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Abstract. We propose new techniques to simplify the computation of
the cycle times and the absorption times for a large class of PEPA models.
These techniques allow us to simplify the model description to reduce
the number of states of the underlying Markov chain. The simplification
processes are associated with stochastic comparisons of random variables.
Thus the simplified models are stochastic bounds for the original ones.

1 Introduction

In the recent years, several researchers have investigated ways to solve steady-
state distributions for Stochastic Process Algebra models with exponential dura-
tion of activities such as PEPA models [10]. The tensor based representation [11]
allows us to build large state spaces in a very efficient manner. However solving
the steady-state distribution remains a difficult problem even if the bisimula-
tion technique allows us to reduce the state space. Recently the process algebra
formalism has also been used to solve transient problems [7], still under the
Markovian assumption.

Here, we advocate a completely different approach which is not totally related
to this Markovian assumption. First, we want to compute the distribution of the
cycle time (if the model is well defined) or the distribution of the absorption time
(if the model has an absorbing state) instead of the steady-state distribution.
The cycle time is the delay between two successive visits to a specific state while
the absorption time is the time until absorption. Cycle time is closely related
to the throughput of the system while the distribution of the absorption time
allows us to define the reliability of a system. By taking the average of these
distributions, one can obtain the mean throughput and the average population
with Little’s formula or the mean time to failure. These quantities are in general
significant for models based on customer’s point of view rather than server’s
states.

We propose a two-level hierarchical approach. At the higher level, we consider
a precedence PEPA model. Each component of the precedence model is a sub-
model isolated from the other components. Because of the exponential duration
of the activities in a PEPA component, these sub-models can be associated with
continuous time Phase type distributions.
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Computing absorption time distribution is usually done by uniformization and
analysis of transient discrete-time Markov chains. This technique requires a large
number of vector-matrix multiplications. The matrix size is the number of states
in the Markov chain. So it is important to find techniques which can be used to
reduce this number of states. Cycle times computation are not necessarily based
on Markovian assumption, even if exponential delays of individual activities
may lead to the usual Markovian numerical analysis. For a class of decision-
free Petri nets, cycle times are defined by recurrence relations [3]. Furthermore
these relations are linear but on the max-plus semigroup. Such structures have
been studied extensively in the context of random variables (see for instance
Baccelli et al [1]). For more general systems, the computation of the cycle times
is a complex problem. The stochastic comparison appears to be a promising
technique to cope with this complexity.

If we need to compute the cycle time of a PEPA model which is too com-
plex to analyse numerically, we design automatically a new model such that its
cycle time is a bound for the exact one. This bound is stochastic: we do not
compare reals but distribution functions. Thus stochastic bounds are far more
accurate than worst-case analysis. If the new model has a reduced state space, we
may then use numerical methods (or even analytical results) to efficiently solve
the problem. Note that bounding some performance measures is often sufficient
as quite often we only need to verify the requirements in terms of threshold.
Stochastic bounds may also be applied to Markov chains (see [8] for a survey of
the various techniques involved and [12] for an example of delays due to a Fair
Queueing discipline).

Here we propose high level techniques which transform a PEPA model into
simpler PEPA model. These techniques are based on stochastic bounds. They
allow us to divide the problem into sub-problems or to replace a complete PEPA
sub-model by a single activity. Here we just give some theoretical results, we will
present in a sequel paper the algorithms we need and some numerical results.

The rest of the paper is organised as follows. In Section 2, we present some
concepts of stochastic comparison while Section 3 gives a simple introduction
to PEPA, the SPA we consider. Section 4 is devoted to the precedence PEPA
model. Section 5 contains the main results of the paper. Finally in Section 6, we
conclude our work with some remarks and future work.

2 A Simple Introduction to Stochastic Comparison

We restrict ourselves to finite Continuous Time Markov Chains (CTMC).
Stoyan [14] defined the strong stochastic ordering (“st” ordering for short) by
the set of non-decreasing functions. Bounds on the distribution imply bounds on
these functions as well. Important performance measures such as average popu-
lation, loss rates or tail probabilities are non decreasing functions. The second
part of the definition for discrete random variables is much more convenient for
an algebraic formulation and an algorithmic setting.
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Definition 1. Let X and Y be random variables taking values on a totally or-
dered space. Then X is said to be less than Y in the strong stochastic sense, that
is, X <st Y iff E[f(X)] ≤ E[f(Y )] for all non decreasing functions f whenever
the expectations exist.

