
Modelling Mobility with PEPA Nets

Jane Hillston1? and Marina Ribaudo2??

1 Laboratory for Foundations of Computer Science, The University of Edinburgh
jeh@inf.ed.ac.uk

2 Dipartimento di Informatica e Scienze dell’Informazione, Università di Genova
ribaudo@disi.unige.it

Abstract. We explain the use of PEPA nets in documenting high-level
designs of mobile code and mobile computing systems. This modelling
language (which allows the modeller to differentiate between location-
changing and state-changing operations in the system, and to quantify
their computational expense for use in predictive performance analysis)
is applied to the problem of modelling the canonical mobile code design
paradigms which are in practical application today, as described in [2].

1 Introduction

Mobile code design paradigms have received heightened attention with the ad-
vent of secure and portable programming languages such as Java. A mobile
code infrastructure allows application designers to distribute computational ef-
fort across networked hosts which can have many benefits. For example it may
be possible to reduce the workload on central server components by moving
computation from the server to its clients.

Selecting the optimum design from a suite of alternative designs for a dis-
tributed mobile code system may involve ranking the alternatives on the basis
of key performance metrics such as response time, throughput and utilisation.
Statements of required performance measures such as these are increasingly be-
ing used in service-level agreements meaning that the efficient and reliable com-
putation of performance measures from a high-level model of a mobile code
system is becoming a critical part of state-of-the-art application development.

It is imperative that the modelling formalism used to express these high-level
performance models should reliably capture notions of location, context and eval-
uation environment. Additionally, it should clearly distinguish local computation
at one of the locations from the movement of code-containing objects from one
location to another. The latter brings about a change in the communication
topology of the system, allowing patterns of communication which had previ-
ously not been possible because the partners in the communication were sepa-
rated by being on different hosts in different address spaces, or behind firewalls
or other administrative domain boundaries.
? Jane Hillston is supported by the DEGAS (Design Environments for Global Applica-

tionS) IST-2001-32072 project in the FET Proactive Initiative on Global Computing.
?? Marina Ribaudo is supported by the FIRB project WEBMINDS (Wide-scalE, Broad-

band, MIddleware for Network Distributed Services).

C. Aykanat et al. (Eds.): ISCIS 2004, LNCS 3280, pp. 513–522, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

514 Jane Hillston and Marina Ribaudo

To this end we have developed a high-level Petri net formalism which we be-
lieve naturally captures performance models of mobile code systems meeting the
requirements suggested above. The PEPA nets formalism uses Hillston’s Perfor-
mance Evaluation Process Algebra [6] as the inscription language for coloured
stochastic Petri nets. We have implemented software tools to facilitate the pro-
cessing and performance analysis of PEPA nets [5] and created a hierarchical
drawing tool for representing them graphically on screen [3].

In Section 2 we present the description and formal definitions of the PEPA
nets modelling language. The definitions are illustrated by simple examples.
Section 3 discusses the key design paradigms for code mobility, presenting PEPA
net models of each, and some conclusions and directions for future work are
presented in Section 4.

2 PEPA Nets

In this section we provide a brief overview of PEPA nets and the PEPA stochastic
process algebra. A fuller description is available in [4] and [6].

The tokens of a PEPA net are terms of the PEPA stochastic process algebra
which define the behaviour of components via the activities they undertake and
their interactions. One example of a PEPA component would be a File object
which can be opened for reading or writing, have data read (or written) and
closed. Such an object would understand the methods openRead(), openWrite(),
read(), write() and close().

File
def

= (openRead, ro).InStream + (openWrite, ro).OutStream

InStream
def
= (read, rr).InStream + (close, rc).File

OutStream
def
= (write, rw).OutStream + (close, rc).File

This PEPA model documents a high-level protocol for using File objects, from
which it is possible to derive properties such as “it is not possible to write to a
closed file” and “read and write operations cannot be interleaved: the file must
be closed and re-opened first”.

