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Abstract net system and the corresponding SPA model is the same
both from the functional and the temporal point of view.
This paper presents some transformation techniquesHowever, this solution lacks elegance and, whilst remain-
from bounded SPN systems to corresponding SPA modeldng faithful to the fine-grained structure of the net system, it
preserving concurrency. Initially, a simple algorithm is in- loses the more intuitive, application-level structure.
troduced, showing that the obtained SPA models simulate In the second part of the paper we propose an improved
the net systems. Then the algorithm is improved in order totransformation technique for ordinary nets, in which we can
keep more of the net structure, when possible. For the casgeduce the number of complementary places that need to
of non ordinary net systems the SPA language is extendede¢ added. This second technique is intended to maintain

by introducing a new cooperation operator. more of the initial structure when possible, and not just to
simulate the starting net. Some examples are used to show
1 Introduction and motivation the existence of net constructions for which the SPA coding

Stochastic extensions of Petri nets [1, 2, 11] and, moreseems to be rather unnatural. The difficulties in mapping
recently, of process algebras [10, 5, 9] have proved to bean arbitrary bounded SPN system into a SPA model suggest
useful tools for performance modelling. The work pre- that, although both formalisms are based on relatively sim-
sented in this paper is motivated by a desire to complete thdlar concepts, there are basic differences between them.
establishment of a sound and efficient bridge between these The balance of the paper is as follows. Section 2 pro-
modelling paradigms. In addition to its inherent analytical vVides some background material on both formalisms and
interest, such a bridge opens the possibility that some of theSection 3 introduces the first transformation algorithm, the
powerful theoretical results which have been developed forone based on the total complementation of the net places.
stochastic Petri nets (SPN) may be exploited in stochasticThe generalised cooperation operator is defined and the
process algebras (SPA), and vice versa. starting SPN system and the corresponding SPA model are

The transformation from SPA to bounded SPN, has pre-shown to exhibit the same behaviour. In Section 4 an im-
viously been published [3, 4, 12]. This paper focuses on Proved algorithm is discussed, whose application leads to
the other direction, the transformation from an arbitrary (or- Simpler SPA models. Some problematic examples are also
dinary) bounded SPN system to an equivalent SPA model.shown and in Section 5 the differences in the notion of pro-
We prove that SPA languages and bounded SPN (with ex-cess behind both formalisms are discussed. Finally, Sec-
ponential probability distribution functions) have theoreti- tion 6 concludes this work.
cally equivalent expre_ssiveness, if SPA is e>_<tended througho  gpN and SPA notations
a new operator. This is addressed by showing that transfor- We assume the reader is familiar with SPN [1, 2, 11]

mations between the paradigms exist. and SPA [10, 5, 9]. We will just present the notation to
The first type of transformation we propose uses comple-pq ;saq and in particular for SPA we will concentrate on

mentary places: the starting net system is augmented Witho o 1tormance Evaluation Process Algebra (PEPA) [10].
one complementary place for each of its original places.

The places in the net system provide the focus to derive the2-1 Stochastic Petri nets

corresponding SPA model. Itis observed that the case ofarc A Petri net (PN) is at—tuple NV = (P, T, Pre, Post),
multiplicities cannot be treated without extending the lan- WhereP, T" are the sets gflacesandtransitions andPre
guage. Hence a new operator is introducegbneralised ~ andPost are the|P| x |T'| sized, natural valuedhcidence
cooperatior—to cope with non-ordinary bounded SPN. Ap- Matrices The net isordinary if all arc weights are one.

plying this automatic transformation, the behaviour of the A Netsystens a pairS = (N, mo), wherem, € W\IIDI,
is theinitial marking. A transitiont is enabledn a marking
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specified by input arcs weightsn( > Pre[P,t]). Once
enabled, transitiohcanfire. The occurrence dfat marking
m, denoted m][ ¢ )m’ yields the markingm’ = m +
C[P,t] = m + Post[P,t] — Pre[P, t].