If X and Y take values on the finite state space {1, 2, . . . , n} with p and q as
probability distribution vectors, then X is said to be less than Y in the strong
stochastic sense, that is, X <st Y iff

∑n
j=k pj ≤

∑n
j=k qj for k = 1, 2, . . . , n.

Example 1. Let a = (0.1, 0.3, 0.4, 0.2) and b = (0.1, 0.1, 0.5, 0.3). We have
a <st b as: ⎡

⎣
0.2 ≤ 0.3
0.2 + 0.4 ≤ 0.3 + 0.5
0.2 + 0.4 + 0.3 ≤ 0.3 + 0.5 + 0.1

Sufficient conditions for comparison for CTMC are known for a long time [14].
The stochastic comparison of CTMC implies that their steady-state and tran-
sient distributions are also ordered.

Theorem 1 (Stoyan [14], page 193). Let us consider two CTMC Z1 and
Z2 on the same state space whose transition rate matrix are respectively Q1 and
Q2. If

1. Z10 <st Z20
2.

∑
k≥l Q1(i, k) ≤

∑
k≥l Q2(j, k) for all i ≤ j and for all l which satisfy l ≤ i

or l ≥ j.

then Z1 <st Z2.

It may be important to compare Phase type random variables with exponential
ones because it allows building a smaller Markov chain. Let us first define a
family of random variables well known in reliability modelling [4].

Definition 2 (New Better than Used in Expectation). Let Xt be the resid-
ual time of X, given that X >t. X is said to be NBUE if E(Xt)≤E(X) for all t.

For instance, Erlang, uniform and constant random variables are NBUE. This
family leads to another stochastic ordering: the increasing convex ordering which
is used to compare random variables with exponentials.

Definition 3. Let X and Y be two random variables on the same space ε, X is
smaller in increasing convex order than Y , if and only if E(f(X)) ≤ E(f(Y ))
for all convex and non decreasing functions f on ε, provided that the expectations
exist. The relation is denoted by X <icx Y .

Property 1 ([14]). If X is NBUE of mean m, then X is smaller in increasing
convex ordering than an exponentially distributed random variable of mean m.

The icx ordering also provides a very intuitive lower bound.

Property 2 ([14]). For any arbitrary positive random variable X, E(X)<icx X.
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We also have two very simple properties which will be used to derive bounds at
the higher level of a model from bounds obtained at the lower level.

Property 3. The Max and Plus operators are convex and non decreasing
functions.

Property 4. Let X and Y be two r.v. such that X <icx Y , then for all convex
and non decreasing function f , we have f(X) <icx f(Y ).

Finally, we can compare the absorption time of Markov chains [5] as stated in
the following property.

Property 5. Let Z1 and Z2 be two homogeneous Markov chains with an ab-
sorbing state n and let Ta(Z1) and Ta(Z2) denote absorption times for the two
chains. If Z1 <st Z2 or Z1 <icx Z2 then Ta(Z2) <st Ta(Z1).

Note that the “st” comparison of absorption times is now on random variables
Ta defined on the time instants, not on the states.

3 PEPA

In PEPA, a system is viewed as a set of components which carry out activities.
Each activity is characterised by an action type and a duration which is expo-
nentially distributed. Thus each activity is defined by a couple (α, r) where α is
the action type and r is the activity rate. Because of the exponential distribution
of the activity duration, the underlying Markov process of a PEPA model is a
continuous time Markov process.

PEPA formalism provides a set of combinators which allows expressions to
be built, defining the behaviour of components, via the activities they engage
in. Below, we present informally the combinators we are interested in and which
are necessary to our model. For more details about the formalism, see [10].

Constant: noted S
def= P , it allows us to assign names to components. To com-

ponent S, we assign the behaviour of component P .

Prefix: noted (α, r).P , this combinator is the basic mechanism by which the
behaviours of components are constructed. The component carries out activity
(α, r) and subsequently behaves as component P .

Choice: noted P1+P2, this combinator represents competition between compo-
nents. The system may behave either as component P1 or as P2. All current activ-
ities of the components are enabled. The first activity to complete, determined by
the race condition, distinguishes one of these components, the other is discarded.