Every activity incurs an execution cost which is quantified by an estimate
of the (exponentially-distributed) rate at which it can occur (ro, rr, rw, rc).
Activities may be passive, i.e., they can be executed only in cooperation with
corresponding active ones. The rate of a passive activity is denoted by >.

A PEPA net is made up of PEPA contexts, one at each place in the net. A
context consists of a number of static components (possibly zero) and a number
of cells (at least one). Like a memory location in an imperative program, a cell
is a storage area to be filled by a datum of a particular type. In particular in a
PEPA net, a cell is a storage area dedicated to storing a PEPA component, such
as the File object described above. The components which fill cells can circulate
as the tokens of the net. In contrast, the static components cannot move. A
typical place might be the following:

File[] BC
L

FileReader

Modelling Mobility with PEPA Nets 515

where the synchronisation set L in this case is A(File), the complete action type
set of the component, (openRead, openWrite, . . .). This place has a File-type cell
and a static component, FileReader, which can process the file when it arrives.

A PEPA net differentiates between two types of change of state. We refer
to these as firings of the net and transitions of PEPA components. Each are
special cases of PEPA activities. Transitions of PEPA components will typically
be used to model small-scale (or local) changes of state as components undertake
activities. Firings of the net will typically be used to model macro-step (or global)
changes of state such as context switches, breakdowns and repairs, one thread
yielding to another, or a mobile software agent moving from one network host
to another. The set of all firings is denoted by Af , the set of all transitions by
At. We distinguish firings syntactically by printing their names in boldface.

Continuing our example, we introduce an instant message as a type of trans-
missible file.

InstantMessage
def

= (transmit, rt).File

Part of a definition of a PEPA net which models the passage of instant messages
is shown below. An instant message IM can be moved from the input place on
the left to the output place on the right by the transmit firing. In doing so it
changes state to evolve to a File derivative, which can be read by the FileReader .

InstantMessage[IM]
(transmit,rt)

−−−→[]−−−→ File[] BC
L

FileReader

The syntax of PEPA nets is given in Figure 1. S denotes a sequential component
and P a concurrent component which executes in parallel. I stands for a constant
denoting either a sequential or a concurrent component, as bound by a definition.

Definition 1 (PEPA Net). A PEPA net N is a tuple N = (P,T , I, O, `, π,
C, D, M0) such that

– P is a finite set of places;
– T is a finite set of net transitions;
– I : T → P is the input function;
– O : T → P is the output function;
– ` : T → (Af , R+ ∪ {>}) is the labelling function, which assigns a PEPA ac-

tivity ((type, rate) pair) to each transition. The rate determines the negative
exponential distribution governing the delay associated with the transition;

– π : Af → N is the priority function which assigns priorities (represented by
natural numbers) to firing action types;

– C : P → P is the place definition function which assigns a PEPA context,
containing at least one cell, to each place;

– D is the set of token component definitions;
– M0 is the initial marking of the net.

The structured operational semantics, defined in [4], give a precise definition
of the possible evolution of a PEPA net, and shows how a CTMC can be derived,
treating each marking as a distinct state.

516 Jane Hillston and Marina Ribaudo

N ::= D
+
M (net) P ::= P BC

L
P (cooperation)

| P/L (hiding)

M ::= (MP, . . .) (marking) | P [C] (cell)

MP ::= P[C, . . .] (place marking) | I (identifier)

D ::= I
def
= S (component defn) C ::= ‘ ’ (empty)

| P[C]
def
= P [C] (place defn) | S (full)

| P[C, . . .]
def
= P [C] BC

L
P (place defn)

S ::= (α, r).S (prefix)

| S + S (choice)

| I (identifier)

Fig. 1. The syntax of PEPA nets

We define the firing rule of PEPA nets to respect the net structure in the
usual way (one token from each input place, one token to each output place)
but also to take into consideration the ability of tokens to participate in the
firing (can they perform an activity of the correct type?), and the availability of
vacant cells of the appropriate type in the output places. Note that we require
that the net is balanced in the sense that, for each transition, the number of input
places is equal to the number of output places. In classical Petri nets tokens are
identitiless, and can be viewed as being consumed from input places and created
into output places for each firing. In contrast, in PEPA nets our tokens have
state and identity, and we view them as passing through net-level transitions.
For each firing there must be as many output tokens as there were input tokens.