A stochastic Petri net (SPN) system is given by a net
structure plus an initial marking and a set of rates,$.ex
(N, mgp, A) whereA : T — IRT assigns a rate to each tran-
sition, which determines the duration of the activity. The

Under the assumption of boundedness, starting from theoccurrence of at markingm is denoted aam][ (¢, r;) )m'.
initial marking my it is theoretically possible to compute Whenever more than one transition is enabled in a given
the set of all reachable markings, the so-catksthability marking, arace conditiondetermines the one which will
set RSmy). The reachability set does not contain informa- fire. The probability that a particular transition fires is given
tion about the transition sequences fired to reach each markby the ratio of the transition rate to the sum of the rates of
ing. This information is captured by thieachability graph all the enabled transitions. Moreover, we will consider an
(RG) whose nodes are labelled with the reachable markinggnfinite server semantics, that is, each transition can fire as
and whose arcs are labelled with the transitions that the sysmany times as it is enabled. With this timing interpretation,

tem has to fire to move from state to state.

the evolution of the discrete event system modelled by the

A place whose removal preserves the fireable sequence®N can also be modelled using a Markov chain. It can be
(i.e., the interleaving semantics) of the system is called aseen that this Markov chain is isomorphic to the reachabil-

(sequential) implicit placg6, 15]. If it also maintains the
concurrent semantics it is calledncurrent implicif15]. It

ity graph of the PN system, if the arcs are labelled with the
rates of the transitions that are being fired [11].

can be seen that in a net without self loops these concept$ 5  gigchastic process algebras

coincide. By means of linear relaxations, a sufficient struc-

tural condition for a place to be sequentially implicit can be
stated, which can be verified in polynomial time (see [15]).

Proposition 2.1 ([15])

Let (N, mg) be a net system. A plagec P with initial
markingmyg[p] > z, wherez is the optimal value of (2.1),
is (sequential) implicit:

z= miny -mqg+ pu
st y-C<Cip,T]
y - Pre[P,t] + p > Pre[p,t] Vt € p®
y >0,y[p] =0

Problem (2.1) is feasible ifff > 0 exists verifying
y[p] = 0 andy - C < CJp, T]. In other words, ify[p] = 0
andy-C < C[p, T, placep can be made implicit by choos-
ing mg[p] big enough. A place for which the problem is
feasible is calledtructurally implicit Note that having “too
many tokens” in an implicit place has no effect on the net
system behaviour.
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Figure 1. Implicit (or complementary) places

For example, the net system in Fig. 1(b) has been ob-

tained by adding several implicit places (drawn in grey) to
the net system in Fig. 1(a). Observe for instance pigcét
can be checked, using (2.1), that any marking.ofireater
than or equal t& will make it implicit. Forp,, any mark-
ing greater than or equal towill make it implicit.

Like in any stochastic process algebra (SPA), the basic
elements of PEPA areomponentandactivities Each ac-
tivity, a, is a pair(a, r) wherea is theaction typeandr is
the activity rate Activities which are private to the com-
ponent in which they occur are represented by the distin-
guished action typer. We assume that there is a count-
able set of components, which we den@f@and a countable
set, A, of all possible action types. We denote dy:t C
A x IRT, the set of activities, wher#& ™" is the set of posi-
tive real numbers together with the symBal

The syntax of PEPA expressions can be defined in terms
of sequential componenfsandmodel component8:

P S| PP | P/L
S (a,r).S | S+S | A

The informal meaning of the combinators is:

Prefix: (a,7).P The component carries out activity
(a, r) and subsequently behavesis

Choice: P 4+ @Q The component represents a system
which may behave either as componénbr as@: all the
current activities of both components are enabled. The first
activity to complete, determined byrace conditiondistin-
guishes one component, the other is discarded.

Cooperation: P D§ @@ The components proceed in-
dependently with any activities whose types do not occur in
the cooperation sef. (individual activitie3. However, ac-
tivities with action types in the sdt require the simulta-
neous involvement of both componenstéred activities
These activities are only enabled]m%ﬂ @ when they are
enabled in bothP? and@. When the sel. is empty, we use
the concise notatiof || @ to represenf Efl Q. The main
peculiarity of PEPA is that the shared activity occurs at the
rate of the slowest participant. If an activity has an unspec-
ified rate in a component, the componemassivewith re-
spect to that action type, i.e., the component does not influ-



ence the rate at which any shared activity occurs. ponent that directly encodes the Markov chain.

