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Abstract

Process algebras are formalisms widely used to represent concurrent systems such as biological

systems (Regev et al., 2001, Priami et al., 2001). An algebraic specification of a system is composed

by processes that interact and communicate between them or are synchronized over a set of actions.

Algebraic laws describe how processes are defined and how they can be modified.

In this thesis we present a novel approach for modelling molecular systems (Calder et al., 2004)

based on discrete levels of concentration. Here each molecule species is represented by a process

and each process has an index that denotes the current level of the corresponding molecule. Actions

model reactions as usual and rates are computed following some rules. Our analysis is performed

in the context of PEPA process algebra (Hillston, 1995).

An algebraic model can have several mathematical interpretations. We consider Markov chains,

ordinary differential equations and reactions for stochastic simulations (Gillespie, 1976). It is well

known that, when the number of molecules issufficiently large, stochastic simulations converge to

a deterministic limit distribution (Kurtz, 1970). Instead it is not clear the relation between differen-

tial equations and Markov chains where states represent concentration levels instead of individual

molecules. The scope of this thesis is to throw some light on these relationships.

In the first part we illustrate this modelling style on the real problem of modelling circadian

clocks (Goldbeter, 2002) and we present some experiments useful to understand the relationships

between stochastic and deterministic simulations. Our approach yields results similar to the litera-

ture (Gonze et al., 2002a,b).

In the second part we analyse the relationships between Markov chains with discrete levels
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ii Abstract

and differential equations. We prove that if a model has a particular structure, then the underlying

Markov chain converges to the deterministic interpretation as the number of levels increases.

Finally we use our results to prove that the representation of the ERK signalling pathway (Cho

et al., 2003) with discrete levels of concentrations yields results similar to the deterministic model

when the number of levels issufficiently large.
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Chapter 1

Introduction

1.1 Motivations

Over the last decades high throughput technologies have generated a large amount of information

on the cell. Now basic interactions among genes, proteins, RNA and other molecules are well

known and several metabolic and signal pathways have been indentified. At the same time, however,

the complexity of biological systems has been increased and it is almost impossible to understand

their behaviour when considered as a whole. Therefore mathematical modelling and computer

simulations are needed to unravel the dynamics of biological processes. Systems biology is the

branch of bioinformatics which studies these techniques. From experimental data systems biologists

propose hypotheses to explain a system’s behaviour. These hypotheses are used to mathematically

model the system. Models are used to predict the behaviour of the system and to formulate new

experimentally verifiable hypotheses iteratively.

Process algebras are formalisms widely used to represent concurrent systems. In a process

algebra several independent subsystems, called processes, interact and communicate between them

or are synchronized over a set of actions. Algebraic laws describe how processes are defined and

how they can be modified. For example the expressionα.P models a process which can undertake

actionα and then becomesP. A labelled transition system is a graph representing all possible
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2 Chapter 1. Introduction

states and transitions. This graph can be used to verify some properties of the system. Sometimes

actions are associated with rates; in this case the notion of “time” is embedded inside models and

quantitative analysis can be performed using an underlying mathematical interpretation.

Recently process algebras have been used to model biological systems (Regev et al., 2001,

Priami et al., 2001). Process algebras have several advantages in modelling biological systems with

respect to other traditional formalisms, such as differential equations. Modelling is focused on the

high level description of system entities and their interactions rather than directly on the underlying

mathematical interpretations. Different algebraic formulations of the same system can be compared,

e.g. through bisimulation (Calder et al., 2004). Moreover process algebras are compositional and

allow abstraction to hide complexity or incomplete knowledge.

While in literature (Regev et al., 2001) processes model individual molecules, Calder et al.

(2004) proposed a novel and alternative style of modelling where processes represent discrete levels

of concentration. The scope is to reduce the size of the state space and to deal with incomplete

information. Each molecule is represented by a process and each process has an index that repre-

sents the current level of the corresponding molecule. Actions model reactions as usual and rates

are computed following some rules.

It is challenging to discover the relationships between the possible mathematical interpretations

of an algebraic model based on discrete levels of concentration. In Figure 1.1 we compare some

possible mathematical interpretations.

A Markov chainXN(t) is extracted assigning a state to each node of the labelled transition

system and defining transitions for each arc (Hillston, 1995). IndexN is the greatest possible level

for each molecule. A state is represented by a vectorXN(t) = (x1(t), . . . , xn(t)) ∈ Nn wherexi(t) is

the level of thei-th molecule species at timet. M is the maximal concentration andM/NXN(t) is

the discrete concentration vector. Transition rates depend on the current state; however when some

product levels of a reaction areN, transition rates corresponding to the reaction are zero.

An ODE system is derived from the syntax of the model building an activity graph (Calder

et al.) that represents increasing and descreasing of molecular concentrations in reactions. When
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Figure 1.1:Relationships between different mathematical interpretations of the same algebraic
specification. Markov chains and ODEs treat molecules in populations or concentrations. Instead
stochastic simulations consider molecules individually. Markov chains and stochastic simulations
have discrete state space on the contrary of ODEs. All the models are continous time. Stochastic
simulationsconvergeto a limit deterministic distribution when the number of individuals issuffi-
ciently large. At the moment it is not clear which relations exist between Markov chains and ODEs.

we consider only two levels of concentration (e.g. high and low), the algebraic specification contains

enough information for extracting differential equations of this form,

dX(t)
dt
= F(X(t))

Here, the state of the system is given byX(t) = (x1(t), . . . , xn(t)) wherexi(t) denotes the concentra-

tion of thei-th molecule at timet whereasF is a function that describes the dynamical behaviour of

the system following the Mass Action Law.

From the activity graph a stochastic simulation is derived, too. A set of reaction equations

and the corresponding occurence probabilities define a model that is used as input for Gillespie’s
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algorithm (Gillespie, 1976).

In stochastic simulations each molecule is treated individually, whereas in ODEs and Markov

chains with discrete levels molecules are considered in concentrations. It is well known that, when

the number of molecules is sufficiently large, stochastic simulations converge to a deterministic limit

distribution. Instead it is not clear the relation between differential equations and Markov chains.

There is some evidence that increasing the number of levelsN the avarage behaviour of Markov

chains seems to converge to the solution of the differential equations (Calder et al., 2005), however

it is not well understood how this happens and if it is always true. The scope of this thesis is to

throw some light on these relationships.

1.2 Methods and Tools

Our analysis is performed in the context of PEPA. PEPA is a stochastic process algebra invented

by Jane Hillston (Hillston, 1995) for modelling computer and communication systems. Systems

are formed by several components which can perform activities. Each activity has a duration and

an action type. For example the expression (α, r).P models a system which can undertake actionα

with rater and becomesP.

Several tools were used during the development of this work. Here, I list some of them. Readers

intertested in details can look at the referenced documents.

PEPA Workbench (Gilmore, 2001) is a Java application for PEPA models. It can parse models,

extract Markov chains in different formats, find steady state solutions and other features.

PRISM (Parker et al., 2006) is a probabilistic model checker written in Java for modelling and

analysing probabilistic systems. It was developed at the University of Birmingham. It sup-

ports continuous time Markov chain models and implements CSL model checking (Aziz et al.,

1996), a logic to express properties of steady state and transient behaviour of Markov pro-

cesses.
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Dizzy (Ramsey, 2006)is a chemical kinetics simulation software package written in the Java pro-

gramming language. It allows to define models as systems of chemical reactions. It performs

several kinds of stochastic and deterministic simulations (e.g. Gillespie).

GNU Octave/Matlab (Eaton, 2005) is a high-level language for solving linear and nonlinear prob-

lems numerically using a language compatible with Matlab. It was used to solve systems of

ordinary differential equations using Runge-Kutta5 method.

1.3 Organization

In the first part of this thesis we present some background material useful to understand the rest.

We give an informal description of PEPA semantics, we describe basic notions about chemical

reactions, nonlinear dynamic systems, Markov chains and simulation techniques. The reader who

already knows these topics can overlook this chapter.

In the second part we describe formally the modelling style based on discrete concentration

levels. We show how to extract differential equations and stochastic simulations from models auto-

matically. An activity graph is a graph that represents molecules and their interactions. An activity

graph is built up performing some syntax analysis on a PEPA model. Stochastic simulations and

differential equations are derived from the activity graph. We illustrate this modelling style on the

real problem of modelling circadian clocks (Goldbeter, 2002). We show some drawbacks of our

approach and somead hocsolutions. Finally we present some experiments useful to understand the

relationships between stochastic and deterministic simulations. Our approach yields results similar

to the literature (Gonze et al., 2002a,b).

In the third part we analyse the relationships between Markov chains with discrete levels and dif-

ferential equations. Firstly, we propose some simple examples, we solve the corresponding Marko-

vian and deterministc models analytically and we prove that for these particular models the average

Markovian behaviour converges to the solution of the deterministic systems as the number of levels

increases. Secondly, we try to generalize previous results.
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A density dependent family of Markov chainsXv is a sequence{Xv} of Markov processes defined

by a parameterv. The states of the Markov chains are normalized with respect tov and the state

spaces of this sort of densities are considered instead. The transition rates depend on the densities,

hence the name density dependent Markov chains. Kurtz’s theorem (Kurtz, 1970) says that as

parameterv growsarbitrarily large, the sequence of stochastic processesv−1Xv(t) convergesto a

deterministic processX(t) which is solution of a system of ordinary differential equations. While

systems with finitev are discrete processes, the limiting system is continuous.

The Markovian representation of a PEPA model with discrete levels is a parametrized Markov

chainXN(t), whereN is the number of levels. However, the sequence{XN(t)} is not always density

dependent. In fact when some product levels of a reaction areN, transition rates corresponding to

the reaction are zero. We formulate a sufficient and necessary structural condition on the state space

of XN(t) in such a way that the sequence{XN(t)} is a sequence of dentity dependent Markov chains

and Kurtz’s theorem can be applied. We propose an effective way to verify if a model satifies this

condition. Roughly speaking we use a generalization of the notion of activity graph (essentially a

Petri Net) to represent the state spaces of all the Markov chains. Then if the activity graph presents

some structural properties (e.g. boundedness), the corresponding sequence is density dependent.

We use our results to prove that the representation of the ERK signalling pathway (Cho et al.,

2003) with discrete levels of concentrations yields results similar to the deterministic model when

the number of levels issufficiently large.



Chapter 2

Introduzione

2.1 Motivazioni

Negli ultimi decenni l’insorgere di nuove tecnologie ad alte prestazioni ha permesso di disporre di

una grande quantità di informazioni sulla cellula. Ora conosciamo molto bene le interazioni fonda-

mentali tra i geni, le proteine, l’RNA e le altre molecole ed abbiamo individuato molti dei principali

meccanismi biologici. Al tempo stesso, però, la complessit̀a dei sistemi biologicìe cresciuta ed̀e

impensabile di poter capire il loro comportamento quando presi in considerazione nel loro insieme.

Per questo la modellazione matematica e le simulazioni al computer sono necessarie per scoprire

le dinamiche dei processi biologici. La biologia dei sistemiè un settore della bioinformatica che

studia queste tecniche. Dai dati sperimentali i biologi propongono delle ipotesi per spiegare il com-

portamento di un sistema. Queste ipotesi sono utilizzate per modellare matematicamente il sistema.

I modelli sono utilizzati per predirre il comportamento del sistema e per formulare nuove ipotesi da

verificare empiricamente in modo iterativo.

Le algebre di processo sono formalismi molto utilizzati per rappresentare dei sistemi concor-

renti. In un algebra di processo alcuni sotto-sistemi indipendenti, chiamati processi, interagiscono e

comunicano tra loro o sono sincronizzati su un insieme di azioni. Delle leggi algebriche descrivono

come i processi sono definiti e come possono essere modificati. Per esempio l’espressioneα.P

7
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modella un processo che può portare a termine un’azioneα e diventare poiP. Un labelled transi-

tion system̀e un grafo che rappresenta tutti i possibili stati e transizioni di un sistema. Questo grafo

può essere usato per verificare alcune proprietà del sistema. Talvolta le azioni sono associate con

delle velocit̀a; in questo caso la nozione di “tempo”è intrinseca al modello e un’analisi quantitativa

può essere effettuata utilizzando qualche sottostante interpretazione matematica.

Di recente le algebre di processo sono state utilizzate per modellare sistemi biologici (Regev

et al., 2001, Priami et al., 2001). Le algebre di processo hanno diversi vantaggi nella modellazione

di sistemi biologici rispetto agli altri tradizionali formalismi, come le equazioni differenziali. La

modellazione infatti si focalizza su la descrizione ad alto livello delle entità del sistema e delle loro

interazione anzich̀e direttamente sulle interpretazioni matematiche sottostanti. Differenti formu-

lazioni algebriche dello stesso sistema possono essere confrontate, ad esempio con la bisimulazione

(Calder et al., 2004). Inoltre le algebre di processo sono composizionali e permettono l’astrazione

per nascondere la complessità o le conoscenze incomplete.

Mentre in letteratura (Regev et al., 2001) i processi modellano le singole molecole, Calder et al.

(2004) hanno proposto un nuovo ed alternativo stile di modellazione dove i processi rappresentano

livelli discreti di concentrazione. Lo scopoè ridurre la dimensione dello spazio degli stati e gestire

il caso di informazione incompleta. Ogni molecolaè rappresentata da un processo e ogni processo

ha un indice che rappresenta il livello corrente della molecola corrispondente. Le azioni modellano

le reazioni come al solito e le velocità sono calcolate seguendo certe regole.

È interessante scoprire le relazioni tra le possibili interpretazioni matematiche di un modello

algebrico basato su livelli discreti di concentrazione. In Figura 1.1 confrontiamo alcune possibili

interpretazioni matematiche.

Una catena di MarkovXN(t) è estratta assegnando uno stato ad ogni nodo dell’labelled transition

systeme definendo delle transizioni per ogni arco (Hillston, 1995). L’indiceN è il più grande livello

possibile per ogni molecola. Uno statoè rappresentato da un vettoreXN(t) = (x1(t), . . . , xn(t)) ∈ Nn

dovexi(t) è il livello dell’ i-esima molecola al tempot. M è la concentrazione massima eM/NXN(t)

è il vettore delle concentrazioni discrete. Le velocità di transizione dipendono dallo stato corrente,
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per̀o quando i livelli di alcuni prodotti di una reazione sonoN, le velocit̀a di transizione corrispon-

denti alla reazione sono zero.

Un sistema di ODÈe derivato dalla sintassi del modello costruendo un grafo delle attività

(Calder et al.) che rappresenta gli incrementi e i decrementi delle concentrazioni molecolari nelle

reazioni. Quando consideriamo solamente due livelli di concentrazione (cioè alto e basso), la speci-

ficazione algebrica contiene abbastanza informazione per estrarre delle equazioni differenziali di

questa forma,

dX(t)
dt
= F(X(t))

Qui, lo statto del sistemàe dato daX(t) = (x1(t), . . . , xn(t)) dovexi(t) denota la concentrazione della

i-esima molecola al tempot mentreF è una funzione che descrive il comportamento dinamico del

sistema seguendo la Legge di Massa.

Dal grafo delle attivit̀a è derivata anche una simulazione stocastica. Un insieme di reazioni e

le corrispondenti probabilità di occorrenza definiscono un modello cheè poi usato come input per

l’algoritmo di Gillespie (Gillespie, 1976).

Nelle simulazioni stocastiche ogni molecolaè trattata individualmente, mentre nelle ODE e

nelle catene di Markov con livelli discreti le molecole sono considerate in concentrazioni.È ben

noto che, quando il numero di molecoleè sufficientemente grande, le simulazioni stocastiche con-

vergono ad una distribuzione limite deterministica. Invece nonè chiara la relazione tra le equazioni

differenziali e le catene di Markov. In alcuni casi incrementando il numero di livelliN il comporta-

mento medio delle catene di Markov sembra convergere alla soluzione delle equazioni differenziali

(Calder et al., 2005), però non si capisce bene come questo accada e se sia sempre vero. Lo scopo

di questa tesìe di gettare un po’ di luce su queste relazioni.
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2.2 Metodologie e strumenti

La nostra analisìe eseguita nel contesto di PEPA. PEPAè un’algebra di processo stocastica inventata

da Jane Hillston (Hillston, 1995) per modellare sistemi di computer. I sistemi sono formati da

diverse componenti che possono eseguire delle attività. Ogni attivit̀a ha una durata e un tipo di

azione. Per esempio l’espressione (α, r).P modella un sistema che esegue un’azioneα con velocit̀a

r per poi diventareP.

Durante lo sviluppo di questo lavoro abbiamo utilizzato diversi strumenti. Ne elenchiamo di

seguito alcuni. I lettori interessati ai dettagli possono andare a vedere la documentazione citata.

PEPA Workbench (Gilmore, 2001) è un’applicazione Java per modelli PEPA. Parserizza i mod-

elli, estrae le catene di Markov in diversi formati, trova le soluzioni stazionare e cosı̀ dicendo.

PRISM (Parker et al., 2006) è unmodel checkerprobabilistico scritto in Java per modellare ed

analizzare sistemi probabilistici.̀E stato sviluppato presso l’Università di Birmingham. Sup-

porta modelli di catene di Markov a tempo continuo ed implementa unmodel checkingper

CSL (Aziz et al., 1996), una logica che permette di esprimere proprietà del comportamento

stazionario e transitorio dei processi di Markov.

Dizzy (Ramsey, 2006)è un pacchetto software per la simulazione di reazioni chimiche scritto nel

linguaggio di programmazione Java. Permette di definire modelli come sistemi di reazioni

chimiche. Esegue diversi tipi di simulazioni stocastiche e deterministiche (ad esempio Gille-

spie).

GNU Octave/Matlab (Eaton, 2005) è un linguaggio ad alto livello per risolvere problemi lineari

e non lineari numericamente usando un linguaggio compatibile con Matlav.È stato utilizzato

per risolvere sistemi di equazioni differenziali ordinarie usando il metodo di Runge-Kutta 5.
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2.3 Organizzazione

Nella prima parte di questa tesi presentiamo del materiale introduttivo utile per capire il resto. Di-

amo una descrizione informale della semantica di PEPA, descriviamo alcune nozioni basilari di

chimica, di teoria dei sistemi dinamici non lineari, di catene di Markov e tecniche di simulazione.

Il lettore che gìa conosce questi argomenti può saltare questo capitolo.

Nella seconda parte desciviamo formalmente lo stile di modellazione basato su livelli discreti di

concentrazione. Mostriamo come estrarre le equazioni differenziali e le simulazioni stocastiche dai

modelli in modo automatico. Un grafo delle attività è un grafo che rappresenta le molecole e le loro

interazioni. Un grafo delle attività è costruito eseguendo delle analisi sintattiche sul modello PEPA.

