
A Comparison of the Expressiveness of SPA and Bounded SPN models

J. Hillston1, L. Recalde2, M. Ribaudo3, M. Silva2 �

1 LFCS, University of Edinburgh
2 DIIS, Universidad de Zaragoza

3 Dipartimento di Informatica, Universit´a di Torino

Abstract

This paper presents some transformation techniques
from bounded SPN systems to corresponding SPA models,
preserving concurrency. Initially, a simple algorithm is in-
troduced, showing that the obtained SPA models simulate
the net systems. Then the algorithm is improved in order to
keep more of the net structure, when possible. For the case
of non ordinary net systems the SPA language is extended
by introducing a new cooperation operator.

1 Introduction and motivation
Stochastic extensions of Petri nets [1, 2, 11] and, more

recently, of process algebras [10, 5, 9] have proved to be
useful tools for performance modelling. The work pre-
sented in this paper is motivated by a desire to complete the
establishment of a sound and efficient bridge between these
modelling paradigms. In addition to its inherent analytical
interest, such a bridge opens the possibility that some of the
powerful theoretical results which have been developed for
stochastic Petri nets (SPN) may be exploited in stochastic
process algebras (SPA), and vice versa.

The transformation from SPA to bounded SPN, has pre-
viously been published [3, 4, 12]. This paper focuses on
the other direction, the transformation from an arbitrary (or-
dinary) bounded SPN system to an equivalent SPA model.
We prove that SPA languages and bounded SPN (with ex-
ponential probability distribution functions) have theoreti-
cally equivalent expressiveness, if SPA is extended through
a new operator. This is addressed by showing that transfor-
mations between the paradigms exist.

The first type of transformation we propose uses comple-
mentary places: the starting net system is augmented with
one complementary place for each of its original places.
The places in the net system provide the focus to derive the
corresponding SPA model. It is observed that the case of arc
multiplicities cannot be treated without extending the lan-
guage. Hence a new operator is introduced—generalised
cooperation—to cope with non-ordinary bounded SPN. Ap-
plying this automatic transformation, the behaviour of the

�This work has been partially supported by Projects CICYT TAP98-
0679 and HI-1998-0196.

net system and the corresponding SPA model is the same
both from the functional and the temporal point of view.
However, this solution lacks elegance and, whilst remain-
ing faithful to the fine-grained structure of the net system, it
loses the more intuitive, application-level structure.

In the second part of the paper we propose an improved
transformation technique for ordinary nets, in which we can
reduce the number of complementary places that need to
be added. This second technique is intended to maintain
more of the initial structure when possible, and not just to
simulate the starting net. Some examples are used to show
the existence of net constructions for which the SPA coding
seems to be rather unnatural. The difficulties in mapping
an arbitrary bounded SPN system into a SPA model suggest
that, although both formalisms are based on relatively sim-
ilar concepts, there are basic differences between them.

The balance of the paper is as follows. Section 2 pro-
vides some background material on both formalisms and
Section 3 introduces the first transformation algorithm, the
one based on the total complementation of the net places.
The generalised cooperation operator is defined and the
starting SPN system and the corresponding SPA model are
shown to exhibit the same behaviour. In Section 4 an im-
proved algorithm is discussed, whose application leads to
simpler SPA models. Some problematic examples are also
shown and in Section 5 the differences in the notion of pro-
cess behind both formalisms are discussed. Finally, Sec-
tion 6 concludes this work.

2 SPN and SPA notations
We assume the reader is familiar with SPN [1, 2, 11]

and SPA [10, 5, 9]. We will just present the notation to
be used, and in particular for SPA we will concentrate on
Performance Evaluation Process Algebra (PEPA) [10].

2.1 Stochastic Petri nets
A Petri net (PN) is a4�tupleN = hP; T;Pre;Posti,

whereP , T are the sets ofplacesandtransitions, andPre
andPost are thejP j � jT j sized, natural valued,incidence
matrices. The net isordinary if all arc weights are one.

A net systemis a pairS = hN ;m0i, wherem0 2 IN jP j,
is theinitial marking. A transitiont is enabledin a marking
m if all its input places contain at least as many tokens as

specified by input arcs weights (m � Pre[P; t]). Once
enabled, transitiont canfire. The occurrence oft at marking
m, denoted m[t im0 yields the markingm0 = m +

C[P; t] =m+Post[P; t]�Pre[P; t].
Under the assumption of boundedness, starting from the

initial markingm0 it is theoretically possible to compute
the set of all reachable markings, the so-calledreachability
set, RS(m0). The reachability set does not contain informa-
tion about the transition sequences fired to reach each mark-
ing. This information is captured by thereachability graph
(RG) whose nodes are labelled with the reachable markings
and whose arcs are labelled with the transitions that the sys-
tem has to fire to move from state to state.

A place whose removal preserves the fireable sequences
(i.e., the interleaving semantics) of the system is called a
(sequential) implicit place[6, 15]. If it also maintains the
concurrent semantics it is calledconcurrent implicit[15]. It
can be seen that in a net without self loops these concepts
coincide. By means of linear relaxations, a sufficient struc-
tural condition for a place to be sequentially implicit can be
stated, which can be verified in polynomial time (see [15]).

