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“One day he remarked, without lifting his head, 'In the interior you will no doubt meet Mr.Kurtz

from Heart of Darkness by Joseph Conrad






Abstract

Process algebras are formalisms widely used to represent concurrent systems such as biological
systems (Regev et al., 2001, Priami et al., 2001). An algebraic specification of a system is composed
by processes that interact and communicate between them or are synchronized over a set of actions.
Algebraic laws describe how processes are defined and how they can be modified.

In this thesis we present a novel approach for modelling molecular systems (Calder et al., 2004)
based on discrete levels of concentration. Here each molecule species is represented by a process
and each process has an index that denotes the current level of the corresponding molecule. Actions
model reactions as usual and rates are computed following some rules. Our analysis is performed
in the context of PEPA process algebra (Hillston, 1995).

An algebraic model can have several mathematical interpretations. We consider Markov chains,
ordinary diferential equations and reactions for stochastic simulations (Gillespie, 1976). It is well
known that, when the number of moleculesigicientlylarge, stochastic simulations converge to
a deterministic limit distribution (Kurtz, 1970). Instead it is not clear the relation betwékareat-
tial equations and Markov chains where states represent concentration levels instead of individual
molecules. The scope of this thesis is to throw some light on these relationships.

In the first part we illustrate this modelling style on the real problem of modelling circadian
clocks (Goldbeter, 2002) and we present some experiments useful to understand the relationships
between stochastic and deterministic simulations. Our approach yields results similar to the litera-
ture (Gonze et al., 2002a,b).

In the second part we analyse the relationships between Markov chains with discrete levels
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and diferential equations. We prove that if a model has a particular structure, then the underlying

Markov chain converges to the deterministic interpretation as the number of levels increases.
Finally we use our results to prove that the representation of the ERK signalling pathway (Cho

et al., 2003) with discrete levels of concentrations yields results similar to the deterministic model

when the number of levels gyficientlylarge.
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Chapter 1

Introduction

1.1 Motivations

Over the last decades high throughput technologies have generated a large amount of information
on the cell. Now basic interactions among genes, proteins, RNA and other molecules are well
known and several metabolic and signal pathways have been indentified. Atthe same time, however,
the complexity of biological systems has been increased and it is almost impossible to understand
their behaviour when considered as a whole. Therefore mathematical modelling and computer
simulations are needed to unravel the dynamics of biological processes. Systems biology is the
branch of bioinformatics which studies these techniques. From experimental data systems biologists
propose hypotheses to explain a system’s behaviour. These hypotheses are used to mathematically
model the system. Models are used to predict the behaviour of the system and to formulate new
experimentally verifiable hypotheses iteratively.

Process algebras are formalisms widely used to represent concurrent systems. In a process
algebra several independent subsystems, called processes, interact and communicate between them
or are synchronized over a set of actions. Algebraic laws describe how processes are defined and
how they can be modified. For example the expressiéhmodels a process which can undertake

actiona and then becomeB. A labelled transition system is a graph representing all possible

1



2 Chapter 1. Introduction

states and transitions. This graph can be used to verify some properties of the system. Sometimes
actions are associated with rates; in this case the notion of “time” is embedded inside models and

guantitative analysis can be performed using an underlying mathematical interpretation.

Recently process algebras have been used to model biological systems (Regev et al., 2001,
Priami et al., 2001). Process algebras have several advantages in modelling biological systems with
respect to other traditional formalisms, such gedéntial equations. Modelling is focused on the
high level description of system entities and their interactions rather than directly on the underlying
mathematical interpretations. fierent algebraic formulations of the same system can be compared,
e.g. through bisimulation (Calder et al., 2004). Moreover process algebras are compositional and

allow abstraction to hide complexity or incomplete knowledge.

While in literature (Regev et al., 2001) processes model individual molecules, Calder et al.
(2004) proposed a novel and alternative style of modelling where processes represent discrete levels
of concentration. The scope is to reduce the size of the state space and to deal with incomplete
information. Each molecule is represented by a process and each process has an index that repre-
sents the current level of the corresponding molecule. Actions model reactions as usual and rates

are computed following some rules.

It is challenging to discover the relationships between the possible mathematical interpretations
of an algebraic model based on discrete levels of concentration. In Figure 1.1 we compare some

possible mathematical interpretations.

A Markov chain X(t) is extracted assigning a state to each node of the labelled transition
system and defining transitions for each arc (Hillston, 1995). Iliéxthe greatest possible level
for each molecule. A state is represented by a veXtdt) = (xu(t), ..., xn(t)) € N" wherex(t) is
the level of thei-th molecule species at tinte M is the maximal concentration ad/N Xy (t) is
the discrete concentration vector. Transition rates depend on the current state; however when some
product levels of a reaction aM transition rates corresponding to the reaction are zero.

An ODE system is derived from the syntax of the model building an activity graph (Calder

et al.) that represents increasing and descreasing of molecular concentrations in reactions. When
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Figure 1.1:Relationships between dferent mathematical interpretations of the same algebraic
specification. Markov chains and ODEs treat molecules in populations or concentrations. Instead
stochastic simulations consider molecules individually. Markov chains and stochastic simulations
have discrete state space on the contrary of ODEs. All the models are continous time. Stochastic
simulationsconvergeto a limit deterministic distribution when the number of individualsugi-

ciently large At the moment it is not clear which relations exist between Markov chains and ODEs.

we consider only two levels of concentration (e.g. high and low), the algebraic specification contains

enough information for extracting fiiérential equations of this form,

X
- F(X(®)

Here, the state of the system is givenX{f) = (x1(t),. .., Xa(t)) wherex;(t) denotes the concentra-
tion of thei-th molecule at timé wheread- is a function that describes the dynamical behaviour of

the system following the Mass Action Law.

From the activity graph a stochastic simulation is derived, too. A set of reaction equations

and the corresponding occurence probabilities define a model that is used as input for Gillespie’s
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algorithm (Gillespie, 1976).

In stochastic simulations each molecule is treated individually, whereas in ODEs and Markov
chains with discrete levels molecules are considered in concentrations. It is well known that, when
the number of molecules isSiciently large, stochastic simulations converge to a deterministic limit
distribution. Instead it is not clear the relation betweeffiediéntial equations and Markov chains.
There is some evidence that increasing the number of |&velse avarage behaviour of Markov
chains seems to converge to the solution of tikedéntial equations (Calder et al., 2005), however
it is not well understood how this happens and if it is always true. The scope of this thesis is to

throw some light on these relationships.

1.2 Methods and Tools

Our analysis is performed in the context of PEPA. PEPA is a stochastic process algebra invented
by Jane Hillston (Hillston, 1995) for modelling computer and communication systems. Systems
are formed by several components which can perform activities. Each activity has a duration and
an action type. For example the expressi@ir).P models a system which can undertake action
with rater and becomep.

Several tools were used during the development of this work. Here, | list some of them. Readers

intertested in details can look at the referenced documents.

PEPA Workbench (Gilmore, 2001) is a Java application for PEPA models. It can parse models,

extract Markov chains in étierent formats, find steady state solutions and other features.

PRISM (Parker et al., 2006) is a probabilistic model checker written in Java for modelling and
analysing probabilistic systems. It was developed at the University of Birmingham. It sup-
ports continuous time Markov chain models and implements CSL model checking (Aziz et al.,
1996), a logic to express properties of steady state and transient behaviour of Markov pro-

cesses.
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Dizzy (Ramsey, 2006)is a chemical kinetics simulation software package written in the Java pro-
gramming language. It allows to define models as systems of chemical reactions. It performs

several kinds of stochastic and deterministic simulations (e.g. Gillespie).

GNU Octaveg/Matlab (Eaton, 2005) is a high-level language for solving linear and nonlinear prob-
lems numerically using a language compatible with Matlab. It was used to solve systems of

ordinary diferential equations using Runge-Kutta5 method.

1.3 Organization

In the first part of this thesis we present some background material useful to understand the rest.
We give an informal description of PEPA semantics, we describe basic notions about chemical
reactions, nonlinear dynamic systems, Markov chains and simulation techniques. The reader who
already knows these topics can overlook this chapter.

In the second part we describe formally the modelling style based on discrete concentration
levels. We show how to extractfterential equations and stochastic simulations from models auto-
matically. An activity graph is a graph that represents molecules and their interactions. An activity
graph is built up performing some syntax analysis on a PEPA model. Stochastic simulations and
differential equations are derived from the activity graph. We illustrate this modelling style on the
real problem of modelling circadian clocks (Goldbeter, 2002). We show some drawbacks of our
approach and sonaal hocsolutions. Finally we present some experiments useful to understand the
relationships between stochastic and deterministic simulations. Our approach yields results similar
to the literature (Gonze et al., 2002a,b).

In the third part we analyse the relationships between Markov chains with discrete levels and dif-
ferential equations. Firstly, we propose some simple examples, we solve the corresponding Marko-
vian and deterministc models analytically and we prove that for these particular models the average
Markovian behaviour converges to the solution of the deterministic systems as the number of levels

increases. Secondly, we try to generalize previous results.
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A density dependent family of Markov chaiXgis a sequencgX,} of Markov processes defined
by a parametey. The states of the Markov chains are normalized with respecttud the state
spaces of this sort of densities are considered instead. The transition rates depend on the densities,
hence the name density dependent Markov chains. Kurtz's theorem (Kurtz, 1970) says that as
parametewr growsarbitrarily large, the sequence of stochastic processé¥(t) convergedo a
deterministic procesX(t) which is solution of a system of ordinaryftéirential equations. While
systems with finitev are discrete processes, the limiting system is continuous.

The Markovian representation of a PEPA model with discrete levels is a parametrized Markov
chainXy(t), whereN is the number of levels. However, the sequefig(t)} is not always density
dependent. In fact when some product levels of a reactiolNatensition rates corresponding to
the reaction are zero. We formulate dfszient and necessary structural condition on the state space
of Xn(t) in such a way that the sequeneé(t)} is a sequence of dentity dependent Markov chains
and Kurtz's theorem can be applied. We proposeféactve way to verify if a model satifies this
condition. Roughly speaking we use a generalization of the notion of activity graph (essentially a
Petri Ne) to represent the state spaces of all the Markov chains. Then if the activity graph presents
some structural properties (e.g. boundedness), the corresponding sequence is density dependent.

We use our results to prove that the representation of the ERK signalling pathway (Cho et al.,
2003) with discrete levels of concentrations yields results similar to the deterministic model when

the number of levels isyficientlylarge.



Chapter 2

Introduzione

2.1 Motivazioni

Negli ultimi decenni I'insorgere di nuove tecnologie ad alte prestazioni ha permesso di disporre di
una grande quantitdi informazioni sulla cellula. Ora conosciamo molto bene le interazioni fonda-
mentali tra i geni, le proteine, I'RNA e le altre molecole ed abbiamo individuato molti dei principali
meccanismi biologici. Al tempo stesso, peta complessit dei sistemi biologice cresciuta e@
impensabile di poter capire il loro comportamento quando presi in considerazione nel loro insieme.
Per questo la modellazione matematica e le simulazioni al computer sono necessarie per scoprire
le dinamiche dei processi biologici. La biologia dei sistémin settore della bioinformatica che
studia queste tecniche. Dai dati sperimentali i biologi propongono delle ipotesi per spiegare il com-
portamento di un sistema. Queste ipotesi sono utilizzate per modellare matematicamente il sistema.
I modelli sono utilizzati per predirre il comportamento del sistema e per formulare nuove ipotesi da
verificare empiricamente in modo iterativo.

Le algebre di processo sono formalismi molto utilizzati per rappresentare dei sistemi concor-
renti. In un algebra di processo alcuni sotto-sistemi indipendenti, chiamati processi, interagiscono e
comunicano tra loro o sono sincronizzati su un insieme di azioni. Delle leggi algebriche descrivono

come i processi sono definiti e come possono essere modificati. Per esempio I'espregsione

7
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modella un processo che @yportare a termine un’azionee diventare poP. Un labelled transi-

tion systeng un grafo che rappresenta tutti i possibili stati e transizioni di un sistema. Questo grafo
pud essere usato per verificare alcune propridl sistema. Talvolta le azioni sono associate con
delle velocif; in questo caso la nozione di “tempdintrinseca al modello e un’analisi quantitativa

pud essere fiettuata utilizzando qualche sottostante interpretazione matematica.

Di recente le algebre di processo sono state utilizzate per modellare sistemi biologici (Regev
et al., 2001, Priami et al., 2001). Le algebre di processo hanno diversi vantaggi nella modellazione
di sistemi biologici rispetto agli altri tradizionali formalismi, come le equazioffiedenziali. La
modellazione infatti si focalizza su la descrizione ad alto livello delle&dtd sistema e delle loro
interazione anziah direttamente sulle interpretazioni matematiche sottostantter®nti formu-
lazioni algebriche dello stesso sistema possono essere confrontate, ad esempio con la bisimulazione
(Calder et al., 2004). Inoltre le algebre di processo sono composizionali e permettono I'astrazione

per nascondere la complessi le conoscenze incomplete.

Mentre in letteratura (Regev et al., 2001) i processi modellano le singole molecole, Calder et al.
(2004) hanno proposto un nuovo ed alternativo stile di modellazione dove i processi rappresentano
livelli discreti di concentrazione. Lo scogoridurre la dimensione dello spazio degli stati e gestire
il caso di informazione incompleta. Ogni molecé@aappresentata da un processo e ogni processo
ha un indice che rappresenta il livello corrente della molecola corrispondente. Le azioni modellano

le reazioni come al solito e le veloaisono calcolate seguendo certe regole.