Cooperation: noted P1 ��
L

P2, it allows the synchronisation of components P1
and P2 over the activities in the cooperation set L. Components may proceed
independently with activities whose types do not belong to this set. A particular
case of the cooperation is when L = ∅. In this case, components proceed with
activities independently and are noted P1||P2.
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In a cooperation, the rate of a shared activity is defined as the rate of the
slowest component. For a component P1 and an action type α, the working
capacity is termed the apparent rate of α in P1. It is the sum of the rates of the
α type activities enabled in P1. The apparent rate of α in a cooperation between
P1 and P2 over α will be the minimum of the apparent rate of α in P1 and the
apparent rate of α in P2.

The rate of an activity may be unspecified for a component and is noted �.
Such a component is said to be passive with respect to this action type and the
rate of this shared activity is defined by the other component in cooperation.

In PEPA, when a component C carries out an activity (α, r) and subsequently
behaves as component C′, this one is said to be a derivative of C. From any PEPA
component C, the derivative set, denoted ds(C), is the set of derivatives (be-
haviours) which can evolve from the component. This set is defined recursively.

The evolution of a PEPA model is governed by the Structured Operational
Semantics (SOS) rules of the language [10]. These rules define the admissible
transitions or state changes associated with each combinator.

Necessary (but not sufficient) conditions for the ergodicity of the Markov
process in terms of the structure of the PEPA model have been identified and
can be readily checked [10]. These conditions imply that the model must be
a cyclic PEPA component. The model should be constructed as a cooperation
of sequential components, i.e. components constructed using only prefix, choice
and constants. This leads to formally define the syntax of PEPA expressions in
terms of model components P and sequential components S:

P ::= A | P ��
L

P | P/L S ::= (α, r).S | S + S | As

where A denotes a constant which is either a model or a sequential component
and As denotes a constant which is a sequential component. Thus the composi-
tional structure of PEPA models is at the level of the cooperating components;
such models are considered as well-defined.

4 The Precedence PEPA Model

We consider that a system is represented by a set of components which have the
same general behaviour as they wake up, proceed with their activities and then
make other components wake up. The components are assumed to be initially
asleep (off) and cannot proceed with the execution of their activities unless they
are woken up. We assume a precedence relation between the enabling of the
components in the set as the results of some components can be used as an input
by other components. The components are labelled to allow a representation of
this precedence relation. We assume the following properties for the set of labels:

1. the set is totally ordered,
2. the set has a unique minimal element which is denoted by Comp0 for con-

venience,
3. and the set has a unique maximal element which is denoted by Compn.
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We assume that Comp0 constitutes the starting component of the system
and Compn the last one to be enabled. When Compn completes, the system is
assumed to have the same behaviour, restarting from the beginning, i.e. Comp0
(Figure 1). Furthermore, we assume that the precedence relation between the
components is a Directed Acyclic Graph (DAG) modified by this return arc from
Compn to Comp0.

Comp n

Comp 0

Fig. 1. The precedence relation between the components

Our system specifications allow us to consider two kinds of analysis, perfor-
mance analysis and reliability analysis. The former exploits the presence of the
return arc from Compn to Comp0 to compute performance measures such as
the cycle times. The latter is only possible if we have in our system an absorbing
state, that is the precedence relation between the components is a real DAG.
Moreover, Compn must contain an absorbing state.

4.1 Formal Description of the System

To represent the precedence relation characterising our system, we define two
families of sets Pi and Si. Pi is the set of components which must complete their
activities before Compi is woken up and Si represents the set of components
which are enabled when Compi has completed its activities. Note that the two
families of sets have to be consistent.

We describe the system using n + 1 components. Each component Compk,
k = 0 . . . n, is woken up thanks to activity wake upjk where j is a predecessor of
Compk, that is j ∈ Pk. Once awake, the component can then proceed with its
own activities αk,l, l = 1..mk, where mk is the number of activities of Compk.
Note that these activities (αk,l) are all individual activities and once Compk has
finished executing them, it will wake up the components which are in its set of
successors Sk.
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The behaviour of the components of the system are modelled using the fol-
lowing equations:

Comp0
def= (start, w1).(α0,1, r0,1)...(α0,m0 , r0,m0).

�

i∈S0

(wake up0i, s).Comp0

Compi
def= (wake up0i, �).(αi,1, ri,1)...(αi,mi , ri,mi).