Proposition 2.1 ([15])
Let hN ;m0i be a net system. A placep 2 P with initial

markingm0[p] � z, wherez is the optimal value of (2.1),
is (sequential) implicit:
z = min.y �m0 + �

s.t. y �C � C[p; T]

y �Pre[P; t] + � � Pre[p; t] 8t 2 p�

y � 0;y[p] = 0

(2.1)

Problem (2.1) is feasible iffy � 0 exists verifying
y[p] = 0 andy �C � C[p; T]. In other words, ify[p] = 0

andy �C � C[p; T], placep can be made implicit by choos-
ingm0[p] big enough. A placep for which the problem is
feasible is calledstructurally implicit. Note that having “too
many tokens” in an implicit place has no effect on the net
system behaviour.

22 22
p
1

2

c; rcb; rb

p1

a; ra
p2

b; rb

p2

2

p3

c; rc

p3

p1

p2
a; rap3

(a) (b)

Figure 1. Implicit (or complementary) places
For example, the net system in Fig. 1(b) has been ob-

tained by adding several implicit places (drawn in grey) to
the net system in Fig. 1(a). Observe for instance placep

2
. It

can be checked, using (2.1), that any marking ofp
2

greater
than or equal to3 will make it implicit. For p

1
, any mark-

ing greater than or equal to0 will make it implicit.

A stochastic Petri net (SPN) system is given by a net
structure plus an initial marking and a set of rates, i.e.S =

hN ;m0;�iwhere� : T ! IR+ assigns a rate to each tran-
sition, which determines the duration of the activity. The
occurrence oft at markingm is denoted asm[(t; rt) im

0.
Whenever more than one transition is enabled in a given
marking, arace conditiondetermines the one which will
fire. The probability that a particular transition fires is given
by the ratio of the transition rate to the sum of the rates of
all the enabled transitions. Moreover, we will consider an
infinite server semantics, that is, each transition can fire as
many times as it is enabled. With this timing interpretation,
the evolution of the discrete event system modelled by the
PN can also be modelled using a Markov chain. It can be
seen that this Markov chain is isomorphic to the reachabil-
ity graph of the PN system, if the arcs are labelled with the
rates of the transitions that are being fired [11].

2.2 Stochastic process algebras
Like in any stochastic process algebra (SPA), the basic

elements of PEPA arecomponentsandactivities. Each ac-
tivity, a, is a pair(�; r) where� is theaction typeandr is
the activity rate. Activities which are private to the com-
ponent in which they occur are represented by the distin-
guished action type,� . We assume that there is a count-
able set of components, which we denoteC, and a countable
set,A, of all possible action types. We denote byAct �
A� IR+, the set of activities, whereIR+ is the set of posi-
tive real numbers together with the symbol>.

The syntax of PEPA expressions can be defined in terms
of sequential componentsS andmodel componentsP :

P ::= S j P ��
L
P j P=L

S ::= (�; r):S j S + S j A

The informal meaning of the combinators is:
Prefix: (�; r):P The component carries out activity

(�; r) and subsequently behaves asP .
Choice: P + Q The component represents a system

which may behave either as componentP or asQ: all the
current activities of both components are enabled. The first
activity to complete, determined by arace condition, distin-
guishes one component, the other is discarded.

Cooperation: P ��
L

Q The components proceed in-
dependently with any activities whose types do not occur in
thecooperation setL (individual activities). However, ac-
tivities with action types in the setL require the simulta-
neous involvement of both components (shared activities).
These activities are only enabled inP ��

L
Q when they are

enabled in bothP andQ. When the setL is empty, we use
the concise notationP k Q to representP ��

;
Q. The main

peculiarity of PEPA is that the shared activity occurs at the
rate of the slowest participant. If an activity has an unspec-
ified rate in a component, the component ispassivewith re-
spect to that action type, i.e., the component does not influ-

ence the rate at which any shared activity occurs.
Hiding: P=L The component behaves asP but any ac-

tivities of types within the setL arehidden, i.e. become� .
Such activities cannot be carried out in cooperation with any
other component: the original action type of a hidden activ-
ity is not externally accessible; the duration is unaffected.

Constant: A
def
= P Constants are components whose

meaning is given by a defining equation.
The action types which the componentP may next en-

gage in are thecurrent action typesof P , a set denoted
A(P). This set is defined inductively over the syntactic
constructs of the language (see [10]). The interpretation of
PEPA expressions is given by a formal semantics, presented
in the structured operational style [10].

The “states” of a PEPA model as it evolves are the syn-
tactic terms, or derivatives. When a model component is
defined it consists of one or more cooperating components,
and they will be apparent in every derivative of the model,
i.e. the global state will consist of a set of local states or
derivatives, one for each sequential component.

Thederivation graphD(C) is a graph in which syntactic
terms form the nodes, and arcs represent the possible transi-
tions between them: the operational rules define the form of
this graph. It is isomorphic to the underlying Markov chain
and can be regarded as analogous to the RG of a SPN.