E interessante scoprire le relazioni tra le possibili interpretazioni matematiche di un modello
algebrico basato su livelli discreti di concentrazione. In Figura 1.1 confrontiamo alcune possibili

interpretazioni matematiche.

Una catena di MarkoXy (t) € estratta assegnando uno stato ad ogni noddatsdlled transition
systene definendo delle transizioni per ogni arco (Hillston, 1995). L'indce il piu grande livello
possibile per ogni molecola. Uno stagappresentato da un vettofg(t) = (xa(t), ..., Xa(t)) € N"
dovex;(t) e il livello dell’i-esima molecola al tempo M € la concentrazione massima/gN Xy (t)

e il vettore delle concentrazioni discrete. Le veladdt transizione dipendono dallo stato corrente,
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perd quando i livelli di alcuni prodotti di una reazione soNple velocit di transizione corrispon-

denti alla reazione sono zero.

Un sistema di ODEe derivato dalla sintassi del modello costruendo un grafo delle attivit
(Calder et al.) che rappresenta gli incrementi e i decrementi delle concentrazioni molecolari nelle
reazioni. Quando consideriamo solamente due livelli di concentrazioredltme basso), la speci-
ficazione algebrica contiene abbastanza informazione per estrarre delle equabtoentiali di

gquesta forma,

X
arrale F(X(®))

Qui, lo statto del sistemadato daX(t) = (xa(t), ..., Xa(t)) dovex;(t) denota la concentrazione della
i-esima molecola al tempomentreF & una funzione che descrive il comportamento dinamico del

sistema seguendo la Legge di Massa.

Dal grafo delle attivih € derivata anche una simulazione stocastica. Un insieme di reazioni e
le corrispondenti probabibitdi occorrenza definiscono un modello @époi usato come input per

I'algoritmo di Gillespie (Gillespie, 1976).

Nelle simulazioni stocastiche ogni molecdatrattata individualmente, mentre nelle ODE e
nelle catene di Markov con livelli discreti le molecole sono considerate in concentragidsen
noto che, quando il numero di moleca@esuticientemente grande, le simulazioni stocastiche con-
vergono ad una distribuzione limite deterministica. Invece@chiara la relazione tra le equazioni
differenziali e le catene di Markov. In alcuni casi incrementando il numero di INgéllcomporta-
mento medio delle catene di Markov sembra convergere alla soluzione delle equatarandiali
(Calder et al., 2005), pe@mon si capisce bene come questo accada e se sia sempre vero. Lo scopo

di questa test di gettare un po’ di luce su queste relazioni.
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2.2 Metodologie e strumenti

La nostra analige eseguita nel contesto di PEPA. PEPAn’algebra di processo stocastica inventata
da Jane Hillston (Hillston, 1995) per modellare sistemi di computer. | sistemi sono formati da
diverse componenti che possono eseguire delle attiv@gni attivia ha una durata e un tipo di
azione. Per esempio I'espressioner(.P modella un sistema che esegue un’azieren velocik

r per poi diventaré®.

Durante lo sviluppo di questo lavoro abbiamo utilizzato diversi strumenti. Ne elenchiamo di

seguito alcuni. | lettori interessati ai dettagli possono andare a vedere la documentazione citata.

PEPA Workbench (Gilmore, 2001) e un’applicazione Java per modelli PEPA. Parserizza i mod-

elli, estrae le catene di Markov in diversi formati, trova le soluzioni stazionarei eicendo.

PRISM (Parker et al., 2006) € unmodel checkeprobabilistico scritto in Java per modellare ed
analizzare sistemi probabilistidi‘: stato sviluppato presso I'Univeraitli Birmingham. Sup-
porta modelli di catene di Markov a tempo continuo ed implementenadel checkinger
CSL (Aziz et al., 1996), una logica che permette di esprimere prapdieit comportamento

stazionario e transitorio dei processi di Markov.

Dizzy (Ramsey, 2006)e un pacchetto software per la simulazione di reazioni chimiche scritto nel
linguaggio di programmazione Java. Permette di definire modelli come sistemi di reazioni

chimiche. Esegue diversi tipi di simulazioni stocastiche e deterministiche (ad esempio Gille-

spie).

GNU Octavg/Matlab (Eaton, 2005) e un linguaggio ad alto livello per risolvere problemi lineari
e non lineari numericamente usando un linguaggio compatibile con M&tistato utilizzato

per risolvere sistemi di equazioniffirenziali ordinarie usando il metodo di Runge-Kutta 5.
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2.3 Organizzazione

Nella prima parte di questa tesi presentiamo del materiale introduttivo utile per capire il resto. Di-
amo una descrizione informale della semantica di PEPA, descriviamo alcune nozioni basilari di
chimica, di teoria dei sistemi dinamici non lineari, di catene di Markov e tecniche di simulazione.

Il lettore che ga conosce questi argomentipsaltare questo capitolo.

Nella seconda parte desciviamo formalmente lo stile di modellazione basato su livelli discreti di
concentrazione. Mostriamo come estrarre le equazidi@rénziali e le simulazioni stocastiche dai
modelli in modo automatico. Un grafo delle attévét un grafo che rappresenta le molecole e le loro
interazioni. Un grafo delle attivdté costruito eseguendo delle analisi sintattiche sul modello PEPA.
Le simulazioni stocastiche e le equaziorfielienziali sono derivate dal grafo delle attvitlllus-
triamo questo stile di modellazione con il problema reale di modellare i cicli circadiani (Goldbeter,
2002). Mostriamo alcuni svantaggi del nostro approccio e alcune soluzioni ad hoc. Infine presenti-
amo alcuni esperimenti utili per capire le relazioni tra le simulazioni stocastiche e deterministiche.

Il nostro approccio produce risultati simili alla letteratura (Gonze et al., 2002a,b).

Nella terza parte analizziamo le relazioni tra le catene di Markov con livelli discreti e le equazioni
differenziali. In primo luogo proponiamo alcuni semplici esempi, risolviamo i corrispondenti mod-
elli markoviani e deterministici in modo analitico e proviamo che per questi particolari modelli il
comportamento medio delle catene di Markov converge verso la soluzione dei sistemi determin-
istici quando il numero di livelli cresce. In secondo luogo, cerchiamo di generalizzare i risultati

precendenti.

Una famiglia di catene di Marko¥, dipendenti dalla densitt una sequenza,} di processi
di Markov definiti da un parametra Gli stati delle catene di Markov sono normalizzati rispetto
av e viene considerato lo spazio degli stati di questa specie di dersitvelocia di transizione
dipendono dalle densit da cui il nome catene di Markov dipendenti dalla deénsit teorema di
Kurtz (Kurtz, 1970) dice che quando il parametrdiventa arbitrariamente grande, la sequenza di

processo stocastivir tX,(t) converge al processo deterministX() chee soluzione di un sistema
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di equazioni diferenziali ordinarie. Mentre i sistemi carfinito sono processi discreti, il sistema
limite & continuo.

La rappresentazione markoviana di un modello PEPA con livelli disenatia catena di Markov
parametrizzaty(t), doveN & il numero di livelli. Peo, la sequenzéXy(t)} none sempre dipen-
dente dalla densit Infatti quando alcuni prodotti di una reazione hanno livéllde velocit di
transizione corrispondenti alla reazione sono zero. Formuliamo una condizione struttéiiale su
ciente e necessaria sullo spazio degli statkd{t) in modo tale che la sequeng&y(t)} diventi
una sequenza di catene di Markov dipendenti dalla ceeesitteorema di Kurtz possa essere appli-
cato. Proponiamo un metod&ettivo per verificare se un modello soddisfa questa condizione. In
parole povere utilizziamo una generalizzazione della nozione di grafo delleaativipratica una
rete di Petri) per rappresentare gli spazi degli stati di tutte le catene di Markov. Infine, se il grafo
delle attiviaa presenta alcune proprestrutturali (ovvera bounded, la corrispondente sequenga
dipendente dalla denait

Utilizziamo i nostri risultati per provare che la rappresentazione del’ERK signalling pathway
(Cho et al., 2003) con livelli discreti di concentrazione produce risultati simili al modello determin-

istico quando il numero di livelle sficientemente grande.



Chapter 3

Background

3.1 Introduction

In this chapter we explain some background material useful to understand the rest of the thesis.
Readers who already know these subjects can overlook the chapter. We give a brief overview
of process algebras and PEPA, Markov chains, nonlinear dynamic systems and reaction kinetics.
Readers should have elementary knowledge of calculus and probability theory. In Appendix C a

glossary of biological terms used in this thesis can be found.

3.2 Process Algebras

In computer science process algebras are formalisms to model concurrent systems. In a process
algebra several independent subsystems, called processes or components, interact and communicate
between them or are synchronized over a set of actions. Algebraic laws describe how processes are
defined and how they can be modified. Formal specification allows us to reason about process
properties like equivalence (i.e. bisimulation). Examples of process algebr&Ca8¢Milner,
1980),n-calculus (Milner, 1999) and PEPA (Hillston, 1995). In this dissertation we will consider

just the last one.

13
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3.2.1 Performance Evaluation Process Algebra

PEPA is a stochastic process algebra invented by Jane Hillston (Hillston, 1995) for modelling com-
puter and communication systems. As in all process algebras, systems are formed by several com-
ponents which can perform actions. Each action has a duration. For example the exptesiiBn (
models a system which can undertake actiomith rater and become®. The duration usually is
represented by a random variable with a negative exponential distribution. In other wizrdse
parameter of the distributioR(t) = 1 —e™.

We present an informal description of the language below. In Appendix A we discuss the oper-
ational semantics of PEPA. A more detailed explanation can be found in Hillston (1995). PEPA has
five combinators: prefix, choice, constant, hiding and cooperation.

Prefix is the basic component to build up complex systems, the proagssK carries out
actiona at rater and then it behaves & The prefix @, r) is termed activity whilex is the action
type and the rate of the activity.

Choice models competition between two processes: the compdhen represents a system
which may evolve either int® or Q.

Constant allows us to assign names to components, for exaipfe(a, r).P means that vari-
able X behaves as process, ¢).P.

Hiding is a mechanism to abstract away some aspects of a component’s behaviour. For instance,
the proces® \ {a} hides the actio and prevents other processes from joining in.

Cooperationallows two processes to be synchronized over a set of actions. In exprEszLﬂin
processe® andQ must cooperate on actions contained in thelLsdtut other enabled actions are
carried out independently and concurrently. Wher empty, we writeP||Q instead ofP Q.

When a component enables an activity whose action type is in the cooperation set, it will be
stuck until the other component enables an activity of that type. The rates of shared activities
depend on the rate of both cooperands’ rates. In other words, the apparent of a shared activity is the
rate of the slower component.

Sometimes a component may be passive with respect to an action in a cooperation set. Consider
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for example a client waiting for a service. In these cases the rate of the activity is unspecified
(symbol T) and it depends on the rate of the activity of the other cooperand. All passive actions

must be synchronized in the final model.

3.3 Continuous Time Markov Chains

A continuous time Markov chain (CTMC) is a stochastic prodegd : t > 0} that has the Markov
property and takes values from a discrete set called the state space. The Markov property states that
at any timess > t > 0, the conditional probability distribution of the process at tisgiven the

whole history of the process up to timhalepends only on the state of the process at tirrermally

a stochastic proces{t) is a Markov process if and only if for afi t > 0 and state$,i andl,

P(X(s+1) = jIX(5) = i, X(U) = 1 0 < u < §) = P(X(s+1) = jIX(S) = 1)

A Markov process is time homogeneous if the transition rates are independent of the time of occur-
rence of each transition, i.€(X(s+t) = jIX(s) = i) = P(X(t) = jIX(0) = i). In this work we will
consider only time homogeneous Markov chains.

Continuous time Markov chains are described by the infinitesimal generator maatrikn
elementqg;; > O withi # | of Q is the transition rate between stateand j. Instead diagonal
elementgy; are defined as 3, dj.

The time dependent probability is the solution of the followinffedential equations, called

Chapman-Kolmogorov equations,

or()

o= mQ

The stationary probability distribution is the solution of the linear systenQ = 0 subject to
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normalization conditiory’; 7; = 1. A Markov chain is irreducible if all states can be reached from

all other states. A Markov chain is positive recurrent if starting in any state the expected time to

return to that state is finite. A steady state probability distribution is the probability of being in a state

in the long run. If a Markov chain is irreducible and positive recurrent the steady state corresponds

to the stationary probability, more formally,

tIim alt)=n

3.4 Kinetics of chemical reactions

A chemical reaction is a process where one or more chemical substances, called reactants, yield one
or more products. The rate of a reaction describes how the concentration of the involved substances
changes in time. Chemical kinetics study the reaction rates in a chemical reaction. Reaction rates
depend on several factors (e.g. temperature, concentration of reactants, pressure and so on), however
we will assume most of them to be constant. Since several chemical kinetics occur in this work, we

will give a brief overview in this section.

3.4.1 Mass Action Law

The Mass Action Law states that the rate of a chemical reaction is proportional to the probability
of finding all the reacting molecules in a small space. Because we assume that the event of finding
one molecule in a small space is independent of finding another molecule in the same space, the
probability of finding both of them in the same space is given by the product of their individual
probabilities. The probability of finding a molecule in a small volume is proportional to its con-
centration. Hence, the rate of a reaction is proportional to the product of the concentrations of each

reactant molecules (Cox and Nelson, 2005).