Definition 2 (Enabling). An enabling is a mapping of places to tokens. A net
level transition t has an enabling of firing type α, E(t, α), if for each input place
Pi of t there is a token T in the current marking of Pi, which has a one-step
α-derivative, T ′.

Note that there may be several enablings for a given transition firing in any
particular marking, as the enabling selects one token to fire from each input
place, and there may be more than one eligible token at each input place.

Since it is important that each fired token has a vacant cell to go into after
the firing, we define a corresponding notion of output. A transition has an output
if, in the current marking, there is at least one vacant cell in each output place.

Definition 3 (Output). For any net level transition t, an output, denoted
O(t), is a mapping from the output places of t to vacant cells in the current
marking.

Since each token passes through a net level transition when it fires, such a
transition is enabled only when there is a bijective function between the chosen
enabling and an output.

Definition 4 (Concession). A net level transition t has concession for a firing
of type α if there is an enabling E(t, α) such that there is a bijective mapping φ

from E(t, α) to an output O(t), which preserves the types of tokens.

Modelling Mobility with PEPA Nets 517

(notify,)n(send,)s

(return,)n (ack,)n

Sender Receiver

Capsule

Node

Fig. 2. PEPA net of the simple active network

As with classical Petri nets with priority, having concession identifies those
transitions which could legally fire according to the net structure and the current
marking. The set of transitions which can fire is determined by the priorities.

Definition 5 (Enabling Rule). A net level transition t will be enabled for a
firing of type α if there is no other net transition of higher priority with conces-
sion in the current marking.

Definition 6 (Firing Rule). When a net level transition t fires with type α on
the basis of the enabling E(t, α), and concession φ then for each (Pi, T,) in E(t,
α), T [T] is replaced by T [] in the marking of Pi, and the current marking of
each output place is updated according to φ.

We assume that when there is more than one mapping φ from an enabling to
an output, then they have equal probability and one is selected randomly. The
rate of the enabled firing is determined using apparent rates, and the notion of
bounded capacity, as usual for PEPA. We refer the reader to [5] for more details.

2.1 Small Example

We present a small example PEPA net in Figure 2 considering an active switch
within an active network. In an active network, in addition to straightforward
routing, a switch may carry out some computational task, processing the pack-
ets of a message as they pass through the node. Several approaches to active
networking have been suggested, one of which is the use of capsules, i.e., special
packets which activate the active network with respect to the following message,
or stream of packets. Our model represents a sender and receiver communicat-
ing through an active intermediate node. We assume that the sender supplies
a continuous stream of packets which are processed by the switch (not explic-
itly represented). When the sender wants to take advantage of the processing
capabilities of the switch for some message, it sends a capsule to activate the
switch. The capsule also notifies the receiver, and then resides in the switch until
processing the message is complete, at which point it returns to the sender.

There is one token type in the PEPA net (Capsule), representing the cap-
sule which is sent to activate an active switch, with respect to the following

518 Jane Hillston and Marina Ribaudo

packets. We assume that after this (activity activate), a notification is sent to
the Receiver that the following packets will have been processed in transit. This
is acknowledged by the Receiver, returning the Capsule to the switch. After a
random delay, approximating the length of the message to be processed, the
Capsule reverts the Switch to normal processing via the activity deactivate. A
final report is sent back to the Sender, represented by the firing return.

Capsule
def

= (generate, γ).(send,>).(activate, α).(notify,>).Capsule′

Capsule′
def

= (ack,>).(deactivate, α).(return,>).Capsule

In this model the places Sender and Receiver do not represent any functionality
beyond the processing of the Capsule. Therefore each place simply contains a
cell of type Capsule. We assume that in the initial marking the Capsule is with
the Sender and that the Receiver has just an empty cell.