Various forms of equivalence have been defined for
PEPA. Here we usestrong equivalence(denoted�=). This
is an observation-based equivalence: two components are
considered equivalent if they are indistinguishable under ex-
ternal observation. This relation is a congruence, i.e. if a
strongly equivalent component is substituted into a PEPA
definition, the new definition is strongly equivalent to the
original. Moreover, if the derivative set is partitioned by the
relation, and a new model formed with one state for each
equivalence class then the new model is strongly equivalent
to the original. Formally, two PEPA componentsCi; Cj

are strongly equivalent if there is an equivalence relation
between them such that, for any action type�, the total
conditional transition rates from those components to any
equivalence class, via activities of this type, are the same.
The total conditional transition ratefrom a componentP
to a set of componentsS via an action type� is defined
asq[P; S; �] =

P
Q2S

q(P;Q; �), whereq(P;Q; �), is the
sum of the activity rates labelling arcs connecting the cor-
responding nodes in the derivation graph which are also la-
belled by the action type�.

3 Equivalent expressiveness of bounded SPN
and PEPA+

Since bounded SPN and PEPA models each have rep-
resentations as finite Markov chains, a naive—and totally
impractical—transformation from a bounded SPN could be
constructed as follows: obtain the underlying Markov chain
of the SPN [11] and define a single sequential PEPA com-

ponent that directly encodes the Markov chain.
However, we aim to establish a more structural transfor-

mation from bounded SPN to PEPA. Ideally we would like
to find a structural concept in the SPN to correspond with a
certain structure in the PEPA model, the sequential compo-
nents, thus achieving aprocess oriented implementationof
bounded SPN models in PEPA models. Unfortunately, this
direct mapping does not work for all bounded SPN but only
for some net subclasses, thus suggesting the existence of a
different notion of process behind the two formalisms. The
problem addressed here is, in some sense, a classical one
in the PN paradigm, related to the net system decomposi-
tion into sequential components running in parallel[14, 7].
(see [14], chapter 7, for the implementation of 1-bounded
ordinary net systems by means of microprogramming tech-
niques, or [7] for a software-based implementation using
Ada-like languages).

3.1 Place complementation in SPN and its imple-
mentation in PEPA

In this section we first explain the complementation of
ordinary bounded Petri nets. This is a structural transfor-
mation by which we add acomplementaryplace for every
place of the net. The initial marking of the complementary
places will be defined in such a way that they do not con-
strain the behaviour of the transitions they are connected to:
so the behaviour of the net system is preserved under true
concurrency. Although in the Markovian setting only in-
terleaving semantics is relevant, this means that the same
transformation can be applied if a different timing interpre-
tation is used.

For each placep, we add itscomplement, which we de-
note as�p, such that�p� = �p, ��p = p�. The initial marking
of this place will bem0[�p] = b[p]�m0[p], whereb[p] de-
notes an upper bound of the number of tokens which may
be present in placep. Provided with these markings, the
complementary places are implicit places [15]. If the net is
structurally bounded, i.e., bounded for every initial mark-
ing (there existsy > 0 such thaty � C � 0) comple-
mentary places are structurally implicit. Hence, a possible
marking for�p is the one obtained applying (2.1). In general,
this marking is not the minimal one that makes the place
implicit, and improved techniques can be applied to get a
tighter bound [15].

Definition 3.1 (Complementation) Given a SPNS1 =

hP1; T1;Pre1;Post1;m01;�1i its complementation is an-
other SPN,S2 = hP2; T2;Pre2;Post2;m02;�2i with

1. P2 = P1[P 1 whereP 1 is the set of added places, one
for eachp 2 P1, such thatP1 \ P 1 = ;

2. T2 = T1

3. Pre2 =

�
Pre2[P1; T1]

Pre2[P 1; T1]

�
=

�
Pre1[P1; T1]

Post1[P1; T1]

�

4. Post2 =

�
Post2[P1; T1]

Post2[P 1; T1]

�
=

�
Post1[P1; T1]

Pre1[P1; T1]

�

5. �2 = �1

6. m02 =

�
m02[P1]

m02[P 1]

�
=

�
m01[P1]

b[P1]�m01[P1]

�

Example 1 Fig. 2(a) shows a simple SPN system and
Fig. 2(b) shows the same system augmented with all com-
plementary places (which are drawn in grey). In this trivial
case, both models are 1-bounded.

d; rd

p4

d; rd

p1

a; ra

c; rc

p5

p3

b; rb

p2
a; ra

p2

p4

p1 p1

p
2

c; rcb; rb

p4

p3

p
3

p5

p5

(a) (b)

Figure 2. Complementary places in the ordi-
nary case

Given a complemented net system we can generate a cor-
responding PEPA model by considering the set of state ma-
chines composed of each place and its complement. Being
1-bounded, each state machine is mapped onto a PEPA se-
quential component, and we need to consider one instance
of the component for each token in each place. Synchro-
nisations over net transitions become cooperations between
sequential components. As we have noted earlier, adding
too many tokens in complementary places does not change
the net system behaviour. However, this impacts on the
PEPA behavioural model since “extra tokens” are mapped
onto redundant instances of the same component causing an
unnecessary exponential growth of the state space. Fig. 3
shows an abstract algorithm for the translation technique we
have informally discussed. Applying the algorithm to the
complemented net in Fig. 2(b) we obtain:
First step: Sequential components