As an example, consider the following simple reaction where mole@udasl B bind toghether
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and form complexC.

A+B —- C

The rate of change & concentration is represented by &eliential equation,

diC] _
o - K[AI[B]

wherek is a constant,4], [B] and [C] are the concentrations &f B andC respectively. By abuse
of notation, we will often drop concentration brackefsihen it is clear from the context we are
dealing with concentrations.

The basic assumption behind mass action is that individual molecules act randomly, but if taken

as a whole, they will tend to a deterministic law.

3.4.2 Michaelis-Menten

Michaelis-Menten kinetics describe the rate of enzyme driven reactions when the concentration of
enzyme is much less than the concentration of substrate.

An enzymatic reaction consists of the following elementary reaction steps,

reaction name rate

E+S—>ES binding Kk
ES— E+S unbinding ki

ES—> E+P catalysis ky

Here,E, S, ES andP represent the enzyme, the substrate, the enzyme-substrate complex and
the final product respectively. These reactions can be modelled as a séeddrdial equations

using the mass action law. However it is often useful to simplify them with a single equation given

by,
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ap S
d ~ MKu+S

(3.1)

whereKy = '“k—;kz is the Michaelis-Menten constant aMi;ax the maximum rate of reaction.

Equation 3.1 is based on a steady state approximation. In other words after an initial period the
concentration of complekS is assumed to be constant, thatdiES/dt ~ 0. While bothKy, and
Vumax can be determined experimentally, sometimes the elementary rates are not available so that it

is not always possible to develop a system into elementary steps.

3.4.3 Inhibition

In some sense an enzyme is an activator of a reaction. Instead some molecules act as repressors.
For instance, let us consider a proténwhich represses the transcription of a gene. Given the
maximal transcription rate constavifyax and an #inity constant,, the rate of change of mMRNA

concentratiorM is modelled by the following dierential equation,

M _ K,
dt MK TP

(3.2)

We observe that the right hand side of Equation 3.2 is the complement of that in Equation 3.1 where

K, is used instead df .

3.4.4 Cooperative binding and Hill Codficient

A macromolecule is said to have cooperative binding if thigy of the ligand for the molecule
depends on the amount of ligands already bound. The cooperativity is positive if the binding of the
ligand increasesfnity for ligand, negative otherwise. A macromolecule can be also noncoperative,
in this case the amount of ligands does not change the bindingya

The degree of cooperativity is quantified by the Hill @oment. A codficient of one indicates
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completely independent binding. Values greater than one indicate positive cooperativity, while
numbers less than one indicate negative cooperativity.
As an example, if binding of repressor protein to enzyme in the inhibition model is cooperative

with degreen, Equation 3.2 becomes,

Mo, K
d — MAknopn

(3.3)

In Figure 3.1 we plot Equation 3.3 for several values.dforn = 1 the curve is a typical hyperbolic

plot and there is no cooperativéfect. Fom > 1 the graph is sigmoidal and shows positive coopera-
tion; in fact the more the concentration of prot@iis, the faster the rate decreases and transcription
is inhibited. On the contrary ifi < 1 the curve shows negative cooperativity: it has a faster initial
fall, but it tends towards zero less sharply. As one can easily prove, the point of intersection of all

curves isK;.

3.5 Dynamical systems

A dynamical system describes a system which evolves in time. The state of the system is represented
by a collection of real numbers. A deterministic rule says what future state follows the current state.

For a more detailed tratement on this subject see Kuznetsov (2004).

3.5.1 Phase analysis

We consider a system of ordinanfidirential equations,

dy()
— = F(Y©.0)

At any timet the state of the system is given by the vect@t) = (y1(t),...,yn(t)). In this

thesisY(t) is always inR" and functiony;(t) represents concentration of théh molecule kind at
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rate

a.1 1 1 1 1
5] 1 g 3 4 3

F concentration

Figure 3.1: Cooperative inhibition for filerent degree.

timet. The phase space is thedimensional spac¥ C R" consisting of all the possible values of
(ya(t),...,yn(t). When we consider just two dimensions, we call it phase plane. A trajectory or
orbit is the sequence of points through which the system passes as it evolves.

FunctionF : Y x P — R" describes the dynamic behaviour of the system whiereR" denotes
the state space arfel a set of parameter subsets (e.g., constant rates). Given a set of parameter
values® € P the current stat¥(t) is associated with the system rates of change.

The vectordY(t)/dt = (y;(t),....yn(t)) is sometimes called the velocity vector and describes
how the system evolves given its current state. The vector field is the phase space where every point
has associated its velocity vector. A flow is the set of all possible trajectories. A flow and a vector
field give us an idea about the structure of the solution set of the ODEs and they are useful tools to
unravel the dynamics of nonlinear systems.

An equilibrium point (also known as stagnation point, steady Stéitepoint or singular point)

1The term “steady state” is used also in markov chain theory to denofiegetit concept. In order to avoid ambiguity
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is an element of the phase space where the velocity vector is zero.

A (stable) attractor is a set of points toward which "neighboring” points approach in the course

of time evolution of the system.

Ayi-nulicline is the set of pointsy(, . . ., yn) of the phase space which satigfy= fi(y1,...,¥n) =

0. The intersection of all the nullclines is an equilibrium point.

3.5.2 (Linear) Stability analysis

Equilibria are not always stable. The following table is a powerful method to check if equilifyrium

is stable. HereJ(y) is the Jacobian matrix,

o of 9fn
0yr  dy> " Oyn
oL of 9fn
J= oyr 92 " O¥n
o ofs 9fn
ady1 0y " dyn
evaluated in the equilibrium poifgt
eigenvalues of(y) fixed point

complex with positive real part unstable focug

complex with negative real part stable focus

real and positive unstable node
real and negative stable node
positive and negative saddle point

The case of one or more zero eigenvalues is much more complicated. There exist other methods
to check stability; for instance Liapunov functions are useful if one wants to understand how points

far from an equilibrium behaves with respect to the equilibrium.

we will use equilibrium or fix point when we talk aboutidirential equations and steady state for the markov chains.
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3.5.3 Bifurcation analysis

Most dynamical systems contain parameters. In our exafdea set of parmeters on which the
solutions of the system depend. Changes in the parameter values may produce qualitative changes
in the phase space and the dynamical system is said to have gone through a bifurcation. Bifurcation
theory studies the system behaviour as a function of one or more parameters.

In this work we are interested in Hopfs bifurcation points. In a Hopfs bifurcation, as one in-
creases the value of some parameters, a stable focus becomes unstable and the attractor becomes a
limit cycle. A limit cycle is a periodic solution described by a closed curve in the phase plane or by

sustained oscillations in time dependent graphs.

3.6 Stochastic simulation

We consider a system ofyy, ..., m molecule species amd, ..., ri reactions between them. We
assume the system is well-stirred, in thermal equilibrium and limited in a constant valuixét)
denotes the number of moleculesin the system at timeandX(t) = (Xa(t),. .., X(t)). Given an
initial stateX(tp) = Xo, we want to compute the probabiliB(x, to + di|Xo, tp) that X(t) will be equal
to x at timetg + dt given thatX(tg) = Xgo. The time evolution of this function is described by the

Chemical Master Equation (CME), defined as,

IP(X, tIXo,to) _

ot ;
i

[aj (X = vj)P(X = v, X0, to) — @j(X)P(X, t|Xo, to)]
1

k
Here,v; is a vector ¢j1,...,vj) wherevj represents the change in the population of molecule
speciesn; caused by a reaction. The propensity functiom;(x) is defined so thaa;(x)dt is the
probability that a reaction; will occurr in time interval {, t + dt) given thatX(t) = x.

The CME can be solved analytically or numerically for only few cases. Therefore we need

another method. The idea is to derivawamerical realizatiorof X(t), namely a possible trajectory
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of X(t) versus time. Information on the underlying distribution can be inferred from averaging the
results of many realizations or simulations. The Gillespie algorithm produces a realization for the
CME. It is useful when the number of molecules involved in the system is small, i.e. in the order of
10-1@ individuals. For more details readers can look at Gillespie (1976).

In order to define a stochastic simulation we give the corresponding set of reactions and their
probabilities of occurence in infinitesimal time intendtl Following Gillespie (1976), the oc-
curence probability of a reaction is given by the product of the number of the reagents involved in

the reaction multiplied by the constant reaction rate.






Chapter 4

Modelling biological systems in PEPA

4.1 Introduction

In this chapter we present the modelling style introduced in Calder et al. (2004). We use the PEPA
process algebra Hillston (1995). Readers who do not have familiarity with this process algebra can
have a look at the introductory explanation in Chapter 3 and in Appendix A; here, some definitions

of functions and sets (e.ds Act, A)used in this thesis can be found, too.

The rest of this chapter is organized as follows. In Section 4.2 we describe the structure of
a model where processes represent molecules and each process has an internal state that models
the concentration level of the corresponding molecule. In Section 4.3 we introduce the concept of
activity graph, a graphical representation of the model, and we describe how to derive ODEs and
stochastic simulation from it. In Section 4.4 we illustrate this modelling approach on a model for cir-
cadian clocks. We show that processes can represent not only discrete levels of molecule population,
but also activiation levels of abstract biological processes. Finally we present some experiments and

results that describe the relationships between stochastic and deterministic simulations.

25
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4.2 Model structure and biological interpretation

Molecule concentrations are divided into discrete intervals. Processes represent molecules and each
process has an internal state that models the concentration level of the corresponding molecule.
Here we consider just high and low concentration levels. For example procegdesnd m[0]
denote, respectively, high and low concentration of molecular speties

A high level means that the concentration of a reagent is observable and the reagent can take
part to rections; a low level, instead, implies that the concentration of a reagent is not observable
and the regent can participate to reactions only as a product.

Reactions are modelled by activities. For examphgl] £ (a,r).m[0] means that reaction
a occurs with rater and it decreases the level of molecue(from high to low). A molecule
m is involved in reactions of three kinds: reactions which decrease the lewval(efg. m[1] S
(a,r).m[Q]), reactions which increase the levelof(e.g. m[0] 4 (a,r).m[1]) and reactions which

do not modify the level ofm (e.g. m1] £ (e, r).m[1]). Other activities are not allowed. More

formally, for any molecule species, we define two processeg1] andm[0] such that:

o there exista € Act(n[i]) such thatm[i] 2 m[l-i]fori=0,1;
o if there existsa € Act(m[1]) such thatm[1] 3 ¢, thenc = m[1] or elsec = m[0];

e if there existsa € Act(m[0]) such thatm[0] 3 ¢, thenc = n[1].

The first point says that a procesgl] (m[0]) always evolves into its complememf{0] (m[1]). The
last two points formalize the idea that other transitions are not allowed; the exceptifi] ishich
can becomen[1]. As a consequencgqmM[1]) = ddm[0]) = {mM[0], m[1]}. In a biological context
these conditions mean that a molecule has to be consumed and produced in at least one reaction of
the system.
In a biological context a reaction does not havedent possibleféects on a molecule popu-

lation. Thus we assume that for any molecule spegi@sstances of activities of the same action
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type cannot be used within component®] and m[1]. In other words sequential components do

not have multiple instances of activities of the same action type, see Appendix A.

In the system equation, molecules with an initial concentration are initially high in the system
equation, while all others are low. We assume activities of the same action sagesynchronized
ona and have the same ratg. Therefore, instead of system equations we will often use an initial

concentration vector which records initial levels for each molecules.

An example

Figure 4.2 describes a simple biological system. There are five molecule species, Mg, My
andms. Moleculesm, andm, bind together to form complemy. Moleculemy can split intony

andnm, again or else into two new moleculeg andms which becomem andm, respectively.

Fori = 1...5 we define two processes[0] andm[1] representing low and high concentration
of moleculem. For each reaction we define an action typerz, rs, r4 andrs; we assumey,; is
the rate for reaction; wherej = 1...5. The corresponding PEPA model is given by the following

equations.
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my[0] = (r3,Vry).mu[1] + (rs, V). mu[1]
mi[1] = (r2,v,).m0]
Mp[0] = (ra,Vr,)-Mp[1] + (I, Viry)-Mp[1]
mp[1] = (r2,v,).mg[0]
mg[0] = (r2,v,).mg[1]
mg[l] = (r2,V,).mg[0] + (rs, Viy)-ms[0]
m[0] = (12, Vr,).mu[1]
my[1] = (rs,v,).my[0]
ms[0] = (r2,v,).ms[1]

ms[1] = (rsa, v,).ms[0]

In the system equation we assume levelmpaindm, are initially high.

my[1] B mp[l] B mg[0] B my[0] P mg[0]

{r1.r3.r4.r5 {r3.ra.rs) {r3.rg {ra)

4.3 Activity graph

Our definition of an activity graph is slightly flerent from the one in Calder et al.. Roughly
speaking an activity graph is a representation of the relations between reagents and reactions. More

formally,

Definition 4.3.1. An activity graph is a directed bipartite graph & (V, E). Node set V is equal

to RU M where R is the set of action types (i.e. reactions) and M is the set of process names (i.e.
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molecules). Edge set € (Rx M) U (M x R) is the smallest set such that:
¢ if molecule m is consumed in reactianthen(m, ) € E;
¢ if molecule mis produced in reactien then(a, m) € E;
¢ if molecule mis involved in reactianbut it is not consumed, thdm, «) € E and(a, m) € E.