Hiding: P/L The component behavesBdut any ac- However, we aim to establish a more structural transfor-
tivities of types within the sel arehidden i.e. becomer. mation from bounded SPN to PEPA. Ideally we would like
Such activities cannot be carried out in cooperation with any to find a structural concept in the SPN to correspond with a
other component: the original action type of a hidden activ- certain structure in the PEPA model, the sequential compo-
ity is not externally accessible; the duration is unaffected. nents, thus achievingrocess oriented implementatiof

Constant: A i P Constants are components whose bounded SPN models in PEPA models. Unfortunately, this
meaning is given by a defining equation. direct mapping does not work for all bounded SPN but only

The action types which the compondhtmay next en-  for some net subclasses, thus suggesting the existence of a
gage in are theurrent action typeg)f P, a set denoted different notion of process behind the two formalisms. The
A(P). This set is defined inductively over the syntactic Problem addressed here is, in some sense, a classical one
constructs of the language (see [10]). The interpretation ofin the PN paradigm, related to the net system decomposi-
PEPA expressions is given by a formal semantics, presentedion into sequential components running in parallel[14, 7].
in the structured operational style [10]. (see [14], chapter 7, for the implementation of 1-bounded

The “states” of a PEPA model as it evolves are the syn- ordinary net systems by means of microprogramming tech-
tactic terms, or derivatives. When a model component is Niques, or [7] for a software-based implementation using
defined it consists of one or more cooperating components Ada-like languages).
and they will be apparent in every derivative of the model, 3.1 Place complementation in SPN and its imple-

i.e. the global state will consist of a set of local states or mentation in PEPA
derivatives, one for each sequential component. In this section we first explain the complementation of

Thederivation graphD(C’) is a graph in which syntactic  ordinary bounded Petri nets. This is a structural transfor-
terms form the nodes, and arcs represent the possible transination by which we add aomplementaryplace for every
tions betWeen them: the Operationa| rUIeS define the form 0fp|ace of the net. The |n|t|a| marking Of the Comp|ementary
this graph. Itis isomorphic to the underlying Markov chain pjaces will be defined in such a way that they do not con-
and can be regarded as analogous to the RG of a SPN.  strain the behaviour of the transitions they are connected to:

Various forms of equivalence have been defined for sg the behaviour of the net system is preserved under true
PEPA. Here we usstrong equivalencédenoted=). This  concurrency. Although in the Markovian setting only in-
is an observation-based equivalence: two components argerleaving semantics is relevant, this means that the same
considered eqUiValent if they are indiStinguiShable under eX'transformation can be app“ed if a different t|m|ng interpre_
ternal observation. This relation is a congruence, i.e. if atation is used.

strongly equivalent component is substituted into a PEPA  For each place, we add itscomplementwhich we de-
definition, the new definition is strongly equivalent to the note agp, such thap® = *p, *p = p®. The initial marking
original. Moreover, if the derivative set is partitioned by the of this place will bemy[p] = b[p] — mg[p], whereb[p] de-
r6|ati0n, and a new model formed with one state for each notes an upper bound of the number of tokens which may
equivalence class then the new model is strongly equivalentye present in placg. Provided with these markings, the

to the original. Formally, two PEPA componer$, C;  complementary places are implicit places [15]. If the net is
are strongly equivalent if there is an equivalence relation structurally bounded, i.e., bounded for every initial mark-
between them such that, for any action typethe total ing (there existyy > 0 such thaty - C < 0) comple-

conditional transition rates from those components to any mentary places are structurally implicit. Hence, a possible
equivalence class, via activities of this type, are the same.marking forp is the one obtained applying (2.1). In general,
Thetotal conditional transition ratéfrom a componenf? this marking is not the minimal one that makes the place
to a set of componentS via an action type is defined  jmplicit, and improved techniques can be applied to get a
asq[P, S,a] = 3" peqa(P,Q,a), whereg(P,Q,a), isthe  tighter bound [15].

sum of the activity rates labelling arcs connecting the cor-

responding nodes in the derivation graph which are also la-Definition 3.1 (Complementation) Given a SPNS;, =
belled by the action type. (P1, T, Pre;,Post;, mg;, A; ) its complementation is an-