Sender
def

= Capsule [Capsule] Receiver
def

= Capsule[]

The remaining place, Node, representing the node hosting the switch, contains
a static component. This component represents the functionality of the switch.
Before activation it will repeatedly route packets arriving on the input stream.
The activity activate must be carried out in cooperation with a Capsule compo-
nent, and has the effect of introducing an additional step to packet processing:
computation (activity compute) is done before routing. The switch continues in
this mode until the deactivate activity is performed, again in cooperation with
the Capsule. The place Node and the Switch component are defined as follows:

Node
def

= Switch BC
{activate,deactivate}

Capsule[]

Switch
def
= (route, ρ).Switch + (activate,>).Active Switch

Active Switch
def
= (compute, c).(route, ρ).Active Switch + (deactivate, α).Switch

3 Design Paradigms for Code Mobility

In this section we assess the expressiveness of PEPA nets for modelling mobility.
We consider a classification of types of mobility found in [2], where Fuggetta et
al. identify four key design paradigms for code mobility: Client-Server, Remote
Evaluation, Code-on-Demand and Mobile Agent. Each is exemplified by a simple
scenario involving a chocolate cake and two friends, Louise and Christine. Here
we present the PEPA net model of each scenario. The infrastructure of our model,
representing the locations in the scenario, is as shown in Figure 3. The two places
LH and CH represent Louise’s house and Christine’s house respectively. The
labelling function for the transitions depends on the design paradigm. At the
end of the section we also create and model an additional scenario, depicting the
increasingly popular Web Service paradigm.

Client-Server. Louise would like to have a chocolate cake, but she doesn’t know
the recipe, and she does not have the ingredients or an oven. Fortunately, she

Modelling Mobility with PEPA Nets 519

t2

t1LH CH

Fig. 3. Net structure for PEPA net models of all original chocolate cake scenarios

knows that Christine knows how to make a chocolate cake, and that she has a well
supplied kitchen at her place. Since Christine is usually quite happy to prepare
cakes on request, Louise phones her asking: “Can you make me a chocolate cake,
please?” Christine makes the chocolate cake and delivers it back to Louise.

Louise
def

= (want, w).(eat, e).Louise

Recipe
def

= (mix, m).Recipe Oven
def

= (bake, b).Oven

Cake
def
= (want,>).(phone, p).(mix,>).(bake,>).(deliver, d).(eat,>).Cake

LH
def
= Louise BC

{want,eat}
Cake[Cake] CH

def
= Cake[] BC

{mix,bake}
(Recipe ‖ Oven)

`(t1) = phone, `(t2) = deliver

This PEPA net has a single token which represents the cake, as it evolves from
Louise’s desire to an actual cake when Louise eats. There are three static com-
ponents, representing Louise, the recipe and the oven respectively. The recipe is
needed for the cake to be mixed and the oven for the cake to be baked: both are
located, in this case, at Christine’s house. Thus the cake moves from Louise’s
house to Christine’s house for these stages of its evolution.

Remote Evaluation. Louise wants to prepare a chocolate cake. She knows the
recipe but she has at home neither the required ingredients nor an oven. Christine
has both at her place, yet she doesn’t know how to make a chocolate cake. Louise
knows that Christine is happy to try new recipes, therefore she phones Christine
asking: “Can you make me a chocolate cake? Here is the recipe: take three eggs...”
Christine prepares the cake following Louise’s recipe and delivers it back to her.

Louise
def

= (want, w).(eat, e).Louise

Oven
def
= (bake, b).Oven Recipe

def
= (want,>).(phone, p).(mix, m).Recipe′

Cake
def
= (mix,>).(bake,>).(deliver, d).(eat,>).Cake′

LH
def

= Louise BC
{want,eat}

(Recipe[Recipe] ‖ Cake[])

CH
def
= Cake[Cake] BC

{mix,bake}
(Recipe[] ‖ Oven)

`(t1) = phone, `(t2) = deliver

In this case there are two tokens: one for the cake and one for the recipe. When
Louise decides that she wants a cake she changes the state of the Recipe com-
ponent so that it may be moved to Christine’s house where it contributes to
the evolution of the cake. Once ready the cake is delivered to Louise’s house. As

520 Jane Hillston and Marina Ribaudo

previously the oven is represented by a static component, resident at Christine’s
house and contributing to the baking of the cake at the appropriate time.