The graph is represented by an activity matkix A* — A~ of size|M| x |R|. HereA" = {aﬁ} where

aﬁ =1if(},i) € E, elseaﬁ = 0. InsteadA™ = {a;} wherea;j =1if(i,j) € E, elseaﬂ =0.

4.3.1 Deriving ODEs

We show how ordinary dierential equations can be derived from an activity graph automatically.
We assuméM is a set of moleculeR} a set of reactions anél an activity matrix built as described
above. We assums is thei-th element ofM andr; is thei-th element ofR. Moreovery; is the
constant rate associated with reactign

For each process namg € M the rate equation corresponding to the concentration change of

moleculem in infinitesimal timedt is given by

IR M|

am@® - _ ZVjaijl_[m(t)aﬁ
dt = =1

Herem(t) represents a function whereasis a process name. This is an abuse of notation, but
it is often clear from the context their meaning. In this formula indeterminate f8rmay appear;
following Knuth (1992) we assumé @ 1.

This system of ordinary elierential equations is not complete because initial conditions must be
specified. Initial conditions depend on the interpretation of the abstract concentrations “high” and

“IOW”.



30 Chapter 4. Modelling biological systems in PEPA

4.3.2 Deriving stochastic simulations

We derive a stochastic simulation in two steps. First, we build reaction equations from the structure
of an activity graph. Second, we compute stochastic rates using information on activity rates.
Given a PEPA model we assurRas the set of actions (i.e. reactions) akidthe set of process
names (i.e. molecules). We assumeis thei-th element ofM andr; is thei-th element ofR.
Moreovery; is the constant rate associated with reactiohetG = (M UR, E) be an activity graph.

Then for each action € Rthe corresponding reaction equation is given by

m- 3 m
(mr)eE (r,meE
We need to transform activity rates into “stochastic” rates in order to compare results of deter-
ministic and stochastic models. As an example consider a simple bimolecular reauftibie form

A+ B — C. As we saw in Chapter 3 the reaction can be represented by a deterministic reaction rate,

diC|

T KIAIIB|

Here|A|, |B| and|C| denote concentrations of moleculds B andC respectively, whilek is the
constant “deterministic” rate for reaction

In a stochatic contextA, B andfC represent numbers of moleculasB andC respectively.
Sometimes we writ@A(t) for the number of molecule& at timet. Parametef2 models the volume
of the cell, soffA = QIA|, B = Q|B| andC = Q|C|. Therefore ag2 increases, the number of
molecules becomes larger

We assume reaction occurs with average probability. Thusc #A #B dtis the probabil-
ity that r occurs once somewhere in the cell in time intergal If dt is small two reactions

cannot occur irdt. Therefore the average number of new molecules produced i1 given by
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YicoiP[“ireactions irdt”] = c# A#B dt In other words,

HC(t + dit) — #C() = c # AHB dt

Converting individuals into concentrations we obtain,

Q(IC(t + db)l - [C(D)I) = ¢ Q2 |AQD)IIB(t)/dt

Dividing by dt andQ and then takinglt — O, we have

diC|

— = CQJAIB
it cQ|AB]

From the equation above we infer that the relation between stochasticanade'deterministic” rate
kis given byk = cQ. In general given an molecular reaction the deterministic rtés equal to
cQ" 1 wherec is the stochastic rate.

Hence, we are ready to explain how to compute stochastic rates for a PEPA model. Given the
activity ratev;, the corresponding stochastic rate is given p@t1v;, wheren = Z'j'\:’”l aj.

Again, the stochastic formulation is not complete. We have to specify initial values for variables.
Initial values depend on the interpretation of the abstract levels. We can derive these values from

the deterministic representation of the model following the fjute= Q |A|.

An example (continued)

The activity graph of the model in Figure 4.2 is given in Figure 4.3.2.
We derived ordinary dierential equations and a stochastic simulation from the activity graph

as described in previous sections. Here there is the deterministic model representiéerbptail
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equations. Initial conditions may be inferred from experimental datayséy = np(t) = ¢ > 0 and

mg(t) = my(t) = me(t) = 0.

I = v MO0 + 1) + V()
dnc]zt(t) =~V My (t)Mp(t) + ViMa(t) + Vi, Me(t)
drzst(t) =V, Me()ma(t) — VieMa(t) — Vi, ma(t)
% = Vi, M) — Vrmu(®)
d"ci(t) = v, me(t) — Ve, mi(t)

Here there is a set of reactions for the stochastic simulations with the corresponding probabilities
of occurring in infinitesimal time intervalt. In the last columm; denotes the current number of

molecule of speciesy. The initial population is given by, = mp = Qcandng = my = mg = 0.
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name reaction probability

- M+m-om v, /Qmnp
r2 Mz — My + Mg Vi, M3
I3 mg — My Vi, My
4 Mg — My Vi, Mg
Ig M3 — M + Ny Vs

4.4 A case study: circadian clocks

Circadian rhythms are 24 hour cycles shown by physiological processes in most living organisms.
For example in animals feeding and sleeping are regulated by an internal clock with a period close to
a day. Recent studies have discovered these rhythms depend on genetic mechanisms and rhythmic

behaviours rely on the level of gene expression.

Several theoretical models have been proposed for circadian clockkeiredi organisms (Gold-
beter, 2002). Following Gonze et al. (2002a) we consider the minimal model initially suggested for
circadian rhythms iNeurospora see Figure 4.1. Although this model is simple, it describes the
basic structure for a wide range of biomolecular clocks (Young and Kay, 2001). Therefore it is

useful to unravel the general machanisms underlying oscillations.

In Figure 4.1 we show the model fdleurospora The core mechanism of circadian oscillations
relies on the negative autoregulation of the clock gene. Gonze et al. (2002b) defined also a similar
model which includes phosphorylation of cytosolic proteins and cooperative binding of repressor
proteins to gene promoters. At the moment we are going to overlook these details because they are

not required for the oscillations (Gonze et al., 2002a).

The time evolution of the concentrations involved in the model is given by the following kinetic
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clock gene nuclear
transcription protein N
k k
1 2
VS
k. .
M mRNA s p cytosolic p

l protein ¢
Vm i Va

Figure 4.1:Core model for circadian rhythms.. M represents mRNA whil®c and Py are the

clock proteins into the cytosol and into the nucleous respectifRlys synthesized from the mRNA

M, then it is either transported into the nucleus or degrada®gdexerts a negative feedback on
transcription of its gene or else it goes out of the nucleus. Degradations are controlled by enzymes.

equations,
diM] _ K [M]
Tat T VKA P Mkt [M]
dfPc] [Pc]
at = ksM - ded"'—[PC] - ka[Pc] + ka[Pn]
A~ lPel ~kelPy]

In these equations, the variabléd]| [Pc] and [Pn] denote, respectively, the concentrations of the
clock gene mRNA and of the clock gene protein in the cytosol and in the nucleus. Transcription is
inhibited by proteirPy. Inhibition is described by terr@% wherek; is a constant that measures

the binding #inity betweerPy and the clock gena is the Hill codficient andvs the maximal rate.
Degradations of MRNA and cytosolic protdta are enzymatic reactions which follows Michaelis-
Mentent rule. Parameteks, andky are the respective Michaelis constants. whexgaandvy are

their maximal rates. The other reactions follow the Mass Action Law. In partiddhr ki[Pc]
andky[Pn] correspond to translation, transportation out of and into the nucleus of the clock protein
respectively. With proper parameters the ODEs yield oscillations in the molecule concentrations

with a period close to 24 hours.



4.4. A case study: circadian clocks 35

4.4.1 Modelling circadian clock in PEPA

In this section we present a PEPA model of the minimal circadian clock in Figure 4.1. It is chal-
lenging to express in PEPA the behaviour described by nonlinear terms appearing in the kinetic
equations B.1. These terms, however, do not correspond to single reaction steps. They rather are
based on assumptions about the behaviour of enzyme-substrate or gene-repressor complexes. As
suggested in Gonze et al. (2002b), we decompose enzyme-substrate and gene-repressor reactions
into elementary steps; so we build a new model, which we will refer to age¢kielopednodel.

We develop enzymatic degradation processes into three elementary reactions given by the following

formula,

b _
S+Es2Cs 5S+Es
u

These reactions represdnmding (b) of substrates to enzymeEg to form complexCs, disassocia-
tion (u) of Cs andcatalytic decompositiofc) of Cs to form degradated produStand enzymeEs.

In the model degradations of cytosolic proté&g and mRNAM are enzyme-driven. Repression
mechanism is developed in two reaction steps given by the following formula,

of f
G+Py 2 GP

on

Here, repressor proteiBy binds to its gends to form complex gene-protei®P. Binding and
unbinding of protein mean switching gene, respectivefiyand on. For simplicity we assume Hill
codficientnis one.

The developed PEPA model is described by the component definitions 4.1 and by the system
equation 4.2. As in Calder et al. (2004), the model is based on the variations in concentration of the
reagents. Concentrations are represented by discrete values. We consider high (i.e. observable) and
low (i.e. unobservable) concentrations of reagents. In contrast with Calder et al. (2004), however,
we do not have just concentrations. HefeandR does not represent concentrations of molecules,

but theeffectivenessf transcription and repression machinery. We have two levels, high and low,
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for transcription and repression. For example, high transcrigiti@h means the transcription ma-
chinery is working at the best of its capability. The concentralibof mRNA depends on both of

them.

T £ (mve).T[1] + (of f, T).T[O]
T[O] = (on T).T[1]

R[1] = (on Vvon).R[O]

RO] £ (off,T).R[1]

M[O] = (m T).M[1] + (um Vvym).M[1]

M[1] = (pC1,ks)-M[1] + (bm Vpm).M[0]

Em[] = (bm Vom).Em[0]

Em[0] = (umvum).Em[1] + (cm Vem).Em[1]

Cw[l] = (umvym).Cml0] + (cm vem).Cm[0]

Cm[0] = (bmVom).Cm[1]

Pc[0] = (pc, T).Pc[1] + +(pc2, k2).Pc[0] + (UpG Vyp).Pc[1]
Pc[l] = (pnki).Pc[0] + (bpG Vbp)-Pc[0]

Erc[1] = (bPGVope)-Erc[0]

Epc[0] = (UPG Vupo)-Epc[1] + (CPG Vepo)-Erc[1]

(4.1)

Crc[1] = (upc Vupd)-Cec[0] + (CPG Vepe)-Crc[0]
Cpc[0] = (bpG Vobpe)-Crc[1]

Pn[0] = (pn T).Pn[1]

PnIl] = (pe, k2).Pn[O] + (of f,Vo1¢).Pn[O]

T[1] I (RIO] > (((M[0] < Em[1]) 5 Cm[0]) %I (P[] X E.[1]) 5 Cp,[0]) X Py[0]) (4-2)

Whered = {m,of f,on}, K = {of f}, L = {umbm}, M = {umbmcm}, N = {pci}, O = {upc bpd,
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P = {upc bpc cpg andR = {pn, pc}. In the initial state we have high concentrations of enzymes
(Em andEp.) and the transcription machinefyis working at high level; instead concentrations of
the enzyme-substrate complex€s(andCp.) and of mMRNA (M), cytosolic proteirPc and nuclear

proteinPy are low.

4.4.2 Activity graph

In Figure 4.2 we show the activity graph corresponding to PEPA model 4.1.

Figure 4.2:Activity graph for the PEPA model of the circadian clock.. This is the activity graph

for the model in Figure 4.1 described by equations 4.1. Nodes are process names (i.e. molecules)
and action type (i.e. reactions) in the algebraic specification. An edge goes out of a node-molecule
and enters into a node-reaction if the molecule is consumed in the reaction. Instead an edge is from
a node-reaction to a node-molecule if the molecule is produced in the reaction. Herd renu#:

do not represent molecules, but molecular processes.

As described previously we derive ODEs and a stochastic simulation from the activity graph. In

Appendix B we listed the ODEs and the stochastic description of the model.
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4.4.3 Some experiments and results

Ordinary diferential equations were solved numerically using Runge Kutta 5 method. Reaction
equations, instead, were used as input for Gillespie’s algorithm. In this section we show some
experiments and results.

In Figure 4.3 there are results for two deterministic models. The plot shows the time dependent
behaviour of MRNAM, cytosolic proteinrPc and nuclear proteify for the non developed model
(left) and for the developed model (right). Results are similar but not equal. In fact the non de-
veloped version is an approximation of the developed one based on some steady state assumptions.

Moreover there is a lack of data for some rates in the developed model.

Figure 4.3:Developed and non developed version of the core clock model

In Figure 4.4 we compare stochastic and deterministic simulations. The experiment shows that
for suficiently large values of2, a stochastic simulation yields results similar to the deterministic
model. The left plot of each row shows the behaviours of mRMAcytosolic proteinPc and
nuclear proteirPy in the determinisitic model (first row) and in the stochastic model (second row).
The right plot, instead, shows the phase plane for mRWAnNd nuclear proteiy; after a while
the system converges to a limit cycle.

In Figure 4.5 we show thefiect of the number of molecules on noise in the stochastic model.
As the value o2 decreases, oscillations become noisy and the limit cycles disappears.