3 Equivalent expressiveness of bounded SPN  Other SPNS: = (P, Ty, Pres, Posty, mo, A) with
and PEPA+ 1. P, = P,UP; whereP, is the set of added places, one
Since bounded SPN and PEPA models each have rep-  for eachp € P;, such that?, N Py = {)
resentations as finite Markov chains, a naive—and totally o T =T
impractical—transformation from a bounded SPN couldbe  “* *2 — !
constructed as follows: obtain the underlying Markov chain

3. Pre, — PI‘EQ[Pl, Tl] _ Prel[Pl, Tl]
of the SPN [11] and define a single sequential PEPA com- 2 N

Pre2 [ﬁl, Tl] POStl [Pl, Tl]



p P T [ | L, = {a,d}, count; = (1,0,0,1)

_ osty[ P, T1] | | Post[P, T} _ B

4. Post; = [ Posty [Py, Ti] ] B [ Pre [Py, Th] } L2 ={a.b}, countz = (2,1,0,1)

5 Ay = Ay L; ={c}, counts = (2,1,1,1)
my[ P ] mg; [P ] La = 1d}, counts = (2,1,1,2)

6. mo, = P - Ls =10 counts = (2,1,1,2)
mOQ[Pl] b[Pl] mOl[Pl] 5 ) 5 s Ly Ly

Example 1 Fig. 2(a) shows a simple SPN system and Sys, £ M, Sys, = Sys, {?ﬁ} Ms,

Fig. 2(b) shows the same system augmented with all com-
plementary places (which are drawn in grey). In this trivial
case, both models are 1-bounded.
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Figure 2. Complementary places in the ordi-
nary case

Syss = Sys, {?f} Ms,  Sys, =

Syss = Sys, {Dﬁ My

M=P X Py 1Py PPy B Ps

Observe that although the structure of PEPA terms is
rather linear, such terms are capable of capturing arbitrary
connectivity in the SPN. We are simulating the structure of
the net (augmented with implicit places), and not just its un-
derlying reachability graph.

Example 2 Consider the non ordinary net system in
Fig. 1(a), in which some of the arcs have a weight equal to
two. We will see that in this case the addition of comple-
mentary places is not enough to allow us to represent the
same net system. During its evolution, the net system aug-
mented with complementary places (Fig. 1(b)) can reach a
marking with three tokens in plage (p3) and one token in

) p3 (p2), and the enabled transitidn(c) consumesgwo out
Given a complemented net system we can generate a Coft threetokens when firing. By applying the steps outlined

responding PEPA model by considering the set of state ma-

in the algorithm of Fig. 3 we obtain:

chines composed of each place and its complement. Being g st step: sequential components
1-bounded, each state machine is mapped onto a PEPA se-

guential component, and we need to consider one instance

of the component for each token in each place. Synchro-

nisations over net transitions become cooperations between
sequential components. As we have noted earlier, adding

def

P = (a,r,) P, P =(b,T).P 4 (¢, T).P,
P2 d:ef (b, T‘b).ﬁg ?2 d:ef (a, T)P2
P3 d:ef (Ca Tc)'?B ?3 d:ef (a’, T)'PB

too many tokens in complementary places does not change

the net system behaviour. However, this impacts on the
PEPA behavioural model since “extra tokens” are mapped
onto redundant instances of the same component causing a

unnecessary exponential growth of the state space. Fig. 3

shows an abstract algorithm for the translation technique we

Second stepmodel equation

def

n M EP| P,
M; = Py || Ps || Ps

def

M, = P, || Py || P,

have informally discussed. Applying the algorithm to the Ly ={a,b,c}, county = (1,1,1)
complemented net in Fig. 2(b) we obtain: Ly = {a}, county = (2,1,1)
First sdtfep: Squennil cz)fmponents . B Ls =0, counts = (2,1,1)
P1 :e (a,ra).Pl P1 :e (d,T)Pl PQ :e (b,Tb).PQ de def [}{]
?2 d:ef (a, T)P2 P3 d:ef (C, T’C).?zg F3 d:ef (0,, T)P3 Sysl - Ml’ Sy82 - Sysl {ab,c} MQ’
= = — def
P4d:ef(d,7“d).P4 P4d:ef(b,T).P4 P5 d:ef(d,’f'd).Pg, SyS3_Sy82 [{>(1<}]M3
P5 = (c,T).P; M = (Pi||P) B (P || Ps || Py)
Second stepModel equation B (Ps || Ps || Ps)
M, %P, M, &Py, My &P, The REPA model aboye_does not represent the net sys-
dof — ot — tem of Fig. 1(b) because it is not possible to observe states
M4 - P47 M5 = P5,

in which two out of threecomponentd, (Ps) synchronise



Given a net syster§ = (P U P, T, Pre, Post, my, A), perform the following steps

Step 1: Derivation of sequential components

For each paip; € P, p; € P, define PEPA sequential componefRisand P; as follows

1. for each transition € p?, the PEPA sequential compondntenables an activity of typewith the same rate
ast with derivativeP;; A(P;) = {t | t € p?}