P1
def
= (a; ra):P 1 P 1

def
= (d;>):P1 P2

def
= (b; rb):P 2

P 2

def
= (a;>):P2 P3

def
= (c; rc):P 3 P 3

def
= (a;>):P3

P4
def
= (d; rd):P 4 P 4

def
= (b;>):P4 P5

def
= (d; rd):P 5

P 5

def
= (c;>):P3

Second step:Model equation

M1

def
= P1; M2

def
= P 2; M3

def
= P 3;

M4

def
= P 4; M5

def
= P 5;

L1 = fa; dg; count1 = (1; 0; 0; 1)

L2 = fa; bg; count2 = (2; 1; 0; 1)

L3 = fcg; count3 = (2; 1; 1; 1)

L4 = fdg; count4 = (2; 1; 1; 2)

L5 = ;; count5 = (2; 1; 1; 2)

Sys
1

def
= M1; Sys

2

def
= Sys

1
��
fa;dg

M2;

Sys
3

def
= Sys

2
��
fa;bg

M3; Sys
4

def
= Sys

3
��
fcg

M4;

Sys
5

def
= Sys

4
��
fdg

M5

M� P1 ��
fa;dg

P 2
��
fa;bg

P 3
��
fcg

P 4
��
fdg

P 5

Observe that although the structure of PEPA terms is
rather linear, such terms are capable of capturing arbitrary
connectivity in the SPN. We are simulating the structure of
the net (augmented with implicit places), and not just its un-
derlying reachability graph.

Example 2 Consider the non ordinary net system in
Fig. 1(a), in which some of the arcs have a weight equal to
two. We will see that in this case the addition of comple-
mentary places is not enough to allow us to represent the
same net system. During its evolution, the net system aug-
mented with complementary places (Fig. 1(b)) can reach a
marking with three tokens in placep2 (p3) and one token in
p3 (p2), and the enabled transitionb (c) consumestwo out
of threetokens when firing. By applying the steps outlined
in the algorithm of Fig. 3 we obtain:

First step: sequential components

P1
def
= (a; ra):P 1 P 1

def
= (b;>):P1 + (c;>):P1

P2
def
= (b; rb):P 2 P 2

def
= (a;>):P2

P3
def
= (c; rc):P 3 P 3

def
= (a;>):P3

Second step:model equation

M1

def
= P1 k P1; M2

def
= P 2 k P 2 k P 2;

M3

def
= P 3 k P 3 k P 3

L1 = fa; b; cg; count1 = (1; 1; 1)

L2 = fag; count2 = (2; 1; 1)

L3 = ;; count3 = (2; 1; 1)

Sys
1

def
= M1; Sys

2

def
= Sys

1
��

fa;b;cg
M2;

Sys
3

def
= Sys

2
��
fag

M3

M � (P1 k P1) ��
fa;b;cg

(P 2 k P 2 k P 2)

��
fag

(P 3 k P 3 k P 3)

The PEPA model above does not represent the net sys-
tem of Fig. 1(b) because it is not possible to observe states
in which two out of threecomponentsP2 (P3) synchronise

Given a net systemS = hP [P ; T;Pre;Post;m0;�i, perform the following steps

Step 1: Derivation of sequential components

For each pairpi 2 P , p
i
2 P , define PEPA sequential componentsPi andPi as follows

1. for each transitiont 2 p�
i
, the PEPA sequential componentPi enables an activity of typet with the same rate

ast with derivativePi; A(Pi) = ft j t 2 p�
i
g

2. for each transitiont 2 �pi, the PEPA sequential componentPi enables a passive activity of typet with deriva-
tivePi; A(P i) = ft j t 2 �pig

Step 2: Model equation

1. for eachpi define a model componentMi

def
= Pi k : : : k Pi k Pi k : : : k Pi where the number of replica ofPi

andPi is given bym0[pi] andm0[pi].

2. the cooperation sets and the system equation are built up recursively, starting from a base case. We make use of
an auxilliary array of sizejT j, counti(t), to keep track of the appearances of each transition/action type within
cooperation sets.

L1 = A(P1) [A(P1)

count1(t) =

�
1 if t 2 L1

0 otherwise
8t 2 T

Sys
1

def
= M1

Li = A(Pi) [A(Pi) n ft j t 2

i�1[
j=1

Lj ^ counti�1(t) = j �tj � 1g

counti(t) =

�
counti�1(t) + 1 if t 2 Li

counti�1(t) otherwise
8t 2 T

Sys
i

def
= Sys

i�1
��
Li�1

Mi

M � Sys
jP j

Figure 3. PEPA model construction for (complemented) ordinary SPN

over action typeb (c). For example, the current representa-
tion ofM2, P 2 k P 2 k P 2, represents the case in which the
P2 components do not synchronise at all, i.e. as if the arc
from p2 to b had multiplicity 1. If we chose instead to rep-
resentM2 by P 2

��
fbg

P 2
��
fbg

P 2 we would capture the case
when the arc had multiplicity 3. If we definedM2 to be
P 2
��
fbg

P 2 k P 2 two instances ofP2 must synchronise onb,
but then two instances are fixed. In contrast in the SPN the
tokens have no identity and the transition can be fired by any
two tokens out of the possible three. Thus, current PEPA
notation isnot capable of expressing the caserepresented by
such a non ordinary net system (except by a flat purely se-
quentialised model representing the state space.) To model
such a behaviour we need to introduce a new operator.