Le simulazioni stocastiche e le equazioni differenziali sono derivate dal grafo delle attività. Illus-

triamo questo stile di modellazione con il problema reale di modellare i cicli circadiani (Goldbeter,

2002). Mostriamo alcuni svantaggi del nostro approccio e alcune soluzioni ad hoc. Infine presenti-

amo alcuni esperimenti utili per capire le relazioni tra le simulazioni stocastiche e deterministiche.

Il nostro approccio produce risultati simili alla letteratura (Gonze et al., 2002a,b).

Nella terza parte analizziamo le relazioni tra le catene di Markov con livelli discreti e le equazioni

differenziali. In primo luogo proponiamo alcuni semplici esempi, risolviamo i corrispondenti mod-

elli markoviani e deterministici in modo analitico e proviamo che per questi particolari modelli il

comportamento medio delle catene di Markov converge verso la soluzione dei sistemi determin-

istici quando il numero di livelli cresce. In secondo luogo, cerchiamo di generalizzare i risultati

precendenti.

Una famiglia di catene di MarkovXv dipendenti dalla densità è una sequenza{Xv} di processi

di Markov definiti da un parametrov. Gli stati delle catene di Markov sono normalizzati rispetto

a v e viene considerato lo spazio degli stati di questa specie di densità. Le velocit̀a di transizione

dipendono dalle densità, da cui il nome catene di Markov dipendenti dalla densità. Il teorema di

Kurtz (Kurtz, 1970) dice che quando il parametrov diventa arbitrariamente grande, la sequenza di

processo stocasticiv−1Xv(t) converge al processo deterministicoX(t) cheè soluzione di un sistema
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di equazioni differenziali ordinarie. Mentre i sistemi conv finito sono processi discreti, il sistema

limite è continuo.

La rappresentazione markoviana di un modello PEPA con livelli discretiè una catena di Markov

parametrizzataXN(t), doveN è il numero di livelli. Per̀o, la sequenza{XN(t)} nonè sempre dipen-

dente dalla densità. Infatti quando alcuni prodotti di una reazione hanno livelloN, le velocit̀a di

transizione corrispondenti alla reazione sono zero. Formuliamo una condizione strutturale suffi-

ciente e necessaria sullo spazio degli stati diXN(t) in modo tale che la sequenza{XN(t)} diventi

una sequenza di catene di Markov dipendenti dalla densità e il teorema di Kurtz possa essere appli-

cato. Proponiamo un metodo effettivo per verificare se un modello soddisfa questa condizione. In

parole povere utilizziamo una generalizzazione della nozione di grafo delle attività (in pratica una

rete di Petri) per rappresentare gli spazi degli stati di tutte le catene di Markov. Infine, se il grafo

delle attivit̀a presenta alcune proprietà strutturali (ovveròe bounded), la corrispondente sequenzaè

dipendente dalla densità.

Utilizziamo i nostri risultati per provare che la rappresentazione dell’ERK signalling pathway

(Cho et al., 2003) con livelli discreti di concentrazione produce risultati simili al modello determin-

istico quando il numero di livellìe sufficientemente grande.



Chapter 3

Background

3.1 Introduction

In this chapter we explain some background material useful to understand the rest of the thesis.

Readers who already know these subjects can overlook the chapter. We give a brief overview

of process algebras and PEPA, Markov chains, nonlinear dynamic systems and reaction kinetics.

Readers should have elementary knowledge of calculus and probability theory. In Appendix C a

glossary of biological terms used in this thesis can be found.

3.2 Process Algebras

In computer science process algebras are formalisms to model concurrent systems. In a process

algebra several independent subsystems, called processes or components, interact and communicate

between them or are synchronized over a set of actions. Algebraic laws describe how processes are

defined and how they can be modified. Formal specification allows us to reason about process

properties like equivalence (i.e. bisimulation). Examples of process algebras areCCS (Milner,

1980),π-calculus (Milner, 1999) and PEPA (Hillston, 1995). In this dissertation we will consider

just the last one.

13
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3.2.1 Performance Evaluation Process Algebra

PEPA is a stochastic process algebra invented by Jane Hillston (Hillston, 1995) for modelling com-

puter and communication systems. As in all process algebras, systems are formed by several com-

ponents which can perform actions. Each action has a duration. For example the expression (α, r).P

models a system which can undertake actionα with rater and becomesP. The duration usually is

represented by a random variable with a negative exponential distribution. In other words,r is the

parameter of the distributionF(t) = 1− e−rt .

We present an informal description of the language below. In Appendix A we discuss the oper-

ational semantics of PEPA. A more detailed explanation can be found in Hillston (1995). PEPA has

five combinators: prefix, choice, constant, hiding and cooperation.

Prefix is the basic component to build up complex systems, the process (α, r).P carries out

actionα at rater and then it behaves asP. The prefix (α, r) is termed activity whileα is the action

type andr the rate of the activity.

Choicemodels competition between two processes: the componentP+ Q represents a system

which may evolve either intoP or Q.

Constant allows us to assign names to components, for exampleX
def
= (α, r).P means that vari-

ableX behaves as process (α, r).P.

Hiding is a mechanism to abstract away some aspects of a component’s behaviour. For instance,

the processP \ {α} hides the actionα and prevents other processes from joining in.

Cooperationallows two processes to be synchronized over a set of actions. In expressionP BC
L

Q

processesP andQ must cooperate on actions contained in the setL, but other enabled actions are

carried out independently and concurrently. WhenL is empty, we writeP||Q instead ofP BC
L

Q.

When a component enables an activity whose action type is in the cooperation set, it will be

stuck until the other component enables an activity of that type. The rates of shared activities

depend on the rate of both cooperands’ rates. In other words, the apparent of a shared activity is the

rate of the slower component.

Sometimes a component may be passive with respect to an action in a cooperation set. Consider
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for example a client waiting for a service. In these cases the rate of the activity is unspecified

(symbol>) and it depends on the rate of the activity of the other cooperand. All passive actions

must be synchronized in the final model.

3.3 Continuous Time Markov Chains

A continuous time Markov chain (CTMC) is a stochastic process{X(t) : t ≥ 0} that has the Markov

property and takes values from a discrete set called the state space. The Markov property states that

at any timess > t > 0, the conditional probability distribution of the process at times given the

whole history of the process up to timet, depends only on the state of the process at timet. Formally

a stochastic processX(t) is a Markov process if and only if for alls, t ≥ 0 and statesj, i andl,

P(X(s+ t) = j|X(s) = i,X(u) = l 0 ≤ u < s) = P(X(s+ t) = j|X(s) = i)

A Markov process is time homogeneous if the transition rates are independent of the time of occur-

rence of each transition, i.e.P(X(s+ t) = j|X(s) = i) = P(X(t) = j|X(0) = i). In this work we will

consider only time homogeneous Markov chains.

Continuous time Markov chains are described by the infinitesimal generator matrixQ. An

elementqi j ≥ 0 with i , j of Q is the transition rate between statesi and j. Instead diagonal

elementsqii are defined as−
∑

i, j qi j .

The time dependent probability is the solution of the following differential equations, called

Chapman-Kolmogorov equations,

∂π(t)
∂t

= π(t)Q

The stationary probability distributionπ is the solution of the linear systemπQ = 0 subject to



16 Chapter 3. Background

normalization condition
∑

j π j = 1. A Markov chain is irreducible if all states can be reached from

all other states. A Markov chain is positive recurrent if starting in any state the expected time to

return to that state is finite. A steady state probability distribution is the probability of being in a state

in the long run. If a Markov chain is irreducible and positive recurrent the steady state corresponds

to the stationary probability, more formally,

lim
t→∞
π(t) = π

3.4 Kinetics of chemical reactions

A chemical reaction is a process where one or more chemical substances, called reactants, yield one

or more products. The rate of a reaction describes how the concentration of the involved substances

changes in time. Chemical kinetics study the reaction rates in a chemical reaction. Reaction rates

depend on several factors (e.g. temperature, concentration of reactants, pressure and so on), however

we will assume most of them to be constant. Since several chemical kinetics occur in this work, we

will give a brief overview in this section.

3.4.1 Mass Action Law

The Mass Action Law states that the rate of a chemical reaction is proportional to the probability

of finding all the reacting molecules in a small space. Because we assume that the event of finding

one molecule in a small space is independent of finding another molecule in the same space, the

probability of finding both of them in the same space is given by the product of their individual

probabilities. The probability of finding a molecule in a small volume is proportional to its con-

centration. Hence, the rate of a reaction is proportional to the product of the concentrations of each

reactant molecules (Cox and Nelson, 2005).

As an example, consider the following simple reaction where moleculesA andB bind toghether
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and form complexC.

A+ B → C

The rate of change ofC concentration is represented by a differential equation,

d[C]
dt

= k[A][ B]

wherek is a constant, [A], [B] and [C] are the concentrations ofA, B andC respectively. By abuse

of notation, we will often drop concentration brackets [·] when it is clear from the context we are

dealing with concentrations.

The basic assumption behind mass action is that individual molecules act randomly, but if taken

as a whole, they will tend to a deterministic law.

3.4.2 Michaelis-Menten

Michaelis-Menten kinetics describe the rate of enzyme driven reactions when the concentration of

enzyme is much less than the concentration of substrate.

An enzymatic reaction consists of the following elementary reaction steps,

reaction name rate

E + S→ ES binding k1

ES→ E + S unbinding k−1

ES→ E + P catalysis k2

Here,E, S, ES andP represent the enzyme, the substrate, the enzyme-substrate complex and

the final product respectively. These reactions can be modelled as a set of differential equations

using the mass action law. However it is often useful to simplify them with a single equation given

by,
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dP
dt

= VMAX
S

KM + S
(3.1)

whereKM =
k−1+k2

k1
is the Michaelis-Menten constant andVMAX the maximum rate of reaction.

Equation 3.1 is based on a steady state approximation. In other words after an initial period the

concentration of complexES is assumed to be constant, that isdES/dt ' 0. While bothKM and

VMAX can be determined experimentally, sometimes the elementary rates are not available so that it

is not always possible to develop a system into elementary steps.

3.4.3 Inhibition

In some sense an enzyme is an activator of a reaction. Instead some molecules act as repressors.

For instance, let us consider a proteinP which represses the transcription of a gene. Given the

maximal transcription rate constantVMAX and an affinity constantKI , the rate of change of mRNA

concentrationM is modelled by the following differential equation,

dM
dt

= VMAX
KI

KI + P
(3.2)

We observe that the right hand side of Equation 3.2 is the complement of that in Equation 3.1 where

KI is used instead ofKM.

3.4.4 Cooperative binding and Hill Coefficient

A macromolecule is said to have cooperative binding if the affinity of the ligand for the molecule

depends on the amount of ligands already bound. The cooperativity is positive if the binding of the

ligand increases affinity for ligand, negative otherwise. A macromolecule can be also noncoperative,

in this case the amount of ligands does not change the binding affinity.

The degree of cooperativity is quantified by the Hill Coefficient. A coefficient of one indicates
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completely independent binding. Values greater than one indicate positive cooperativity, while

numbers less than one indicate negative cooperativity.

As an example, if binding of repressor protein to enzyme in the inhibition model is cooperative

with degreen, Equation 3.2 becomes,

dM
dt

= VMAX
Kn

I

Kn
I + Pn (3.3)

In Figure 3.1 we plot Equation 3.3 for several values ofn. Forn = 1 the curve is a typical hyperbolic

plot and there is no cooperative effect. Forn > 1 the graph is sigmoidal and shows positive coopera-

tion; in fact the more the concentration of proteinP is, the faster the rate decreases and transcription

is inhibited. On the contrary ifn < 1 the curve shows negative cooperativity: it has a faster initial

fall, but it tends towards zero less sharply. As one can easily prove, the point of intersection of all

curves isKI .

3.5 Dynamical systems

A dynamical system describes a system which evolves in time. The state of the system is represented

by a collection of real numbers. A deterministic rule says what future state follows the current state.

For a more detailed tratement on this subject see Kuznetsov (2004).

3.5.1 Phase analysis

We consider a system of ordinary differential equations,

dY(t)
dt
= F(Y(t),Θ)

At any time t the state of the system is given by the vectorY(t) = (y1(t), . . . , yn(t)). In this

thesisY(t) is always inRn and functionyi(t) represents concentration of thei-th molecule kind at
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Figure 3.1: Cooperative inhibition for different degreen.

time t. The phase space is then-dimensional spaceY ⊆ Rn consisting of all the possible values of

(y1(t), . . . , yn(t)). When we consider just two dimensions, we call it phase plane. A trajectory or

orbit is the sequence of points through which the system passes as it evolves.

FunctionF : Y×P→ Rn describes the dynamic behaviour of the system whereY ⊆ Rn denotes

the state space andP a set of parameter subsets (e.g., constant rates). Given a set of parameter

valuesΘ ∈ P the current stateY(t) is associated with the system rates of change.

The vectordY(t)/dt = (y′1(t), . . . , y′n(t)) is sometimes called the velocity vector and describes

how the system evolves given its current state. The vector field is the phase space where every point

has associated its velocity vector. A flow is the set of all possible trajectories. A flow and a vector

field give us an idea about the structure of the solution set of the ODEs and they are useful tools to

unravel the dynamics of nonlinear systems.

An equilibrium point (also known as stagnation point, steady state1, fix point or singular point)

1The term “steady state” is used also in markov chain theory to denote a different concept. In order to avoid ambiguity
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is an element of the phase space where the velocity vector is zero.

A (stable) attractor is a set of points toward which ”neighboring” points approach in the course

of time evolution of the system.

A yi-nullcline is the set of points (y1, . . . , yn) of the phase space which satisfyy′i = fi(y1, . . . , yn) =

0. The intersection of all the nullclines is an equilibrium point.

3.5.2 (Linear) Stability analysis

Equilibria are not always stable. The following table is a powerful method to check if equilibriumy

is stable. Here,J(y) is the Jacobian matrix,

J =



∂ f1
∂y1

∂ f2
∂y2

. . .
∂ fn
∂yn

∂ f1
∂y1

∂ f2
∂y2

. . .
∂ fn
∂yn

...
...

...

∂ f1
∂y1

∂ f3
∂y3

. . .
∂ fn
∂yn


evaluated in the equilibrium pointy.

eigenvalues ofJ(y) fixed point

complex with positive real part unstable focus

complex with negative real part stable focus

real and positive unstable node

real and negative stable node

positive and negative saddle point

The case of one or more zero eigenvalues is much more complicated. There exist other methods

to check stability; for instance Liapunov functions are useful if one wants to understand how points

far from an equilibrium behaves with respect to the equilibrium.

we will use equilibrium or fix point when we talk about differential equations and steady state for the markov chains.
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3.5.3 Bifurcation analysis

Most dynamical systems contain parameters. In our exampleΘ is a set of parmeters on which the

solutions of the system depend. Changes in the parameter values may produce qualitative changes

in the phase space and the dynamical system is said to have gone through a bifurcation. Bifurcation

theory studies the system behaviour as a function of one or more parameters.

In this work we are interested in Hopfs bifurcation points. In a Hopfs bifurcation, as one in-

creases the value of some parameters, a stable focus becomes unstable and the attractor becomes a

limit cycle. A limit cycle is a periodic solution described by a closed curve in the phase plane or by

sustained oscillations in time dependent graphs.

3.6 Stochastic simulation

We consider a system ofm1, . . . , ml molecule species andr1, . . . , rk reactions between them. We

assume the system is well-stirred, in thermal equilibrium and limited in a constant volumeΩ. Xi(t)

denotes the number of moleculesmi in the system at timet andX(t) = (X1(t), . . . ,Xl(t)). Given an

initial stateX(t0) = x0, we want to compute the probabilityP(x, t0+ dt|x0, t0) thatX(t) will be equal

to x at time t0 + dt given thatX(t0) = x0. The time evolution of this function is described by the

Chemical Master Equation (CME), defined as,

∂P(x, t|x0, t0)
∂t

=

k∑
j=1

[a j(x− ν j)P(x− ν, t|x0, t0) − a j(x)P(x, t|x0, t0)]

Here, ν j is a vector (ν j1, . . . , ν jl ) whereν ji represents the change in the population of molecule

speciesmi caused by a reactionr j . The propensity functiona j(x) is defined so thata j(x)dt is the

probability that a reactionr j will occurr in time interval [t, t + dt) given thatX(t) = x.

The CME can be solved analytically or numerically for only few cases. Therefore we need

another method. The idea is to derive anumerical realizationof X(t), namely a possible trajectory
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of X(t) versus time. Information on the underlying distribution can be inferred from averaging the

results of many realizations or simulations. The Gillespie algorithm produces a realization for the

CME. It is useful when the number of molecules involved in the system is small, i.e. in the order of

10-102 individuals. For more details readers can look at Gillespie (1976).

In order to define a stochastic simulation we give the corresponding set of reactions and their

probabilities of occurence in infinitesimal time intervaldt. Following Gillespie (1976), the oc-

curence probability of a reaction is given by the product of the number of the reagents involved in

the reaction multiplied by the constant reaction rate.





Chapter 4

Modelling biological systems in PEPA

4.1 Introduction

In this chapter we present the modelling style introduced in Calder et al. (2004). We use the PEPA

process algebra Hillston (1995). Readers who do not have familiarity with this process algebra can

have a look at the introductory explanation in Chapter 3 and in Appendix A; here, some definitions

of functions and sets (e.g.ds, Act, A)used in this thesis can be found, too.

The rest of this chapter is organized as follows. In Section 4.2 we describe the structure of

a model where processes represent molecules and each process has an internal state that models

the concentration level of the corresponding molecule. In Section 4.3 we introduce the concept of

activity graph, a graphical representation of the model, and we describe how to derive ODEs and

stochastic simulation from it. In Section 4.4 we illustrate this modelling approach on a model for cir-

cadian clocks. We show that processes can represent not only discrete levels of molecule population,

but also activiation levels of abstract biological processes. Finally we present some experiments and

results that describe the relationships between stochastic and deterministic simulations.

25
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4.2 Model structure and biological interpretation

Molecule concentrations are divided into discrete intervals. Processes represent molecules and each

process has an internal state that models the concentration level of the corresponding molecule.

Here we consider just high and low concentration levels. For example processesm[1] and m[0]

denote, respectively, high and low concentration of molecular speciesm.

A high level means that the concentration of a reagent is observable and the reagent can take

part to rections; a low level, instead, implies that the concentration of a reagent is not observable

and the regent can participate to reactions only as a product.