Since the deterministic model and the stochastic model produce similar reitfd000, the
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Figure 4.4: Core model for circadian clock: stochastic and deterministic simulations The

first row shows the behaviour of the deterministic representation of the core model. Results were
produced numerically (Runge Kutta) from the ODEs in Appendix. On the left there is the time
evolution of the system for mRNM, cytosolic proteinPc and nuclear proteifPy; on the right
instead there is the phase plavless Py corresponding to the previous graph. The system converges
toward a limit cycle. The second row shows the corresponding results for the stochastic model.
Simulations were performed using Gillespie’s algorithm gnd 500.
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Figure 4.5: Effect of the number of molecules on noise in the stochastic modelThe figure

shows the results of stochastic simulations for increasing valuegt®00, 500, 100). The left plot
describes the time behaviours of mMRMA cytosolic proteinPc and nuclear proteiRy. The right

one is the corresponding phase plane. The experiment was carried out using Gillespie’s algorithm.
We observe that for small values Qfthe limit cycles disappears.
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deterministic model is not adequate. In fact it describes the behaviour of a system where the number
of molecules is of order Fownhile the number of molecules in regulatory gene networks is usually

of order 10- 107






Chapter 5

Markov chains with discrete levels and

their approximations

5.1 Introduction

The modelling style based on discrete levels of concentration initially was introduced in order to
derive ordinary dierential equations from the high level specifications of PEPA models (Calder
et al.). In this thesis we showed how it is possible to build stochastic simulations in a similar way.

Historically PEPA was designed to represent Markov chains (Hillston, 1995). Therefore in this
chapter we analyse the interpretation of models with discrete levels as Markov processes and its
relationships with the other interpretations.

There might exist several algorithms that extraéedtent Markov chains from the same model
with discrete levels of concentration. We consider just the Markov processes produced from a model
with discrete levels interpreted as in Hillston (1995). We will refer to these chains with the term
Markov chains with levels or, if there is no ambibuity, Markov chains.

A Markov chain with levels has the state space composed by tuples of nonnegative integers.
Transitions are defined between adjacient tuples and rates depend on the current state. However it

is not a population model, such as the Markov chain underlying a stochastic simulation, because

43
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we assume there exists a maximal concentration. Moreover this assumption could make models not

appropriate for some biological systems. The scope of this chapter is to clear also these aspects.

From some experiments we carried out we observed that a Markov chain based on two levels of
concentration could not have enough useful information to understand the behaviour of the stystem.
Hence in this chapter we generalize the approach presented in Chapfer4lialiscrete levels of
concentration. We show how it is possible to derive an expanded model from a binary model. In
order to compare results offtkrent interpretations we need to adjust rates for a stochastic context
as we did for Gillespie’s algorithm in Chapter 4. Thus model expansion provides also some rules to

compute proper rates.

We analyse the behaviour of Markov processes for increasing valiésiotthe last part of this
chapter we prove that under some conditions the average behaviour of a Markov chain with discrete

levels converges to the solution of a system dfedlential equations.

5.2 Cooperation in biological systems

In this thesis we use a modified version of the cooperation rule defined in Appendix A. In the case of
computers’ systems the expressRJnLﬂ Q represents a situation whdPeandQ must work together
to undertake an action in. Therefore the rate of a shared activity depends on the rate of the slower

component.

On the contrary in a biological context we follow the Mass Action Law (see Chapter 3): the rate
of a reaction is proportional to the product of the concentrations of each reactant molecule. Thus

we override the definition of the apparent rate in the following way,

ro(P)x1a(Q) ifacl

I’,,(P Bf] Q) =
ro(P) +1,(Q) ifagl

From the definition of cooperation rule given in Appendix A we obtain the following new rule for
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cooperation,

(a.r1) (a.r2)

E-SE F-5F

Eb F (@) g >t F

(v el)

5.3 Expanded PEPA models

Because of some numerical experiments we carried out we claim that two levels of concentration
may be not enough to derive useful information from models. Hence, we generalize the modelling

approach based on two concentration levelsite 1 levels.

Given a parameteM > 0, concentration interval [0V] is divided intoN + 1 discrete concentra-
tion levelsly, ..., Iy and we assume the width between consecutive levels is eqtiaktd/N. In
this contextN represents the greatest concentration level for each molecule. The discrete concen-
tration corresponding to levélis given byl;M/N. We want to study the behaviour of the system

for increasing values dfl.

We introduce a notation to simplify the description of mode}ﬁﬁzo Ci is an abbreviation for
procesC; + ... + Cx. The sum of zero terms is a procass and, given a process, we have

C+nil =C.

GivenN andM we can expand a two level model into Alevel model in the following way.
We build the activity grapls = (S U R, E) corresponding to the two level model as described in

Chapter 4. Her& is the set of molecule species, ..., mg, whereaR is the set of reactionsy,

- YR

Let m be a molecule ir5. We denote withm[i] the process corresponding to thth level of

moleculem. For each moleculenwe define the following process constants,
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mi] £ > (@iH)mi-1+ > (e 1)mi+1]
(a,meEA(Mma)eE (ma)2EA(a,meE
+ Z (o,iH).Mi] fori=1...N-1
(ma)eEA(a,m)eE

mN] £ > (@NHmN-1+ > (o,NH.mN]
(ma)eEA(a,m)¢E (ma)eEA(a,meE
mo] £ > (e )]

(a,meEA(Ma)2E

Because of the assumptions made in Chapter 4 on the structure of binary models, for any molecule
m there exist reactions, anday such that h, ;) € E and @2, m) € E. Therefore the model
expansion is well defined, in the sense tAat(m[i]) # @ for every moleculenandi = O,...,N.

Note that the property that every sequence component does not contain instances of the same action

type is conserved in the expanded model.

Because of reasons which will be clear soon, we define also a dummy pidedssse scope

is to adjust rates.

def Vy
D £ ;R(a, )-D
Whereyv, is the rate corresponding to reactian We remember that we assume activities of the
same action type (i.e. reactions) have the same rate.
The system equation contains the components corresponding to the initial level for each molecule
and componerD. Initial levels depend on initial concentrations which are usually known. As usual
we assume that activities with the same action type are synchronized. Therefore we omit action

type sets under operatos .

It might not be clear the reason of division blyin the definition of componerD. Constant



5.3. Expanded PEPA models 47

H is the step widtH; — l;_1 for anyi = 1,..., N. In other words, changing the level of molecule
m takes timeAt which is necessary to increase or decreadd tfie concentration ain. Therefore
the changing rate is given b§ Time At is computed from the flierential equations; for instance

consider the following rate equation,

dm(t)
St

= v,m(t)
wherem(t) is the concentration of molecula at timet andv, is the rate of reactiow. If we

discretize the equation, we will obtain for small values\of

m(t + At) = m(t) — v,m(t)At

H

Because in our model the level stepHs we setH = v,m(t)At or elseAt = - follows the

reaction rate is given by:"",

An example (continued)

Here we derive an expanded PEPA model for the example in Section 4.2. In Figure 5.3 we show the
activity graph corresponding to the binary model. We assume all the molecules batdm, have

low initial levels. The expanded model is derived from the activity graph as described above.
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m[0] = (rs,1).my[1]

me[i] = (r3, 1).mfi + 1]+ (ry, iH).m[i—1] fori=1...N-1
m[N] = (ri, NH).m[N-1]

mp[0] = (rg, 1).mg[1]

mp[i] = (rg, 1).mpfi + 1]+ (r1,iH).mp[i—1] fori=1...N-1
Mp[N] = (r1, NH).mp[N - 1]

mg[0] = (ry,1).mg[1]

mp[i] = (re,1).mg[i + 1] + (ro,iH).mg[i —1] fori=1...N-1
mg[N] = (r2, NH).mg[N — 1]

m[0] = (r2,1).my[1]

mafi] £ (r2,1).mu[d] + (r3,iH).mai—1] fori=1...N-1
my[N] = (r3, NH).my[N — 1]

ms[0] = (r2,1).mg[1]

ms[i] = (rz,1).mg[1l] + (rg,iH).mg[i—1] fori=1...N-1
me[N] = (ra, NH).mg[N — 1]

D ¥ (r, %).D +(r2 %).D (13, %).D +

Vi, Vi
r4,—).D + (rs, —).D
+(4H) +(5H)
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In the binary model the system equation is given by

my[1] B mp[l] B4 mg[0] > my[0] B mg[O0]

{ry.r3.rs) {r1.r4.r5) {ro.ra} {ro.rg)

In the expanded model binary levels are substituted by proper values. In this case 0 remains the

same, while 1 becomds. Dummy proces® has to be added. Therefore we obtain,

my[N] > mp[N] | B (0] B my[0] P ms[O] D

{rq.r3.rs5l {ry.ro, r3 4,15}

As an example, a firing of reaction produces the following transition, as expected,

mIN] 5 my{N] 4 myo] 5 myo] 5 myo] p I

{r1.r3.rg {ry.r4.r5) {ro.ra} {ro.rg (r1r2r3r4r5)

my[N—1] B4 mp[N-1] > mg[1] P my[0] > mg[0] D

{r1.r3.r5} {rq.r4.rs5} {ro.ra} {ro.rg} {ry.ro, |'3 r4.r5}

5.4 Markov chains with discrete levels of concentration

In Hillston (1995) the derivation graph represents all the possible behaviours of a system. Nodes are
the derivatives of the initial component and there is an arc between nodes for each possible transition
between the corresponding components. Besides each arc is labelled with its own activity. More

formally we have the following definition.

Definition 5.4.1 (Hillston (1995)). Given a PEPA component C and its derivative s€C)sthe
derivation graph OC) is the labelled directed multigraph whose set of nodes {€yand whose

multiset of arcs A is defined as follows:

¢ the elements of A belong to the sef@)sx d5C) x Act;
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e < C;i,Cj,a > occurs in A with the same multiplicity as the number of disinct inference trees

for derivation G N C,.

A stochastic process is built assigning a state to each node of the graph and defining transitions for
each arc of the graph. If all activity durations are exponentially distributed, it can be proved that
this process is a Markov process (Hillston, 1995).

We want to study the structure of a Markov chain corresponding to a PEPA modé wittdis-
crete levels of concentration. In this context system equations have thewdrhse ... =amg[lig]
wheremy, ..., mg are the molecules of the system dnd. ., l;s the corresponding levels. We omit
the set of actions under operates and proces® for simplicity’s sake.

Because a process[li] can evolve only into a procesa[l{] with I; =1l i+ 1lorli -1, the
state of the system can be represented by a row vectoN!S! where entryw; stands for the level
of moleculem.

We define a functiow in order to switch from the representation of states as components to the
notation with tuples of non negative integers. Given a compa@entm[l1] 3 ... s my[ljm], the
corresponding vectan(C) is defined asl(, ..., Iv). We define also the inverse functiart! such
that given a vectaw of size|M| the corresponding componentis(w) = mq[w] b ... b1 my[wim].

We say thatw is reachable fronw if and only if w(W) € dqw(w)). The set of all states
reachable fromv is denoted by(w).

Following Winskel (19934 £ C; 2, C; denotes the fact that there exists a derivation tree
that infers transitiorC; 2, Cj. We want to prove that for every expanded model, if there exists a
derivation tree for a transition, then this tree is unique. As a consequence the arcs of the derivation
graph have multiplicity one. In other words given a compor@&nie want to prove the following

proposition
Q(Ci) = Vdy,dp ACj,ath £ Ci —> Cj Adp E G — C) = dy = b

Lemma 5.4.2. For every sequence componen@fs) holds.
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Proof. We prove it by induction on the structure of sequential components.

e If S = (a,r).X, we can apply only prefix rule, so the thesis follows immediately.

o If S =S;+S,, consider two derivation trees such tldate S ﬂ S’ andd; £ S ﬂ s,
Because a sequence component does not have multiple instances of activities of the same
action type, without loss of generality we assume A(S1) anda ¢ A(S2). Thus we can

apply only a rule to deriv& 2, S,

Sl (a.r) 5

(1)
S1+S, — &

and becaus@(S1) holds by inductive hypothesis, we conclude ttiat d, andQ(S).

Proposition 5.4.3. For every model componentdP) holds.

Proof. We prove it by induction on the structure of model components. We omit the case of hiding

because it does not appear in our models.

¢ If P = XwhereXis the name of a sequential compon8niAssume there exist two derivation
treesd; £ P ﬂ P’ andd; £ P Er—)> P’. We can apply only the rule for constants. Because
Q(S) is true for every sequential componéhtsee previous lemma, we conclude that do
andQ(P) is also verified.

e If P = P, BP,, assume there exist two derivation tregs- P D, b andd; £ P NS

If @ ¢ L we can assume without loss of generality that A(P1) anda ¢ A(P2). In fact if
a € A(P1) anda € A(P»), because activities of the same action type are synchronized, it must
be the case that € L. Besides ifae ¢ A(P;1) anda ¢ A(P), transitionP ﬂ P’ cannot

occurs. Then we can apply only a rule for cooperation

(@)
PL— P}

@n
P15 P, — P X Py

(g L)
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and becaus@(P;) is true by inductive hypothesis, we conclude tthiat d, andQ(P) is true.

If @ € L, there is just one cooperation rule we can apply.

P, (a.r1) P,l P, (a.r2) =

2
ST N (@eb)
Py 53 P, <% pr ba

Becaus&(P1) andQ(P2) are true by inductive hypothesis, we conclude that d, and also

Q(P) is true.

We denote withXy(t) a Markov chain corresponding to a PEPA mo@glwith N + 1 levels of
concentration. Stat¥y(t) represents the number of levels of each molecule species at
HX (1) is the discrete concentration vector. kgt be the initial state vector, namelyy = w(Cy).