�

k∈Si

(wake upik, s).Compi

∀i ∈ S0

Compk
def=
�

j∈Pk

(wake upjk, �).(α0,k, r0,k)...(αk,mk
, rk,mk

).
�

j∈Sk

(wake upkj , s).Compk

∀k ∈ Si

Compn
def=
�

j∈Pn

(wake upjn, �).(αn,1, rn,1)...(αn,mn , rn,mn).(end, w2).Compn

where the notation of the form
∏

k∈Ai

(βik, r) refers to (βii1 , r).(βii2 , r). · · · .

(βi|Ai| , r).
The use of

∏

k∈Si

(wake upik, s) allows us to model the case where Compi wakes

up all the components in its successors set one by one. Whereas the use of∏

j∈Pn

(wake upjn, �) like in Compn models the case where a component has to

wait for several predecessors to complete their activities before proceeding with
its own activities.

Additionally, we consider another component Clock, which allows starting,
and restarting the system only once Compn has completed its activities. This
additional component has to synchronise with Comp0 on activity start then on
activity end with Compn.

Clock
def= (start, �).Clock0

Clock0
def= (end, �).Clock

The behaviour of the complete system is modelled as the interaction of its
components as follows:

System
def= Clock ��

{start,end}
(. . . (Comp0 ��

{wake up0i/i∈S0}
(. . . ||Compi|| . . .)i∈S0)

��
{wake upik/k∈Si}

(. . . ||Compk|| . . .) . . .)k∈Si . . . (. . . ||Compj || . . .)j∈Pn

��
{wake upjn/j∈Pn}

Compn) . . .)

4.2 Reliability Analysis Using the PEPA Model

Component Clock is only necessary in the case where a performance analysis is
targeted as it allows modelling the return arc of the precedence relation between
the components. Reciprocally, whenever reliability analysis is the objective, com-
ponent Clock is not only unnecessary, but has to be removed from the model.
As all its activities have an unspecified rate (�), its removal from the model has
no impact on the remaining components.
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Moreover, to ensure that the underlying Markov chain of the model has an
absorbing state, we need the last component Compn to not return to its ini-
tial state once activity end has been completed. Therefore, we have to redefine
Compn as follows:

Compn
def=

∏

j∈Pn

(wake upjn, �).(αn,1, rn,1)...(αn,mn , rn,mn).(end, w2).Comp∗n

In the first definition of Compn, the first and the last derivatives (states)
were the same, that is Compn. In the new definition, the first derivative is still
Compn, but the last one is different. It is denoted by Comp∗n and models the
absorbing state of the system. ��

As explained above, finding the absorption times and the cycle times for our
class of systems are connected problems. The former assumes that the durations
of the activities are independent, which is the case in our model. Thus the delays
from successive beginnings of the first component form a renewal process. In the
case of the latter, once the last component has completed its activities, the first
component is woken up.

In the following we only consider the absorption times. The computation of
the cycle times can be easily deduced from the results developed for the absorp-
tion times.

5 Reliability Analysis: Computing the Absorption Times

The PEPA model is a two-level hierarchy model, the component level and the
model level. Therefore the computation of the bounds on the absorption times
rely on two different classes of techniques according to the hierarchy level con-
sidered. However, all these techniques are based on the recurrence equations we
can obtain at the higher level of our hierarchy.

In the following, once we show how to obtain the recurrence equations, we first
propose techniques which can be applied on the PEPA sub-models (components).
Then we show how we can modify the precedence relation between the PEPA
components to derive simpler models.

The bounds on the absorption times are obtained from the recurrence equa-
tions which can be established on instants of transition. Let (ti) (resp. (bi)) be
the completion time (resp. the wake up time) of component Compi. The main
results come from the type of equations connecting instants ti to other instants
tj if Compj is a predecessor of Compi in the precedence model.

Let di be the service time of Compi, that is the time required for Compi to
proceed with all its activities αi,l, l = 1..mi. As Compi is a PEPA component
where all the activities have exponential durations, the total duration of Compi

has a continuous Phase type distribution (PH in the following).
Clearly for all i, we have ti = bi + di. Now it is important to note that Compi

wakes up as soon as all the components in its predecessors set Pi have completed
all their activities. Thus

bi = maxj∈Pi(tj)
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After substitution, we get:

ti = di + maxj∈Pi (tj) (5.1)

Thus we obtain a linear equation on vector (ti) using two operators: the
addition and the maximum. Such linear equations have been extensively studied
as they allow new types of analytical or numerical methods which are not based
on exponential delays or embedded Markov chains. In this paper we assume that
activities have exponential durations, but as the random variables di model a
PEPA sub-model (Compi) duration, di has a PH distribution.