Code-on-Demand. Louise wants to prepare a chocolate cake. She has at home
both the ingredients and an oven, but she lacks the proper recipe. However, Louise
knows that Christine has the recipe and she has already lent it to many friends.
So, she phones Christine asking “Can you tell me your chocolate cake recipe?”
Christine tells her the recipe and Louise prepares the chocolate cake at home.

Louise
def

= (want, w).(eat, e).Louise

Oven
def

= (bake, b).Oven Recipe
def

= (recipe,>).(relate, s).(mix, m).Recipe′

Cake
def

= (want,>).(mix,>).(bake,>).(eat,>).Cake

Request
def

= (want,>).(request, q).(recipe, c).Request′

LH
def

= Louise BC
{want,eat}

(

(Oven ‖ Recipe []) BC
{mix,bake}

Cake
)

BC
{want}

Request [Request]

CH
def

= Request[] BC
{recipe}

Recipe[Recipe]

`(t1) = request, `(t2) = relate

Here the recipe is a token as it must be communicated from one location (CH) to
another (LH). First, however this movement must be triggered. This is achieved
by having another token, of type Request, which is sent from Louise’s house to
Christine’s house. The static component representing the resource, the oven, is
located at Louise’s house and the chocolate cake is also a static component here.

Mobile Agent. Louise wants to prepare a chocolate cake. She has the right
recipe and ingredients, but she does not have an oven. However, she knows that
Christine has an oven, and that she is happy to lend it. So, she prepares the cake
batter and then goes to Christine’s home, where she bakes the cake.

Louise
def
= (want, w).(eat, e).Louise

Recipe
def

= (mix, m).Recipe Oven
def

= (bake, b).Oven

Cake
def

= (want,>).(mix,>).(take, t).(bake,>).(return, u).(eat,>).Cake

LH
def

= (Louise ‖ Recipe) BC
{want,mix,eat}

Cake[Cake] CH
def

= Cake[] BC
{bake}

Oven

`(t1) = take, `(t2) = return

In this PEPA net, as in the first, the cake is the only token; the placement of the
static components representing resources, however, differs. In this case the Recipe
component is in the place representing Louise’s house, while the Oven is located
at Christine’s house. As previously the Cake moves to fulfil its evolution. The
difference is simply the locations in which the different stages are now exhibited.

We define a fresh scenario corresponding to the emerging paradigm of Web
services, in which a service must first be located via a discovery service such as
UDDI before invocations are made.
Web Service. Louise would like to have a chocolate cake, but she doesn’t know
the recipe, and she does not have at home either the required ingredients or an

Modelling Mobility with PEPA Nets 521

t4

t3

MH

t1

t2

CH
LH

Fig. 4. Net structure for PEPA net model in the Web service chocolate cake
scenario

oven, nor does she know anyone to ask. She asks her friend Marian, who knows
everyone’s capabilities. Marian tells her that Christine knows how to make a
chocolate cake, and that she has a well-supplied kitchen at her place. Marian
also gives Louise Christine’s phone number and Louise phones Christine asking:
“Can you make me a chocolate cake, please?” Christine makes the chocolate cake
and delivers it back to Louise.

Louise
def

= (want, w).(eat, e).Louise

Marian
def

= (cake query, q).Marian

Recipe
def

= (mix, m).Recipe Oven
def

= (bake, b).Oven

Query
def

= (want,>).(ask, a).(cake query,>).(reply, r).(who, w).Query

Cake
def

= (who,>).(phone, p).(mix,>).(bake,>).(deliver, d).(eat,>).Cake

MH
def
= Marian BC

{cake query}
Query[] CH

def
= Cake[] BC

{mix,bake}
(Recipe ‖ Oven)

LH
def
= Louise BC

{want,eat}

(

Query[Query] BC
{who}

Cake[Cake]
)

`(t1) = phone, `(t2) = deliver, `(t3) = ask, `(t4) = reply

The scenario now involves three locations, as shown in Figure 4. In addition
to the places for Louise’s house and Christine’s house, we have an additional
place for the resource represented by the static component Marian. There are
two tokens in the system: the Cake which follows a similar evolution to in the
client-server scenario; and Query which carries out the discovery, initiated by
Louise and satisfied by Marian. Once the query has been resolved, the two tokens
synchronise (in the place LH) to pass on the information, which the cake can
then use to determine its next move.