Reactions are modelled by activities. For example,m[1]
def
= (α, r).m[0] means that reaction

α occurs with rater and it decreases the level of moleculem (from high to low). A molecule

m is involved in reactions of three kinds: reactions which decrease the level ofm (e.g. m[1]
def
=

(α, r).m[0]), reactions which increase the level ofm (e.g. m[0]
def
= (α, r).m[1]) and reactions which

do not modify the level ofm (e.g. m[1]
def
= (α, r).m[1]). Other activities are not allowed. More

formally, for any molecule speciesm, we define two processesm[1] andm[0] such that:

• there existsa ∈ Act(m[i]) such thatm[i]
a
→ m[1 − i] for i = 0,1;

• if there existsa ∈ Act(m[1]) such thatm[1]
a
→ c, thenc = m[1] or elsec = m[0];

• if there existsa ∈ Act(m[0]) such thatm[0]
a
→ c, thenc = m[1].

The first point says that a processm[1] (m[0]) always evolves into its complementm[0] (m[1]). The

last two points formalize the idea that other transitions are not allowed; the exception ism[1] which

can becomem[1]. As a consequenceds(m[1]) = ds(m[0]) = {m[0],m[1]}. In a biological context

these conditions mean that a molecule has to be consumed and produced in at least one reaction of

the system.

In a biological context a reaction does not have different possible effects on a molecule popu-

lation. Thus we assume that for any molecule speciesm instances of activities of the same action
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type cannot be used within componentsm[0] andm[1]. In other words sequential components do

not have multiple instances of activities of the same action type, see Appendix A.

In the system equation, molecules with an initial concentration are initially high in the system

equation, while all others are low. We assume activities of the same action typeα are synchronized

onα and have the same ratevα. Therefore, instead of system equations we will often use an initial

concentration vector which records initial levels for each molecules.

An example

Figure 4.2 describes a simple biological system. There are five molecule speciesm1, m2, m3, m4

andm5. Moleculesm1 andm2 bind together to form complexm3. Moleculem3 can split intom1

andm2 again or else into two new moleculesm4 andm5 which becomem1 andm2 respectively.

For i = 1 . . . 5 we define two processesmi [0] andmi [1] representing low and high concentration

of moleculemi . For each reaction we define an action typer1, r2, r3, r4 andr5; we assumevr j is

the rate for reactionr j where j = 1 . . . 5. The corresponding PEPA model is given by the following

equations.
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m1[0]
def
= (r3, vr3).m1[1] + (r5, vr5).m1[1]

m1[1]
def
= (r1, vr1).m1[0]

m2[0]
def
= (r4, vr4).m2[1] + (r5, vr5).m2[1]

m2[1]
def
= (r1, vr1).m2[0]

m3[0]
def
= (r1, vr1).m3[1]

m3[1]
def
= (r2, vr2).m3[0] + (r5, vr5).m3[0]

m4[0]
def
= (r2, vr2).m4[1]

m4[1]
def
= (r3, vr3).m4[0]

m5[0]
def
= (r2, vr2).m5[1]

m5[1]
def
= (r4, vr4).m5[0]

In the system equation we assume levels ofm1 andm2 are initially high.

m1[1] BC
{r1,r3,r4,r5}

m2[1] BC
{r3,r4,r5}

m3[0] BC
{r3,r4}

m4[0] BC
{r4}

m5[0]

4.3 Activity graph

Our definition of an activity graph is slightly different from the one in Calder et al.. Roughly

speaking an activity graph is a representation of the relations between reagents and reactions. More

formally,

Definition 4.3.1. An activity graph is a directed bipartite graph G= (V,E). Node set V is equal

to R∪ M where R is the set of action types (i.e. reactions) and M is the set of process names (i.e.
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molecules). Edge set E⊆ (R× M) ∪ (M × R) is the smallest set such that:

• if molecule m is consumed in reactionα, then(m, α) ∈ E;

• if molecule m is produced in reactionα, then(α,m) ∈ E;

• if molecule m is involved in reactionα but it is not consumed, then(m, α) ∈ E and(α,m) ∈ E.

The graph is represented by an activity matrixA = A+ − A− of size|M| × |R|. HereA+ = {a+i j } where

a+i j = 1 if ( j, i) ∈ E, elsea+i j = 0. InsteadA− = {a−i j } wherea−i j = 1 if (i, j) ∈ E, elsea−i j = 0.

4.3.1 Deriving ODEs

We show how ordinary differential equations can be derived from an activity graph automatically.

We assumeM is a set of molecules,R a set of reactions andA an activity matrix built as described

above. We assumemi is the i-th element ofM andr i is the i-th element ofR. Moreovervi is the

constant rate associated with reactionr i .

For each process namemi ∈ M the rate equation corresponding to the concentration change of

moleculemi in infinitesimal timedt is given by

dmi(t)
dt

=

|R|∑
j=1

v jai j

|M|∏
l=1

ml(t)
a−l j

Heremi(t) represents a function whereasmi is a process name. This is an abuse of notation, but

it is often clear from the context their meaning. In this formula indeterminate form 00 may appear;

following Knuth (1992) we assume 00 = 1.

This system of ordinary differential equations is not complete because initial conditions must be

specified. Initial conditions depend on the interpretation of the abstract concentrations “high” and

“low”.
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4.3.2 Deriving stochastic simulations

We derive a stochastic simulation in two steps. First, we build reaction equations from the structure

of an activity graph. Second, we compute stochastic rates using information on activity rates.

Given a PEPA model we assumeR is the set of actions (i.e. reactions) andM the set of process

names (i.e. molecules). We assumemi is the i-th element ofM and r i is the i-th element ofR.

Moreovervi is the constant rate associated with reactionr i . LetG = (M∪R,E) be an activity graph.

Then for each actionr ∈ R the corresponding reaction equation is given by

∑
(m,r)∈E

m→
∑

(r,m)∈E

m

We need to transform activity rates into “stochastic” rates in order to compare results of deter-

ministic and stochastic models. As an example consider a simple bimolecular reactionr of the form

A+B→ C. As we saw in Chapter 3 the reaction can be represented by a deterministic reaction rate,

d|C|
dt

= k|A||B|

Here |A|, |B| and |C| denote concentrations of moleculesA, B andC respectively, whilek is the

constant “deterministic” rate for reactionr.

In a stochatic context]A, ]B and]C represent numbers of moleculesA, B andC respectively.

Sometimes we write]A(t) for the number of moleculesA at timet. ParameterΩmodels the volume

of the cell, so]A = Ω|A|, ]B = Ω|B| andC = Ω|C|. Therefore asΩ increases, the number of

molecules becomes larger

We assume reactionr occurs with average probabilityc. Thusc ]A ]B dt is the probabil-

ity that r occurs once somewhere in the cell in time intervaldt. If dt is small, two reactions

cannot occur indt. Therefore the average number of new molecules produced indt is given by
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∑∞
i=0 iP[ “ i reactions indt ” ] = c ] A ]B dt. In other words,

]C(t + dt) − ]C(t) = c ] A ]B dt

Converting individuals into concentrations we obtain,

Ω(|C(t + dt)| − |C(t)|) = cΩ2 |A(t)||B(t)|dt

Dividing by dt andΩ and then takingdt→ 0, we have

d|C|
dt

= cΩ |A||B|

From the equation above we infer that the relation between stochastic ratec and “deterministic” rate

k is given byk = cΩ. In general given ann molecular reaction the deterministic ratek is equal to

cΩn−1 wherec is the stochastic rate.

Hence, we are ready to explain how to compute stochastic rates for a PEPA model. Given the

activity ratevi , the corresponding stochastic rate is given by 1/Ωn−1vi , wheren =
∑|M|

j=1 a−ji .

Again, the stochastic formulation is not complete. We have to specify initial values for variables.

Initial values depend on the interpretation of the abstract levels. We can derive these values from

the deterministic representation of the model following the rule] A = Ω |A|.

An example (continued)

The activity graph of the model in Figure 4.2 is given in Figure 4.3.2.

We derived ordinary differential equations and a stochastic simulation from the activity graph

as described in previous sections. Here there is the deterministic model represented by differential
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equations. Initial conditions may be inferred from experimental data, saym1(t) = m2(t) = c > 0 and

m3(t) = m4(t) = m5(t) = 0.

dm1(t)
dt

= −vr1m1(t)m2(t) + vr5m3(t) + vr3m4(t)

dm2(t)
dt

= −vr1m1(t)m2(t) + vr5m3(t) + vr4m5(t)

dm3(t)
dt

= vr1m1(t)m2(t) − vr5m3(t) − vr2m3(t)

dm4(t)
dt

= vr2m3(t) − vr3m4(t)

dm5(t)
dt

= vr2m3(t) − vr4m5(t)

Here there is a set of reactions for the stochastic simulations with the corresponding probabilities

of occurring in infinitesimal time intervaldt. In the last columnmi denotes the current number of

molecule of speciesmi . The initial population is given bym1 = m2 = Ωc andm3 = m4 = m5 = 0.
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name reaction probability

r1 m1 +m2→ m3 vr1/Ωm1m2

r2 m3→ m4 +m5 vr2m3

r3 m4→ m1 vr3m4

r4 m5→ m2 vr4m5

r5 m3→ m1 +m2 vr5m3

4.4 A case study: circadian clocks

Circadian rhythms are 24 hour cycles shown by physiological processes in most living organisms.

For example in animals feeding and sleeping are regulated by an internal clock with a period close to

a day. Recent studies have discovered these rhythms depend on genetic mechanisms and rhythmic

behaviours rely on the level of gene expression.

Several theoretical models have been proposed for circadian clocks in different organisms (Gold-

beter, 2002). Following Gonze et al. (2002a) we consider the minimal model initially suggested for

circadian rhythms inNeurospora, see Figure 4.1. Although this model is simple, it describes the

basic structure for a wide range of biomolecular clocks (Young and Kay, 2001). Therefore it is

useful to unravel the general machanisms underlying oscillations.

In Figure 4.1 we show the model forNeurospora. The core mechanism of circadian oscillations

relies on the negative autoregulation of the clock gene. Gonze et al. (2002b) defined also a similar

model which includes phosphorylation of cytosolic proteins and cooperative binding of repressor

proteins to gene promoters. At the moment we are going to overlook these details because they are

not required for the oscillations (Gonze et al., 2002a).

The time evolution of the concentrations involved in the model is given by the following kinetic
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Figure 4.1:Core model for circadian rhythms.. M represents mRNA whilePC andPN are the
clock proteins into the cytosol and into the nucleous respectively.PC is synthesized from the mRNA
M, then it is either transported into the nucleus or degradated.PN exerts a negative feedback on
transcription of its gene or else it goes out of the nucleus. Degradations are controlled by enzymes.

equations,

d[M]
dt

= vs
kn

I

kn
I + [Pn]n − vm

[M]
km+ [M]

d[PC]
dt

= ksM − vd
[PC]

kd + [PC]
− k1[PC] + k2[PN]

d[PN]
dt

= k1[PC] − k2[PN]

In these equations, the variables [M], [PC] and [PN] denote, respectively, the concentrations of the

clock gene mRNA and of the clock gene protein in the cytosol and in the nucleus. Transcription is

inhibited by proteinPN. Inhibition is described by term
kn

I
kn

I +[Pn]n wherekI is a constant that measures

the binding affinity betweenPN and the clock gene,n is the Hill coefficient andvs the maximal rate.

Degradations of mRNA and cytosolic proteinPC are enzymatic reactions which follows Michaelis-

Mentent rule. Parameterskm andkd are the respective Michaelis constants. whereasvm andvd are

their maximal rates. The other reactions follow the Mass Action Law. In particularksM, k1[PC]

andk2[PN] correspond to translation, transportation out of and into the nucleus of the clock protein

respectively. With proper parameters the ODEs yield oscillations in the molecule concentrations

with a period close to 24 hours.
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4.4.1 Modelling circadian clock in PEPA

In this section we present a PEPA model of the minimal circadian clock in Figure 4.1. It is chal-

lenging to express in PEPA the behaviour described by nonlinear terms appearing in the kinetic

equations B.1. These terms, however, do not correspond to single reaction steps. They rather are

based on assumptions about the behaviour of enzyme-substrate or gene-repressor complexes. As

suggested in Gonze et al. (2002b), we decompose enzyme-substrate and gene-repressor reactions

into elementary steps; so we build a new model, which we will refer to as thedevelopedmodel.

We develop enzymatic degradation processes into three elementary reactions given by the following

formula,

S + ES
b
�
u

CS
c
→ S + ES

These reactions representbinding(b) of substrateS to enzymeES to form complexCS, disassocia-

tion (u) of CS andcatalytic decomposition(c) of CS to form degradated productS and enzymeES.

In the model degradations of cytosolic proteinPC and mRNAM are enzyme-driven. Repression

mechanism is developed in two reaction steps given by the following formula,

G + PN

o f f
�
on

GP

Here, repressor proteinPN binds to its geneG to form complex gene-proteinGP. Binding and

unbinding of protein mean switching gene, respectively, off and on. For simplicity we assume Hill

coefficientn is one.

The developed PEPA model is described by the component definitions 4.1 and by the system

equation 4.2. As in Calder et al. (2004), the model is based on the variations in concentration of the

reagents. Concentrations are represented by discrete values. We consider high (i.e. observable) and

low (i.e. unobservable) concentrations of reagents. In contrast with Calder et al. (2004), however,

we do not have just concentrations. Here,T andR does not represent concentrations of molecules,

but theeffectivenessof transcription and repression machinery. We have two levels, high and low,
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for transcription and repression. For example, high transcriptionT[1] means the transcription ma-

chinery is working at the best of its capability. The concentrationM of mRNA depends on both of

them.

T[1]
def
= (m, vs).T[1] + (o f f,>).T[0]

T[0]
def
= (on,>).T[1]

R[1]
def
= (on, von).R[0]

R[0]
def
= (o f f,>).R[1]

M[0]
def
= (m,>).M[1] + (um, vum).M[1]

M[1]
def
= (pc1, ks).M[1] + (bm, vbm).M[0]

EM[1]
def
= (bm, vbm).EM[0]

EM[0]
def
= (um, vum).EM[1] + (cm, vcm).EM[1]

CM[1]
def
= (um, vum).CM[0] + (cm, vcm).CM[0]

CM[0]
def
= (bm, vbm).CM[1]

PC[0]
def
= (pc1,>).PC[1] + +(pc2, k2).PC[0] + (upc, vupc).PC[1]

PC[1]
def
= (pn, k1).PC[0] + (bpc, vbpc).PC[0]

EPC [1]
def
= (bpc, vbpc).EPC [0]

EPC [0]
def
= (upc, vupc).EPC [1] + (cpc, vcpc).EPC [1]

CPC [1]
def
= (upc, vupc).CPC [0] + (cpc, vcpc).CPC [0]

CPC [0]
def
= (bpc, vbpc).CPC [1]

PN[0]
def
= (pn,>).PN[1]

PN[1]
def
= (pc2, k2).PN[0] + (o f f, vo f f ).PN[0]

(4.1)

T[1] BC
J

(R[0] BC
K

(((M[0] BC
L

EM[1]) BC
M

CM[0]) BC
N

(((PC[0] BC
O

EPC [1]) BC
P

CPC [0]) BC
Q

PN[0]))) (4.2)

WhereJ = {m,o f f,on}, K = {o f f}, L = {um,bm}, M = {um,bm, cm}, N = {pc1}, O = {upc,bpc},
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P = {upc,bpc, cpc} andR = {pn, pc2}. In the initial state we have high concentrations of enzymes

(EM andEPC) and the transcription machineryT is working at high level; instead concentrations of

the enzyme-substrate complexes (CM andCPC) and of mRNA (M), cytosolic proteinPC and nuclear

proteinPN are low.

4.4.2 Activity graph

In Figure 4.2 we show the activity graph corresponding to PEPA model 4.1.

Figure 4.2:Activity graph for the PEPA model of the circadian clock.. This is the activity graph
for the model in Figure 4.1 described by equations 4.1. Nodes are process names (i.e. molecules)
and action type (i.e. reactions) in the algebraic specification. An edge goes out of a node-molecule
and enters into a node-reaction if the molecule is consumed in the reaction. Instead an edge is from
a node-reaction to a node-molecule if the molecule is produced in the reaction. Here nodesT andR
do not represent molecules, but molecular processes.

As described previously we derive ODEs and a stochastic simulation from the activity graph. In

Appendix B we listed the ODEs and the stochastic description of the model.
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4.4.3 Some experiments and results

Ordinary differential equations were solved numerically using Runge Kutta 5 method. Reaction

equations, instead, were used as input for Gillespie’s algorithm. In this section we show some

experiments and results.

In Figure 4.3 there are results for two deterministic models. The plot shows the time dependent

behaviour of mRNAM, cytosolic proteinPC and nuclear proteinPN for the non developed model

(left) and for the developed model (right). Results are similar but not equal. In fact the non de-

veloped version is an approximation of the developed one based on some steady state assumptions.

Moreover there is a lack of data for some rates in the developed model.

Figure 4.3:Developed and non developed version of the core clock model.

In Figure 4.4 we compare stochastic and deterministic simulations. The experiment shows that

for sufficiently large values ofΩ, a stochastic simulation yields results similar to the deterministic

model. The left plot of each row shows the behaviours of mRNAM, cytosolic proteinPC and

nuclear proteinPN in the determinisitic model (first row) and in the stochastic model (second row).

The right plot, instead, shows the phase plane for mRNAM and nuclear proteinPN; after a while

the system converges to a limit cycle.

In Figure 4.5 we show the effect of the number of molecules on noise in the stochastic model.

As the value ofΩ decreases, oscillations become noisy and the limit cycles disappears.

Since the deterministic model and the stochastic model produce similar result forΩ > 1000, the
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Figure 4.4: Core model for circadian clock: stochastic and deterministic simulations. The
first row shows the behaviour of the deterministic representation of the core model. Results were
produced numerically (Runge Kutta) from the ODEs in Appendix. On the left there is the time
evolution of the system for mRNAM, cytosolic proteinPC and nuclear proteinPN; on the right
instead there is the phase planeM vsPN corresponding to the previous graph. The system converges
toward a limit cycle. The second row shows the corresponding results for the stochastic model.
Simulations were performed using Gillespie’s algorithm andΩ = 500.
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Figure 4.5: Effect of the number of molecules on noise in the stochastic model. The figure
shows the results of stochastic simulations for increasing values ofΩ (1000, 500, 100). The left plot
describes the time behaviours of mRNAM, cytosolic proteinPC and nuclear proteinPN. The right
one is the corresponding phase plane. The experiment was carried out using Gillespie’s algorithm.
We observe that for small values ofΩ the limit cycles disappears.
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deterministic model is not adequate. In fact it describes the behaviour of a system where the number

of molecules is of order 103 while the number of molecules in regulatory gene networks is usually

of order 10− 102.





