisfied if a channel is available; otherwise, it is dropped.

We consider a homogeneous system in statistical equilibrium. Thus any microcell
overlaid by a macrocell has statistically the same behaviour as any other microcell
overlaid by a macrocell. We can then analyse the overall system by focusing on
a given cell under the condition that the neighbouring cells exhibit their typical
random behaviour independently. Moreover, we assume that any geographical point
of this network is covered by both microcellular and macrocellular levels, and that
the whole area is crossed randomly by mobile users, according to an uniform traffic
matrix.

This system is studied under the usual Markovian assumptions. It is assumed that
the average new call arrival rate and the handover rate in each cell in the network
follow a Poisson distribution. The amount of time that a user remains within a
coverage cell of a given base station (called dwell-time) is modelled by a service
time which is exponentially distributed. In the next section, we present the PEPA
net model corresponding to this system.
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6.2 PEPA net model

In the hierarchical cellular network, all microcells of the network are assumed to
have exactly the same behaviour. Moreover, all customers have the same behaviour
and do not change behaviour according to the microcell in which they evolve.
Therefore, the PEPA net model is based on the description of the behaviour of
one microcell (here the central microcell) and its links with the cells surrounding
it. This model is depicted in Figure 8 where each cell is represented by a placeë zDmíìïînx , V¹ðòñóðõô , in which the wireless network customers evolve. Note thatë zDmíìïîöÆ represents the central microcell. Similarly, the macrocell is modelled
using a place denoted

ëø÷ moìïî . Moreover, we use a place denoted ù]úüûíúüùGý
to model what we call the network environment. This part of the network is assumed
to generate the new calls and absorb the dropped or terminated ones.
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Fig. 8. The PEPA net of a basic cluster

The places of the PEPA net are defined as follows.
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The behaviour of a network customer is modelled using a dynamic component
|j}3± ��O�� . Formally, component |j}3± ��O�� is defined as shown below.

� _ ^ !$#&% ��	��a h � h �TS l � � _ ^ !$#)% 
 ¤ h�%��)h�£�R'& þ)( �TS l � � _ ^ !U#&% 

� _ ^ !$#&% 
 ��	��a h�%��)h�£�R'& û Ç õ+*�ý �Q¡ Q�,   l � � _ ^ !$#&% 
 ¤ h�%g�&hg£gR-&/. ü10�ý �Q¡ � ,   l � � _ ^ !U#&% 


¤ h�%��)h�£�R'& û Ç õ+*�ý1� 2 �Q¡&� ,   l � � _ ^ !$#&% 
 ¤ h�%g�&hg£gR-&/. ü10�ý1� 2 �Q¡ � ,   l � � _ ^ !U#&% 

¤ h�%��)h�£�R'& û Ç õ+*�ý1� ý �Q¡ O ,   l � � _ ^ !$#)% 
 ¤ h�%��)h�£�R'&/. ü10�ý3� ý �Q¡ 
 ,   l � � _ ^ !$#)% 

¤ h�%��)h�£�R'& þ)( �   l � � _ ^ !U#&% 

¤ h�%��)h�£�R'&54 ö
6éÿ7� K �98 
 ,;: l � � _ ^ !$#&% 
 ¤ h�%g�&hg£gR-&54 ö
6Wÿ7� L �98 O ,;: l � � _ ^ !U#&% 

¤ h�%��)h�£�R'&54 ö
6éÿ7� Z �98 Q ,;: l � � _ ^ !$#&% 
 ¤ h�%g�&hg£gR-&54 ö
6Wÿ7� � �98L� ,;: l � � _ ^ !U#&% 

¤ h�%��)h�£�R'&54 ö
6éÿ7� Á �98 � ,;: l � � _ ^ !$#&% 
 ¤ h�%g�&hg£gR-&54 ö
6Wÿ7� Ç �98�� ,;: l � � _ ^ !U#&% 