State spac&y is equal tgo(wy) c NISI,

Transitions of the Markov chain correspond to arcs in the derivation graph. By definition
if < C,C’,a > A, there exists a derivatio@® N C’ wherea = (a,r). In our caseC =
mu[la] b2 ... samy[lm] and C" = my[lf] > ... samy[lfy,]. Thus if a derivationC SN oY

exists, the following conditions hold:

i. if (m,a) € E, thenl; > 0, in fact supposad absurdunthatl; = 0, thena ¢ A(m[0]), hence,

because activities of the same action type are synchrorﬁZee?,—> C’ cannot occur;
ii. if (¢,m) e Eandm,a) ¢ E, thenl; < N; we can use an argument similar to that one above.

Now we are able to describe the rates of the Markov chain. If there exists an aativify, r)
such thak C,C’,a>€ Athenquc)wc) = I = VoH™ [Tm.a)ce liH, otherwised,c).wc) = 0.
On the other hand if (i) and (ii) are satisfied, then there exists a derivatioR C’ and thus
< C,C’,a>€ A These facts lead to the following proposition that allows us to describe the structure

of the states of a Markov chain given the derivation graph.

Proposition 5.4.4. < C,C’,a>€ A if and only if (i) and (ii) are satisfied.
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When an actiofreactiona is undertaken, molecule levels can only increase or decrease of one
unit or remain the same. A stoichiometric veciigrrecords this information. This vector has size
M| and entryd,; is the change in the population wf caused by reactiom. More formally, A, is
defined as 1 ifify, @) ¢ E and @, m) € E, -1 if (m;, @) € E and ¢, m) € E, 0 otherwise.

It could be useful to look at a Markov chain from the view point of reactions rather than that
one of derivation graph. For every reacti@erwe denote as products the s#bd(a) of molecules
m such that ¢, m) € E and fn,a) ¢ E and as reagents the setaga) of moleculesm such that
(m a) € E. Because of Proposition 5.4.4 and because, if a reagent has level zero, the product of

reagents is also zero, we obtain that for every reactiarRk and statex € Ey,

%Va Hmerea@(a) %Xi if /\meprod(a) X <N
Ox, x+1,
0 otherwise
All other transitions are zero. Since levels cannot be greaterNihaarkov chains of this kind are

finite.

5.5 Some Examples

In this section we study the behaviour of some simple Markov chéii{§) for increasing values
of N. We derive the corresponding time dependent solutions analytically in order to understand the
relatioships between stochastic and deterministic models.

In the first case we consider a decay model. We show how the average behaviour of the Markov
chain corresponds to the solution of its deterministic version for every valNelofthe second case
we consider a model for exponential growth. In our framework deterministic and stochastic versions
for growth model are dierent because in the stochastic model we assume there exists a maximal
concentration. Nevertheless we observe that changing slightly the definition of our approach, for

example making parametét constant and independent froy the stochastic model converges
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towards the deterministic one fof — oo.
The important aspect of this section is that in these two particular cases the behaviours of
stochastic and deterministic models are the same under some conditions. In next sections we analyse

this fact for a more general case.

5.5.1 Decay model

We consider a simple model which describes the degradation process of a kind of molecule or

substanc@\. The deterministic behaviour is represented by the followirfigéntial equations,

d
e U0
a0) = A

It is easy to verify that the system solution is given by,

at) = Age*t

We divide interval [M] into N + 1 discrete levelf, ..., Iy whereli1 —1; = Rfori =0,...,N-1.
We defineA; = M as obvious anti = ¥. The model corresponds to a continuous time Markov
chain of kind “pure death” with degradation rajgs= ﬁiH = ui. StateA = i stands for discrete
level [iH, (i + 1)H).

We assign rewartH to stateA;, namely to concentration leveH, (i + 1)H). In Figure 5.1 we
compare the expected reward with the exact solution of tfierdntial equation. In this simple case
we have a good approximation also for few levels and the graphs are indistinguishable.

In Figure 5.2 we report relative and absolute errors for several levels. We observe that the more
levels there are, the larger the absolute error is. This is counter intuitive because you may imagine
that, if there are more discrete levels, the model should be close to the continuous case. On the

contrary the relative error is smaller with more levels.
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Figure 5.1:Numerical solutions for deterministic and stochastic decay modelsExperiments
show that deterministic and stochastic solutions are very similar.

levels

absolute error

relative error

2
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6.44580946487e-0¢
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6.44580946487e-06

2.96504156795e-0
7.87910283347e-0}

D

0.0222091587326
0.0222091587326

0.00246082693734
50.000129234547456

Figure 5.2:Absolute and relative errors with different number of levels between stochastic and
deterministic decay models.We took 2000 sample points in interval, [0.,100]. In this simple
example also few discrete levels are a good approximation for the continuous problem, however, as
the number of levels increases, the absolute error grows up.

We are going to explain why this happens. Firstly, we will work out the time dependent solution

of the Markov chain. The only transition from stdtéo statei — 1 has rateui and state 0 is an

absorbing state. Hence the transient behaviour of the system is given by the follofargrdial

equations,
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drn(t
ﬂ(;l%() = —Numn(t)
d’gtt) = (i+ Dumiza(t) —ipm) i=0,...,N-1 5.1)
7@ = 0 i=0,...,N-1
(@) = 1
We observe that
jut .
AELO) - 1+ (e
dt
Therefore,
. t P
mi(t) = (i + ey f mip (D)eHt dt (5.2)
0

Hence, becausey(t) = e M and because of Equation 5.2,we obtain recursively,

mi(t) = ('i\')(e—ﬂt)i(l YN =0, N (5.3)

The absolute error at tintds given by

€(t) = (5.4)

N
a(t) - i%m )
i=1

wherea(t) is the exact solution at timefor the deterministic model anﬂi'\ioi%m (t) is the avarage

concentration at timefor the Markov chain.
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&(t)

N
a(t)- i%m (t)
i=0

N
poe = (e - e
i=1

AgeH % i i('i\l)(e‘“t)i(l - )N
i=1

N

Ao N(N-1)!
Zli(i “DIN=)!

(e—yt)i (1 _ eut)N—i

i=1

—ut N N-1\ i tyN—i
Aoe —AOZ(i_l)(e”)(l‘e")

Age — Aget Z (N _11)(e—/1t)i—l(1 _ ty(N-1-(-1)
Li\j-

Age M — Age ’il(N N 1)(e_’“)j(l — gtyN-D-
- J
j=0

|Age™ — Age# (e + 1 - &N

|Aoe™ — Age™| = 0

Thus, for this particular case, the discrete level approaegus/alentto the deterministic model for

every number of levels The absolute errors in Figure 5.2 are non zero because of error propagation

in the numerical methods used to compute the transitory probabilities. In general the larger the size

of the Markov chain, the greater the propagation error is.

5.5.2 Growing model

We consider a model which represents the growth of a population of molecules oAkifithe

differential equation is given by

TAnother way to prove it3.N, iz (t) is the mean of a binomial distribution with paramegef, namelyNe*
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da(y)

- Aa(t)

al0) = Ay>0
The only solution is

att) = Aget

We chooseH = Ag because it is easier to find out a closed form time dependent solution for
the underlying Markov chain. We divide concentration intervaN®y] into N + 1 discrete levels
lo,...,In Whereljg — I = Agfori =1,...N - 1. Levell; corresponds to intervai4o, (i + 1)Ag)

and has rewartdg. The model represents a “pure birth” Markov chain with rite %iAo = Al.

In Figure 5.3 we compare the exact ODE solution with the expected reward of the Markov chain
for increasing number of levels. The deterministic solution does not have a maximal concentration
value as assumed in the Markovian model; hence the Markovian and the deterministic approaches
yield different results. However the greater the number of levels is, the better the approximation

seems to be.

We are interested in solving the Kolmogorov equations in order to understand the behaviour ob-
served experimentally. The transitory behaviour of the Markov chain is described by the following

differential equations,
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Figure 5.3: Deterministic and Markovian analysis for the simple growing model.
drq(t
”;t() = —Am(t)
dri(t) . : .
ot = —idm)+(-DAr1(t) i=2,...,N-1
drn(t
”g‘t() = (N = Danna(d) (5.5)
7i0) = 0 i=2...,N
m0) =1

We claim thatri(t) = e (1 - e )i~ foranyi = 1,..., N - 1 is a solution for the system (5.5).

We prove it by recursion on the number of stat&he base case is trivial; in fact from the first and

last equations we obtair(t) = . We assume(t) = e (1 - e)'"1is true fori > 1 and we

want to prove the same property for 1. Firstly, we observe that, for amy= 1,...,N — 1, mj can
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be written as

mi(t) = fo t(i — Dari_1(9)e” 9 ds

Therefore

t .
mipa(t) = f iAm(9)e (+I1=9) gg
0

t
f 2615(1 — 1) ~1e-(+DA-9 g
0
t
_ e—(i+1)/lt/lf ie15(1 - e%y-1 ds
0
t
— e—(i+l)/lt/lf ie/lS(e(lS _ 1)i—l ds
0

e/lt

= (DAt f i(x— 1)1 dx
1

. e-1
— e—(|+l)/1tf in—l dx
0

— e—(i+1)/lt(1 _ e—/lt)i — e—/lt(l _ e—/lt)i

Finally, because"”st(t) = (N — DAnn_1(t) andrn_1(t) = e (1 — e™)N-2 we obtainay(t) =

(1 _ e—/lt)N—l_

The avarage concentration value in the Markov chain is defined as

N-1
Aoe—/lt 4 Z(iAoe_M(l _ e—/lt)i—l) +NA(L - e—/lt)N—l
i=2

= A+ A2l-eM +

_(N _ 1)(1_ e—/l'[)N—l) + NA()(:L _ e—/lt)N—l

E[A(1)]

(1 _ e—/lt)Z _ (1 _ e—/lt)N—l
et

— Aoe/lt(l _ (1 _ e—/lt)N) — Aoe/lt _ Aoe(lt(l _ e—/lt)N
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The absolute error is given by

&t N) = [a(t) - E[A®)]l = Age(1— e )N

Hencee,(t, N) = O only ift = 0. As observed from numerical simulations, for any fixed time
’\IliLnoo &(t,N) =0. ThusNirg E[A(t)] = a(t) or, in losing words, if the Markov chain is infinite, the
deterministic simulation is equivalent to the avarage behaviour of the Markov chain. For any fixed
number of leveN we study the behaviour &[A(t)] in time. The functiorE[A(t)] is always positive
non-decreasing ang[A(0)] = Ag. Moreover fort — co E[A(t)] tends to the maximal concentration

value AgN, we prove it using L'Hopital’s Rule,

. 1-(1-e )N
fim Ao——%

Ao lim N(1 - e HN-1

lim E[AQ)]

AoN

5.6 Limitdistribution of Markov chains with discrete levels of concen-

tration

5.6.1 Kurtz's theorem

In this section we introduce the main results of Kurtz's theorem; for a more technical and formal
presentation readers can look through Kurtz (1970, 1971).
A density dependent famibf Markov chainsX, is a sequencéX,} of Markov processes such

thatv is positive, the state space X§ is E, c Z™ and the transition rates are given by

1
Oxx+ = Vf (\—/x, I) l#0
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wheref(x, ) with x e R™ andl € Z™ are continuous functions.
Roughly speaking such a family is defined by a parametehnich represents volume, popula-
tion size or whatever else. The states of the Markov chains are normalized with respectdo
the state spaces of this sort of dentities are considered instead. The transition rates depends on the

densities, hence the name density dependent Markov chains.

Theorem 5.6.1 (Kurtz (1970)). Define a function F in the following way

FO) = D I (x )
|

Let Ec R™ be an open set and ¢Ma constant such that
i. [F(X)—F(y) < Mglx-y|forany xyeE,
ii. supxee X 1If(x1) < o0 and
iii. dlmo SUPeE Xy 1T (x,1) = 0.

Assume Xs) is a solution of the ordinary gferential equations

oxX(s)
o = FX(O9)
X(0) = X

where Xs) e EforO<s<t andJim v1X,(0) = xo, then for every > 0

: 1
Jlm P{su Pict \—/X\,(s) - X(s)‘ > (5} =0
As parametev grows arbitrarily large, the sequence of stochastic processis(t) converges
to a deterministic proces§(t) which is solution of the ordinary fferential equations defined above.

While systems with finiter are discrete processes, the limiting system is continuous.

Kurtz’'s theorem has been used in a lot of chemical and biological applications to clear the
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relationship between the stochastic and deterministic models where the state spaces represent popu-
lations of individuals or molecules ands the volume or area of the region in which the populations
live.

We want to study the behaviour of Markov chains with discrete levels of concentration for

increasing values dfl. We consider a sequence of Markov chains defined as in Section 5.4,

Xk(t), Xk+1(t), o XN (t), ..

We want to study the convergence of this sequencélfes « via Kurtz's theorem. Our case is not
similar to the other biological applications which use Kurtz's results. We have Markov cKa(t)s

whose structure depends on paramé&emamely the number of levels. However the stochastic
processN~1Xy(t) does not represent a concentration or a population density, but a normalized or
scaled level. For instance eveMit' X\ (t) = 1 means the level of molecuta is the highest possibile

and the actual level value depends on the scale fad¢tofransitions depend on “densities”, but

in generalXy(t) is not density dependent because transition rates cannot be rewritten in terms of
continuous functions. For example, if a product of a reaction has My#éhe reaction cannot be
undertaken although all reagents have levels greater than zero. Despite of that there exist some
particular cases of Markov chains with discrete levels that are also density dependent. In next

sections we will explore them.