Chapter 5

Markov chains with discrete levels and

their approximations

5.1 Introduction

The modelling style based on discrete levels of concentration initially was introduced in order to

derive ordinary differential equations from the high level specifications of PEPA models (Calder

et al.). In this thesis we showed how it is possible to build stochastic simulations in a similar way.

Historically PEPA was designed to represent Markov chains (Hillston, 1995). Therefore in this

chapter we analyse the interpretation of models with discrete levels as Markov processes and its

relationships with the other interpretations.

There might exist several algorithms that extract different Markov chains from the same model

with discrete levels of concentration. We consider just the Markov processes produced from a model

with discrete levels interpreted as in Hillston (1995). We will refer to these chains with the term

Markov chains with levels or, if there is no ambibuity, Markov chains.

A Markov chain with levels has the state space composed by tuples of nonnegative integers.

Transitions are defined between adjacient tuples and rates depend on the current state. However it

is not a population model, such as the Markov chain underlying a stochastic simulation, because

43
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we assume there exists a maximal concentration. Moreover this assumption could make models not

appropriate for some biological systems. The scope of this chapter is to clear also these aspects.

From some experiments we carried out we observed that a Markov chain based on two levels of

concentration could not have enough useful information to understand the behaviour of the stystem.

Hence in this chapter we generalize the approach presented in Chapter 4 toN + 1 discrete levels of

concentration. We show how it is possible to derive an expanded model from a binary model. In

order to compare results of different interpretations we need to adjust rates for a stochastic context

as we did for Gillespie’s algorithm in Chapter 4. Thus model expansion provides also some rules to

compute proper rates.

We analyse the behaviour of Markov processes for increasing values ofN. In the last part of this

chapter we prove that under some conditions the average behaviour of a Markov chain with discrete

levels converges to the solution of a system of differential equations.

5.2 Cooperation in biological systems

In this thesis we use a modified version of the cooperation rule defined in Appendix A. In the case of

computers’ systems the expressionP BC
L

Q represents a situation whereP andQ must work together

to undertake an action inL. Therefore the rate of a shared activity depends on the rate of the slower

component.

On the contrary in a biological context we follow the Mass Action Law (see Chapter 3): the rate

of a reaction is proportional to the product of the concentrations of each reactant molecule. Thus

we override the definition of the apparent rate in the following way,

rα(P BCL Q) =


rα(P) × rα(Q) if α ∈ L

rα(P) + rα(Q) if α < L

From the definition of cooperation rule given in Appendix A we obtain the following new rule for
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cooperation,

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F′

E BC
L

F
(α,r1r2)
−−−→ E′ BC

L
F′

(α ∈ L)

5.3 Expanded PEPA models

Because of some numerical experiments we carried out we claim that two levels of concentration

may be not enough to derive useful information from models. Hence, we generalize the modelling

approach based on two concentration levels toN + 1 levels.

Given a parameterN > 0, concentration interval [0,M] is divided intoN+1 discrete concentra-

tion levelsl0, . . . , lN and we assume the width between consecutive levels is equal toH = M/N. In

this contextN represents the greatest concentration level for each molecule. The discrete concen-

tration corresponding to levell i is given byl i M/N. We want to study the behaviour of the system

for increasing values ofN.

We introduce a notation to simplify the description of models.
∑k

i=0 Ci is an abbreviation for

processC1 + . . . + Ck. The sum of zero terms is a processnil and, given a processC, we have

C + nil ≡ C.

Given N andM we can expand a two level model into anN level model in the following way.

We build the activity graphG = (S ∪ R,E) corresponding to the two level model as described in

Chapter 4. HereS is the set of molecule speciesm1, . . ., m|S| whereasR is the set of reactionsα1,

. . ., α|R|.

Let m be a molecule inS. We denote withm[i] the process corresponding to thei-th level of

moleculem. For each moleculem we define the following process constants,
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m[i]
def
=

∑
(α,m)<E∧(m,α)∈E

(α, iH ).m[i − 1] +
∑

(m,α)<E∧(α,m)∈E

(α,1).m[i + 1]

+
∑

(m,α)∈E∧(α,m)∈E

(α, iH ).m[i] for i = 1 . . .N − 1

m[N]
def
=

∑
(m,α)∈E∧(α,m)<E

(α,NH).m[N − 1] +
∑

(m,α)∈E∧(α,m)∈E

(α,NH).m[N]

m[0]
def
=

∑
(α,m)∈E∧(m,α)<E

(α,1).m[1]

Because of the assumptions made in Chapter 4 on the structure of binary models, for any molecule

m there exist reactionsα1 andα2 such that (m, α1) ∈ E and (α2,m) ∈ E. Therefore the model

expansion is well defined, in the sense thatAct(m[i]) , ∅ for every moleculem and i = 0, . . . ,N.

Note that the property that every sequence component does not contain instances of the same action

type is conserved in the expanded model.

Because of reasons which will be clear soon, we define also a dummy processD whose scope

is to adjust rates.

D
def
=

∑
α∈R

(α,
vα
H

).D

Wherevα is the rate corresponding to reactionα. We remember that we assume activities of the

same action type (i.e. reactions) have the same rate.

The system equation contains the components corresponding to the initial level for each molecule

and componentD. Initial levels depend on initial concentrations which are usually known. As usual

we assume that activities with the same action type are synchronized. Therefore we omit action

type sets under operatorBC
−

.

It might not be clear the reason of division byH in the definition of componentD. Constant
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H is the step widthl i − l i−1 for any i = 1, . . . ,N. In other words, changing the level of molecule

m takes time∆t which is necessary to increase or decrease ofH the concentration ofm. Therefore

the changing rate is given by1
∆t . Time∆t is computed from the differential equations; for instance

consider the following rate equation,

dm(t)
dt

= vαm(t)

wherem(t) is the concentration of moleculem at time t and vα is the rate of reactionα. If we

discretize the equation, we will obtain for small values of∆t,

m(t + ∆t) = m(t) − vαm(t)∆t

Because in our model the level step isH, we setH = vαm(t)∆t or else∆t = H
vαm(t) . It follows the

reaction rate is given byvαm(t)
H .

An example (continued)

Here we derive an expanded PEPA model for the example in Section 4.2. In Figure 5.3 we show the

activity graph corresponding to the binary model. We assume all the molecules butm1 andm2 have

low initial levels. The expanded model is derived from the activity graph as described above.
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m1[0]
def
= (r3,1).m1[1]

m1[i]
def
= (r3,1).m1[i + 1] + (r1, iH ).m1[i − 1] for i = 1 . . .N − 1

m1[N]
def
= (r1,NH).m1[N − 1]

m2[0]
def
= (r4,1).m2[1]

m2[i]
def
= (r4,1).m2[i + 1] + (r1, iH ).m2[i − 1] for i = 1 . . .N − 1

m2[N]
def
= (r1,NH).m2[N − 1]

m3[0]
def
= (r1,1).m3[1]

m3[i]
def
= (r1,1).m3[i + 1] + (r2, iH ).m3[i − 1] for i = 1 . . .N − 1

m3[N]
def
= (r2,NH).m3[N − 1]

m4[0]
def
= (r2,1).m4[1]

m4[i]
def
= (r2,1).m4[1] + (r3, iH ).m4[i − 1] for i = 1 . . .N − 1

m4[N]
def
= (r3,NH).m4[N − 1]

m5[0]
def
= (r2,1).m5[1]

m5[i]
def
= (r2,1).m5[1] + (r4, iH ).m5[i − 1] for i = 1 . . .N − 1

m5[N]
def
= (r4,NH).m5[N − 1]

D
def
= (r1,

vr1

H
).D + (r2,

vr2

H
).D + (r3,

vr3

H
).D +

+(r4,
vr4

H
).D + (r5,

vr5

H
).D
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In the binary model the system equation is given by

m1[1] BC
{r1,r3,r5}

m2[1] BC
{r1,r4,r5}

m3[0] BC
{r2,r3}

m4[0] BC
{r2,r4}

m5[0]

In the expanded model binary levels are substituted by proper values. In this case 0 remains the

same, while 1 becomesN. Dummy processD has to be added. Therefore we obtain,

m1[N] BC
{r1,r3,r5}

m2[N] BC
{r1,r4,r5}

m3[0] BC
{r2,r3}

m4[0] BC
{r2,r4}

m5[0] BC
{r1.r2,r3,r4,r5}

D

As an example, a firing of reactionr1 produces the following transition, as expected,

m1[N] BC
{r1,r3,r5}

m2[N] BC
{r1,r4,r5}

m3[0] BC
{r2,r3}

m4[0] BC
{r2,r4}

m5[0] BC
{r1.r2,r3,r4,r5}

D
(r1,

vr1
H N2H2)
−−−→

m1[N − 1] BC
{r1,r3,r5}

m2[N − 1] BC
{r1,r4,r5}

m3[1] BC
{r2,r3}

m4[0] BC
{r2,r4}

m5[0] BC
{r1.r2,r3,r4,r5}

D

5.4 Markov chains with discrete levels of concentration

In Hillston (1995) the derivation graph represents all the possible behaviours of a system. Nodes are

the derivatives of the initial component and there is an arc between nodes for each possible transition

between the corresponding components. Besides each arc is labelled with its own activity. More

formally we have the following definition.

Definition 5.4.1 (Hillston (1995)). Given a PEPA component C and its derivative set ds(C), the

derivation graph D(C) is the labelled directed multigraph whose set of nodes is ds(C) and whose

multiset of arcs A is defined as follows:

• the elements of A belong to the set ds(C) × ds(C) × Act;
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• < Ci ,C j ,a > occurs in A with the same multiplicity as the number of disinct inference trees

for derivation Ci
a
−−−→ CJ.

A stochastic process is built assigning a state to each node of the graph and defining transitions for

each arc of the graph. If all activity durations are exponentially distributed, it can be proved that

this process is a Markov process (Hillston, 1995).

We want to study the structure of a Markov chain corresponding to a PEPA model withN+1 dis-

crete levels of concentration. In this context system equations have the formm1[l1] BC
−
. . . BC

−
m|S|[l |S|]

wherem1, . . . ,m|S| are the molecules of the system andl1, . . . , l |S| the corresponding levels. We omit

the set of actions under operatorBC
−

and processD for simplicity’s sake.

Because a processmi [l i ] can evolve only into a processmi [l
′

i ] with l
′

i = l i , l i + 1 or l i − 1, the

state of the system can be represented by a row vectorw ∈ N|S| where entrywi stands for the level

of moleculemi .

We define a functionω in order to switch from the representation of states as components to the

notation with tuples of non negative integers. Given a componentC ≡ m1[l1] BC
−
. . . BC

−
m|M|[l |M|], the

corresponding vectorω(C) is defined as (l1, . . . , l |M|). We define also the inverse functionω−1 such

that given a vectorwof size|M| the corresponding component isω−1(w) = m1[w1] BC
−
. . . BC

−
m|M|[w|M|].

We say thatw′ is reachable fromw if and only if ω(w′) ∈ ds(ω(w)). The set of all states

reachable fromw is denoted byρ(w).

Following Winskel (1993)d � Ci
a
−−−→ C j denotes the fact that there exists a derivation treed

that infers transitionCi
a
−−−→ C j . We want to prove that for every expanded model, if there exists a

derivation tree for a transition, then this tree is unique. As a consequence the arcs of the derivation

graph have multiplicity one. In other words given a componentCi we want to prove the following

proposition

Q(Ci) ≡ ∀d1,d2 ∃C j ,a d1 � Ci
a
−−−→ C j ∧ d2 � Ci

a
−−−→ C j ⇒ d1 = d2

Lemma 5.4.2. For every sequence component SQ(S) holds.
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Proof. We prove it by induction on the structure of sequential components.

• If S ≡ (α, r).X, we can apply only prefix rule, so the thesis follows immediately.

• If S ≡ S1 + S2, consider two derivation trees such thatd1 � S
(α,r)
−−−→ S′ andd2 � S

(α,r)
−−−→ S′.

Because a sequence component does not have multiple instances of activities of the same

action type, without loss of generality we assumeα ∈ A(S1) andα < A(S2). Thus we can

apply only a rule to deriveS
a
−−−→ S′,

S1
(α,r)
−−−→ S′

S1 + S2
(α,r)
−−−→ S′

and becauseQ(S1) holds by inductive hypothesis, we conclude thatd1 = d2 andQ(S).

�

Proposition 5.4.3. For every model component PQ(P) holds.

Proof. We prove it by induction on the structure of model components. We omit the case of hiding

because it does not appear in our models.

• If P ≡ X whereX is the name of a sequential componentS. Assume there exist two derivation

treesd1 � P
(α,r)
−−−→ P′ andd2 � P

(α,r)
−−−→ P′. We can apply only the rule for constants. Because

Q(S) is true for every sequential componentS, see previous lemma, we conclude thatd1 = d2

andQ(P) is also verified.

• If P ≡ P1 BCL P2, assume there exist two derivation treesd1 � P
(α,r)
−−−→ P′ andd2 � P

(α,r)
−−−→ P′.

If α < L we can assume without loss of generality thatα ∈ A(P1) andα < A(P2). In fact if

α ∈ A(P1) andα ∈ A(P2), because activities of the same action type are synchronized, it must

be the case thatα ∈ L. Besides ifα < A(P1) andα < A(P2), transitionP
(α,r)
−−−→ P′ cannot

occurs. Then we can apply only a rule for cooperation

P1
(α,r)
−−−→ P′1

P1 BCL P2
(α,r)
−−−→ P′1 BCL P2

(α < L)
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and becauseQ(P1) is true by inductive hypothesis, we conclude thatd1 = d2 andQ(P) is true.

If α ∈ L, there is just one cooperation rule we can apply.

P1
(α,r1)
−−−→ P′1 P2

(α,r2)
−−−→ P′2

P1 BCL P2
(α,r1r2)
−−−→ P′1 BCL P′2

(α ∈ L)

BecauseQ(P1) andQ(P2) are true by inductive hypothesis, we conclude thatd1 = d2 and also

Q(P) is true.

�

We denote withXN(t) a Markov chain corresponding to a PEPA modelCN with N + 1 levels of

concentration. StateXN(t) represents the number of levels of each molecule species at timet and

HXN(t) is the discrete concentration vector. LetwN be the initial state vector, namelywN = ω(CN).

State spaceEN is equal toρ(wN) ⊂ N|S|.

Transitions of the Markov chain correspond to arcs in the derivation graph. By definition

if < C,C′,a >∈ A, there exists a derivationC
a
−−−→ C′ wherea = (α, r). In our caseC ≡

m1[l1] BC
−
. . . BC

−
m|M|[l |M|] and C′ ≡ m1[l′1] BC

−
. . . BC

−
m|M|[l′|M|]. Thus if a derivationC

a
−−−→ C′

exists, the following conditions hold:

i. if (mi , α) ∈ E, thenl i > 0, in fact supposead absurdumthat l i = 0, thenα < A(mi [0]), hence,

because activities of the same action type are synchronized,C
a
−−−→ C′ cannot occur;

ii. if ( α,mi) ∈ E and (mi , α) < E, thenl i < N; we can use an argument similar to that one above.

Now we are able to describe the rates of the Markov chain. If there exists an activitya = (α, r)

such that< C,C′,a >∈ A thenqω(C),ω(C′) = r = vαH−1 ∏
(mi ,α)∈E l iH, otherwiseqω(C),ω(C′) = 0.

On the other hand if (i) and (ii) are satisfied, then there exists a derivationC
a
−−−→ C′ and thus

< C,C′,a >∈ A. These facts lead to the following proposition that allows us to describe the structure

of the states of a Markov chain given the derivation graph.

Proposition 5.4.4.< C,C′,a >∈ A if and only if (i) and (ii) are satisfied.
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When an action/reactionα is undertaken, molecule levels can only increase or decrease of one

unit or remain the same. A stoichiometric vectorλα records this information. This vector has size

|M| and entryλα,i is the change in the population ofmi caused by reactionα. More formally,λα,i is

defined as 1 if (mi , α) < E and (α,mi) ∈ E, −1 if (mi , α) ∈ E and (α,mi) ∈ E, 0 otherwise.

It could be useful to look at a Markov chain from the view point of reactions rather than that

one of derivation graph. For every reactionα we denote as products the setprod(α) of molecules

m such that (α,m) ∈ E and (m, α) < E and as reagents the setreag(α) of moleculesm such that

(m, α) ∈ E. Because of Proposition 5.4.4 and because, if a reagent has level zero, the product of

reagents is also zero, we obtain that for every reactionα ∈ Rand statex ∈ EN,

qx,x+λα =


N
M vα

∏
mi∈reag(α)

M
N xi if

∧
mi∈prod(α) xi < N

0 otherwise

All other transitions are zero. Since levels cannot be greater thanN, Markov chains of this kind are

finite.

5.5 Some Examples

In this section we study the behaviour of some simple Markov chainsXN(t) for increasing values

of N. We derive the corresponding time dependent solutions analytically in order to understand the

relatioships between stochastic and deterministic models.

In the first case we consider a decay model. We show how the average behaviour of the Markov

chain corresponds to the solution of its deterministic version for every value ofN. In the second case

we consider a model for exponential growth. In our framework deterministic and stochastic versions

for growth model are different because in the stochastic model we assume there exists a maximal

concentration. Nevertheless we observe that changing slightly the definition of our approach, for

example making parameterH constant and independent fromN, the stochastic model converges
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towards the deterministic one forN→ ∞.

The important aspect of this section is that in these two particular cases the behaviours of

stochastic and deterministic models are the same under some conditions. In next sections we analyse

this fact for a more general case.

5.5.1 Decay model

We consider a simple model which describes the degradation process of a kind of molecule or

substanceA. The deterministic behaviour is represented by the following differential equations,

da(t)
dt

= −µa(t)

a(0) = A0

It is easy to verify that the system solution is given by,

a(t) = A0e−µt

We divide interval [0,M] into N+1 discrete levelsl0, . . . , lN wherel i+1− l i = R for i = 0, . . . ,N−1.

We defineA0 = M as obvious andH = M
N . The model corresponds to a continuous time Markov

chain of kind “pure death” with degradation ratesµi =
µ
H iH = µi. StateA = i stands for discrete

level [iH, (i + 1)H).

We assign rewardiH to stateAi , namely to concentration level [iH, (i + 1)H). In Figure 5.1 we

compare the expected reward with the exact solution of the differential equation. In this simple case

we have a good approximation also for few levels and the graphs are indistinguishable.

