
The PEPA Workbench: User’s Manual
Stephen Gilmore, LFCS, Edinburgh

stg@dcs.ed.ac.uk
September 18, 2001

This document describes version 0.72 of the PEPA Workbench, a tool for assist-
ing with the analysis of systems which are described by a model expressed
in the stochastic process algebra PEPA. The definitive reference for PEPA
is the CUP book “A Compositional Approach to Performance Modelling” by
Jane Hillston (published 1996). PEPA software and accompanying documenta-
tion such as this can be obtained via the World-Wide Web from the address
http://www.dcs.ed.ac.uk/pepa.

The PEPA Workbench is intended for use with a linear algebra solution tool
such as those provided within the Maple and Matlab computing environments.
The objective of the modelling study is to calculate the steady-state probability
distribution for the system and to derive performance measures from this.

?

We describe the components of the PEPA input language for the Workbench via
a simple example. Consider a PEPA model with two copies of a component, P1,
executing in a pure parallel synchronisation. P1 is a simple sequential process
which undergoes a start activity with rate r1 to become P2 which runs with
rate r2 to become P3 which goes back to P1 via a stop activity with rate r3.

P1
def= (start , r1).P2

P2
def= (run, r2).P3

P3
def= (stop, r3).P1

The system which we study is P1 ��
∅
P1 (equivalent notation for this is P1 ‖ P1).

We have made use of aspects of the mathematical syntax for PEPA in this
definition. Before solving this model we first need to encode these definitions
and the pure parallel synchronisation term in the ASCII syntax accepted by the
Workbench. We place these definitions in the file tiny.pepa.

#P1 = (start, r1).P2;
#P2 = (run, r2).P3;
#P3 = (stop, r3).P1;
P1 <> P1

This tiny example shows the form of all PEPA definitions which are accepted
by the PEPA Workbench; a [non-empty] sequence of definitions of sequential
components followed by a parallel composition of these to form the description
of the system to be studied.

The purpose of the PEPA Workbench is to process models such as these in
order to compute the state-space and the transitions of the model. Assuming
that you access the PEPA Workbench by typing pwb then the model is processed
as shown in Figure 1 where the user only typed the pwb command and the
filename tiny and the rest was produced by the Workbench.

1

[unix]: pwb

PEPA Workbench Version 0.72 [maple, 22-12-1998]
Filename: tiny

Compiling the program
Writing the state table file to tiny.table
Writing the transition file to tiny.maple
The model has 9 states
The model has 18 transitions
Writing the hash table file to tiny.hash
Exiting PEPA workbench.

Figure 1: A sample PEPA Workbench session

You now have three files which you did not have before: tiny.table, tiny.hash
and tiny.maple1. All of these are text files which can be read on the screen
or searched using a UNIX utility such as grep or printed on a printer. The real
content of the analysis is in tiny.maple so we shall consider it first. It contains
the entries for the transition matrix Q. Depicted mathematically, Q would be
the matrix shown below where blank entries indicate zeroes. It does not matter
for a tiny example such as this one but as a general point the transition matricies
of any Markov processes are best stored within a computer as sparse matricies.

−2r1 r1 r1

−r1 − r2 r2 r1

−r1 − r2 r1 r2

r3 −r1 − r3 r1

−2r2 r2 r2

r3 −r1 − r3 r1

r3 −r2 − r3 r2

r3 −r2 − r3 r2

r3 r3 −2r3

The tiny.maple file contains this matrix information in a form suitable for
consumption by a solution tool such as Matlab or Maple. When using the
Matlab version of the Workbench the transitions file would contain this.

Q(1,3) = Q(1,3) + r1;
Q(1,1) = Q(1,1) - r1; % 1 --start,r1-> 3

Q(1,2) = Q(1,2) + r1;
Q(1,1) = Q(1,1) - r1; % 1 --start,r1-> 2

...

When using the Maple version of the Workbench the transitions file would
contain this.

Q[1,3] := Q[1,3] + r1:
Q[1,1] := Q[1,1] - r1: # 1 --start,r1-> 3

Q[1,2] := Q[1,2] + r1:
Q[1,1] := Q[1,1] - r1: # 1 --start,r1-> 2

...

1The name of this file is instead tiny.m for the Matlab version of the PEPA Workbench.

2

The essence of the two presentations is the same. A square sparse matrix [the
sparse element is zero] is modified by a sequence of assignments which record
the rate at which a transition can move the system from one state to another.
Explanatory comments, ignored by the solution package, give the identifier of
the transition and make clear the direction of the state change. The comments
are stating this information: 3

a,r1←− 1
a,r1−→ 2. This information is useful to the

modeller when examining the state space to detect symmetries within the PEPA
model or when ‘debugging’ a faulty model.

?

The states of the model have been associated with numbers for use as the
indices for the transition matrix. Now we need to understand which state has
which number. For this information we look at both the files for the state table
tiny.table and for the associated hash table tiny.hash. These contain the
information shown in Figure 2. The state table shows the assignment of state
numbers to states, identified in terms of their hash table identifier equivalents.