2. for each transition € °p;, the PEPA sequential compondntenables a passive activity of typavith deriva-
tive P;; A(Pz) = {t | t e .pi}

Step 2: Model equation

def

1. for eacty; define a model componedf; = P; || ... || P; || P; || ... || P; where the number of replica d%
andP; is given bymg[p;] andmy|[p;].

2. the cooperation sets and the system equation are built up recursively, starting from a base case. We make use of
an auxilliary array of siz¢T'|, count;(t), to keep track of the appearances of each transition/action type within
cooperation sets.

1 iftel
counti(t) = { 0 otherwilse vieT
Sys, « M,
i1
Li = AP)UAMP)\{t|te |JL;Acounti_1(t) =|"t| -1}
j=1
. _ count;—1(t) +1 ifteL;
count;(t) = { count;—1 (t) otherwise vieT
Sys; = SYs;_1 LDZ_i M;

Figure 3. PEPA model construction for (complemented) ordinary SPN

over action typé (c). For example, the current representa- components cooperating over an action typehe combi-
tion of My, P5 || Ps || P», represents the case in which the nator is able to seledt out of n» components for the actual
P, components do not synchronise at all, i.e. as if the arc execution of the shared activity.

from p, to b had multiplicity 1. If we chose instead to rep- Let 2 be amultisetof PEPA components andbe amul-
resentM, by P, D§?2 {D§?2 we would capture the case tiset of action types. ThenBLﬂ  denotes the generalised
when the arc had multiplicity 3. If we defineld, to be cooperation of the components(nover the types irL. In-
P, {Dﬁ Ps || P two instances of» must synchronise oh formally, this can be interpreted as follows. For all action
but then two instances are fixed. In contrast in the SPN thetypes which do not appear ib, components i) proceed
tokens have no identity and the transition can be fired by anyindependently and concurrentiyndividual activitieg. For
two tokens out of the possible three. Thus, current PEPAaction types inL with multiplicity n (n > 1), n + 1 com-
notation isnot capable of expressing the caspresented by ~ Ponents from the multisé? must cooperateshared activi-
such a non ordinary net system (except by a flat purely se-ties). Thuswherf2 = {P, @}, and all elements ot appear
quentialised model representing the state space.) To modeWith multiplicity one, then>1 Q = P B Q; whenL = 0,

such a behaviour we need to introduce a new operator. ., =10 = P || Q. The formal semantics of generalised

3.2 Defining PEPA+ cooperation is presented in Fig. 4.
We introduce a more general form of interaction between  Following the construction in Fig. 3, we see that increas-
PEPA components by defining a new combinatgener- ing the marking of a place is represented by increasing the

alised cooperation Whereas previous PEPA combinators number of instances of this component in the intermedi-
have been unary (e.g. hiding) or binary (e.g. choice), gener-ate componend/;. When we wish to represent arcs with
alised cooperation deals with a set of components. Given multiplicity greater than one, we change this parallel com-
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Figure 4. Structured operational semantic rules for generalised cooperation

position of instances to be a generalised cooperation overver common transitions. We have seen that it is possible
these instances, requiring cooperation of the same numbeto decompose an ordinary net into state machines by adding
of instances as the multiplicity of the arc. For instance, the one complementary place for each place. These are then

PEPA+ components for the net system in Fig. 1(b) are:
[{>b<}] {?%ﬁ%??}a

def

M, £ X{P, P}, M, =
Ms = {Dﬁ{ﬁmﬁ&ﬁﬂ

and so we have

M = (B{P,P}) PO (B {Py, Py, P})

{a,b,c} {b}

Eﬂ}(?ﬂ{Pa’,PmPa’})

translated into PEPA basic sequential components, the num-
ber of copies (instances) being, [p] + my[p]. More gener-

ally setting we would like to be able to partition the net into
state machines by adding a smaller number of complemen-
tary places, as we shall discuss in the following sections.