3.2 Defining PEPA+
We introduce a more general form of interaction between

PEPA components by defining a new combinator,gener-
alised cooperation. Whereas previous PEPA combinators
have been unary (e.g. hiding) or binary (e.g. choice), gener-
alised cooperation deals with a set of components. Givenn

components cooperating over an action type�, the combi-
nator is able to selectk out ofn components for the actual
execution of the shared activity.

Let
 be amultisetof PEPA components andL be amul-
tiset of action types. Then��

L

 denotes the generalised

cooperation of the components in
 over the types inL. In-
formally, this can be interpreted as follows. For all action
types which do not appear inL, components in
 proceed
independently and concurrently (individual activities). For
action types inL with multiplicity n (n � 1), n + 1 com-
ponents from the multiset
 must cooperate (shared activi-
ties). Thus when
 = fP;Qg, and all elements ofL appear
with multiplicity one, then��

L

 = P ��

L
Q; whenL = ;,

then ��
L

 = P k Q. The formal semantics of generalised
cooperation is presented in Fig. 4.

Following the construction in Fig. 3, we see that increas-
ing the marking of a place is represented by increasing the
number of instances of this component in the intermedi-
ate componentMi. When we wish to represent arcs with
multiplicity greater than one, we change this parallel com-

P
(�;r)

���! P 0

(�;r)

���!
0

(P 2
); where
0 =
 n P [P 0

P
(�;r)

���! P 0

��
L
P [

(�;r)

���! ��
L
P 0 [

(� =2 L)
��
L

(�;r)

���! ��
L

0

��
L
P [

(�;r)

���! ��
L
P [
0

P
(�;r1)

���! P 0 ��
Lnfj� jg

(�;r2)

���! ��
Lnfj� jg

0

��
L
P [

(�;R)

���! ��
L
P 0 [
0

(� 2 L); R =
r1

r�(P)

r2

r�(��
L

)
min(r�(P); r�(��

L

))

Figure 4. Structured operational semantic rules for generalised cooperation

position of instances to be a generalised cooperation over
these instances, requiring cooperation of the same number
of instances as the multiplicity of the arc. For instance, the
PEPA+ components for the net system in Fig. 1(b) are:

M1

def
= ��

;
fP1; P1g; M2

def
= ��

fbg
fP 2; P 2; P 2g;

M3

def
= ��

fcg
fP 3; P 3; P 3g

and so we have
M � (��

;
fP1; P1g) ��

fa;b;cg
(��

fbg
fP 2; P 2; P 2g)

��
fag

(��
fcg

fP 3; P 3; P 3g)

See Fig. 5 for the modified algorithm. Observe that also in
this general case, we are simulating the structure of the net,
and not just its underlying reachability graph.

Proposition 3.1 For any bounded SPN systemS =

hN ;m0;�i and the PEPA modelM obtained by the algo-
rithm presented in Fig. 5,RG(S) = D(M)= �=; where
“ =” denotes graph isomorphism, andD(M)= �= is the
quotient set ofM w.r.t. strong equivalence.

4 Reducing the number of implicit places
The transformation technique we have discussed in Sec-

tion 3.1 can be applied to any bounded SPN model but has
two disadvantages:

1. The structure of the starting net, in terms of its sequen-
tial processes, is lost, because for each place we con-
sider a subnet composed of that place and the corre-
sponding complementary one.

2. The resulting PEPA model isverbose, since for each
place we add a PEPA component.

From a Petri net point of view, the closest object to a
PEPA sequential component is a state machine. A PEPA
model can be seen as a superposed automata, a particular
class of net systems, obtained by composing state machines

over common transitions. We have seen that it is possible
to decompose an ordinary net into state machines by adding
one complementary place for each place. These are then
translated into PEPA basic sequential components, the num-
ber of copies (instances) beingm0[p]+m0[p]. More gener-
ally setting we would like to be able to partition the net into
state machines by adding a smaller number of complemen-
tary places, as we shall discuss in the following sections.

4.1 The case of ordinary nets
Let us go back to Example 1: in Fig. 2(b) we have added

one complementary place for each starting place. However,
as shown in Fig. 6, a single place is sufficient to decompose
the net into two state machines, the former composed by
placesp1; p2; p4, the latter formed byp

35
; p3; p5.

p2

p4

d; rd

p35p1

p3

p5

b; rb c; rc

a; ra

Figure 6. Reducing the number of comple-
mentary places for the net system in Fig. 2(a)

We present in this section an abstract greedy algorithm
(see Fig. 8) that can be used for adding complementary
places into ordinary net systems. The key idea is to decom-
pose the net into a set of subnets which can be “closed” by
the addition of some complementary places, becoming state
machines. These subnets may be obtained using acompati-
bility relationship, defined as follows.