¤ h�%��)h�£�R'&54 ö
6éÿ7� Æ �98 � ,;: l � � _ ^ !$#&% 

¤ h H ! :T� ^<� ! ��i l � ��� «! Õ#" O ¤ hQ£�cbR)�g� � h�P �¢¡ l � � _ ^ !U#&%

� _ ^ !$#&%ËO ��	��a hQd"hg£ � hgP ��i 9 l � � _ ^ !$#&%
The new calls arrival process (external arrival) to a microcell is represented by an p0ñ
activity. If all channels of the microcell, covering the area where the new customer
is, are busy then the new call has to be transferred to the macrocell. This transfer
is modelled using the activity =éM ñ/>éë#? þ)( . If all channels of the macrocell are busy
too, this transfer fails and the new call is blocked. As shown in Figure 8, p0ñ and=iMÙñ/>éë#? þ)( are activities which can cause the firing of the net. The firing p0ñ has
priority over the firing =éM ñ5>ië#? þ)( , capturing the fact that a call will be allocated a
channel in the microcell if there is one available. The rate of these activities is the
same and is equal to the external arrival rate to the microcell, @ .

The relative priorities of the firings of this model are listed below.AB�C � h � %g�&hg£gR-& û Ç õ+*�ý � %g�&h�£�R'&D. ü30�ý �%��)h�£�R'&54 ö
6éÿ7� Z � %��)h�£�R'&54 ö
6éÿ7� Ç � %g�&h�£�R'&/4 ö�6éÿ7� Æ
E�F
GIH %��)h�£�R'& þ)( H £gcIR&��� � hgP

A customer may terminate its communication during its sojourn in a microcell. This
is modelled using the activity JLK|�7M'NPOQK . The execution of this activity is followed by
the execution of activity í¾ñ5>'p0ñiê which specifies that the customer is leaving the
network. The customer may also cross the cell boundary to move to an adjacent
cell during its communication. The call must then be handed off to the new cell
in order to provide uninterrupted service. For that a handoff request is generated
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to ask for another channel in the destination microcell. In our model, this aspect
of the communication is modelled using the activity =éM ñ/>éë#? l u � where RSN(� may
be one of the following values: ì(ptêT=�î , n0í�{(î , ì�ptêU=Uîï�ÒN , n0í�{(îï�=N , ì�p0êT=�î��=î or n0í�{(î��=î ,
according to the direction taken by the customer during his communication. The
rate of this activity is V u�ã³� where VÙu , N . V �|�|�|�Á�XW , is the probability associated
with each possible destination among the adjacent cells. If the handoff procedure
does not succeed because all channels of the target microcell are busy, the network
tries to transfer the call to the macrocell overlapping the area. This is modelled
using activity =éM ñ/>éë#? þ)( . If once again all channels of the macrocell are busy, the
transfer fails and the call is dropped. This is modelled using activity >éì�ë�u u'p�ñéê . As
previously, =éM ñ5>ië#? þ)( has lower priority, and here >iì�ëtu u p0ñiê has lowest priority.

For the sake of readability of Figure 8, the rates of the activities on the transi-
tions from the adjacent microcells to the central microcell are omitted. These rates
may be easily deduced from the transition with the same activity name from the
central microcell to the opposite peripheral microcell. For example, the rate of ac-
tivity =iMÙñ/>éë#? û Ç õ+*�ý on the transition from

ë z	moìïîöÇ to
ë zDmíìïîöÆ , the central

microcell, can be deduced from the activity on the transition from
ë zDmíìïîóÆ toë zDmíìïîEZ and is therefore VYQ ãÄ� .

A customer in the macrocell has exactly the same behaviour except that activity=iMÙñ/>éë#? þ)( is no longer enabled. Instead, as the customer can be transferred to the
microcellular level, we include an activity =éM ñ5>ië#? 4 ö�6éÿY� x where ñ is the microcell
number where the call is transferred. The rate of this activity is 1Âx:ã�~ where 1�x ,ñ . V �|�|�|�Á� ô , is the probability to transfer the call to microcell ñ . Conversely, this
activity cannot be executed by a customer in a microcell.