In Figure 5.2 we report relative and absolute errors for several levels. We observe that the more

levels there are, the larger the absolute error is. This is counter intuitive because you may imagine

that, if there are more discrete levels, the model should be close to the continuous case. On the

contrary the relative error is smaller with more levels.
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Figure 5.1:Numerical solutions for deterministic and stochastic decay models.Experiments
show that deterministic and stochastic solutions are very similar.

levels absolute error relative error
2 6.44580946487e-06 0.0222091587326
3 6.44580946487e-06 0.0222091587326
4 2.96504156795e-05 0.00246082693734
5 7.87910283347e-05 0.000129234547456

Figure 5.2:Absolute and relative errors with different number of levels between stochastic and
deterministic decay models.We took 2000 sample points in interval [0, . . . ,100]. In this simple
example also few discrete levels are a good approximation for the continuous problem, however, as
the number of levels increases, the absolute error grows up.

We are going to explain why this happens. Firstly, we will work out the time dependent solution

of the Markov chain. The only transition from statei to statei − 1 has rateµi and state 0 is an

absorbing state. Hence the transient behaviour of the system is given by the following differential

equations,
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

dπN(t)
dt

= −NµπN(t)

dπi(t)
dt

= (i + 1)µπi+1(t) − iµπi(t) i = 0, . . . ,N − 1

πi(0) = 0 i = 0, . . . ,N − 1

πN(0) = 1

(5.1)

We observe that

d(eiµtπi(t))
dt

= (i + 1)µπi+1(t)eiµt

Therefore,

πi(t) = (i + 1)e−iµtµ

∫ t

0
πi+1(t)eiµt dt (5.2)

Hence, becauseπN(t) = e−Nµt and because of Equation 5.2,we obtain recursively,

πi(t) =

(
N
i

)
(e−µt)i(1− eµt)N−i i = 0, . . . ,N (5.3)

The absolute error at timet is given by

εα(t) =

∣∣∣∣∣∣∣a(t) −
N∑

i=1

i
A0

N
πi(t)

∣∣∣∣∣∣∣ (5.4)

wherea(t) is the exact solution at timet for the deterministic model and
∑N

i=0 i A0
N πi(t) is the avarage

concentration at timet for the Markov chain.
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εα(t) =

∣∣∣∣∣∣∣a(t) −
N∑

i=0

i
A0

N
πi(t)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣A0e−µt −
N∑

i=1

i
A0

N

(
N
i

)
(e−µt)i(1− eµt)N−i

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣A0e−µt −
A0

N

N∑
i=1

i

(
N
i

)
(e−µt)i(1− eµt)N−i

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣A0e−µt −
A0

N

N∑
i=1

i
N(N − 1)!

i(i − 1)!(N − i)!
(e−µt)i(1− eµt)N−i

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣A0e−µt − A0

N∑
i=1

(
N − 1
i − 1

)
(e−µt)i(1− eµt)N−i

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣A0e−µt − A0e−µt
N∑

i=1

(
N − 1
i − 1

)
(e−µt)i−1(1− eµt)(N−1)−(i−1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣A0e−µt − A0e−µt
N−1∑
j=0

(
N − 1

j

)
(e−µt) j(1− eµt)(N−1)− j

∣∣∣∣∣∣∣∣
=

∣∣∣A0e−µt − A0e−µt(e−µt + 1− eµt)N−1)
∣∣∣

=
∣∣∣A0e−µt − A0e−µt

∣∣∣ = 0

Thus, for this particular case, the discrete level approach isequivalent to the deterministic model for

every number of levels1. The absolute errors in Figure 5.2 are non zero because of error propagation

in the numerical methods used to compute the transitory probabilities. In general the larger the size

of the Markov chain, the greater the propagation error is.

5.5.2 Growing model

We consider a model which represents the growth of a population of molecules of kindA. The

differential equation is given by

1Another way to prove it:
∑N

i=0 iπi(t) is the mean of a binomial distribution with parametere−µt, namelyNe−µt
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da(t)
dt

= λa(t)

a(0) = A0 > 0

The only solution is

a(t) = A0eλt

We chooseH = A0 because it is easier to find out a closed form time dependent solution for

the underlying Markov chain. We divide concentration interval [0,NA0] into N + 1 discrete levels

l0, . . . , lN wherel i+1 − l i = A0 for i = 1, . . .N − 1. Level l i corresponds to interval [iA0, (i + 1)A0)

and has rewardiA0. The model represents a “pure birth” Markov chain with rateλi =
λ
A0

iA0 = λi.

In Figure 5.3 we compare the exact ODE solution with the expected reward of the Markov chain

for increasing number of levels. The deterministic solution does not have a maximal concentration

value as assumed in the Markovian model; hence the Markovian and the deterministic approaches

yield different results. However the greater the number of levels is, the better the approximation

seems to be.

We are interested in solving the Kolmogorov equations in order to understand the behaviour ob-

served experimentally. The transitory behaviour of the Markov chain is described by the following

differential equations,
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Figure 5.3: Deterministic and Markovian analysis for the simple growing model.



dπ1(t)
dt

= −λπ1(t)

dπi(t)
dt

= −iλπi(t) + (i − 1)λπi−1(t) i = 2, . . . ,N − 1

dπN(t)
dt

= (N − 1)λπN−1(t)

πi(0) = 0 i = 2, . . . ,N

π1(0) = 1

(5.5)

We claim thatπi(t) = e−λt(1− e−λt)i−1 for any i = 1, . . . ,N − 1 is a solution for the system (5.5).

We prove it by recursion on the number of statei. The base case is trivial; in fact from the first and

last equations we obtainπ1(t) = e−λt. We assumeπi(t) = e−λt(1− e−λt)i−1 is true fori > 1 and we

want to prove the same property fori + 1. Firstly, we observe that, for anyi = 1, . . . ,N − 1, πi can
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be written as

πi(t) =
∫ t

0
(i − 1)λπi−1(s)e−iλ(t−s) ds

Therefore

πi+1(t) =
∫ t

0
iλπi(s)e

−(i+1)λ(t−s) ds

=

∫ t

0
iλe−λs(1− eλs)i−1e−(i+1)λ(t−s) ds

= e−(i+1)λtλ

∫ t

0
ieiλs(1− eλs)i−1 ds

= e−(i+1)λtλ

∫ t

0
ieλs(eλs− 1)i−1 ds

= e−(i+1)λt
∫ eλt

1
i(x− 1)i−1 dx

= e−(i+1)λt
∫ eλt−1

0
ixi−1 dx

= e−(i+1)λt(1− e−λt)i = e−λt(1− e−λt)i

Finally, becausedπN(t)
dt = (N − 1)λπN−1(t) and πN−1(t) = e−λt(1 − e−λt)N−2, we obtainπN(t) =

(1− e−λt)N−1.

The avarage concentration value in the Markov chain is defined as

E[A(t)] = A0e−λt +
N−1∑
i=2

(iA0e−λt(1− e−λt)i−1) + NA0(1− e−λt)N−1

= A0e−λt + A0(2(1− e−λt) +
(1− e−λt)2 − (1− e−λt)N−1

e−λt

−(N − 1)(1− e−λt)N−1) + NA0(1− e−λt)N−1

= A0eλt(1− (1− e−λt)N) = A0eλt − A0eλt(1− e−λt)N
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The absolute error is given by

εα(t,N) = |a(t) − E[A(t)]| = A0eλt(1− e−λt)N

Henceεα(t,N) = 0 only if t = 0. As observed from numerical simulations, for any fixed timet,

lim
N→∞

εα(t,N) = 0. Thus lim
N→∞

E[A(t)] = a(t) or, in losing words, if the Markov chain is infinite, the

deterministic simulation is equivalent to the avarage behaviour of the Markov chain. For any fixed

number of levelN we study the behaviour ofE[A(t)] in time. The functionE[A(t)] is always positive

non-decreasing andE[A(0)] = A0. Moreover fort → ∞ E[A(t)] tends to the maximal concentration

valueA0N, we prove it using L’Hopital’s Rule,

lim
t→∞

E[A(t)] = lim
t→∞

A0
1− (1− e−λt)N

e−λt

= A0 lim
t→∞

N(1− e−λt)N−1

= A0N

5.6 Limit distribution of Markov chains with discrete levels of concen-

tration

5.6.1 Kurtz’s theorem

In this section we introduce the main results of Kurtz’s theorem; for a more technical and formal

presentation readers can look through Kurtz (1970, 1971).

A density dependent familyof Markov chainsXv is a sequence{Xv} of Markov processes such

thatv is positive, the state space ofXv is Ev ⊂ Z
m and the transition rates are given by

qx,x+l = v f

(
1
v

x, l

)
l , 0
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where f (x, l) with x ∈ Rm andl ∈ Zm are continuous functions.

Roughly speaking such a family is defined by a parameterv which represents volume, popula-

tion size or whatever else. The states of the Markov chains are normalized with respect tov and

the state spaces of this sort of dentities are considered instead. The transition rates depends on the

densities, hence the name density dependent Markov chains.

Theorem 5.6.1 (Kurtz (1970)).Define a function F in the following way

F(x) =
∑

l

l f (x, l)

Let E⊂ Rm be an open set and ME a constant such that

i. |F(x) − F(y)| < ME|x− y| for any x, y ∈ E,

ii. supx∈E
∑

l |l| f (x, l) < ∞ and

iii. lim
d→∞

supx∈E
∑
|l|>d |l| f (x, l) = 0.

Assume X(s) is a solution of the ordinary differential equations

∂X(s)
∂s

= F(X(s))

X(0) = x0

where X(s) ∈ E for 0 ≤ s≤ t and lim
v→∞

v−1Xv(0) = x0, then for everyδ > 0

lim
v→∞

P

{
sups≤t

∣∣∣∣∣1vXv(s) − X(s)
∣∣∣∣∣ > δ} = 0

As parameterv grows arbitrarily large, the sequence of stochastic processesv−1Xv(t) converges

to a deterministic processX(t) which is solution of the ordinary differential equations defined above.

While systems with finitev are discrete processes, the limiting system is continuous.

Kurtz’s theorem has been used in a lot of chemical and biological applications to clear the
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relationship between the stochastic and deterministic models where the state spaces represent popu-

lations of individuals or molecules andv is the volume or area of the region in which the populations

live.

We want to study the behaviour of Markov chains with discrete levels of concentration for

increasing values ofN. We consider a sequence of Markov chains defined as in Section 5.4,

Xk(t),Xk+1(t), . . . ,XN(t), . . .

We want to study the convergence of this sequence forN→ ∞ via Kurtz’s theorem. Our case is not

similar to the other biological applications which use Kurtz’s results. We have Markov chainsXN(t)

whose structure depends on parameterN, namely the number of levels. However the stochastic

processN−1XN(t) does not represent a concentration or a population density, but a normalized or

scaled level. For instance eventN−1XiN(t) = 1 means the level of moleculemi is the highest possibile

and the actual level value depends on the scale factorN. Transitions depend on “densities”, but

in generalXN(t) is not density dependent because transition rates cannot be rewritten in terms of

continuous functions. For example, if a product of a reaction has levelN, the reaction cannot be

undertaken although all reagents have levels greater than zero. Despite of that there exist some

particular cases of Markov chains with discrete levels that are also density dependent. In next

sections we will explore them.

5.6.2 Reaction networks

We want to define a property of a PEPA model which allows us to infer that the sequence of Markov

chains extracted from the model for increasing values ofN is density dependent. Instead of a PEPA

model we consider the corresponding activity graph. Besides we extend the notion of activity graph

with some information on the levels of each molecule species after some reactions are carried out.

We call this new object reaction network. More formally we give the following definition.
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Definition 5.6.2. An activity graph is a directed bipartite graph G= (V,E). Node set V is equal

to R∪ S where R is the set of action types (i.e. reactions) and S is the set of process names (i.e.

molecules). Edge set E⊆ (R× S) ∪ (S × R) is the smallest set such that:

• if molecule m is consumed in reaction a, then(m,a) ∈ E;

• if molecule m is produced in reaction a, then(a,m) ∈ E;

• if molecule m is involved in reaction a but it is not consumed, then(m,a) ∈ E and(a,m) ∈ E.

The graph is represented by an activity matrixA = A+ − A− of size |S| × |R|. HereA+ = {a+i j }

wherea+i j = 1 if ( j, i) ∈ E, elsea+i j = 0. InsteadA− = {a−i j } wherea−i j = 1 if (i, j) ∈ E, elsea−i j = 0.

Every nodemi has a weightwi ∈ N which models the level number of moleculemi . The vector

wN ∈ N
|S| is the row vector of initial levels. Given a weight assignmentw, a sequence of reactions

r = r i1, . . . r im is a possible succession of reactions. Not all sequencesr are possible; in fact when the

level of some reagents is zero, the corresponding reactions are not allowed. A sequence of reaction

can be empty, in this case we denoter with λ. Given a weight assignmentw and a possible reaction

r j the next statew′ of the system is given by

w′ = w+ Aε j

whereε j is the j-th column of the identity matrix of size|R| × |R|.

Given an assignmentw and a possible sequence of reactionsr, r ∈ N|R| is a column vector which

counts the frequencies of each reaction inr; i.e. r i is the occurences of reactionRi in r. Hence,

wr = w+ Ar is the vector of levels after all the reactions inr are carried out.

A reaction network is closed if arrivals and departures into and out of the system are not allowed.

A network with departures can be mimicked with a closed network where a special kind of molecule

represents lost molecules; we will use this observation to model degradation processes. Instead, in

order to represent arrivals, we can define a special kind for outside molecules with infinite weight.
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In the rest of this work we will consider just closed network with finite weights. We observe that

reaction networks are a particular case of Petri Net.

We introduce the vector notation we use in this work. Thei-th entry of a vectorw is denoted by

wi . Given two vectorw andw′ w < w′ if and only if wi < w′i for everyi; relations≤, ≥, > and= are

defined in a similar way. Given a vectorw and a scalark w < k means that every entrywi of w are

less thank; the same for the other relations.

5.6.3 k/0 networks

Definition 5.6.3. Let R be a set of reactions, S a set of molecules and w a starting weight assign-

ment. A reaction network G= (S∪R,E) is k/0 if and only if for every possible sequence of reactions

r and for every reactionα ∈ R the following condition holds,

∨
mi∈prod(α)

wr
i ≥ k⇒

∨
mi∈reag(α)

wr
i = 0 (5.6)

In ak/0 network if some products of a reaction have a level equal to or greater thank at a given

point of the evolution of the system, then there exists at least one reagent of the reaction with level

zero. As a consequence, the reaction cannot occur. Thereforek represents a bound for the possible

level values.

If a molecule has a starting concentration level higher than the maximal level, we may assume

the concentration has been rised artificially. Nevertheless, we will considerwi ≤ k.

5.6.4 Bounded networks

In this section we explore the idea ofk/0 networks as bounded networks.

Definition 5.6.4. Assume G= (V,E) with V = S ∪ R is a reaction network and w∈ N|S| an

assignment. A node mi ∈ S is k-bounded if and only if for every possible sequence r of reactions,

wr
i ≤ k. If every node mi ∈ S is k-bounded, then network G is k-bounded and vice versa. A network

G is bounded if and only if there exists k such that G is k-bounded.
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Lemma 5.6.5. Given an assignment w≤ k, a reaction network G is k-bounded if and only if G is

k/0.

Proof.

⇒ If G is k-bounded, then every nodemi ∈ S is k-bounded, specifically for any possibler,

wr
i ≤ k. Consider a reactionα where

∨
mi∈prod(α) wr

k ≥ k. We assumead absurdumα is

enabled, i.e.
∧

mi∈reag(α) wr
i , 0. Without loss of generality, letmi ∈ prod(α) such thatwr

i ≥ k.

The reaction sequencer ′ = rα is still valid because of our assumption and we getwr ′
i > k

which contradicts the hypothesis of boundedness. Thus, we conclude
∨

mi∈reag(α) wr
i = 0.

Hence,G is k/0.

⇐ Let k be a number such thatG is k/0. Supposead absurdumthere existsr such thatwr > k

and assumewr
1 > k without loss of generality. Sincew ≤ k and levels can increase of a unit,

there exists a prefixr of r such thatwr
1 = k. Becausewr

1 = k, for every reactionα such that

m1 ∈ prod(α) there existsmj ∈ reag(α) such thatwr
1 = 0. Hence reactionα is not enabled

and the level ofm1 cannot be increased. This contradicts our hypothesis and sowr ≤ k for

anyr. ThereforeG is k-bounded.

�

5.6.5 Application of Kurtz’s theorem

The following lemma illustrates the relation between the states of a Markov chainXN(t) and those

of a reaction networkG = (S ∪ R,E) corresponding to the same activity graph.

Lemma 5.6.6. For every x∈ ρ(wN), there exists a valid sequence of reactions r such that x= wr
N.

Proof. Note thatx ∈ ρ(wN) if and only if ω(x) ∈ ds(ω(wN)) if and only if there exists a sequence

of transitionsω(wN)
(α1,r1)
−−−→ . . .

(αk−1,rk1)
−−−→ ω(x). We want to prove by induction on the length of the

transition chain that there exists a validr such thatx = wr
N.

• If x = wN, then we taker = λ and the conclusion follows immediately.



5.6. Limit distribution of Markov chains with discrete levels of concentration 67

• We assume there exists a sequence of transitionsω(wN)
(α1,r1)
−−−→ . . .

(αk−1,rk1)
−−−→ ω(x) such thatr is

valid andx = wr
N = wN+Ar. Let (αk, rk) be an activity such thatω(x)

(αk,rk)
−−−→ ω(x′). We need to

prove thatrαk is still a valid sequence and thatx′ = wrαk
N . Assumead absurdumthatαk is not

possible, then there existsmi ∈ reag(αk) such thatxi = 0. Thusαk < A(mi [0]) and, because

activities of the same action type are synchronized,ω(x)
(αk,rk)
−−−→ ω(x′) cannot occur. Assumej

is the index corresponding to reactionαk in A; ε j is the j-th column of identity matrix. It is

trivial to realize that

rαk = r + ε j

Thus, given thata j denotes thej-th column ofA, we have

wrαk
N = wN + Arαk = wN + Ar + aT

j = x+ aT
j

By definition ofA it follows,

wrαk
Ni =


xi + 1 if (αk,mi) ∈ E ∧ (mi , αk) < E

xi − 1 if (αk,mi) < E ∧ (mi , αk) ∈ E

xi else

We conclude thatx′ = wrαk
N .

�

We note that the contrary is not always true. In fact a network can be bounded whereas the state

space of a Markov chain with levels is always finite.