5.6.2 Reaction networks

We want to define a property of a PEPA model which allows us to infer that the sequence of Markov
chains extracted from the model for increasing valueld o density dependent. Instead of a PEPA
model we consider the corresponding activity graph. Besides we extend the notion of activity graph
with some information on the levels of each molecule species after some reactions are carried out.

We call this new object reaction network. More formally we give the following definition.
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Definition 5.6.2. An activity graph is a directed bipartite graph & (V, E). Node set V is equal
to RU S where R is the set of action types (i.e. reactions) and S is the set of process names (i.e.

molecules). Edge set E (Rx S) U (S x R) is the smallest set such that:
¢ if molecule mis consumed in reaction a, tema) € E;
¢ if molecule mis produced in reaction a, thégm) € E;
¢ if molecule mis involved in reaction a but it is not consumed, (he@) € E and(a, m) € E.

The graph is represented by an activity mathix A* — A~ of size|S| x |R. Here A" = {aﬁ}
whereaﬁ =1if(j,i) € E, elseaﬁ = 0. InsteadA™ = {a;) Whereaﬁ =1if(i,j) € E, elsea;j =0.

Every nodam has a weightv; € N which models the level number of molecutig The vector
wy € NIS!is the row vector of initial levels. Given a weight assignment sequence of reactions
r=ri,...r, is a possible succession of reactions. Not all sequanaespossible; in fact when the
level of some reagents is zero, the corresponding reactions are not allowed. A sequence of reaction
can be empty, in this case we denpteith 1. Given a weight assignmentand a possible reaction

rj the next statev’ of the system is given by

W= W+ Agj

whereg;j is the j-th column of the identity matrix of sizZi® x |R).

Given an assignmemt and a possible sequence of reactipise NIR is a column vector which
counts the frequencies of each reactiom;in.e. T; is the occurences of reactid® in r. Hence,
w = w + Ar is the vector of levels after all the reactiongriare carried out.

A reaction network is closed if arrivals and departures into and out of the system are not allowed.
A network with departures can be mimicked with a closed network where a special kind of molecule
represents lost molecules; we will use this observation to model degradation processes. Instead, in

order to represent arrivals, we can define a special kind for outside molecules with infinite weight.
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In the rest of this work we will consider just closed network with finite weights. We observe that
reaction networks are a particular case of Petri Net.

We introduce the vector notation we use in this work. TFeentry of a vectow is denoted by
w;. Given two vectow andw’ w < w' if and only ifw; < w! for everyi; relationss<, >, > and= are
defined in a similar way. Given a vectarand a scalak w < k means that every entsy; of w are

less thark; the same for the other relations.

5.6.3 k/0 networks

Definition 5.6.3. Let R be a set of reactions, S a set of molecules and w a starting weight assign-
ment. A reaction network G (SUR, E) is k/0if and only if for every possible sequence of reactions

r and for every reactiom € R the following condition holds,

wk= \/ w=0 (5.6)

i
meprod(a) miereag@)

In ak/0 network if some products of a reaction have a level equal to or greatek ttangiven
point of the evolution of the system, then there exists at least one reagent of the reaction with level
zero. As a consequence, the reaction cannot occur. Thetefepresents a bound for the possible
level values.

If a molecule has a starting concentration level higher than the maximal level, we may assume

the concentration has been rised artificially. Nevertheless, we will considek.

5.6.4 Bounded networks

In this section we explore the idealgf0 networks as bounded networks.

Definition 5.6.4. Assume G= (V,E) with V = S U R is a reaction network and ve NS an
assignment. A nodejm S is k-bounded if and only if for every possible sequence r of reactions,
W{ < k. If every node fre S is k-bounded, then network G is k-bounded and vice versa. A network

G is bounded if and only if there exists k such that G is k-bounded.
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Lemma 5.6.5. Given an assignment w k, a reaction network G is k-bounded if and only if G is

k/0.
Proof.

= If G is k-bounded, then every nodg € S is k-bounded, specifically for any possihie
W < k. Consider a reaction where\/cprodio) W, = k- We assumed absurdumy is
enabled, i.6/\mereage) W, # 0. Without loss of generality, lety € prod(e) such thawv > k.
The reaction sequencgé = ra is still valid because of our assumption and we \gﬁét> k
which contradicts the hypothesis of boundedness. Thus, we conglhdgagy W = O.
HenceG is k/O0.

< Let k be a number such th& is k/0. Supposed absurdunthere exists such thawv' > k
and assuma/, > k without loss of generality. Sinoe < k and levels can increase of a unit,
there exists a prefik of r such thatwf1 = k. Becausearvf1 = Kk, for every reactiorr such that
my € prod(e) there existsn; € reag) such thaw] = 0. Hence reactiowr is not enabled
and the level ofmy cannot be increased. This contradicts our hypothesis and sok for

anyr. ThereforeG is k-bounded.

5.6.5 Application of Kurtz’s theorem

The following lemma illustrates the relation between the states of a Markov &dihand those

of a reaction networks = (S U R, E) corresponding to the same activity graph.
Lemma 5.6.6. For every xe p(w), there exists a valid sequence of reactions r such that.

Proof. Note thatx € p(wy) if and only if w(X) € dqw(wy)) if and only if there exists a sequence
a1, (@k-1.Tky) . .
of transitionsw(wy) (1_r1>) o w(X). We want to prove by induction on the length of the

transition chain that there exists a validuch thatx = V\/N.

e If X = wy, then we take = 1 and the conclusion follows immediately.
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. .. (a1.r1) (ak-1.7y) .
e \We assume there exists a sequence of transitigng) — ... —— w(X) such that is

valid andx = w{; = wn +AT. Let (ax, k) be an activity such thai(x) er w(X’). We need to
prove thatrey is still a valid sequence and thet= wj;*. Assumead absurdunthatay is not
possible, then there existg € reag(ak) such thatg = 0. Thusay ¢ A(m[0]) and, because
activities of the same action type are synchroniza() (ak—>rk) w(X’) cannot occur. Assumg
is the index corresponding to reactiopin A; ¢; is the j-th column of identity matrix. It is

trivial to realize that

Fag =T + €
Thus, given thah; denotes thg-th column ofA, we have

vvr,\‘fk:WN+AW:WN+AF+ajT=x+ajT

By definition of A it follows,

xi+1 if(ax,m)eEA(M,ax) ¢E
W = 4 xi—1 if(akm)EA(M,a) € E

Xi else

We conclude thax’ = wij*.

We note that the contrary is not always true. In fact a network can be bounded whereas the state
space of a Markov chain with levels is always finite.

The following lemma states the relation between a Markov chain with levels and the corre-
sponding reaction network. We show the equivalence between the boundedness of the network and

the property that the Markov chain has density dependent rates.
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Lemma 5.6.7. Given w;, < N, Xy(t) is a Markov chain with discrete concentration levels with

initial state vector w; G is a reaction network. Then, G is/N for wy if and only if for every

reactiona in R and any state & Ey;, rate Gy 1, is equal to Gx.1, = wVa [Imereaga) 1Xi-

Proof.

= AssumeG is N/O for wy. By definition, given a state of Xy(t) and any reactiorn,

q %Va Hmereag(a) %Xi if /\meprod(a) X <N
X, X+Ay
0 otherwise

If Ameprode) Xi < N, the conclusion follows immediately. Otherwise, sinc& p(wy) is
reachable fronwy, x = wj, for some reaction sequencgsee Lemma 5.6.6). Therefore,
becausés is N/O for wy, if \/meprod@) X = N, thenV ycreagq) X = 0 and thugijxx.1, = 0=

N M .
# Ve [ Imereage) N Xi-

For everyx € p(wy) the following propositiorQ is verified

vaeR \/ x>=N= \/ x=0
meprod(a) miereag@)

In fact becaus@lx.1, = Vo [Imereaga) N DY hypothesis, it mcprod@) X = N, Oxxra,
must be equal to zero by definition. HENGEy creaqn) Xi = 0. We want to prove that, given

wn < N, for every valid sequence of reactionswy € p(wn). Thus@Q(wy) is true andG is

N/0. We prove this fact by induction on the length of the sequence

— If r = A, becausevy € p(wn) by definition, the conclusion follows immediately.
— Assume thaiv, € p(wn) for r, namely there exists a sequence of derivatiofvay) rury)

(ak-1.Tq)
— w(Wy). Letax be a possible reaction aftey i.e. Amecreagy Wi > O-

Thenw* € p(wy) if there exists a transition(wy) (1 w(Wy™). ay is enabled if
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Amereagalpha) Wii > 0 @nd A eprodie) Wy < N. The first condition is true because by

hypothesis reactiony is possible. The second condition is true by induction. In fact

if ad absurdumA meprode) Wiyi = N, becaus&(wy) is true, \/ i ereaga) Wiy = O that
(CTAM)

contradicts the hypothesis thaj is possible. Ifx = wi; andw(x) — w(X’), then

X = ver"k. The proof is equal to the last part of the proof of Lemma 5.6.6.

We are now able to define some conditions on the structure of the activity graph in order to
understand when the underlying sequence of Markov chains is density dependent. The following
corollary highlights the fact that the class of Markov chains defined by Lemma 5.6.7 is a class of

density dependent Markov chains. It follows from the definition directly.

Corollary 5.6.8. A reaction network G is N-bounded foryw< N if and only if for any re-

action o and state x Markov chain (t) has rate gy, = Nf(N~1x, 1,) where ix,1,) =
Vﬁ [Imereaga) MXi-

Proof. It follows from Lemma 5.6.7 and Lemma 5.6.5. O

Corollary 5.6.9. There exists k 0 such that for every N+ k the reaction network G is N-bounded

for wy < N if and only if the sequend&n (t)}nsk is density dependent.

Proof. It follows from Corollary 5.6.8 and from the definition of density dependent Markov chains.

O

We observe that in gener@ can be structurally bounded, namely bounded for every possible
assigment, and at the same time the condition of Corollary 5.6.9 can be not satisfied. In fact a
network can be bounded for every initial assignment and in particulasfoibut notN-bounded.

As an example, consider the network in Figure 5.4 wimerandm initial concentrations are high.
The network is structurally bounded. Moleculas andny, have initial levelN whereas molecule
mg has level zero. It is trival to see that, after a sequendé factions; andN reactions ;s, the

level of mg3 becomes Rl. Thus the network is ndil-bounded for every values of.
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@) — >
@ — >

Figure 5.4:Structural boundedness and density dependency.his figure shows that a structurally
bounded network cannot satisfy conditions for desity dependency of the corresponding Markov
chains. Consider an initial assignment wherweandm, areN whereagry is zero. The network is
bounded, but noN-bounded.

(3

The following proposition gives us a necessary condition for boundedness. The idea bihind the
proposition is the following. consider a vectoisuch thatAu > 0 andAu # 0. Thus, if we have
an initial assignmeniv with values large enough, we can build a valid sequence of reacganh
thatu = 7. Thereforer can only increase the level of some molecules, Hence, if we reuse the same

sequence many times, the network grows unboudedly.
Proposition 5.6.10. If there exists u= 0 such that Au> 0 and Au+ 0, then G is unbounded

Proof. Consideru > 0 such thatAu > 0 andAu # 0. Letw > Y}; u; be an initial assignment anda
sequence of reactions that containccurrences of reactian, u, occurrences of reactian and

so on. Therr is a valid sequence of reactions. In fact suppag@bsurdunthatr is not valid, then

r = r’ar” wherer’ is a valid sequence of reactions amis such thatn € reaga) andvvi" = 0 for
somei. Becauseav; > Y Ui, inr’ there euist at least; u; + 1 reactions which decrease the level of

m;. However it is not possible, becauseriwe have}’; u; reactions.

Thereforen® = w+ Ar. BecauseéAr > 0 andAr # O, rr is still a valid sequence of reactions and

w' =w' + Ar. Hence, we can applyinfinitely many times ané is unbounded. i
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An example: circadian clocks

We consider the model for circadian clocks presented in Chapter 4. In Figure 5.6.5 there is the

corresponding activity graph where reactions and molecules are nhumbered. From theAmatrix

which represents the activity graph a system of linear inqualies O is extracted where some
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constraints are ffierent from zero.

-up+u > 0

Uuy—-u > 0

Uus+u—us > 0
—Us+Us—Ug > O
Us—Us+Us > O
—Up—uUg+uUg > O
U+Ug—Ug+Ujg—Uy;g > O
Uip— Uiz +Uz > 0

—Ujp+Ujp—U;p > O

There exist many solutions> 0 such thatAu > 0 andAu # 0. Thus the circadian clock model is
not bounded for some initial assignments (Proposition 5.6.10). For exampte) fori # 3 and
uz > 0 is a solution. This solution corresponds to a sequence of reacfpne. transcription. A
reactionrs is valid if the level ofm, is greater than zero. In our case every initial assignmems
Wy entry greater than zero. Hence, the model can grow unboundly for evairjnterest.

Because the model for circadian clocks is not bounded, the underlying sequence of Markov
chains is not density dependent and Kurtz's theorem cannot be applied. This does not mean that the
stochastic process does not converge to a (deterministic) limit distribution or that there do not exist
any relations with the corresponding determinitic model. However, at the moment, we are not able

to say anything using Kurtz's theorem.