5.1 Bounds Due to Service-Time of Activities

Using equation 5.1 and properties 3 and 4 we obtain the first comparison results
if all the random variables di are New Better than Used in Expectation (NBUE).
Indeed, the NBUE property implies the relation between a single random variable
and an exponential one with the same mean. Equation 5.1 and property 3 show
that ti is defined using two increasing and convex operators. Property 4 states
that the relation holds for the absorption time.

Property 6. Consider a precedence PEPA model such that the PH distribution
associated with Compi, a component of the model, is NBUE. The absorption
time is upper bounded in the increasing convex sense by the absorption time of
the same model where Compi is replaced by a single activity with rate E(di).

Similarly, we have a lower bound provided by constant random variable with the
same mean using property 1.

Property 7. Consider a precedence PEPA model with arbitrary random vari-
ables. The absorption time is lower bounded in the increasing convex sense by
the absorption time of the same model where the PH distribution associated with
Compi, a component of the model, is replaced by a constant with the same mean.

Note that, in this case, the resulting model is not a usual PEPA model anymore
as we have a component with a non exponential duration. One can also obtain a
lower bound of the completion time by a very simple argument on the duration
of any component. This is stated in the following property.

Property 8. For all positive random variables X, we have zero ≤st X where
zero is considered as the constant r.v. with mean 0.

Finally,

Property 9. Consider a precedence PEPA model. The absorption time is lower
bounded in the strong stochastic sense by the absorption time of the same model
where Compi, a component of the model, has been removed and where we have
added arcs (C1, C2) in the precedence model for all components C1 and C2 such
that arcs (C1, Compi) and (Compi, C2) were in the initial precedence model.

So the main question remaining now is whether a PH distribution is NBUE or
not. To the best of our knowledge such a problem has never been studied before.
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5.1.1 Phase Type and NBUE Distributions
A Phase type distribution is the absorption time of a transient Markov chain on
state space 1..N . It is defined by the initial distribution (say σ) and the transition
rate matrix Q. Let Y be this chain and X the absorption time of Y knowing σ.
Without loss of generality we assume that there exists only one absorbing state
which is the last one (i.e N). Thus

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

T t

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

with t = −Te, e being a column of 1. Without loss of generality we assume that
the initial distribution σ is (1, 0, . . . , 0). Indeed, a general distribution can be
considered if we add an extra state at the beginning.

Let Xt be the residual time before absorption, given that X ≥ t. Remember
that the distribution of X is NBUE iff E(Xt) ≤ E(X) for all t.

At time t, chain Y is in state j with probability Pr(Yt = j|Y0 = 1). Let μk be
the rate of activity k. The expectation of the remaining time before absorption
in Y can be computed using the mean number of passages in any state of Y
before being absorbed. Of course these quantities depend on the initial state of
the chain. Let ai,j be the average number of visits to state i when the initial
state of chain Y is j. Clearly, we have:

E(X) =
N−1∑

i=1

ai,1

μi

Similarly because of the memoryless property, the remaining time after t is ob-
tained by conditioning on the state reached at time t as follows:

E(Xt) =
N−1∑

j=1

Pr(Yt = j|Y0 = 1)
N−1∑

i=1

ai,j

μi

Now, we must compare E and E(Xt) to check if a distribution is NBUE. First
we obtain a very simple result which is quite useful.

Property 10. If, for all state i, we have for all state j, ai,j ≤ ai,1 then the PH
distribution is NBUE.

Proof: If ai,j ≤ ai,1 for all j, then any convex sum of ai,j is smaller than
ai,1. And

∑N−1
j=1 Pr(Yt = j|Y0 = 1)ai,j is such a convex sum. Finally we get

E(Xt) ≤ E(X).
Property 10 allows us to derive the following one:

Property 11. The hypoexponential distribution is NBUE.
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Remember that the hypoexponential distribution is a generalisation of the Er-
lang distribution where the exponential stages do not have the same rate. For
an hypoexponential distribution we get ai,1 = 1 as we visit every stage exactly
once. If we begin at stage j, the number of visits is 1 or 0 depending if the stage
to visit is after j or before j. Thus ai,j ≤ ai,1 for all i, j.