4.1 The case of ordinary nets

Let us go back to Example 1: in Fig. 2(b) we have added
one complementary place for each starting place. However,
as shown in Fig. 6, a single place is sufficient to decompose

this general case, we are simulating the structure of the netpjaceg, , p,, p4, the latter formed b, ps, ps.

and not just its underlying reachability graph.

Proposition 3.1 For any bounded SPN systeifi
(N, mg, A) and the PEPA modeWU obtained by the algo-
rithm presented in Fig. 5,RG(S) = D(M)
“=" denotes graph isomorphism, ar®(M)/ = is the

guotient set ofM w.r.t. strong equivalence.

4 Reducing the number of implicit places ,,40\ ps
The transformation technique we have discussed in Sec-
tion 3.1 can be applied to any bounded SPN model but has

two disadvantages:

1. The structure of the starting net, in terms of its sequen-
tial processes, is lost, because for each place we con-
sider a subnet composed of that place and the corre-

sponding complementary one.

2. The resulting PEPA model izerbose since for each

place we add a PEPA component.

p1 P35
%@ -
a,rq
p2 Q Q p3
b,ry %l %I C,Tec

C_d,rq

Figure 6. Reducing the number of comple-
mentary places for the net system in Fig. 2(a)

We present in this section an abstract greedy algorithm
(see Fig. 8) that can be used for adding complementary
places into ordinary net systems. The key idea is to decom-
pose the net into a set of subnets which can be “closed” by
the addition of some complementary places, becoming state
machines. These subnets may be obtained usiogrgati-

From a Petri net point of view, the closest object to a pility relationship defined as follows.
PEPA sequential component is a state machine. A PEPA
model can be seen as a superposed automata, a particul@efinition 4.1 (Compatibility) Two places are compatible
class of net systems, obtained by composing state machine# and only if they do not have any common input transition



Given a net syster§ = (P U P, T, Pre, Post, mg, A), perform the following steps

Step 1: Derivation of sequential components

For each paip; € P, p; € P define PEPA component% andP; as in the algorithm described in Fig. 3:
Step 2: Model equation

1. for eachp;, define a model componen{; = Eﬁ S; where

81(?1) = mo[]_al] Ki(t/) POSt[pi,tl] -1 Vt'e *pi

Si(@Q) = 0 otherwise K"y = 0 otherwise.

2. The cooperation sets and the system equation are built up recursively, as in the algorithm in Fig. 3.

Figure 5. PEPA model construction for an arbitrary bounded SPN

(i.e., a fork) or output transition (i.e., join). M (P> || Pa) Ef],f}Pl {,,,Dj}ﬁf)

In order to reduce the number of machines running in par-
allel, hence the complexity of the decomposition, for each
place we can compute a maximal connected subnet that ful-
fils the previous relationship. Then, if necessary, the sub-
netis closed by adding a place in such a way that each trang

sition has one input and one output place. The algorithm needed and improved techniques could have been used to

S.hOUId pfoceed Pm" all the O“Q'T‘f"" places have _bggn CON- Jetect this before the |mplementat|on thus obtaining a sim-
sidered, i.e. until the decomposition covers the initial net. del 5 Dﬁ

The abstract code of the algorithm is shown in Fig. 8. pler model-M = P2 r} cf Ps.
. Notice that in genera many ifferent decompositions
Let us show how the algorithm works on the example of

Fig. 7(a). We can start witp, and addps andpy, since may ex.lst The p_rolposed greedy algorlthm_does noFguaran
) S tee to find the minimal number of sequential machines, al-
the subnet defined by, p3, p4 and their input and output . . o
o ;. though variants can be obtained for sub-optimality. In the
transitions have no forks or joins. However, we cannot go
o C oo worst case, the number of complementary places equals the
on: if p, were added, there would be a joindnwhile if . X :
o . number of starting places (i.e., we have the same size as the
ps were added there would be a joindn This component

is then completed by adding the complementary pigacg verbose” net), but usually itis smaller.