The state table The hash table
1 7→ a ‖ a
2 7→ d ‖ a
3 7→ a ‖ d
4 7→ g ‖ a
5 7→ d ‖ d
6 7→ a ‖ g
7 7→ d ‖ g
8 7→ g ‖ d
9 7→ g ‖ g

P1 7→ a
P2 7→ d
P3 7→ g
r1 7→ c
r2 7→ f
r3 7→ i

run 7→ e
start 7→ b
stop 7→ h

Figure 2: State table and hash table for the tiny model.

Why have a state table? The modeller using the Workbench needs to know
which states are which because certain states will be distinguished success states
or completion states or utilisation states and the experimentation upon the
model proceeds by considering the effect on the model of changes of relative
rate.

Why have a hash table? All of the limiting problems with the use of the
PEPA Workbench when processing large PEPA models are to do with space
requirements either in terms of memory usage or disk usage. In generating the
state space of a model the Workbench may exhaust the main memory capacity
and fail. In comparison the time taken to process a model is of lesser importance
because a modeller could simply run the model for longer. Thus when we
attempt to improve the PEPA Workbench it is always by seeking to reduce the
memory usage [perhaps at the cost of some run-time penalty]. Problems related
to state-space size are a concern for all Markov modelling tools.

Notice that in the hash table no letters which were used as identifiers in
the PEPA input are re-used as internal identifiers within the Workbench. This

3

will not cause a difficulty if it happens but we take this opportunity to point
out that—as with all model development—the user should choose meaningful
identifiers for the activities, rates and components of a PEPA model.

?

At this point the PEPA Workbench has done its work and it is now time to use
the available solution tool to solve the model to find the steady state probability
distribution. Performance measures can be calculated from this distribution.
For the particular 9 × 9 matrix generated by the tiny example shown here it
is as easy to solve symbolically using Maple (see Appendix B) as it is to solve
numerically using Matlab (see Appendix A). For examples of even moderate
size seeking symbolic solutions becomes impractical.

PEPA grammar

We now present the input grammar of the ASCII syntax for the PEPA language
in EBNF notation.

program ::= declaration+ composition
declaration ::= #id = seq component ;

seq component ::= seq component / { [idseq] } hiding
| seq component + seq component choice
| (id, rate) . seq component prefixing
| id variable
| (seq component) grouping

composition ::= seq component < [idseq] >
seq component

| seq component < [idseq] >
composition

| (composition)
idseq ::= id

| id , idseq
rate ::= id

| int
| infty

id ::= alphanumeric sequence
int ::= unsigned numeric sequence

In addition LATEX-style comments are supported, that is, the PEPA Workbench
ignores any characters which follow a percent sign on a line.

The form of the component which follows the declaration sequence should
be a parallel composition of (a subset of) the components which have been
declared in the declaration sequence.

As noted above, a reserved word is used to represent the infinity symbol
which denotes that a component is passive with respect to this action. The
reserved word is infty [as in TEX and LATEX] where the symbol > is used in
the mathematical syntax for PEPA.

4

Example sequential components: If P and Q are the only components
declared in the declaration sequence in the PEPA program then the following
are legal component expressions which could appear in later declarations.

P / {a} Hiding any a action of P
P + Q Choice between P or Q
(a, r1).P Prefixing P by a with rate r1
(a, 12).P Prefixing P by a with rate 12
(a, infty).P Prefixing P by a performed passively

Sequential components non-examples: If P and Q are the only compo-
nents declared in the declaration sequence in the PEPA program then the fol-
lowing are illegal component expressions for the reason given.

R Variable not declared
P \ {a} The hiding symbol is the division sign
P / a Set brackets are not optional
P <> Q No use of parallel in sequential components
P.Q No sequential composition in PEPA
(a, r1) P Omitted full stop
(a, 12.0).P Real number constants not allowed
(a, 5 / 2).P No arithmetic operations; only constants
P[b/a] No renaming in PEPA

Example parallel compositions: If P and Q are the only components de-
clared in the declaration sequence in the PEPA program then the following are
legal parallel compositions which could appear after the declarations.

P <> Q P and Q proceed independently in parallel
P <a, b> Q P and Q synchronise on a and b
(P <> P) <a, b> (Q <> Q) Copies of P and Q synchronise on a and b

Parallel compositions non-examples: If P and Q are the only components
declared in the declaration sequence in the PEPA program then the following
are illegal parallel compositions for the reason given.

R Variable not declared
P | Q Pure parallel composition symbol is <>
P < a b > Q Omitted comma
(a, r1).P No sequential operations in the composition

5

Experimenting with a model

Finding the equilibrium probability distribution for a model is an important first
step in investigating its behaviour. Once this has been achieved the modeller
can conduct a series of experiments to investigate the model thoroughly. The
series of experiments which are undertaken will vary from model to model but
they commonly involve selecting an interesting subset of the state space and
finding the probability of being in those states. An activity which must be
performed in doing this part of the experimentation is finding the numbers
which are associated with the states which are of interest. We provide another
tool to assist with this: the tool is called the PEPA State Finder.