The services provided by a microcell ñ , Vÿð ñ ð ô , and the macrocell to their
customers are modelled using static components denoted ±ZNPO��\[|x and ± - O��\[ re-
spectively, and are formally defined as follows:

E ^<� :=< x �
	��a h H ! :T� ^<� ! �T\ l � E ^�� :�< x ]_^a`b^dc
EGF � :=< �
	��a h H ! :T� ^<� ! �T\ l � EGF � :�<

Activity
�	���L� ±$e � is the only activity on which components |j}3± ��O�� and

� ±$e � ®�x , on
one hand, and |j}3± ��O�� and

��� e � ® , on the other hand, must synchronise.

We assume that in the initial state all macrocell and microcells channels are avail-
able and all potential network customers ( f ) are in place ù úüû úüù]ý .

As already remarked, in order to capture the exact behaviour of the network, we
have assigned priorities to the firings. For example, in the net the transition labelled
p�ñ has a higher priority than that labelled =éM ñ5>ië#? þ)( . Thus a customer can fire=iMÙñ/>éë#? þ)( only if the firing of activity p0ñ is not possible, i.e. there are no slots
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available in the place ±�&Ènm>« u .
In the case where each cell has two channels ( æ . V W ) and f . ô , the model, once
aggregated, has 49416 states, 147274 transitions and 571362 firings.

This study has been inspired by the work presented in [12]. In that paper the au-
thors investigate the performance of the hierarchical cellular network using PEPA.
They assume a Manhattan model [23] in which the reuse pattern is composed of a
macrocell overlying a cluster of five microcells.

The PEPA model obtained consists of six components, one for each cell. As the
customers are not explicitly modelled, all the information about the activities they
can perform in a cell are captured by the component representing the cell. This
results in a model where the mobility of the customers is observable only from the
point of view of the cell.

In our PEPA net model (Figure 8), a customer is explicitly modelled using a compo-
nent which captures the activities that it can perform. So when a customer moves,
which is explicitly represented by the firings, its activities “move” with it. This
gives another dimension to the model as the mobility of a customer is represented
from both the point of view of the cell (place) and the customer ( Èhg�NPK)iUs ). Moreover,
the representation of the cell only changes in the sense that its slots are filled when
channels are in use; it does not need to explicitly record the state of the customers.
Thus in many ways the PEPA net model provides a more natural representation of
the system.

Furthermore the PEPA net model offers more compositionality in the sense that it
would be possible to extend the model to represent a number of interacting macro-
cells, simply by modifying the net-level description and the initial marking of the
model. In the PEPA model the whole model would need to be re-written to achieve
this.

7 Implementation

The PEPA stochastic process algebra is supported by a range of tools including
the PEPA Workbench [13] and the Möbius Modelling Framework [10]. We have
implemented the PEPA nets formalism as an extension of the PEPA Workbench.
The PEPA modelling tools, together with user documentation and papers and ex-
ample PEPA models are available from the PEPA Web page which is located at
http://www.dcs.ed.ac.uk/pepa.

The PEPA Workbench exists in two distinct versions. The first version is an experi-
mental research tool which is coded in the functional programming language Stan-
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dard ML [28]. The second is a re-implementation of this in the Java programming
language. These are known as “the ML edition” and “the Java edition” respectively.

Standard ML and Java have very different strengths. For a visual language such
as the notation of Petri nets the Java language’s visualisation capabilities would
suit the task much better than Standard ML. Further, there are existing Java tools
for Petri nets which could be extended to provide an implementation of PEPA nets.
After initial experimentation with the Standard ML version of the PEPA Workbench
for PEPA nets, a graphical presentation of PEPA nets could be incorporated into the
Java version of the Workbench. This implementation plan is ongoing, but at an early
stage.