Definition 4.1 (Compatibility) Two places are compatible
if and only if they do not have any common input transition

Given a net systemS = hP [P ; T;Pre;Post;m0;�i, perform the following steps

Step 1: Derivation of sequential components

For each pairpi 2 P , p
i
2 P define PEPA componentsPi andP i as in the algorithm described in Fig. 3:

Step 2: Model equation

1. for eachpi, define a model componentMi

def
= ��

Ki

Si where

Si(Pi) = m0[pi] Ki(t) = Pre[pi; t]� 1 8t 2 p�
i

Si(P i) = m0[pi] Ki(t
0) = Post[pi; t

0]� 1 8t0 2 �pi
Si(Q) = 0 otherwise Ki(t

00) = 0 otherwise.

2. The cooperation sets and the system equation are built up recursively, as in the algorithm in Fig. 3.

Figure 5. PEPA model construction for an arbitrary bounded SPN

(i.e., a fork) or output transition (i.e., join).

In order to reduce the number of machines running in par-
allel, hence the complexity of the decomposition, for each
place we can compute a maximal connected subnet that ful-
fils the previous relationship. Then, if necessary, the sub-
net is closed by adding a place in such a way that each tran-
sition has one input and one output place. The algorithm
should proceed until all the original places have been con-
sidered, i.e. until the decomposition covers the initial net.
The abstract code of the algorithm is shown in Fig. 8.

Let us show how the algorithm works on the example of
Fig. 7(a). We can start withp1 and addp3 andp4, since
the subnet defined byp1; p3; p4 and their input and output
transitions have no forks or joins. However, we cannot go
on: if p2 were added, there would be a join inb, while if
p5 were added there would be a join inc. This component
is then completed by adding the complementary placep

134
,

as shown in Fig. 7(b) (for readability, arcs belonging to dif-
ferent state machines are drawn differently.) The remaining
places,p2 andp5 are not compatible (f is an output transi-
tion for both of them), hence we need two more state ma-
chines, one formed byp2 andp

2
, and one formed byp5 and

p
5
. Applying the linear programming problem in (2.1), the

initial marking we obtain is: zero tokens inp
134

, two tokens
in p

2
, and one token inp

5
. It can be seen that in fact one to-

ken inp
2

would be enough to make it implicit [15], but we
do not address here the technicalities for “optimal” simula-
tion. From each state machine we derive the corresponding
PEPA sequential component and we then map synchronisa-
tions on transitions onto cooperations. We obtain:

P1
def
= (a; ra):P3; P2

def
= (b; rb):P 2 + (f; rf):P 2

P 2

def
= (a; ra):P2 + (e; re):P2; P3

def
= (b; rb):P4 + (c; rc):P1

P4
def
= (d; rd):P3 + (e; re):P 134; P 134

def
= (f; rf):P1

P5
def
= (c; rc):P 5 + (f; rf):P 5; P 5

def
= (b; rb):P5

M
def
= (P 2 k P 2) ��

fa;b;e;fg
P1 ��

fb;c;fg
P 5

With respect to the “verbose coding” of Section 3.1 we
have now three different components with two copies (in-
stances) of one of them, instead of the five components
that would have been obtained by applying the algorithm of
Fig. 3. Moreover, as we said, one of the copies ofP 2 is not
needed and improved techniques could have been used to
detect this before the implementation, thus obtaining a sim-
pler model:M

def
= P 2

��
fa;b;e;fg

P1 ��
fb;c;fg

P 5.
Notice that in general many different decompositions

may exist. The proposed greedy algorithm does not guaran-
tee to find the minimal number of sequential machines, al-
though variants can be obtained for sub-optimality. In the
worst case, the number of complementary places equals the
number of starting places (i.e., we have the same size as the
“verbose” net), but usually it is smaller.

4.2 The case of non ordinary nets
The case of non ordinary nets is much more complex.

For instance, the net system in Fig. 9 is not conservative
in a strict sense, i.e. the total number of tokens is changed
when some transitions are fired. This can be understood as
a change of the “objects” represented by the tokens. This
concept has no corresponding counterpart in PEPA (in pro-
cess algebra in general) since tokens can be interpreted as
different states within the same process. This problem can
be theoretically avoided by simulating the weighted net sys-
tem using a corresponding ordinary one (that can always be
obtained), or by using the “verbose” simulation by comple-
mentation as presented in Section 3. However, notice that
this illustrates the fact that we are dealing with two differ-
ent notions of process.

5 Process interpretations in SPN and SPA
Processes are a basic concept in process algebra. There

is also a well-known notion of process which has been de-
fined for ordinary 1-bounded (S)PN [13], but it is a com-

p2

p4

p1

p4

a; ra

p3

a; ra

p5

p2
p3p2

e; re b; rb d; rd

f; rf c; rc

p5

p1

e; re b; rb d; rd

f; rf c; rc

p5

p134

(a) (b)

Figure 7. State machine decomposition

2
p1 p2 p3

5 3 2 5 3

a; ra b; rb c; rc

Figure 9. Non ordinary net

pletely different idea. In the Petri net context, a process is
a purely concurrent trace generated by the dynamics of a
net system. Thus, conflicts do not appear, that is, all deci-
sions are taken. Processes exhibit all concurrency and can-
not be cyclic. They can be represented with particular infi-
nite marked graphs, calledoccurrence nets[13]. In PEPA
instead, a basic process is a sequential component that can
perform actions and take decisions. Concurrency is in-
troduced by the parallel composition of several sequential
components. Hence, the same name is used for two quite
different concepts, which are difficult to compare.