The following lemma states the relation between a Markov chain with levels and the corre-

sponding reaction network. We show the equivalence between the boundedness of the network and

the property that the Markov chain has density dependent rates.
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Lemma 5.6.7. Given wn ≤ N, XN(t) is a Markov chain with discrete concentration levels with

initial state vector wN; G is a reaction network. Then, G is N/0 for wN if and only if for every

reactionα in R and any state x∈ EN, rate qx,x+λa is equal to qx,x+λα =
N
M vα

∏
mi∈reag(α)

M
N xi .

Proof.

⇒ AssumeG is N/0 for wN. By definition, given a statex of XN(t) and any reactionα,

qx,x+λα =


N
M vα

∏
mi∈reag(α)

M
N xi if

∧
mi∈prod(α) xi < N

0 otherwise

If
∧

mi∈prod(α) xi < N, the conclusion follows immediately. Otherwise, sincex ∈ ρ(wN) is

reachable fromwN, x = wr
N for some reaction sequencer (see Lemma 5.6.6). Therefore,

becauseG is N/0 for wN, if
∨

mi∈prod(α) xi ≥ N, then
∨

mi∈reag(α) xi = 0 and thusqx,x+λα = 0 =

N
M vα

∏
mi∈reag(α)

M
N xi .

⇐ For everyx ∈ ρ(wN) the following propositionQ is verified

∀α ∈ R
∨

mi∈prod(α)

xi ≥ N⇒
∨

mi∈reag(α)

xi = 0

In fact becauseqx,x+λα =
N
M vα

∏
mi∈reag(α)

M
N xi by hypothesis, if

∨
mi∈prod(α) xi ≥ N, qx,x+λα

must be equal to zero by definition. Hence,
∨

mi∈reag(α) xi = 0. We want to prove that, given

wN ≤ N, for every valid sequence of reactionsr, wr
N ∈ ρ(wN). ThusQ(wr

N) is true andG is

N/0. We prove this fact by induction on the length of the sequencer.

– If r = λ, becausewN ∈ ρ(wN) by definition, the conclusion follows immediately.

– Assume thatwr
N ∈ ρ(wN) for r, namely there exists a sequence of derivationsω(wN)

(α1,r1)
−−−→

. . .
(αk−1,rk1)
−−−→ ω(wr

N). Let αk be a possible reaction afterr, i.e.
∧

mi∈reag(αk) wr
Ni > 0.

Thenwrαk
N ∈ ρ(wN) if there exists a transitionω(wr

N)
(αk,rk)
−−−→ ω(wrαk

N ). αk is enabled if
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∧
mi∈reag(alphak) wr

Ni > 0 and
∧

mi∈prod(αk) wr
Ni < N. The first condition is true because by

hypothesis reactionαk is possible. The second condition is true by induction. In fact

if ad absurdum
∧

mi∈prod(αk) wr
Ni ≥ N, becauseQ(wr

N) is true,
∨

mi∈reag(αk) wr
Ni = 0 that

contradicts the hypothesis thatαk is possible. Ifx = wr
N andω(x)

(αk,rk)
−−−→ ω(x′), then

x′ = wrαk
N . The proof is equal to the last part of the proof of Lemma 5.6.6.

�

We are now able to define some conditions on the structure of the activity graph in order to

understand when the underlying sequence of Markov chains is density dependent. The following

corollary highlights the fact that the class of Markov chains defined by Lemma 5.6.7 is a class of

density dependent Markov chains. It follows from the definition directly.

Corollary 5.6.8. A reaction network G is N-bounded for wN ≤ N if and only if for any re-

action α and state x Markov chain XN(t) has rate qx,x+λα = N f(N−1x, λα) where f(x, λα) =

vα
M

∏
mi∈reag(α) Mxi .

Proof. It follows from Lemma 5.6.7 and Lemma 5.6.5. �

Corollary 5.6.9. There exists k≥ 0 such that for every N≥ k the reaction network G is N-bounded

for wN ≤ N if and only if the sequence{XN(t)}N≥k is density dependent.

Proof. It follows from Corollary 5.6.8 and from the definition of density dependent Markov chains.

�

We observe that in generalG can be structurally bounded, namely bounded for every possible

assigment, and at the same time the condition of Corollary 5.6.9 can be not satisfied. In fact a

network can be bounded for every initial assignment and in particular forwN, but notN-bounded.

As an example, consider the network in Figure 5.4 wherem1 andm2 initial concentrations are high.

The network is structurally bounded. Moleculesm1 andm2 have initial levelN whereas molecule

m3 has level zero. It is trival to see that, after a sequence ofN reactionsr1 andN reactionsr2s, the

level ofm3 becomes 2N. Thus the network is notN-bounded for every values ofN.
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Figure 5.4:Structural boundedness and density dependency.This figure shows that a structurally
bounded network cannot satisfy conditions for desity dependency of the corresponding Markov
chains. Consider an initial assignment wherem1 andm2 areN whereasm3 is zero. The network is
bounded, but notN-bounded.

The following proposition gives us a necessary condition for boundedness. The idea bihind the

proposition is the following. consider a vectoru such thatAu ≥ 0 andAu , 0. Thus, if we have

an initial assignmentw with values large enough, we can build a valid sequence of reactionr such

thatu = r. Thereforer can only increase the level of some molecules, Hence, if we reuse the same

sequence many times, the network grows unboudedly.

Proposition 5.6.10. If there exists u≥ 0 such that Au≥ 0 and Au, 0, then G is unbounded

Proof. Consideru ≥ 0 such thatAu≥ 0 andAu, 0. Letw >
∑

i ui be an initial assignment andr a

sequence of reactions that containsu1 occurrences of reactionr1, u2 occurrences of reactionr2 and

so on. Thenr is a valid sequence of reactions. In fact supposead absurdumthatr is not valid, then

r = r ′αr ′′ wherer ′ is a valid sequence of reactions andα is such thatmi ∈ reag(α) andwr ′
i = 0 for

somei. Becausewi >
∑

i ui , in r ′ there euist at least
∑

i ui + 1 reactions which decrease the level of

mi . However it is not possible, because inr we have
∑

i ui reactions.

Thereforewr = w+ Ar. BecauseAr ≥ 0 andAr , 0, rr is still a valid sequence of reactions and

wrr = wr + Ar. Hence, we can applyr infinitely many times andG is unbounded. �
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An example: circadian clocks

We consider the model for circadian clocks presented in Chapter 4. In Figure 5.6.5 there is the

corresponding activity graph where reactions and molecules are numbered. From the matrixA

which represents the activity graph a system of linear inqualitiesAu ≥ 0 is extracted where some
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constraints are different from zero.

−u1 + u2 ≥ 0

u1 − u2 ≥ 0

u3 + u4 − u5 ≥ 0

−u4 + u5 − u6 ≥ 0

u4 − u5 + u6 ≥ 0

−u2 − u8 + u9 ≥ 0

u7 + u8 − u9 + u10− u11 ≥ 0

u10− u11+ u12 ≥ 0

−u10+ u11− u12 ≥ 0

There exist many solutionsu > 0 such thatAu ≥ 0 andAu , 0. Thus the circadian clock model is

not bounded for some initial assignments (Proposition 5.6.10). For example,ui = 0 for i , 3 and

u3 > 0 is a solution. This solution corresponds to a sequence of reactionsr3, i.e. transcription. A

reactionr3 is valid if the level ofm2 is greater than zero. In our case every initial assignmentw has

w2 entry greater than zero. Hence, the model can grow unboundly for everyw of interest.

Because the model for circadian clocks is not bounded, the underlying sequence of Markov

chains is not density dependent and Kurtz’s theorem cannot be applied. This does not mean that the

stochastic process does not converge to a (deterministic) limit distribution or that there do not exist

any relations with the corresponding determinitic model. However, at the moment, we are not able

to say anything using Kurtz’s theorem.

5.6.6 Some issues on initial assignments

The vector of initial levelswN depends on the vector of initial concentrationsc that is usually known.

Level l i corresponding to concentrationci is given by the formulaN/Mci . HoweverN/Mci has to
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be approximated to some integer value in order to represent a level. Therefore it is not possible to

define a general rule to determine which approximation is more appropriate for a given model.

So far we have assumed to know vectorwN. Nevertheless in order to apply results of Corol-

lary 5.6.9 we need to definewN for everyN ≥ k. Models often describe a scenario where some

substances are consumed by reactions. In this case at initial time some molecules species have the

greatest concentration, while the others have concentration equal to zero. In other words, given

initial concetrationsc, for everyk > 0 the vectorwk is defined as follows,

wki =


k if ci > 0

0 if ci = 0

One can verify trivially that the following relation between entries ofwk andwk+1 is true,

wk+1i =


wki + 1 if wki > 0

wki if wki = 0

Consider a sequence of initial assignements{wk} defined as above. We hope that the particular

structure of these assignments allow us to find a way to semplify the condition of Proposition 5.6.9.

In other words we would like to prove the following result.

Proposition 5.6.11.Let {wk} be a sequence of vectors defined as above and G a reaction network;

if G is k-bounded for wk, then G is also k+ 1-bounded for wk+1.

The proposition would allow us to prove a corollary similar to Corollary 5.6.9 that is true in this

particular case. Thus we have a sufficient condition for density dependency, e.g. when the network

is 1-bounded.

Corollary 5.6.12. Let {wi} be a sequence of vectors defined as above and G a reaction network. If

there exists k such that G is k-bounded for wk, then the sequence{XN(t)}N≥k is a family of density

dependent Markov chains.

Proof. It follows from Proposition 5.6.11 and from Corollary 5.6.9. �
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Unluckly Proposition 5.6.11 is not true. As a counter-example, consider the network in Fig-

ure 5.5 wherem1 and m4 have high initial concentrations. It is easy to verify that the net is 1-

bounded forw1, but it is not 2-bounded forw2. We belive that, if the net presents some structural

properties, then Proposition 5.6.11 is verified. At the moment we are wroking on this problem.

Figure 5.5:Again on boundedness.This figure shows that Proposition 5.6.11 is not true. Consider
an initial assignment wherem1 andm4 areN, while m2 andm3 are zero. Then the net is 1-bounded
for w1, but it is not 2-bounded forw2.

5.6.7 Limit distribution and deterministic model

Consider a sequence of Markov chains{XN(t)} defined as above and assume it density dependent.

Since functionF(x) =
∑
α∈Rλa f (x, α) is continuously differentiable,F is locally Lipshitz. Then

conditions to apply Kurz’s theorem are satisfied for any bounded open set.

ThereforeN−1XN(t) convergesfor N → ∞ to a limit distributionX(t) which is solution of the

following differential equations,

X(0) = x0 (5.7)

dX(t)
dt

= F(x) (5.8)

WhereF(x) =
∑
α∈Rλα f (x, λα) and for every reactionα ∈ R,
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f (x, λα) =
vα
M

∏
mi∈reag(α)

xi M

We want to find which relation exists betweenX(t) and the corresponding deterministic model

X(t), define as follows,

X(0) = Mx0 (5.9)

dX(t)
dt

= F(x) (5.10)

WhereF(x) =
∑
α∈Rλα f (x, λα) and for every reactionα ∈ R,

f (x, λα) = vα
∏

mi∈reag(α)

xi

Proposition 5.6.13. If X(t) is a solution of 5.7, then MX(t) is a solution of 5.9.

Proof. SinceX(0) = x0, X(0) = MX(0). Considert > 0, we substituteMX(t) instead ofX(t) in

equationdX(t)
dt = F(x) and we prove the equality holds.

dX(t)
dt

= M
dX(t)

dt
=

= MF(X(t)) = M
∑
α∈R

λα f (X(t), λα)

BecauseM f (x, λα) = vα
∏

mi∈reag(α) xi M = f (Mx, λα), we concludedMX(t)
dt = F(MX(t)). Therefore

X(t) = MX(t) is solution of 5.9. �

Proposition 5.6.14. If X(t) is a solution of 5.9, then M−1X(t) is a solution of 5.7.
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Proof. For t = 0 we haveX(0) = 1/MX(0) = x0. For t > 0 we proceed as before and we substitute

1/MX(t) instead ofX(t).

dX(t)
dt

=
1
M

dX(t)
dt
=

=
1
M

F(X(t)) =
1
M

∑
aα∈R

λα f (X(t), λα)

Because1
M f (x, λα) =

vα
M

∏
mi∈reag(α) xi = f (M−1x, λα), we get dM−1X(t)

dt = F(M−1X(t)). Hence

X(t) = M−1X(t) is a solution of 5.7.

�

Through Kurtz’s theorem for sufficiently largeN we have 1/NXN(t) ' X(t). Considering con-

centrations instead of levels we getM/NXN(t) ' MX(t). BecauseX(t) is a deterministic distribution,

E[X(t)] = X(t). Therefore, the average of discrete concentrationsM/NE[XN(t)] converges toMX(t)

which is solution of the corresponding deterministic model (Proposition 5.6.13).

5.7 A case study: ERK signalling pathway

The ERK signalling pathway is a biological process involved in cellular division and differentia-

tion. Understanding its dynamics is of interest to cancer research because cell populations grow

uncontrollably when the pathway does not work correctly.

Here, we consider a model presented in Cho et al. (2003) that describes how RKIP regulates the

behaviour of the ERK pathway. In Figure 5.6 there is a graphical representation of the model.

Here, nodes represent molecules while edges model unbinding and binding reactions between

molecules. For examplem1 andm2 bind together to form a complexm3 andm3 splits into molecules

m1 andm2. Reaction names are given in the rectangles;r i/r j denotes binding reactionr i and un-

binding reactionr j . Initially all concentrations are zero with the exception of the concentrations of

moleculesm1, m2, m7, m9 andm10. Each node is labelled with the corresponding protein name.
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Figure 5.6: ERK signalling pathway regulated by RKIP.

5.7.1 PEPA model and activity graph

We build a PEPA model with two levels of concentration following conventions defined in Chap-

ter 4. The code is similar to the one in Calder et al. (2004) except for the addition of MEK protein

and its associated complex. The code can be found in Appendix B. In Figure 5.7 we show the

corresponding activity graph.

From the activity graph we derive ODEs (Chapter 4) and a Markov chain withN levels of

concentration. For more details readers can have a look at Appendix B.

5.7.2 Convergence to a deterministic distribution

We use results of the previous section in order to study the convergence of the underlying Markov

chains for increasing values ofN. We want to prove that for a large number of levels the Markovian

model behaves as the deterministic interpretation of the PEPA model. This result was observed

experimentally (without a formal proof) also in Calder et al. (2005).



78 Chapter 5. Markov chains with discrete levels and their approximations

Figure 5.7:Activity graph for ERK signalling pathway.

By assumption moleculesm1, m2, m7, m9 andm10 have the highest initial level, whereas all

others have level zero. Therefore vectorwk has only zero ork entries. If for everyk ≥ 1 the network

is k-bounded forwk, then the underlying Markov chains are density dependent by Corollary 5.6.9. In

order to provek-boundeness we show that for each moleculemi a statew(mi) wherew(mi)i >= k+1

andw(mi) j >= 0 for j , i is not reachable fromwk. By definition of a reaction network if there

does not exist a vectoru ≥ 0 such thatAu= w−wk, thenw is not reachable fromwk. Thus we need

to solve some systems of integer linear inequalities with symbolic coefficientk.

The matrix corresponding to our model is defined in the following way,
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A =



−1 1 0 0 1 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0 1

1 −1 −1 1 0 0 0 0 0 0 0

0 0 1 −1 −1 0 0 0 0 0 0

0 0 0 0 1 −1 1 0 0 0 0

0 0 0 0 1 0 0 0 −1 1 0

0 0 0 0 0 −1 1 1 0 0 0

0 0 0 0 0 1 −1 −1 0 0 0

0 0 −1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 −1 1 1

0 0 0 0 0 0 0 0 1 −1 −1


For each moleculemi we define the corresponding vectorw(mi) − wk wherew(mi)i ≥ k + 1 and

w(mi) j ≥ 0 j , i. We list these vectors in the following table.

molecule w(mi) − wk

m1 (1,−k,0,0,0,0,−k,0,−k,−k,0)

m2 (−k,1,0,0,0,0,−k,0,−k,−k,0)

m3 (−k,−k, k+ 1,0,0,0,−k,0,−k,−k,0)

m4 (−k,−k,0, k+ 1,0,0,−k,0,−k,−k,0)

m5 (−k,−k,0,0, k+ 1,0,−k,0,−k,−k,0)

m6 (−k,−k,0,0,0, k+ 1,−k,0,−k,−k,0)

m7 (−k,−k,0,0,0,0,1,0,−k,−k,0)

m8 (−k,−k,0,0,0,0,−k, k+ 1,−k,−k,0)

m9 (−k,−k,0,0,0,0,−k,0,−1,−k,0)

m10 (−k,−k,0,0,0,0,−k,0,−k,1,0)

m11 (−k,−k,0,0,0,0,−k,0,−k,−k, k+ 1)
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We show that systemAx≥ w(m1)−wk has no solution; the other cases are similar and therefore are

omitted. Consider the subsystem (first, third and forth rows):

−u1 + u2 + u5 ≥ 1

u1 − u2 − u3 + u4 ≥ 0

u3 − u4 − u5 ≥ 0

We infer the following constraints−u3 + u4 + u5 > 0 andu3 − u4 − u5 ≥ 0 that cannot be satisfied

at the same time. We used lpsolve (Notebaert, 2005), a Mixed Integer Linear Programming (MILP)

solver, in order to prove that for every moleculemi there does not exist any solutionu ≥ 0 such that

Au= w(mi) − wk, hence for everyk ≥ 0 networkG is k-bounded forwk.

We illustrate the theoretical result with a numerical experiment. In Figure 5.8 we plot the time

dependent behaviour of MEKPP for different values ofN. We note that also for small values ofN

the stochastic and deterministic solutions become indistinguishable.

The condition used to prove the boundedness of the ERK model is stronger that the one we need

because it is sufficient but not necessary. This condition requires to solve some systems of linear

integer inequalities. Integer programming problems are in the worst case undecidable (Schrijver,

1998); there are however some subclasses of problems that are solvable in polynomial time. For

example if the matrix istotally unimodularand the right-hand sides of the constraints are integers

(Papadimitriou and Steiglitz, 1989). Nevertheless these facts do not allow us to infer anything about

decidability of our formulation of boundedness problem.

5.8 Discussion

In this chapter we studied the problem of convergence of Markovian models with discrete levels of

concentration. We showed that under some structural conditions and for a sufficiently large number

of levels the average behaviour of a Markov process is equal to the solution of the corresponding
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Figure 5.8: Comparing stochastic and deterministic solutions for the ERK pathway model.
This figure shows the deterministic and stochastic behaviour of MEKPP protein. Also for small
values ofN the stochastic and deterministic solutions are indistinguishable.

deterministic model.