The Standard ML language is well suited to implementing symbolic processing
applications and provides built-in support for describing datatypes such as those
needed to present the abstract syntax of a formal language such as PEPA. These fea-
tures made it possible to rapidly adapt the routines for generating PEPA derivation
graphs to generate derivation graphs for PEPA nets. The compact transition rules
presented in Figure 2 look simple on the page but they proved to be a challenge
to implement efficiently. Here again, the higher-order features of the Standard ML
programming language proved to be useful in allowing us to form function closures
from higher-order functions which fixed some of their formal parameters. This al-
lowed us to unroll the derivation graph for the PEPA nets model without suffering
a performance penalty due to accumulated parameter information.

The use of the PEPA Workbench for PEPA nets is illustrated in Figure 9. The in-
put language of the tool is an extension of the concrete syntax used for storing
PEPA language models. The topology of the net is specified by providing a textual
description of the places and the arcs connecting them.

PEPA Workbench for PEPA Nets Version 0.81.1 "Granby Road"
[ Setting model aggregation on ]
[ Use of priorities is enabled ]
Compiling the model
Generating the derivation graph
The model has 49416 states
The model has 147274 transitions
The model has 571362 firings
Writing the hash table file to model3.hash
Exiting PEPA Workbench.

Fig. 9. The PEPA Workbench for PEPA nets processing the hierarchical cellular network
example for seven clients
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7.1 Model aggregation in the PEPA Workbench

As firings or transitions occur in the exploration of a PEPA net model, new syn-
tactic terms are generated for these one-step derivatives of the model according to
the semantics of the language as presented earlier. Some of the one-step derivatives
which are generated will be syntactically distinct but semantically identical. We
have extended our previously published algorithm for computing canonical forms
of these terms [15] from the PEPA stochastic process algebra to be used on PEPA
nets. We have extended the PEPA Workbench for PEPA nets to apply this canoni-
calisation on-the-fly, replacing derivatives with their canonicalised equivalents. We
quotient the state space of the system with respect to this canonicalisation and ag-
gregate the rates at which transitions into aggregated states occur.

This aggregation gives a dramatic reduction in the number of states of a PEPA net
model. For example, consider a PEPA net with two places and a token Ê which can
fire to move between the places. The net has the following initial marking.

hkj \ _ j j \ _ j j \ _ j j \ _ � j \ j _ j j \ j _ j j \ j _ j j \ j _ l
This net has 70 states and 640 firings without applying our aggregation algorithm
and 5 states and 8 firings if the algorithm is applied.

As a PEPA net evolves, according to the operational semantics presented in Sec-
tion 3, there is no opportunity for it to add or take away places or transitions. As
a consequence of this a PEPA net and its one-step derivatives will be structurally
isomorphic, i.e. will have the same net structure. We have exploited this to include
an optimisation in our implementation of aggregation based on the net bisimula-
tion relation as defined in Section 3.1. At each step we simply canonicalise the
representation within each place marking instead of canonicalising at the marking
level. Applying this aggregation avoids the generation of terms which could not be
derivatives of the current term according to the operational semantics.

8 Related work

As mentioned in the Introduction, Petri nets have previously been combined with
several other modelling formalisms. In particular in the arena of performance mod-
elling, several proposals have been made to integrate queues or queueing networks
with stochastic Petri nets [3,2,17]. However, these proposals differ from our own
in that the two formalisms may be regarded as adjuncts to one another, with one
providing delays to the other, rather than integrated into a single formalism.

Somewhat closer to our own work is Valk’s work on Elementary Object Systems [31].
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In this work an extension of Petri nets is presented in which the tokens circulating
in the net structure (called the System net) are themselves Petri nets (termed Object
nets). Object nets move like ordinary tokens and they can change their markings
but not their structure. Three different types of transitions are defined. Transitions
occurring in the Object net (i.e. in the marking) are called system autonomous and
represent the object internal behaviour. An interaction takes places when both the
Object and the System net enable transitions with the same attached label. A third
type of transition causes a change in the System net only and it is called transport.
In PEPA nets we do not allow such transitions, since a firing cannot occur without
modifying the state of a component.