The hypoexponential distribution is easy to detect from a PEPA specification
of a component. It is a set of successive individual activities without any choice
operator.

Theorem 2. If a PEPA component C is constructed using only the prefix oper-
ator, the rates of successive individual activities of C are the rates of the stages
of an hypoexponential distribution and the completion time of C is NBUE. These
individual activities of C can therefore be aggregated into a single individual ac-
tivity with the same mean.

Proof: Consider a PEPA component which consists of a sequence of individual
activities in which the only operator used is the prefix. As each activity α in
the sequence is exponentially distributed with rate rα, these rates constitute the
rates of the stages of an hypoexponential distribution. As the hypoexponential
distribution is NBUE, according to Property 11, the completion time of the
sequence of activities of the component is NBUE. Consequently, this sequence
of activities can be aggregated and replaced by a single individual activity with
the same mean. ��

According to Theorem 2, we can replace a PEPA component with successive
individual activities by a component with a single individual activity. In this
context, the stochastic comparison allows a drastic reduction of the complexity.
Moreover, it allows a new type of aggregation which is not exact, but which
provides proved bounds.

Thus, in our precedence PEPA model, we can aggregate the sequence of in-
dividual activities (αk,1, rk,1).(αk,2, rk,2) . . . (αk,mk

, rk,mk
) of component Compk

into a single activity (αk, rk) where rk = ( 1
rk,1

+ 1
rk,2

+ . . . + 1
rk,mk

)−1.

More generally we get the following characterisation:

Property 12. Consider an arbitrary PH distribution. If for all state i and j we
have

N−1∑

i=1

ai,j

μi
≤

N−1∑

i=1

ai,1

μi

then the PH distribution is NBUE.

Proof: Again E(Xt) is a convex sum with coefficients Pr(Yt = j|Y0 = 1) of the
first quantities in the relation. Thus if the set of inequalities is satisfied for all j
and i, we get E(Xt) ≤ E(X).

Let us now consider acyclic PH distributions. Assume that the states of Y are or-
dered according to the natural ordering associated to this directed acyclic graph.
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Such a family of distributions have been shown to be very efficient when we have
to fit a general distribution [6]. This family is quite large and it contains Coxian
distribution. For an acyclic PH distribution using this numbering assumption,
we clearly have ai,j = 0 if j < i. As the graph of Y does not contain any directed
cycle, any state will be visited zero or once. The expected number of visits is
also the probability of visit. It is quite simple to compute ai,1 and ai,j from the
transition probability matrix embedded in matrix T .

Once we have computed ai,j for all i and j we can check the sufficient rela-
tions stated in Property 12. In general Coxian distribution are not NBUE but
Property 12 gives a very simple way to check it. Note that Property 12 also
applies when the PH is not acyclic. However, the complexity of computing ai,j

is now much higher.
Finally one can bound an arbitrary acyclic PH distribution by an hypoexpo-

nential distribution.

Theorem 3. Let X be an arbitrary acyclic PH distribution associated with tran-
sition rate matrix Q. Let Z be the hypoexponential associated with transition
matrix R. Assume now that the states of the chains are ordered according to the
DAG. If

R(i, i + 1) =
∑

j≥i+1

Q(i, j) and R(i, j) = 0 ∀j 
= i, i + 1

then X <st Z.

Proof: As X and Z are PH distributions, they are also absorption times of
CTMC. Theorem 1 states that the comparison of CTMC can be easily checked.
Property 5 shows that the comparison of CTMC implies the comparison of ab-
sorption times. So it is sufficient here to state that the chains associated with
the distributions satisfy both conditions of Theorem 1.

– The first condition is trivial as the initial distribution is the same.
– Remember that the states of the chains are ordered according to the DAG.

Thus matrix Q is upper triangular. The lower triangle of Q and R clearly
satisfy the constraints of Theorem 1. Finally one can easily check the upper
triangle part of the relation as R(i, i + 1) =

∑
j≥i+1 Q(i, j).

Thus one can transform any acyclic PH distribution into an hypoexponential one.
The PEPA sub-models (components) are transformed as well. The numbering
of activities defines the sequential ordering of the activities. The definition of
matrix R gives the activity rates in this transformed PEPA sub-model.

Let us now turn to other techniques based on the precedence relation at the
higher level, the model level.