In some sense we could say that the deterministic model is derived from the stochastic one. We

want to tell if the contrary is true: given a deterministic model can we build a stochastic one that is

“equivalent” to it? At the moment we are not interested in a formal definition of model equivalence,

we say that two model are equivalent if they behave in the same way under some conditions. The

answer seems to be negative in general and we propose a simple example where a deterministic

model and its stochastic couterpart behave differently.

The Predator-Prey model describes a simple biological system in which two species, predators

and preys, interact. This model consists of a pair of nonlinear differential equations,
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dx
dt
= −ax+ bxy

dy
dt
= −bxy+ cy (5.11)

Here, x andy represent the number of predators and prey respectively whilea, b andc are rate

constants which model the interaction between the two species. The prey are assumed to reproduce

exponentially, that iscy. Otherwise prey are killed by predators−bxy; the rate of predation is

assumed to be proportional to the probability of meeting between predators and prey. On the other

hand, predators die exponentially, namely−ax, or else they will grow if they find something to eat,

i.e. bxy. We use the same rate constantb for predator growth and prey death in order to adapt the

model to our Markovian framework. In the classical model these two constants are different.

Equations 5.11 present periodic solutions. Unluckly there does not exist an analytical solution,

however stability and bifurcation analysis allow us to get some useful information on the nonlinear

behaviour of the system.

We are interested in discovering for which values ofx andy the level of population does not

change or, in other words, the system is in equilibrium.

−ax+ bxy = 0

−bxy+ cy = 0

The above system of equations yields two solutions, (0,0) and (c/b,a/b), which are the equilibrium

points. Thus equilibrium depends on rate constants.

Then we study the stability of the equilibria using linear stability analysis (see Chapter 3). The

Jacobian matrix for the predator-prey model is given by,

J(x, y) =

 −a+ by bx

−by −bx+ c


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We compute the eigenvalues of the Jacobian matrix evaluated in both the equilibrium points. The

matrix J(0,0) has eigenvaluesλ1 = −a andλ2 = c, hence the equilibrium (0,0) is a saddle point

and is unstable. Instead the matrixJ(c/b,a/b) has eigenvaluesλ1,2 = ±i
√

ac, thus the equilibrium

(c/b,a/b) is a centre and so the levels of predator and prey polulations oscillate around it.

We built a Markov chain as described above for this model whereM is the maximal concentra-

tion, N + 1 the number of discrete levels of concentration andH = M/N the step between consec-

utive levels. We observe that in this case the Markov chain has two absorbing states corresponding

to states (0,0) and (0,N); in general (i, j) is a state where the level of predators isi and the level

of prey j. The second absorbing state (0,N) exists because we consider finite Markov chains; if

N→ ∞, this absorbing state becomes transient. Thus we are interested mainly in the first one (0,0).

One may think that state (0,0) corresponds to equilibrium point (0,0) in the deterministic model. In

some sense it is true, but the deterministic and Markovian states have a completely different nature.

Firstly, every realization of the Markov chain will drop into (0,0) eventually; that is not the case for

the deterministic model. Secondly, in the deterministc model (0,0) is an unstable equilibrium point,

it means that after a small perturbation the system goes away from equilibrium and yields a limit

cycle. Of course, we can not compare equilibrium points and absorbing states, but the behaviour of

the equilibrium point seems the contrary of that one of an absorbing state. In conclusion, these two

model seem to be qualitatively different and they describe different systems. Note that it is true also

if you consider number of molecules instead of concentration levels and we have the same problem

also in stochastic simulation.

I consider the lowest level with a different meaning; the concentration is never zero, but it

is just very small. I do not know if this assumption makes sense because in this way we lose

some information on extinction, however the Markov chain becomes ergodic. I observed that for

some values ofN andM the equilibrium behaviour of the deterministic model is recovered by the

Markov chain; for example if the initial state in the Markov chain corresponds to equilibrium point

(c/b,a/b) in the deterministic model, the timed avarage behaviour of the Markov chain is similar

to the deterministic one. It is not clear why and how it is true only for particular values ofN and
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M. Instead the Markov chain with absorbing states reaches the absorbing state later for the same

values.



Chapter 6

Conclusions

In this thesis we showed a novel and alternative style of modelling biological systems in the context

of process algebra PEPA (Calder et al., 2004). Each molecule is represented by a process and each

process has an index that represents the current level of the corresponding molecule. Actions model

reactions as usual and rates are computed following some rules. An activity graph is a graphical

representation of a PEPA model that represents increasing and descreasing of molecular concen-

trations in reactions. From an activity graph several mathematical interpretations can be derived.

We considered three possible interpretations for a PEPA model: Markov chains with discrete lev-

els of concentration, ordinary differential equations and stochastic simulation based on Gillespie’s

algorithm (Gillespie, 1976).

We proposed a model for circadian clocks based on the core model forNeurospora(Goldbeter,

2002). We showed how a model with discrete concentration levels can also represent different acti-

vation levels for abstract biological processes. We illustrated through some numerical experiments

how stochastic simulations converge to a deterministic model as the number of involved molecules

is sufficiently large. Our approach yields results similar to the literature (Gonze et al., 2002a,b).

We analysed the relationships between Markov chains with discrete levels and differential equa-

tions. For some simple examples that can be solved analytically the average Markovian behaviour

converges to the solution of the deterministic systems as the number of levels increases. We gener-
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alized this result for a class of Markov chains which present some structural properties.

We used Kurtz’s results on convergence of density dependent Markov chains (Kurtz, 1970). A

density dependent family of Markov chainsXv is a sequence{Xv} of Markov processes defined by

a parameterv. The states of the Markov chains are normalized with respect tov and transition rates

depend on these densities.

The Markovian representation of a PEPA model with discrete levels is a parametrized Markov

chainXN(t), whereN is the number of levels. However, we showed that the sequence{XN(t)} is not

always density dependent. We formulated a sufficient and necessary structural condition on the state

space ofXN(t) in such a way that the sequence{XN(t)} is a sequence of dentity dependent Markov

chains and we can apply Kurtz’s results on convergence. We proposed an effective way to verify if a

model satifies this condition. Roughly speaking we defined a generalization of the notion of activity

graph to represent the state spaces of all the Markov chains. Then if the activity graph presents some

structural properties (e.g. boundedness), the corresponding sequence is density dependent.

We proved that we cannot apply Kurtz’s theorem to the circadian clock model because some

molecule species can grow unboundedly. In gerneral we have this problem in every model with

positive feedback loops and in general with metabolic pathways. Nevertheless the class of models

whose convergence can be proved via Kurtz is quite wide. For example signalling pathway models

such as ERK pathway (Cho et al., 2003) belong to this class. We proved that the representation

of the ERK signalling pathway with discrete levels of concentrations yields results similar to the

deterministic model when the number of levels issufficiently large. These results were observed

experimentally also in Calder et al. (2005).

This work offers several possible future extentions. The next step could be to study the conver-

gence rate of Markov models with discrete levels towards the corresponding deterministic models.

Besides it would be interesting to compare the convergence of stochastic models with discrete con-

centration levels and the one of stochastic models with individual molecule species. Another possi-

bility would be to study the behaviour of discrete stochastic models around their limit deterministic

distribution varying the number of levels.
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In order to make the framework described in this thesis more realistic it is necessary to introduce

different maximal concentrations for different molecule species and to allow also arbitrary initial

concentrations.

It is important to understand which information (if any) is lost in Markovian models with few

levels and if it is possible to infer some properties of the corresponding deterministic models from

them. In this way we could perform model checking on the discrete models, e.g.using CSL logic,

and obtain results valid also for the differential equations.

We need to extend the results on convergence to a wider class of models. It could be necessary

to develop theoretical results similar to Kurtz’s theorem.

Finally in this thesis we took in account the average behaviour of a stochastic process as a

measure correlated with the solution of the corresponding deterministic model. We observed that

under some conditions the mean is equal to the solution of the deterministic system. In general,

however, it is not true. As an example consider a deterministic model which presents sustained

osciallations, e.g. the circadian clock model. If the corresponding Markov chain is ergodic as in

our case, there exists a steady state distribution, hence the mean or any other reward function can

describe damped oscillation at most. Dealing with these problems is still an open question.





Chapter 7

Conclusioni

In questa tesi abbiamo mostrato uno stile nuovo ed alternativo per modellare i sistemi biologici nel

contesto dell’algebra di processo PEPA (Calder et al., 2004). Ogni molecolaè rappresentata da un

processo ed ogni processo ha un indice che rappresenta il livelo corrente della molecola corrispon-

dente. Le azioni modellano le reazioni come al solito e le velocità sono calcolate seguendo qualche

regola. Un grafo delle attività à una rappresentazione grafica di un modello PEPA che rappresenta

gli incrementi e i decrementi delle concentrazioni molecolari nelle reazioni. Dal grafon delle attività

sono derivate alcune interpretazioni matematiche. Noi consideriamo tre possibili interpretazioni di

un modello PEPA: catene di Markov con livelli discreti di concentrazione, equazioni differenziali

ordinarie e simulazioni stocastiche basate sull’algoritmo di Gillespie (Gillespie, 1976).

Abbiamo proposto un modello per i cicli circadiani basato sul modello fondamentale perNeu-

rospora (Goldbeter, 2002). Abbiamo mostrato come un modello con livelli discreti di concen-

trazioni pùo anche rappresentare livelli di attivazione per dei processi biologici astratti. Abbiamo

illustrato attraverso qualche esperimento numerico come le simulazioni stocastiche convergano ad

un modello deterministico quando il numero di molecole coinvoltes̀ufficientemente grande. Il nos-

tro approccio produce risultati simili alla letteratura (Gonze et al., 2002a,b).

Abbiamo analizzato le relazioni tra le catene di Markov con livelli discreti e le equazioni dif-

ferenziali. Per alcuni semplici esempi che possono essere risolti analiticamente il comportamento
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markoviano medio converge alla soluzione dei sistemi deterministici quando il numero di livelli

cresce. Abbiamo generalizzato questo risultato ad una classe di catene di Markov che presentano

alcune propriet̀a strutturali.

Abbiamo utilizzato i risultati di Kurtz sulla convergenza delle catene di Markov dipendenti

dalla densit̀a (Kurtz, 1970). Una famiglia di catene di MarkovXv dipendente dalla densità è una

sequenza{Xv} di processi di Markov definiti da un parametrov. Gli stati delle catene di Markov

sono normalizzati rispetto av e le velocit̀a di transizione dipendono da queste densità.

La rappresentazione markoviana di un modello PEPA con livelli discreti di concentrazioneè

una catena di Markov parametrizzataXN(t), doveN è il numero di livelli. Per̀o abbiamo mostrato

che la sequenza{XN(t)} nonè sempre dipendente dalla densità. Abbiamo formulato una condizione

strutturale sufficiente e necessaria sullo spazio degli stati diXN(t) per la quale la sequenza{XN(t)} è

una sequenza di catene di Markov dipendenti dalla densità e possiamo applicare i risultati di Kurtz

sulla convergenza. Abbiamo proposto un metodo effettivo per verificare se un modello soddisfa

questa condizione. In parole povere abbiamo definito una generalizzazione della nozione di grafo

delle attivit̀a per rappresentare gli spazi degli stati di tutte le catene di Markov. Poi, se il grafo

delle attivit̀a presenta alcune proprietà strutturali (ciòe è bounded), la sequenza corrispondenteè

dipendente dalla densità.

Abbiamo provato che non possiamo applicare il teorema di Kurtz al modello del ciclo circadi-

ano perch̀e alcune molecole possono crescere senza limiti. In generale abbiamo questo problema

in ogni modello con feedback positivo ed con pathway metabolici. Nonostante questo la classe dei

modelli la cui convergenza può essere provata via Kurtz̀e abbastanza vasta. Ad esempioi modelli

per pathway di segnali biologici come quello per ERK (Cho et al., 2003) appartengono a questa

classe. Abbiamo provato che la rappresentazione del pathway dell’ERK con livelli discreti di con-

centrazione produce risultati simili al modello deterministico quando il numero di livelliè sufficien-

temente grande. Questi risultati sono stati osservati numericamente anche in Calder et al. (2005).

Questo lavoro si presta a diverse possibili estensioni future. Il prossimo passo potrebbe essere

studiare la velocit̀a di convergenza dei modelli di Markov con livelli discreti verso il corrispondente
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modello deterministico. Inoltre sarebbe interessante confrontare la convergenza dei modelli sto-

castici con livelli discreti di concentrazione e quella dei modelli stocastici con le singole molecole.

Un’altra possibilit̀a potrebbe essere studiare il comportamento dei modelli stocastici discreti intorno

alla loro distribuzione limite deterministica variando il numero di livello.

Per rendere l’approccio descritto in questa tesi più realisticoè necessario introdurre differenti

concentrazioni massime per tipi di molecole differenti e permettere anche arbitrarie concentrazioni

iniziali.

È importante capire quale informazione viene persa (se accade) nei modelli markoviani con

pochi livelli e seè possibile inferire alcune proprietà dei corrispondenti modelli deterministici da

questi. In questo modo potremmo eseguire del model checking sui modelli discreti, ad esempio

usando logiche tipo CSL, ed ottenere risultati validi anche per le equazioni differenziali.

È necessario estendere i risultati della convergenza ad una classe più ampia di modelli. Potrebbe

essere necessario sviluppare risultati teorici simili al teorema di Kurtz.

Infine in questa tesi abbiamo preso in considerazione il comportamento medio dei processi sto-

castici come misura relazionata con la soluzione del corrispondente modello deterministico. Abbi-

amo osservato che sotto certe condizioni la mediaè uguale alla soluzione del sistema deterministico.

In generale, però, nonè vero. Per esempio considera un modello deterministico che prensenta delle

oscillazioni periodiche, ad esempio il modello per il ciclo circadiano. Se la corrispondente catena

di Markov è ergodica come nel nostro caso, esiste una distribuzione steady state, quindi la media

o qualsiasi altra funzione di rewarding può descrivere al più delle oscillazioni smorzate. Gestire

questi problemìe ancora una questione aperta.





Appendix A

PEPA: the language

In this chapter a brief introduction to PEPA language can be found. The explanation is quite informal

and readers interested in details can have a look at the work of Jane Hillston Hillston (1995).

A.1 Syntax

In PEPA systems are represented ascomponentswhich take part toactivities. The syntax of PEPA

is defined by the following grammar rules:

S ::= (α, r).X | S + S

P ::= P BC
L

P | P/L | X

HereS is asequential componentandP is amodel component. X is a constant name which refers to

a sequential component. We assume that every constantX are associated to exactly one sequential

component. We observe that operatorBC can be only at top level; this is a necessary condition for

the ergodicity of the underlying Markovian model (Hillston, 1995). PEPA has five combinators:

prefix, choice, constant, hiding and cooperation.

Prefix is the basic component to build up complex systems, the process (α, r).P carries out

actionα at rater and then it behaves asP. The prefix (α, r) is termed activity whileα is the action
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type andr the rate of the activity.

Choicemodels competition between two processes: the componentP+ Q represents a system

which may evolve either intoP or Q.

Constant allows us to assign names to components, for exampleX
def
= (α, r).P means that vari-

ableX behaves as process (α, r).P.

Hiding is a mechanism to abstract away some aspects of a component’s behaviour. For instance,

the processP \ {α} hides the actionα and prevent other processes to join in.

Cooperationallows two processes to be synchronized over a set of actions. In expressionP BC
L

Q

processesP andQ must cooperate on actions contained in the setL, but other enabled actions are

carried out independently and concurrently. WhenL is empty, we writeP||Q instead ofP BC
L

Q.

When a component enables an activity whose action type is in the cooperation set, it will be

stuck until the other component enable an activity of that type. The rates of shared activities depend

on the rate of both cooperands’ rates. In other words, the appearent rate of a shared activity is the

rate of the slower component.

Sometimes a component may be passive with respect to an action in a cooperation set. Consider

for example a client waiting for a service. In these cases the rate of the activity is unspecified

(symbol>) and it depends on the rate of the activity of the other cooperand. All passive actions

must be synchronized in the final model.

The action types which a componentP can next undertake form the set of the current action

types ofP, denotedA(P). The activities which a componentP can next perform are the current

activities ofP, denotedAct(P).

A.2 Semantics

The structured operational semantics of PEPA are shown in Figure A.2.

Definition A.2.1 (Hillston (1995)). The apparent rate of action typeα in a component P, denoted

rα(P) is the sum of the rates of all activities of typeα in Act(P). More formally,
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Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F′

E + F
(α,r)
−−−→ F′

Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α < L)

E
(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)

Cooperation

E
(α,r)
−−−→ E′

E BC
L

F
(α,r)
−−−→ E′ BC

L
F

(α < L)

F
(α,r)
−−−→ F′

E BC
L

F
(α,r)
−−−→ E BC

L
F′

(α < L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F′

E BC
L

F
(α,R)
−−−→ E′ BC

L
F′

(α ∈ L)

where R=
r1

rα(E)
r2

rα(F)
rα(E BCL F)

Constant

E
(α,r)
−→ E′

A
(α,r)
−→ E′

(A
def
= E)

Figure A.1: PEPA Structured Operational Semantics
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• rα((β, r).P) =


r if α = β

0 if α = 0

• rα(P+ Q) = rα(P) + rα(Q)

• rα(P/L) =


rα(P) if α < L

0 if α ∈ L

• rα(P BCL Q) =


min(rα(P), rα(Q)) if α ∈ L

rα(P) + rα(Q) if α < L

For a PEPA component the set of derivatives is the set of all the behaviours into which the

component can evolve.

Definition A.2.2 (Hillston (1995)). The derivative set of a PEPA component C is denoted ds(C)

and defined recursively as the smallest set of components such that:

• C ∈ ds(C);

• if Ci ∈ ds(C) and there exists a∈ Act(Ci) such that Ci
a
−−−→ C j , then Cj ∈ ds(C).



Appendix B

Model specifications

In this chapter we report the algebraic specifications in PEPA language for each model presented in

this thesis. For every specifications we list also the underlying mathematical interpretations, such as

ordinary differential equations, reactions for Gillespie’s algorithm and Markov chains with discrete

levels of concentrations.

Ordinary differential equations are described with the standard mathematical representation.

Experiments were carried out using Runge-Kutta 5 method implemented in GNU/Octave (Eaton,

2005), an high-level Matlab-like language for solving linear and nonlinear problems numerically.