Despite the superficial similarities there are some quite strong differences between
the work on PEPA nets and that on Elementary Object Systems (EOS). Funda-
mentally, EOS are without any timing considerations, other than the relative timing
imposed by the Petri net causality relation. In PEPA nets, in addition to this im-
plicit timing information we have explicit time delays integrated into behaviour at
both the net level and the token level. Moreover the motivations for the works are
distinct. Valk’s work is motivated by a desire to provide a fundamental model of
object-oriented programming, and the development of EOS has been strongly in-
fluenced by this goal. For example, two different semantics are provided to charac-
terise the dynamic behaviour of EOS, called value and reference semantics, corre-
sponding to differing approaches in object-oriented programming languages. Our
motivation has been to develop a convenient high-level modelling language for
Markov processes, for systems in which state changes can be regarded as proceed-
ing in two ways.

As mentioned earlier, one of the domains of application envisaged for PEPA nets
is the domain of mobile computation. Several process calculi have been developed
specifically for this domain, the most notable being the } -calculus [27] and the cal-
culus of mobile ambients [8]. The } -calculus, and Priami’s subsequent extension,
the stochastic } -calculus, have a very different style of representing systems [5],
which does not satisfy our criterion of clearly separating state changes into dis-
tinct types related, in the case of mobile computation, to concepts of location and
mobility. In this respect our formalism is closer to the work on mobile ambients.

The calculus of mobile ambients is intended to capture notion of locations, mo-
bility and authority for movement. This is achieved by introducing the concept of
ambient, i.e. a bounded place where computation happens. An ambient is denotedi6?�;8 , where i is the name of the ambient and � is the process running inside it.
Ambients can be nested into other ambients and can be moved as a whole. Mobility
primitives are provided by considering capabilities: it is possible to enter into an-
other ambient, to exit from an ambient, to open an ambient. Processes are executed
within ambients and a simple asynchronous communication mechanism that works
within a single ambient is chosen. Communication across ambients is modelled as
the movement of ‘messenger’ agents that must cross ambient boundaries.
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The most pronounced differences between PEPA nets and the ambient calculus
are the lack of timing information in the ambient calculus and the ability to nest
ambients which gives a hierarchical structure to locations which cannot be matched
by the places in PEPA nets. It is an area for future work to study the differences and
similarities between these formalisms more closely.

In the performance arena our work has some resonances with earlier work by
Buchholz [6,7]. In this work Buchholz considered solution techniques for Markov
processes which were specified in an hierarchical fashion, meaning that a num-
ber of component Markov processes were connected via a higher-level model. The
higher-level model determines how entities move between lower-level models. The
lower-level models in Buchholz’s work were principally intended to be queueing
networks, so that the entities (customers) which move between lower-level mod-
els are themselves without state and have no power to evolve independently. The
primary focus of the papers [6,7] is finding efficient solution techniques for hierar-
chical models. Thus it is anticipated that it will be a fruitful area for future work
to investigate how Buchholz’s framework may be modified to accommodate PEPA
nets.

9 Conclusions and further work

The PEPA nets formalism is new and, as yet, relatively unproven. It is our belief
that it can provide a suitable framework for the description of performance models
of systems which have distinct notions of changes of state. Our experience with the
PEPA formalism has been that the combination of a well-defined formal semantics
for the language and the availability of a range of tools to implement the language
has enabled us and others to use it effectively in the performance modelling and
analysis of systems. By following a similar development path we would hope that
the PEPA nets formalism could also prove to be useful.

The combination of a process algebra with a Petri net presents many opportunities
to import developments from the Petri net community into the practices in the pro-
cess algebra community. Further, it is to be hoped that these developments can be
imported more directly through the use of a Petri net with algebraic terms as tokens
than if one was to rework them and to re-apply them in the process algebra context.