The modeller first describes some states of interest through the use of a sim-
ple pattern language with stars for wild cards and vertical bars for separators
between model components. Returning to our tiny example, a modeller inter-
ested in testing how often either component in the tiny example was component
P1 would prepare a file called tiny.psf with the following contents.

% We are checking for P1 in either case
test: P1|*
test: *|P1

The identifier test gives the name of the function and after the colon comes
the pattern of interest. Assuming that you access the PEPA State Finder by
typing psf then the function is processed as shown in Figure 3 where the user
only typed the psf command, the model name and the function name and the
rest was produced by the tool.

[unix]: psf

PEPA State Finder [Version 0.06, solver, 2-12-1997]
PEPA model name: tiny

PSF file name: tiny

Function ‘‘test’’ written to file ‘‘test.fun’’.
Exiting PEPA State Finder.

Figure 3: A sample PEPA State Finder session

The function which was generated by this is shown in Appendix C. For this
tiny example the function could easily have been created by hand since the
model has a very regular structure and only nine states but with larger models
the usefulness of the PEPA State Finder becomes clearer. Notice that here the
tool correctly avoids counting the state P1 ‖ P1 twice. This would be a mistake
which could easily be made otherwise.

The PEPA State Finder must be run after running the PEPA Workbench
on a model because it searches through the table file which the Workbench
produces.

6

Limitations

The PEPA Workbench has a number of limitations.

• The Workbench implements Cyclic PEPA only (see [Hillston, 1996] for the
definition of this term). These are the only PEPA models for which steady-
state probability distributions can be calculated. This is a consequence
of the language definition and will not be changed.

• The Workbench does not implement the apparent rates of PEPA. All
synchronisations must be between one active component and one passive
component. This is an error which should be corrected in later versions
of the PEPA Workbench.

7

Appendix A: A sample MATLAB session

In this appendix the nine state model is solved for the particular case when
r1 = r2 = r3 = 2.0. Since all of the transitions proceed at the same rate,
and the model is symmetric, all of the states are equally likely, with calculated
probability 1

9 ≈ 0.1111.

[unix]: matlab

< M A T L A B (R) >
(c) Copyright 1984-94 The MathWorks, Inc.

All Rights Reserved
Version 4.2c
Dec 31 1994

Commands to get started: intro, demo, help help
Commands for more information: help, whatsnew, info, subscribe

>> Q=sparse(9,9);

>> r1=2.0;

>> r2=2.0;

>> r3=2.0;

>> tiny;

>> for i=1:9

Q(i,9) = 1.0;

end

>> b=zeros(9,1);

>> b(9) = 1.0;

>> QT = Q’;

>> P = QT \b

P =

0.1111
0.1111
0.1111
0.1111
0.1111
0.1111
0.1111
0.1111
0.1111

>> quit

1020 flops.

8

Appendix B: A sample Maple session

In this appendix the nine state model is solved symbolically for all values of r1,
r2 and r3.

[unix]: maple

|\^/| Maple V Release 3 (The University of Edinburgh)

|\| |/| Copyright (c) 1981-1994 by Waterloo Maple Software and the

\ MAPLE / University of Waterloo. All rights reserved. Maple and Maple V

<____ ____> are registered trademarks of Waterloo Maple Software.

| Type ? for help.

> with(linalg):

Warning: new definition for norm
Warning: new definition for trace
> Q := array(sparse,1..9,1..9):

> read ‘tiny.maple‘:

> b := array(sparse,1..9):

> for i to 9 do

Q[i,9] := 1.0

od:

> b[9] := 1:

> QT := transpose(Q):

> P := linsolve(QT,b);

2 2 2 2 2 2 2
r3 r2 r3 r2 r1 r3 r2 r1 r3 r2 r1 r3 r1

P := [-------, ---------, ---------, ---------, -------,
%1 %1 %1 %1 %1

2 2 2 2 2
r3 r2 r1 r3 r2 r1 r3 r2 r1 r1 r2
---------, ---------, ---------, -------]

%1 %1 %1 %1

2 2 2 2 2 2
%1 := 2. r3 r2 r1 + r3 r2 + r1 r2 + 2. r2 r1 r3 +

2 2 2
2. r2 r1 r3 + r3 r1

> quit

bytes used=983796, alloc=786288, time=1.42

9

Appendix C: A function generated by the PEPA state finder

This is the function which was generated when the tiny.psf file was processed
by the PEPA State Finder. The body of the test function adds together the
probabilities for the relevant states. After a comment symbol on each line comes
the description of the state. As we expected, all of the states contain a P1 com-
ponent.

Function: test
Table: tiny.table

test := proc (P)
(0

+ P[1] # P1|P1
+ P[3] # P1|P2
+ P[6] # P1|P3
+ P[2] # P2|P1
+ P[4] # P3|P1

)
end:

print (‘PEPA: Defined function ‘‘test’. Usage: test(P);‘);

10