Moreover, also Petri net structures that look similar to
PEPA basic processes may happen to be quite different. In
the following, a simple example will be used to illustrate
the difference. Certainly general conclusions cannot be ob-
tained from just one example, but some interesting issues
are raised here that may help to understand where the dif-
ferences between these two formalisms lie.

The net system in Fig. 10(a) describes three machines
(modelled by transitionsa; b; c). The first two machines are
fed by two input buffers (placesp1 and p2) and perform
similar actions. Machine3 requires two objects (e.g. pal-
lets) of any kind, prepared by the previous machines. Af-
ter performing its actions on these two objects, it sends one
pallet to each buffer. To find a corresponding PEPA model,
we can complement the net and then apply the algorithm of
Fig. 5. However, as we have already pointed out, this is not
a nice or elegant solution and we are looking for less “ver-
bose codings”.

When the initial marking ism0 = fp1; p2g, this net sys-
tem is equivalent to the one in Fig. 10(b), obtained adding

c; rc

p3

p1 p2

a; ra b; rb

2
c; rc

a; ra b; rb

p31 p32

p2p1

(a) (b)

Figure 10. A problematic net system for
m0[p1] +m0[p2] � 3

the complementary placesp
31

and p
32

, and then remov-
ing p3, which has become implicit. Moreover, the derived
PEPA model

P1
def
= (a; ra):P 1 P 1

def
= (c; rc):P1

P2
def
= (b; rb):P 2 P 2

def
= (c; rc):P2

M
def
= P1 ��

fcg
P2

is equivalent to the net system, and not only its simulation
by complementation.

However, a minor change in the initial marking causes
several problems. Consider for examplem0 = f2p1; p2g.
Now, even if we addp

31
andp

32
, placep3 is not implicit,

and cannot be removed as it was before. In this case we are
not able to find a “conceptually” equivalent PEPA model.

Observe that the difficulties have appeared when a place
has been marked with more than one token. In general,
multiple tokens within a place do not constitute a real prob-
lem since they can be mapped onto repeated instances of
the same component. In this case however, repeating an in-
stance ofP1 is not enough. Not even if generalised coopera-
tion is used, since there are some markings in the net which
have no corresponding states in��

c
fP1; P1; P2g. For ex-

ample,m = fp1; 2p2g is not “reachable” in the PEPA
model because there is no state��

c
fP1; P2; P2g.

Consider a net systemS = hP; T;Pre;Post;m0;�i and perform the following steps:

1. Ptemp = P

2. repeat

(a) selectpi 2 Ptemp and compute a maximal connected subnet that containspi satisfying the compatibility
relationship, and letSi = fpi1 ; pi2 ; : : : ; pikg be the set of places in this subnet

(b) if the subnet is not closed (�Si 6= S�

i
) then

i. add a complementary placep
i1i2���ik

and connect it to the transitions in the subnet in such a way that each
transition has exactly one input and one output arc

ii. compute the initial marking of the added place to make it implicit (notice that this can be done by solving
the linear programming problem in (2.1))

(c) Ptemp = Ptemp n Si

until Ptemp = ;

3. For each subnet build the corresponding PEPA sequential component considering the places in the subnet and their
input and output transitions. Notice that these subnets are in fact state machines and therefore no synchronisation
appears.

4. Synchronise all the PEPA sequential components on their common transitions as already defined in the second part
of Step 2 of Fig. 3.

Figure 8. Greedy algorithm for state machines computation

We may think that the problem is due to having arc
weights, and construct an ordinary net system with the same
interleaving semantics, i.e., the same firing language (see
Fig. 11(a)). Unfortunately, the problem still remains: When
moving to PEPA we cannot model the “swapping” of the
pallets between the two buffers. Again, we need to intro-
duce implicit places (Fig. 11(b)) to obtain a corresponding
PEPA model (Fig. 11(c)).

With a slight modification of the system in Fig. 11(a) we
obtain the one of Fig. 12(a). In this case we have sequen-
tialised the return of raw material to the buffers deciding
that machine3 returns material first toP1 and then toP2.
With this small net modification we change the global be-
haviour of the system, since now interleaving between con-
sumption of objects and return of raw material may be ob-
served. However now we are able to derive a PEPA model
(Fig. 12(b)) using only two state machines, one represent-
ing both types of products, the other responsible for the se-
quentialisation in the return of raw material, instead of three
that were necessary for the net system in Fig. 11(a). Notice
that we can exchange the returning sequence and nothing
changes, but we cannot observe concurrency when return-
ing raw material back to the two buffers.

6 Conclusions and further work
We have presented a sound relationship between

bounded SPN and PEPA, thus establishing a bridge between
these modelling paradigms. This is achieved via a trans-

formation of bounded SPN systems, augmented with com-
plementary places, into corresponding PEPA+ models, an
extension of previous PEPA. The technique can be easily
adapted to the other SPA languages by suitably changing
the rates computed for synchronising transitions and by in-
troducing immediate transitions when necessary.