We have defined a language which provides an extension to the PEPA stochastic
process algebra by allowing a number of distinct PEPA models to be arranged into
a net. These models communicate via the transfer of tokens from one place to an-
other. We have implemented this new language and applied it to some case studies.
In the light of additional experience gained from further case studies it could be
possible that we would discover that other language constructs would be helpful to
the modeller.
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One possibility would be an independent evolution of the net system, akin to the
transport transitions of Elementary Object Systems, where tokens are forcibly
moved from one place to another without the option to refuse this or change state
in transit. We have omitted this feature at present because it seems at odds with the
process algebra notion of every component having behaviour. Additional language
design decisions and extensions remain as future work.

Other future work includes the continued development of our implementation of
the PEPA Workbench for PEPA nets. The additional of a graphical editor for PEPA
nets is a likely next step with this tool.

Together with Norman and Parker at Birmingham we have recently extended the
PRISM probabilistic symbolic model checker [24] to support the PEPA stochastic
process algebra as an additional modelling language. An extension of that work to
support PEPA nets would greatly enhance our ability to experiment with models on
a large scale.
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A Semantics of PEPA

The semantic rules, in the structured operational style, are presented in Figure A.1;
the interested reader is referred to [20] for more details. The rules are read as fol-
lows: if the transition(s) above the inference line can be inferred, then we can infer
the transition below the line. The notation � � ��ÚG� which is used in the third cooper-
ation rule denotes the apparent rate of � in Ú .

A.1 Definition of PEPA nets equality on alphabets

The relation .>» is used in the PEPA nets semantics. Its definition is straightfor-
ward but is included here for completeness.

� a » ^ if mLn�o-p � a mLnqo-p ^
The alphabet of a PEPA nets component is the least set satisfying the following
equations.

mLn�o-p h � %(' ) ^ l a h¢h mLnqo-p � lsr § l#t h¢h mLn�o-p ^ lsr § l#t h¢h mLn�o-p � lTu § u h mLnqo-p ^ l¢l
mLn�o-p h ��¦y§ l a h mLnqo-p � lsr §
mLn�o-p h � \?�b_ l a mLnqo-p �

mLn�ovp �Ha mLnqo-p e where � defa e
mLn�o-p h¢hw  �¢¡ l � eil a �   � t mLn�o-p e
mLn�ovp h c ¤¥eél a mLnqo-p c t mLn�o-p e
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Prefix

������������Ú
����� �v��w�U��� Ú

Cooperation

Ú
����� �v��w�U�W� Ú 9

Ú %(' )xw ����� �v��w�U�W� Ú 9 %(' )xw ����!åÄ#��
w ����� �v��w�U��� w 9

Ú %(' )yw ����� �v��w�U��� Ú %(' )xw 9 ����!åÄ#��

Ú
����� �vÆ���w�U��� Ún9zw ����� �ËÊ(��w����� w>9

Ú %(' )xw ����� Î2��w����� Ú 9 %(' )xw 9 ����åÄ#�� where m . � 

� � ��Ú:�

�|O
� � �!w5�|{�}�~ �0� � �0ÚG����� � ��w:�¬�

Choice

Ú
����� �v��w����� Ú;9

Ú���w ����� �v��w�U��� Ú 9
w ����� �v��w�U��� w>9

Ú���w ����� �v��w����� w 9
Hiding

Ú
����� �v��w�U��� Ún9

Ú:!�#
����� �v��w�U��� Ú 9 !�#

����!åÄ#�� Ú
����� �v��w�U��� Ún9

Ú:!�#
����� �v��w�U��� Ú 9 !]#

����å¥#��

Constant

Ú
����� �¢���� Ún9� ����� �v��U� Ú 9 � � def. ÚG�

Fig. A.1. The operational semantics of PEPA
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