as shown in Fig. 7(b) (for readability, arcs belonging to dif- 4.2 The case of non ordinary nets

ferent state machines are drawn differently.) The remaining  The case of non ordinary nets is much more complex.
placesp, andps are not compatiblef(is an output transi-  For instance, the net system in Fig. 9 is not conservative
tion for both of them), hence we need two more state ma-in a strict sense, i.e. the total number of tokens is changed
chines, one formed by, andp,, and one formed by; and when some transitions are fired. This can be understood as
Ps. Applying the linear programming problem in (2.1), the a change of the “objects” represented by the tokens. This
initial marking we obtain is: zero tokensin,,, two tokens  concept has no corresponding counterpart in PEPA (in pro-
in Py, and one token iP;. It can be seen thatin fact one to- cess algebra in general) since tokens can be interpreted as
ken inp, would be enough to make it implicit [15], but we different states within the same process. This problem can
do not address here the technicalities for “optimal” simula- be theoretically avoided by simulating the weighted net sys-
tion. From each state machine we derive the correspondingem using a corresponding ordinary one (that can always be
PEPA sequential component and we then map synchronisaobtained), or by using the “verbose” simulation by comple-

With respect to the “verbose coding” of Section 3.1 we
have now three different components with two copies (in-
‘stances) of one of them, instead of the five components
that would have been obtained by applying the algorithm of

Fig. 3. Moreover, as we said, one of the copie®efis not

tions on transitions onto cooperations. We obtain: mentation as presented in Section 3. However, notice that
this illustrates the fact that we are dealing with two differ-

P, = (a,r4).Ps, Py £ (b, 7). Pa + (f,7f).Pa ent notions of process.

Py = (a,r,).Ps + (e,7.).Py, Ps = (b, T'b) Py + (c,re).Py 5 Process interpretations in SPN and SPA

P ¥ (d, ra).Ps + (e,7.) P14, p134 def (f,rs).Py Processes are a basic concept in process algebra. There

_ is also a well-known notion of process which has been de-
¢,re).Ps + (f,rf).Ps, Ps = (bry).Ps fined for ordinary 1-bounded (S)PN [13], but it is a com-
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Figure 9. Non ordinary net )

pletely different idea. In the Petri net context, a process is :20, Te E‘/c,n

a purely concurrent trace generated by the dynamics of a S
net system. Thus, conflicts do not appear, that is, all deci- (a) (b)

sions are taken. Processes exhibit all concurrency and can-
not be cyclic. They can be represented with particular infi-
nite marked graphs, calleztcurrence net§l3]. In PEPA
instead, a basic process is a sequential component that can

perform actions and take decisions. Concurrency is in-th | ; | 45 dth
troduced by the parallel composition of several sequential, € complementary placgs, and ps, an E€n remov-
ng ps3, which has become implicit. Moreover, the derived

components. Hence, the same name is used for two quité

Figure 10. A problematic net system for
mg[p1] 4+ mo[ps] > 3

different concepts, which are difficult to compare. PEPA model

Moreover, also Petri net structures that look similar to P = (a,r) P, P, = (e¢r.).P
PEPA basic processes may happen to be quite different. In P < (b,ry).Py  Po & (c,re).Py
the following, a simple example will be used to illustrate MEp {Dﬁ} P,

the difference. Certainly general conclusions cannot be ob-

tained from just one example, but some interesting issuesis equivalent to the net system, and not only its simulation

are raised here that may help to understand where the difby complementation.

ferences between these two formalisms lie. However, a minor change in the initial marking causes
The net system in Fig. 10(a) describes three machinesseveral problems. Consider for exampte = {2p;,p2}.

(modelled by transitions, b, ¢). The first two machines are  Now, even if we add;;, andp,,, placep; is not implicit,

fed by two input buffers (placeg; andp:) and perform  and cannot be removed as it was before. In this case we are

similar actions. Maching requires two objects (e.g. pal- notable to find a “conceptually” equivalent PEPA model.

lets) of any kind, prepared by the previous machines. Af-  Observe that the difficulties have appeared when a place

ter performing its actions on these two objects, it sends onehas been marked with more than one token. In general,

pallet to each buffer. To find a corresponding PEPA model, multiple tokens within a place do not constitute a real prob-

we can complement the net and then apply the algorithm oflem since they can be mapped onto repeated instances of

Fig. 5. However, as we have already pointed out, this is notthe same component. In this case however, repeating an in-

a nice or elegant solution and we are looking for less “ver- stance ofP; is notenough. Not even if generalised coopera-

bose codings”. tion is used, since there are some markings in the net which
When the initial marking isng = {p1,p}, this netsys-  have no corresponding states sl { P, P\, P> }. For ex-

tem is equivalent to the one in Fig. 10(b), obtained adding ample,m = {p;,2p>} is not “reachable” in the PEPA

model because there is no staite] {P, P>, P,}.