Whilst these scenarios are simple in terms of the number of components and
locations involved, they do capture five key paradigms and we have shown that
each can be readily modelled using PEPA nets. More realistic systems might be
expected to entail a greater number of components and locations but the patterns
of interaction, communication and movement would be the same, meaning that
they could also be captured by PEPA nets.

522 Jane Hillston and Marina Ribaudo

4 Conclusions

Mobility and mobile agents pose interesting problems for modellers. New for-
malisms are emerging for modelling them. In this paper we have presented an
introduction to one such formalism, PEPA nets. We have introduced PEPA nets
in some detail and considered their expressiveness with respect to a published
classification of mobile code design paradigms.

Several process calculi for modelling mobile computation, primarily for the
purpose of functional verification, e.g., the π-calculus [8] (and its stochastic ver-
sion [9]) and the calculus of mobile ambients [1] have appeared in the literature.
There have also been extensions of Petri nets based on the use of “nets within
nets”, e.g., Elementary Object Systems [10] and Reference nets [7]. It is an area
for future work to study the differences and similarities between these formalisms
and PEPA nets.

References

1. Cardelli, L., Gordon, A.D.: Mobile Ambients. In: Nivat, M. (ed.): Foundations
of Software Science and Computational Structures. Lecture Notes in Computer
Science, Vol. 1378. Springer, Berlin Heidelberg New York (1998) 140–155

2. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility. IEEE Trans-
actions on Software Engineering 24 (1998) 342–361

3. Gilmore, S., Gribaudo, M.: Graphical Modelling of Process Algebras with
DrawNET. In: Bause, F. (ed.): The Tools of the 2003 Illinois Multiconference on
Measurement, Modelling, and Evaluation of Computer-Communication Systems.
Research Report 781, Universität Dortmund, Informatik IV. (2003) 1–4

4. Gilmore, S., Hillston, J., Kloul, L., Ribaudo, M.: PEPA Nets: A Structured Per-
formance Modelling Formalism. Performance Evaluation 54 (2003) 79–104

5. Gilmore, S., Hillston, J., Kloul, L., Ribaudo, M.: Software Performance Modelling
using PEPA Nets. In: Proceedings of the 4th International Workshop on Software
and Performance, California. (2004) 13–23

6. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

7. Köhler, M., Moldt, D., Rölke, H.: Modelling the Structure and Behaviour of Petri
Nets Agents. In: Proceedings of the International Conference on Applications and
Theory of Petri Nets. Lecture Notes in Computer Science, Vol. 2075. Springer,
Berlin Heidelberg New York (2001) 224–241

8. Milner, R.: Communicating and Mobile Systems: The π Calculus. Cambridge
University Press (1999)

9. Priami, C.: Stochastic π Calculus. In: Gilmore, S., Hillston, J. (eds.): Proceed-
ings of the Third International Workshop on Process Algebras and Performance
Modelling. Special Issue of The Computer Journal 38 (1995) 578–589

10. Valk, R.: Petri Nets as Token Objects—An Introduction to Elementary Object
Nets. In: Desel, J., Silva, M. (eds.): Proceedings of the 19th International Confer-
ence on Application and Theory of Petri Nets, Portugal. Lecture Notes in Computer
Science, Vol. 1420. Springer, Berlin Heidelberg New York (1998) 1–25

	Introduction
	PEPA Nets
	Small Example

	Design Paradigms for Code Mobility
	Conclusions