This bridge opens the possibility that some of the pow-
erful theoretical results which have been developed for SPA
may be exploited in SPN. For example the use of modal
logics to specify performance measures [8]. Moreover, this
relationship between the two formalisms offers the poten-
tial for a multi-paradigm modelling approach, in which the
modeller would be free to adopt a component-based ap-
proach, choosing the most appropriate paradigm for each
model component, depending on his personal preferences.

Still, subtle differences emerge between the two
paradigms. The notion ofprocessunderlying the two for-
malisms is different and this seems worthy of further in-
vestigation. Whilst both formalisms were developed to aid
in the analysis of system properties such as concurrency
and causality, process algebras which have their origins in
semantics, are perhaps closer to a programming language
perspective. In this context a component can be seen as
an abstract program with its program counter—the current
derivative captures the local state. Whilst there are similari-
ties in the notion of local state represented by the marking of
a Petri net, the tokens do not necessarily represent the state

p1 p2

a; ra

s1

b; rb

s2
c2; rc2

p3

c1; rc1

p1 p2

c2; rc2s2

b; rba; ra

p3

s1

p13 p2

c1; rc1

P1
def
= (a; ra):P3

P3
def
= (c1; rc1):P 13 + (c2; rc2):P1

P 13

def
= (b; rb):P3

P2
def
= (b; rb):P 2

P 2

def
= (c2; rc2):P2

S1
def
= (c1; rc1):S2

S2
def
= (c2; rc2):S1

M
def
= (P1 k P1 k P 13) ��

fb;c2g

(P2 k P 2) ��
fc1;c2g

S1

(a) (b) (c)

Figure 11. Simulation of the net in Fig. 10(a) with m0 = f2p1; p2g, by means of an ordinary one
p1 p2

a; ra b; rb

s2
c2; rc2

p3

s1

c1; rc1

P1
def
= (a; ra):P3

P2
def
= (b; rb):P3

P3
def
= (c1; rc1):P1 + (c2; rc2):P2

S1
def
= (c1; rc1):S2

S2
def
= (c2; rc2):S1

M
def
= (P1 k P1 k P2) ��

fc1;c2g
S1

(a) (b)

Figure 12. Ordinary non problematic net (but not exactly the same system)

of a single sequential component. Moreover, their meaning
may vary depending on the place to which they belong.

References
[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and

G. Franceschinis.Modelling with Generalized Stochastic
Petri Nets. John Wiley, 1995.

[2] G. Balbo and M. Silva, editors. Proc. of Human Capi-
tal and Mobility MATCH—Performance Advanced School,
Jaca, Spain, 1998.

[3] M. Bernardo. Theory and Application of Extended Marko-
vian Process Algebra. PhD thesis, Universit´a di Bologna,
February 1999.

[4] M. Bernardo, N. Busi, and R. Gorrieri. A distributed se-
mantics for EMPA based on stochastic contextual nets.The
Computer Journal, 38(6), 1995. Special Issue: Proc. of 3rd
Process Algebra and Performance Modelling Workshop.

[5] M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A The-
ory of Concurrent Processes with Nondeterminism, Priori-
ties, Probabilities and Time.Theoretical Computer Science,
201:1–54, July 1998.

[6] J. M. Colom and M. Silva. Improving the linearly based
characterization of P/T nets. In G. Rozenberg, editor,Ad-
vances in Petri Nets 1990, volume 483 ofLecture Notes in
Computer Science, pages 113–145. Springer, 1991.

[7] J. M. Colom, M. Silva, and J. L. Villarroel. On software im-
plementation of Petri nets and colored Petri nets using high-

level concurrent languages. InProc. 7th European Work-
shop on Application and Theory of Petri Nets, pages 207–
241, Oxford, England, July 1986.

[8] J. H. G. Clark, S. Gilmore and M. Ribaudo. Exploiting
Modal Logic to Express Performance Measures. InProc. of
11

th Int. Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, Chicago, USA, March
2000.

[9] H. Hermanns.Interactive Markov Chains. PhD thesis, Uni-
versität Erlangen-N¨urnberg, September 1999.

[10] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[11] M. K. Molloy. Performance analysis using stochastic Petri
nets.IEEE Trans. on Computers, 31(9):913–917, 1982.

[12] M. Ribaudo. On the relationship between Stochastic Petri
Nets and Stochastic Process Algebras. PhD thesis, Univer-
sitá di Torino, April 1995.

[13] G. Rozenberg. Behaviour of elementary net systems. In
Petri Nets: Central Models and Their Properties, volume
254 ofLNCS. Springer Verlag, 1986.

[14] M. Silva. Las Redes de Petri: en la Autom´atica y la In-
formática. AC, 1985.

[15] M. Silva, E. Teruel, and J. M. Colom. Linear algebraic and
linear programming techniques for the analysis of net sys-
tems. In G. Rozenberg and W. Reisig, editors,Lectures in
Petri Nets. I: Basic Models, volume 1491 ofLecture Notes
in Computer Science, pages 309–373. Springer, 1998.