Consider a net systeth = (P, T, Pre, Post, mg, A) and perform the following steps:

1. Piepmp =P
2. repeat

(a) selectp; € Pi.np and compute a maximal connected subnet that confairsaitisfying the compatibility
relationship, and le§; = {p;,,pi,, - - -, pi, } be the set of places in this subnet

(b) if the subnet is not closed §; # S?) then
i. add a complementary plagg, ;,...;, and connect it to the transitions in the subnet in such a way thatjeach
transition has exactly one input and one output arc
ii. compute the initial marking of the added place to make it implicit (notice that this can be done by splving
the linear programming problem in (2.1))

(C) Ptemp = Ptemp \ Si
until Ptemp =0

3. For each subnet build the corresponding PEPA sequential component considering the places in the subnet and their
input and output transitions. Notice that these subnets are in fact state machines and therefore no synchronisation
appears.

4. Synchronise all the PEPA sequential components on their common transitions as already defined in the second part
of Step 2 of Fig. 3.

Figure 8. Greedy algorithm for state machines computation

We may think that the problem is due to having arc formation of bounded SPN systems, augmented with com-
weights, and construct an ordinary net system with the sameplementary places, into corresponding PEPA+ models, an
interleaving semantics, i.e., the same firing language (seeextension of previous PEPA. The technique can be easily
Fig. 11(a)). Unfortunately, the problem still remains: When adapted to the other SPA languages by suitably changing
moving to PEPA we cannot model the “swapping” of the the rates computed for synchronising transitions and by in-
pallets between the two buffers. Again, we need to intro- troducing immediate transitions when necessary.
duce implicit places (Fig. 11(b)) to obtain a corresponding  This bridge opens the possibility that some of the pow-
PEPA model (Fig. 11(c)). erful theoretical results which have been developed for SPA

With a slight modification of the system in Fig. 11(a) we may be exploited in SPN. For example the use of modal
obtain the one of Fig. 12(a). In this case we have sequen-ogics to specify performance measures [8]. Moreover, this
tialised the return of raw material to the buffers deciding relationship between the two formalisms offers the poten-
that machine returns material first t@’, and then toP;. tial for a multi-paradigm modelling approach, in which the
With this small net modification we change the global be- modeller would be free to adopt a component-based ap-
haviour of the system, since now interleaving between con-proach, choosing the most appropriate paradigm for each
sumption of objects and return of raw material may be ob- model component, depending on his personal preferences.
served. However now we are able to derive a PEPA model Still, subtle differences emerge between the two
(Fig. 12(b)) using only two state machines, one represent-paradigms. The notion girocessunderlying the two for-
ing both types of products, the other responsible for the se-malisms is different and this seems worthy of further in-
guentialisation in the return of raw material, instead of three vestigation. Whilst both formalisms were developed to aid
that were necessary for the net system in Fig. 11(a). Noticein the analysis of system properties such as concurrency
that we can exchange the returning sequence and nothin@nd causality, process algebras which have their origins in
changes, but we cannot observe concurrency when returnsemantics, are perhaps closer to a programming language
ing raw material back to the two buffers. perspective. In this context a component can be seen as
an abstract program with its program counter—the current
derivative captures the local state. Whilst there are similari-

We have presented a sound relationship between,. . . .
. . ties in the notion of local state represented by the marking of
bounded SPN and PEP.A’ thus es_tat_)llshm_g a bndge betweergl Petri net, the tokens do not necessarily represent the state
these modelling paradigms. This is achieved via a trans-

6 Conclusions and further work
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Figure 12. Ordinary non problematic net (but not exactly the same system)

of a single sequential component. Moreover, their meaning
may vary depending on the place to which they belong.
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