Stochastic simulations are described by a set of chemical reactions using the built-in language of

Dizzy (Ramsey, 2006). Dizzy is a chemical kinetics simulation software package written in the Java

programming language. It allows to define models as systems of chemical reactions. It performs

several kinds of stochastic and deterministic simulations (e.g. Gillespie)

Markov chains are described using PRISM language (Parker et al., 2006) following conventions

described in (Calder et al., 2005). PRISM is a probabilistic model checker written in Java for

modelling and analysing probabilistic systems. It supports continuous time Markov chain models

and implements CSL model checking (Aziz et al., 1996), a logic to express properties of steady

state and transient behaviour of Markov processes. Transient and steady state analysis of Markov

chains was performed using CSL formulas
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B.1 Circadian clock model

Several theoretical models have been proposed for circadian clocks in different organisms (Gold-

beter, 2002). Following Gonze et al. (2002a) we consider the minimal model initially suggested

for circadian rhythms inNeurospora. M represents mRNA whilePC andPN are the clock proteins

into the cytosol and into the nucleous respectively.PC is synthesized from the mRNAM, then it

is either transported into the nucleus or degradated.PN exerts a negative feedback on transcription

of its gene or else it goes out of the nucleus. Degradations are controlled by enzymes. The time

clock gene
transcription

nuclear
protein

cytosolic
protein

mRNA P

P
N

C
M

v
k

k k

v v

1 2

d

s

s

m

evolution of the concentrations involved in the model is given by the following kinetic equations,

d[M]
dt

= vs
kn

I

kn
I + [Pn]n − vm

[M]
km+ [M]

d[PC]
dt

= ksM − vd
[PC]

kd + [PC]
− k1[PC] + k2[PN]

d[PN]
dt

= k1[PC] − k2[PN]
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PEPA model

Th def
= (m, vs).Th + (o f f,>).T l

T l def
= (on,>).Th

Rh def
= (on, von).Rl

Rl def
= (o f f,>).Rh

Ml def
= (m,>).Mh + (um, vum).Mh

Mh def
= (pc1, ks).Mh + (bm, vbm).Ml

Eh
M

def
= (bm, vbm).El

M

El
M

def
= (um, vum).Eh

M + (cm, vcm).Eh
M

Ch
M

def
= (um, vum).Cl

M + (cm, vcm).Cl
M

Cl
M

def
= (bm, vbm).Ch

M

Pl
C

def
= (pc1,>).Ph

C + +(pc2, k2).Pl
C + (upc, vupc).Ph

C

Ph
C

def
= (pn, k1).Pl

C + (bpc, vbpc).Pl
C

Eh
PC

def
= (bpc, vbpc).El

PC

El
PC

def
= (upc, vupc).Eh

PC
+ (cpc, vcpc).Eh

PC

Ch
PC

def
= (upc, vupc).Cl

PC
+ (cpc, vcpc).Cl

PC

Cl
PC

def
= (bpc, vbpc).Ch

PC

Pl
N

def
= (pn,>).Ph

N

Ph
N

def
= (pc2, k2).Pl

N + (o f f, vo f f ).Pl
N

Th BC
J

(Rl BC
K

(((Ml BC
L

Eh
M) BC

M
Cl

M) BC
N

(((Pl
C
BC
O

Eh
PC

) BC
P

Cl
PC

) BC
Q

Pl
N)))

WhereJ = {m,o f f,on}, K = {o f f}, L = {um,bm}, M = {um,bm, cm}, N = {pc1}, O = {upc,bpc},

P = {upc,bpc, cpc} andR = {pn, pc2}. In the initial state we have high concentrations of enzymes

(EM andEPC) and the transcription machineryT is working at high level; instead concentrations of
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the enzyme-substrate complexes (CM andCPC) and of mRNA (M), citosolic proteinPC and nuclear

proteinPN are low.

Activity graph

ODE model

d[T]
dt = −vo f f [T][PN] + von[R]

d[R]
dt = vo f f [T][PN] − von[R]

d[M]
dt = vs[T] − vbm[M][EM] + vum ∗ [CM]

d[EM ]
dt = −vbm[M][EM] + vum[CM] + vcm[CM]

d[CM ]
dt = vbm[M][EM] − vum[CM] − vcm[CM]

d[PC]
dt = ks[M] − k1[PC] + k2[PN] − vbpc[PC][EPC ] + vupc[CPC ]

d[EPC ]
dt = −vbpc[PC][EPC ] + vupc[CPC ] + vcpc[CPC ]

d[CPC ]
dt = vbpc[PC][EPC ] − vupc[CPC ] − vcpc[CPC ]

d[PN]
dt = k1[PC] − k2[PN] − vo f f [T][PN]
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Dizzy model

#model "clock";

// volume parameter

OMEGA = 1000;

// deterministic rates

vs = 0.5 ;

off = 0.4 ;

on = 0.2 ;

vbm = 16.5;

vum = 3.0;

vcm = 0.3;

vbpc = 165.0;

vupc = 15.0;

vcpc = 1.5;

k1 = 0.2;

k2 = 0.2;

ks = 2.0;

// stochastic rates

s_vs = vs ;

s_off = off / OMEGA ;

s_on = on ;

s_vbm = vbm / OMEGA;

s_vum = vum;

s_vcm = vcm;
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s_vbpc = vbpc / OMEGA;

s_vupc = vupc;

s_vcpc = vcpc;

s_k1 = k1;

s_k2 = k2;

s_ks = ks;

// initial population

EM = 1*OMEGA;

M = 0;

CM = 0;

EPC = 1*OMEGA;

PC = 0;

CPC = 0;

PN = 0;

T = 1*OMEGA;

R = 0;

enzyme_mRNA_combine, EM + M -> CM , s_vbm;

enzyme_substrate_separate, CM -> EM + M , s_vum;

degradate_mRNA, CM -> EM , s_vcm;

enzyme_PC_combine,EPC + PC -> CPC, s_vbpc;

enzyme_PC_separate,CPC -> EPC + PC, s_vupc;

degradate_PC,CPC -> EPC, s_vcpc;

translation,M -> M + PC, s_ks;
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move_into_nucleous,PC -> PN, s_k1;

move_out_of_nucleous,PN -> PC, s_k2;

transcription,T -> T + M, s_vs;

switch_off,T + PN -> R, s_off;

switch_on,R -> T, s_on;

B.2 Decay model

We consider a simple model which describes the degradation process of a kind of molecule or

substanceA. The deterministic behaviour is represented by the following differential equations,

da(t)
dt

= −µa(t)

a(0) = A0

It is easy to verify that the system solution is given by,

a(t) = A0e−µt

PRISM model

stochastic

const int N = 1000;

const int MAX = 100;

const double R = MAX/N;

const double mu = 0.5;
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module AProcess

A: [0..N] init N;

[degradate] (A>0)-> A*R : (A’=A-1);

[null] (A=0) -> 1: (A’=A);

endmodule

module ConstantProcess

dummy: bool init true;

[degradate] (dummy=true) -> mu/R : (dummy’=true);

endmodule

system

AProcess || ConstantProcess

endsystem

rewards

true: A*R:

endrewards

CSL properties

// T represents time

const double T;

// time dependent behaviour

// return reward A*R at instant time (I) T.

R=? [ I=T ]
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B.3 Growth model

We consider a model which represents growing of a population of molecules of kindA. The differ-

ential equation is given by

da(t)
dt

= λa(t)

a(0) = A0 > 0

The only solution is

a(t) = A0eλt

PRISM model

stochastic

const int N = 100;

const double lambda = 0.5;

const double A0 = 2.0;

module AProcess

A: [1..N] init 1;

[degradate] (A<N)-> (A*A0) : (A’=A+1);

[null] (A=N)-> 1: (A’=A);

endmodule

module ConstantProcess
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dummy: bool init true;

[degradate] (dummy=true) -> lambda/A0 : (dummy’=true);

endmodule

system

AProcess || ConstantProcess

endsystem

rewards

true: A*R;

endrewards

CSL properties

// T represents time

const double T;

// time dependent behaviour

// return reward A*R at instant time (I) T.

R=?[I=T]

B.4 ERK pathway model

The ERK signalling pathway is a biological process involved in cellular division and differentiation.

Here, we consider a model presented in Cho et al. (2003) that describes how RKIP regulates the

behaviour of the ERK pathway. In Figure 5.6 there is a graphical representation of the model.
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PEPA model

m1[0]
def
= (r2, vr2).m1[1] + (r5, vr5).m1[1]

m1[1]
def
= (r1, vr1).m1[0]

m2[0]
def
= (r2, vr2).m2[1] + (r11, vr11).m2[1]

m2[1]
def
= (r1, vr1).m2[0]

m3[0]
def
= (r1, vr1).m3[1] + (r4, vr4).m3[1]

m3[1]
def
= (r2, vr2).m3[0] + (r3, vr3).m3[0]

m4[0]
def
= (r3, vr3).m4[1]

m4[1]
def
= (r4, vr4).m4[0] + (r5, vr5).m4[0]

m5[0]
def
= (r5, vr5).m5[1] + (r5, vr5).m5[1]

m5[1]
def
= (r7, vr7).m5[0]

m6[0]
def
= (r5, vr5).m6[1] + (r10, vr10).m6[1]

m6[1]
def
= (r9vr9).m6[0]

m7[0]
def
= (r7, vr7).m7[1]

m7[1]
def
= (r6, vr6).m7[0]
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m8[0]
def
= (r6, vr6).m8[1]

m8[1]
def
= (r7, vr7).m8[0] + (r8, vr8).m8[0]

m9[0]
def
= (r4, vr4).m9[1] + (r8, vr8).m9[1]

m9[1]
def
= (r3, vr3).m9[0]

m10[0]
def
= (r10, vr10).m10[1]

m10[1]
def
= (r9, vr9).m10[0]

m11[0]
def
= (r9, vr9).m11[1]

m11[1]
def
= (r10, vr10).m11[0] + (r11, vr11).m11[0]

Activity graph
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ODE model

The following set of nonlinear ODEs is extracted from the PEPA model and it is the same as that

one in Cho et al. (2003).

dm1(t)
dt

= −k1m1(t)m2(t) + k2m3(t) + k5m4(t)

dm2(t)
dt

= −k1m1(t)m2(t) + k2m3(t) + k11m11(t)

dm3(t)
dt

= k1m1(t)m2(t) − k2m3(t) − k3m3(t)m9(t) + k4m4(t)

dm4(t)
dt

= k3m3(t)m9(t) − k4m4(t) − k5m4(t)

dm5(t)
dt

= k5m4(t) − k6m5(t)m7(t) + k7m8(t)

dm6(t)
dt

= k5m4(t) − k9m6(t)m10(t) + k10m11(t)

dm7(t)
dt

= −k6m5(t)m7(t) + k7m8(t) + k8m8(t)

dm8(t)
dt

= k6m5(t)m7(t) − k7m8(t) − k8m8(t)

dm9(t)
dt

= −k3m3(t)m9(t) + k4m4(t) + k8m8(t)

dm10(t)
dt

= −k9m6(t)m10(t) + k10m11(t) + k11m11(t)

dm11(t)
dt

= k9m6(t)m10(t) − k10m11(t) − k11m11(t)

PRISM model

Source code as in Calder et al. (2005).

stochastic

const int N = 3;

const double Ro = 2.5/N;
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rate k1 = 0.53;

module RAF1

RAF1: [0..N] init N;

[r1] (RAF1 > 0) -> RAF1*Ro: (RAF1’ = RAF1 - 1);

[r2] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);

[r5] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);

endmodule

module RKIP

RKIP: [0..N] init N;

[r1] (RKIP > 0) -> RKIP*Ro: (RKIP’ = RKIP - 1);

[r2] (RKIP < N) -> 1: (RKIP’ = RKIP + 1);

[r8] (RKIP < N) -> 1: (RKIP’ = RKIP + 1);

endmodule

module RAF1RKIP

RAF1RKIP: [0..N] init 0;

[r1] (RAF1RKIP < N) -> 1: (RAF1RKIP’ = RAF1RKIP + 1);

[r2] (RAF1RKIP > 0) -> RAF1RKIP*Ro: (RAF1RKIP’ = RAF1RKIP - 1);

[r3] (RAF1RKIP > 0) -> RAF1RKIP*Ro: (RAF1RKIP’ = RAF1RKIP - 1);

[r4] (RAF1RKIP < N) -> 1: (RAF1RKIP’ = RAF1RKIP + 1);

endmodule

module ERKPP

ERKPP: [0..N] init N;

[r3] (ERKPP > 0) -> ERKPP*Ro: (ERKPP’ = ERKPP - 1);
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[r4] (ERKPP < N) -> 1: (ERKPP’ = ERKPP + 1);

[r11] (ERKPP < N) -> 1: (ERKPP’ = ERKPP + 1);

endmodule

module RAF1RKIPERKPP

RAF1RKIPERKPP: [0..N] init 0;

[r3] (RAF1RKIPERKPP < N) -> 1: (RAF1RKIPERKPP’ = RAF1RKIPERKPP + 1);

[r4] (RAF1RKIPERKPP > 0) -> RAF1RKIPERKPP*Ro: (RAF1RKIPERKPP’ = RAF1RKIPERKPP - 1);

[r5] (RAF1RKIPERKPP > 0) -> RAF1RKIPERKPP*Ro: (RAF1RKIPERKPP’ = RAF1RKIPERKPP - 1);

endmodule

module ERK

ERK: [0..N] init 0;

[r5] (ERK < N) -> 1: (ERK’ = ERK + 1);

[r9] (ERK > 0) -> ERK*Ro: (ERK’ = ERK - 1);

[r10] (ERK < N) -> 1: (ERK’ = ERK + 1);

endmodule

module RKIPP

RKIPP: [0..N] init 0;

[r5] (RKIPP < N) -> 1: (RKIPP’ = RKIPP + 1);

[r6] (RKIPP > 0) -> RKIPP*Ro: (RKIPP’ = RKIPP - 1);

[r7] (RKIPP < N) -> 1: (RKIPP’ = RKIPP + 1);

endmodule

module RP

RP: [0..N] init N;
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[r6] (RP > 0) -> RP*Ro: (RP’ = RP - 1);

[r7] (RP < N) -> 1: (RP’ = RP + 1);

[r8] (RP < N) -> 1: (RP’ = RP + 1);

endmodule

module MEKPP

MEKPP: [0..N] init N;

[r9] (MEKPP > 0) -> MEKPP*Ro: (MEKPP’ = MEKPP - 1);

[r10] (MEKPP < N) -> 1: (MEKPP’ = MEKPP + 1);

[r11] (MEKPP < N) -> 1: (MEKPP’ = MEKPP + 1);

endmodule

module MEKPPERK

MEKPPERK: [0..N] init 0;

[r9] (MEKPPERK < N) -> 1: (MEKPPERK’ = MEKPPERK + 1);

[r10] (MEKPPERK > 0) -> MEKPPERK*Ro: (MEKPPERK’ = MEKPPERK - 1);

[r11] (MEKPPERK > 0) -> MEKPPERK*Ro: (MEKPPERK’ = MEKPPERK - 1);

endmodule

module RKIPPRP

RKIPPRP: [0..N] init 0;

[r6] (RKIPPRP < N) -> 1: (RKIPPRP’ = RKIPPRP + 1);

[r7] (RKIPPRP > 0) -> RKIPPRP*Ro: (RKIPPRP’ = RKIPPRP - 1);

[r8] (RKIPPRP > 0) -> RKIPPRP*Ro: (RKIPPRP’ = RKIPPRP - 1);

endmodule

module Constants
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fake: bool init true;

[r1] (fake) -> k1/Ro: (fake’ = true);

[r2] (fake) -> 0.0072/Ro: (fake’ = true);

[r3] (fake) -> 0.625/Ro: (fake’ = true);

[r4] (fake) -> 0.00245/Ro: (fake’ = true);

[r5] (fake) -> 0.0315/Ro: (fake’ = true);

[r6] (fake) -> 0.92/Ro: (fake’ = true);

[r7] (fake) -> 0.00122/Ro: (fake’ = true);

[r8] (fake) -> 0.87/Ro: (fake’ = true);

[r9] (fake) -> 0.8/Ro: (fake’ = true);

[r10] (fake) -> 0.0075/Ro: (fake’ = true);

[r11] (fake) -> 0.071/Ro: (fake’ = true);

endmodule

rewards

true: MEKPP*Ro;

endrewards

CSL logic

We can verify if a Markov chain is density dependent using CSL logic. In other words, we need to

prove that, when some products of a reaction have levelN, then reagents of the reaction have level

zero. As usualN is the maximal level.

The following properties in CSL represent the probabilities that the reagents of a reaction have

level greater than zero when some products have level equal toN in every point of the evolution of

the system . Since all the probabilities are zero for the ERK model, the Markov chain is density

dependent forN. Readers can try to verify this property for increasing values ofN.
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P=?[true U ((RAF1 > 0 & RKIP>0) | RAF1RKIPERKPP>0 ) & RAF1RKIP=N]

P=?[true U RAF1=N & (RAF1RKIP>0 | RAF1RKIPERKPP>0)]

P=?[true U RKIP=N & (RAF1RKIP>0 | RKIPPRP>0)]

P=?[true U RAF1RKIPERKPP=N & (RAF1RKIP>0 & ERKPP>0)]

P=?[true U ERKPP=N & (MEKPPERK>0 | RAF1RKIPERKPP>0)]

P=?[ true U MEKPPERK=N & (MEKPP>0 & ERK>0)]

P=?[true U MEKPP=N & MEKPPERK>0]

P=?[true U ERK=N & RAF1RKIPERKPP>0]

P=?[true U RKIPP=N & (RAF1RKIPERKPP>0 | RKIPPRP>0)]

P=?[ true U RP=N & RKIPPRP>0]

P=?[true U RKIPPRP=N & (RKIPP>0 & RP>0)]



Appendix C

Glossary of biological terms

Here, readers who do not have familiarity with molecular biology can find a definition of the bio-

logical terms used in this thesis. Definition are taken and adapted from Alberts et al. (2004).

DNA molecule formed by a long chain of nucleotides. It containts hereditary information.

messenger RNA (mRNA)molecule formed by a long chain of nucleotides. It is a complemen-

tar “copy” (without non coding regions) of one or more genes and contains information to

produce proteins.

enzyme protein that catalyzes a specific chemical reaction.

protein a molecule formed by a sequence of amino acids. Proteins have several functions, e.g.

signalling, transporting and structure.

gene a region of DNA that controls a hereditary characteristic, usually it corresponds to a single

protein or RNA.

transcription copying a strand of DNA into a complementary RNA sequence. Transcription is

undertaken by the enzyme RNA polymerase. In eucaryotes transcription occurs inside the

nucleus.

115
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translation creating of a sequence of amino acids using a sequence of mRNA. It occurs on a

ribosome outside the nucleus.

nucleus membrane-bounded organelle in a eucaryotic cell. It contains DNA.
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