5.2 Changing the Precedence Model to Obtain Bounds

Such transformations of the model are strongly related to the rules proposed by
Bacelli and Liu [2] for queueing networks with synchronisations and by Vincent
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and Pekergin for tasks graph [13]. Even if the problems are not the same, they
all share this property of linear evolution equation with max-plus operators (see
also [3] for Petri nets). The main transformations which have been proposed
consist of the addition or the deletion of a node, an edge, a place or a transition.
However these modifications of the graph do not always help for the resolution
of the model.

To compute an upper bound for our system, we propose to add a new com-
ponent in the precedence model. The main idea is to make the model separable.
Then we divide the model into two sub-models which are analysed in isolation.

Assume that the precedence model has n components. Let us assume that the
components of the model are ordered according to a topological ordering con-
sistent with the precedence relation: if there exists a directed edge from Compi

to Compj then i < j. We first add a new component (say Compn+1). Then
we modify the directed edges of the precedence model. Let m be an arbitrary
integer between 1 and n. We add directed edges in the precedence model from
any component Compi in 1..m to n + 1 and from component Compn+1 to any
component in m + 1..n. Such a component is denoted as a star.

Note that now the model is not correctly ordered: the star component
(Compn+1) does not have a correct index according to the precedence relation.
However the new model is still a precedence model.

Let us now prove that this transformation provides an upper bound. First
we reorder the state according to the new precedence model. The component
we have added receives number m + 1. Without loss of generality we assume
that the components between 1 and m keep the same numbers they had before
the insertion while the components numbers previously between m + 1 and n
increase by 1.

Considering equation 5.1, we just derive the new sets Pi as a function of the
sets before the insertion. We have:

⎧
⎨

⎩

Pi ← Pi ∀i = 1..m
Pm+1 ← {1..m}
Pi ← Pi−1

⋃
{m + 1} ∀i = m + 2..n

Let us denote by t′i the new values of the completion time. Clearly we have
t′i = ti for all i ≤ m. As sets Pi are now larger, we also have: t′i ≥ ti−1 + dm+1.

Theorem 4. Let m be an arbitrary integer in 2..n-1, the absorption time is
upper bounded in the strong stochastic sense by the absorption time of the same
model with a star component added with label m + 1.

Adding a star has also an effect on the resolution algorithm. The model is
now separable into two sub-models containing Comp1 to Compm for the first
one and Compm+1 to Compn+1 for the second one. Indeed, to be absorbed
in Compn+1, one must visit first Compm+1 and then travel from Compm+1 to
Compn+1. We compute the time to be absorbed in Compm+1 in a sub-model and
then we compute the time to be absorbed in Compn+1 knowing that the initial
component is Compm+1 at time 0. These two random variables are independent
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Comp n
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Fig. 2. Adding a star

and the distribution of the global absorption time is the convolution of the two
distributions obtained from the sub-models. If we assume that the components
set is equally divided by the insertion of the star, the stochastic comparison
allows a drastic reduction of the complexity of the analysis.

6 Conclusion

The approach we have presented here constitutes a first step towards a new
hierarchical resolution of hierarchical models. Indeed, we must improve our res-
olution techniques which are now far away from our modelling skills. Stochastic
comparison is a very efficient approach to simplify models and obtain bounds.
We can apply bounds on the transition times like in this paper or on the states.
Both approaches rely on a monotonicity property which is implicit on transi-
tion instants associated with a precedence model. Precedence PEPA models are
quite general but a natural extension to this work will be the generalisation
of this type of method for an even larger set of models. It must be clear that
this approach requires hierarchical models where the high level exhibits some
monotonicity property which must be consistent with the comparison we made
for sub-models absorption times. These are the key properties of the approach.
However they are limited neither to precedence PEPA models nor to (max,+)
semi-ring (again see [1]). For instance, PEPA nets, a new hierarchical modelling
technique [9], are based on a high level model which is mainly a Finite State
Machine (a simplified Petri Net with a limited interconnection between places
and transitions) and on sub-models associated with the places of the net. The
sub-models are PEPA models. It is worthy to remark that when the vertex cut
of the directed cycles of the FSM has size one then we can derive the same linear
equations on (max,+) semi-ring, from the PEPA net model, as the ones we have
obtained here. Indeed when we remove this directed arc, the graph of the FSM
becomes a DAG and it shows the relation with a precedence PEPA model. Thus
all the techniques presented here can be applied to this new modelling technique
as well.
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