5.6.6 Some issues on initial assignments

The vector of initial levelsvy depends on the vector of initial concentratiaribat is usually known.

Levell; corresponding to concentrati@nis given by the formuldN/Mc;. HoweverN/Mc¢; has to
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be approximated to some integer value in order to represent a level. Therefore it is hot possible to
define a general rule to determine which approximation is more appropriate for a given model.

So far we have assumed to know vecigy. Nevertheless in order to apply results of Corol-
lary 5.6.9 we need to defingy for everyN > k. Models often describe a scenario where some
substances are consumed by reactions. In this case at initial time some molecules species have the
greatest concentration, while the others have concentration equal to zero. In other words, given

initial concetrationg, for everyk > 0 the vectomy is defined as follows,

k ifg>0
0 ifg=0

One can verify trivially that the following relation between entrieswfandwy, 1 is true,

Wii + 1 ifWki >0
Wil =
Wi if Wk = 0
Consider a sequence of initial assignememig defined as above. We hope that the particular

structure of these assignments allow us to find a way to semplify the condition of Proposition 5.6.9.

In other words we would like to prove the following result.

Proposition 5.6.11. Let {wi} be a sequence of vectors defined as above and G a reaction network;

if G is k-bounded for w then G is also k- 1-bounded for w, 1.

The proposition would allow us to prove a corollary similar to Corollary 5.6.9 that is true in this
particular case. Thus we have diitient condition for density dependency, e.g. when the network

is 1-bounded.

Corollary 5.6.12. Let{w;} be a sequence of vectors defined as above and G a reaction network. If
there exists k such that G is k-bounded fqr then the sequendXy (t)}nsk is a family of density

dependent Markov chains.

Proof. It follows from Proposition 5.6.11 and from Corollary 5.6.9. m|



74 Chapter 5. Markov chains with discrete levels and their approximations

Unluckly Proposition 5.6.11 is not true. As a counter-example, consider the network in Fig-
ure 5.5 wherary and my have high initial concentrations. It is easy to verify that the net is 1-
bounded fomwvy, but it is not 2-bounded fow,. We belive that, if the net presents some structural

properties, then Proposition 5.6.11 is verified. At the moment we are wroking on this problem.

Figure 5.5:Again on boundednessThis figure shows that Proposition 5.6.11 is not true. Consider
an initial assignment whemg; andm, areN, while m, andnmg are zero. Then the net is 1-bounded
for wy, but it is not 2-bounded fows.

5.6.7 Limit distribution and deterministic model

Consider a sequence of Markov chaiixg(t)} defined as above and assume it density dependent.
Since functionF(xX) = },craf(X @) is continuously dferentiable,F is locally Lipshitz. Then
conditions to apply Kurz's theorem are satisfied for any bounded open set.

ThereforeN~1Xy(t) convergedor N — co to a limit distributionX(t) which is solution of the

following differential equations,

X(0) = Xo (5.7)
dX(t)
T F(X) (5.8)

WhereF(X) = 3 ,er e F (X 4,) and for every reaction € R,
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)= [] xm

myereaga)

We want to find which relation exists betwek(t) and the corresponding deterministic model

X(t), define as follows,

X(0) = Mxg (5.9)
dXx(t) —
T F(x) (5.10)

WhereF(x) = Y cr Ao f (X, A,) and for every reaction € R,

?(X’ /la/) = Vo l_l Xi

myereag«@)

Proposition 5.6.13.If X(t) is a solution of 5.7, then M) is a solution of 5.9.

Proof. SinceX(0) = Xo, X(0) = MX(0). Considert > 0, we substituteM X(t) instead ofX(t) in

equation% = F(x) and we prove the equality holds.

dX(t) B dx()
—at - MYq T
= MF(X(®) = M )" 2, F(X(1), 1)

aeR

BecauseM f (X, 1) = Vo [Imereage) XiM = f(MX, 4,), we conclude‘% = F(MX(t)). Therefore

X(t) = MX(t) is solution of 5.9. O

Proposition 5.6.14.1f X(t) is a solution of 5.9, then MX(t) is a solution of 5.7.
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Proof. Fort = 0 we haveX(0) = 1/MX(0) = xo. Fort > 0 we proceed as before and we substitute
1/MX(t) instead ofX(t).

dX ~ 1dX@®
dad M dt
1—— 1 ——
= P =55 2, AT )
aceR
Becauses: (X, Aq) = & [Tmereagay X = F(M71X 4,), we geth_d—ltY(t) = F(M-1X(t)). Hence

X(t) = M~IX(t) is a solution of 5.7.

Through Kurtz's theorem for sticiently largeN we have INXy(t) ~ X(t). Considering con-
centrations instead of levels we ddiN Xy (t) ~ MX(t). Becausé(t) is a deterministic distribution,
E[X(t)] = X(t). Therefore, the average of discrete concentratdAis E[ Xy ()] converges tav X(t)

which is solution of the corresponding deterministic model (Proposition 5.6.13).

5.7 A case study: ERK signalling pathway

The ERK signalling pathway is a biological process involved in cellular division afidrentia-
tion. Understanding its dynamics is of interest to cancer research because cell populations grow
uncontrollably when the pathway does not work correctly.

Here, we consider a model presented in Cho et al. (2003) that describes how RKIP regulates the
behaviour of the ERK pathway. In Figure 5.6 there is a graphical representation of the model.

Here, nodes represent molecules while edges model unbinding and binding reactions between
molecules. For example, andm, bind together to form a complers andmy splits into molecules
m; andmp. Reaction names are given in the rectangigs;; denotes binding reaction and un-
binding reactiorr;. Initially all concentrations are zero with the exception of the concentrations of

moleculesmy, Ny, My, Mg andmy. Each node is labelled with the corresponding protein name.
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Figure 5.6: ERK signalling pathway regulated by RKIP.

5.7.1 PEPA model and activity graph

We build a PEPA model with two levels of concentration following conventions defined in Chap-
ter 4. The code is similar to the one in Calder et al. (2004) except for the addition of MEK protein
and its associated complex. The code can be found in Appendix B. In Figure 5.7 we show the
corresponding activity graph.

From the activity graph we derive ODEs (Chapter 4) and a Markov chain Mitavels of

concentration. For more details readers can have a look at Appendix B.

5.7.2 Convergence to a deterministic distribution

We use results of the previous section in order to study the convergence of the underlying Markov
chains for increasing values bf. We want to prove that for a large number of levels the Markovian
model behaves as the deterministic interpretation of the PEPA model. This result was observed

experimentally (without a formal proof) also in Calder et al. (2005).
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Figure 5.7:Activity graph for ERK signalling pathway.

By assumption moleculesy, mp, my, mg andmyg have the highest initial level, whereas all
others have level zero. Therefore veatgrhas only zero ok entries. If for everk > 1 the network
is k-bounded fom, then the underlying Markov chains are density dependent by Corollary 5.6.9. In
order to provek-boundeness we show that for each moleogla statev(m) wherew(m); >= k+1
andw(m); >= 0 for j # i is not reachable fromm. By definition of a reaction network if there
does not exist a vectar> 0 such thatAu = w — wy, thenw is not reachable from. Thus we need

to solve some systems of integer linear inequalities with symbolificantk.

The matrix corresponding to our model is defined in the following way,
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-1 1 O
-1 1 O
1 -1 -1
0 0 1
0O 0 O
A=l 0 0 O
0O 0 O
0O 0 O
0O 0 -1
0O 0 O
0O 0 O

0 1. 0 0 0 O 0 O
0O 0 0 0o O O o0 1
1 0 0 0 O O o0 O
-1 -1 0 0 O O O O
0 1-1 1 0 O O O
0O 1 0 0 O0-1 1 O
0o 0-1 1 1 O O O
0o 0 1-1-1 0 O O
1 0 0 0 1 O O oO
0O 0 0 O 0 -1 1

0O 0 0 0 0 1 -1 -1

1

For each moleculen we define the corresponding vectefm) — wx wherew(m); > k+ 1 and

w(m);j > 0 j # i. We list these vectors in the following table.

molecule

w(m;) — W

3

3 3 3 3 3 333

e
o

M1

(1,-k, 0,0,0,0, -k, 0, —k, —k, 0)
(-k, 1,0,0,0,0, -k, 0, —k, —k, 0)
(=k, -k, k + 1,0,0,0, -k, 0, —k, -k, 0)
(=k, =k, 0,k + 1,0,0, =k, 0, —k, -k, 0)
(~k, -k, 0,0,k + 1,0, -k, 0, -k, -k, 0)
(=k, -k, 0,0,0,k + 1, -k, 0, —k, -k, 0)
(-k, -k, 0,0,0,0,1,0, -k, —k, 0)
(-k, -k, 0,0,0,0, =k, k + 1, -k, =k, 0)
(=k, -k, 0,0,0,0, -k, 0, ~1, -k, 0)
(-k, -k, 0,0,0,0, -k, 0, —k, 1, 0)
(~k, -k, 0,0,0,0, -k, 0, =k, —k, k + 1)
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We show that systerAx > w(my) — wi has no solution; the other cases are similar and therefore are

omitted. Consider the subsystem (first, third and forth rows):

-Up+Ux+uUs > 1

\
o

Uy —U—-Uzs+ U

U3—g—Us > 0

We infer the following constraintsus + us + Us > 0 anduz — us — Us > 0 that cannot be satisfied
at the same time. We used Ipsolve (Notebaert, 2005), a Mixed Integer Linear Programming (MILP)
solver, in order to prove that for every molecuatethere does not exist any solutiar= 0 such that

Au = w(m) — wy, hence for everk > 0 networkG is k-bounded fomv.

We illustrate the theoretical result with a numerical experiment. In Figure 5.8 we plot the time
dependent behaviour of MEKPP forfidirent values oN. We note that also for small values Wf

the stochastic and deterministic solutions become indistinguishable.

The condition used to prove the boundedness of the ERK model is stronger that the one we need
because it is dticient but not necessary. This condition requires to solve some systems of linear
integer inequalities. Integer programming problems are in the worst case undecidable (Schrijver,
1998); there are however some subclasses of problems that are solvable in polynomial time. For
example if the matrix igotally unimodularand the right-hand sides of the constraints are integers
(Papadimitriou and Steiglitz, 1989). Nevertheless these facts do not allow us to infer anything about

decidability of our formulation of boundedness problem.

5.8 Discussion

In this chapter we studied the problem of convergence of Markovian models with discrete levels of
concentration. We showed that under some structural conditions and fiicéestly large number

of levels the average behaviour of a Markov process is equal to the solution of the corresponding
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concentrations CnMoll

time

Figure 5.8: Comparing stochastic and deterministic solutions for the ERK pathway model.
This figure shows the deterministic and stochastic behaviour of MEKPP protein. Also for small
values ofN the stochastic and deterministic solutions are indistinguishable.

deterministic model.

In some sense we could say that the deterministic model is derived from the stochastic one. We
want to tell if the contrary is true: given a deterministic model can we build a stochastic one that is
“equivalent” to it? At the moment we are not interested in a formal definition of model equivalence,
we say that two model are equivalent if they behave in the same way under some conditions. The
answer seems to be negative in general and we propose a simple example where a deterministic

model and its stochastic couterpart behavgedently.

The Predator-Prey model describes a simple biological system in which two species, predators

and preys, interact. This model consists of a pair of nonlinggréntial equations,
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dx dy
rri —ax+ bxy i —bxy+ cy (5.11)

Here, x andy represent the number of predators and prey respectively whibeand c are rate
constants which model the interaction between the two species. The prey are assumed to reproduce
exponentially, that ixy. Otherwise prey are killed by predatorbxy, the rate of predation is
assumed to be proportional to the probability of meeting between predators and prey. On the other
hand, predators die exponentially, namebyx, or else they will grow if they find something to eat,

i.e. bxy. We use the same rate consthror predator growth and prey death in order to adapt the
model to our Markovian framework. In the classical model these two constantdi@reofi.

Equations 5.11 present periodic solutions. Unluckly there does not exist an analytical solution,
however stability and bifurcation analysis allow us to get some useful information on the nonlinear
behaviour of the system.

We are interested in discovering for which valuesxandy the level of population does not

change or, in other words, the system is in equilibrium.

Il
o

—ax+ bxy

Il
o

—bxy+ cy

The above system of equations yields two solutiong))Xand €/b, a/b), which are the equilibrium
points. Thus equilibrium depends on rate constants.
Then we study the stability of the equilibria using linear stability analysis (see Chapter 3). The

Jacobian matrix for the predator-prey model is given by,

—a+ by bx
J(x.y) =
-by -bx+c
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We compute the eigenvalues of the Jacobian matrix evaluated in both the equilibrium points. The
matrix J(0, 0) has eigenvalue$; = —a and 1, = ¢, hence the equilibrium (@) is a saddle point
and is unstable. Instead the matdi¢c/b, a/b) has eigenvalues; » = +i v/ac, thus the equilibrium

(c/b,a/b) is a centre and so the levels of predator and prey polulations oscillate around it.

We built a Markov chain as described above for this model wheis the maximal concentra-
tion, N + 1 the number of discrete levels of concentration bhe M/N the step between consec-
utive levels. We observe that in this case the Markov chain has two absorbing states corresponding
to states (00) and (QN); in general , j) is a state where the level of predators &nd the level
of prey j. The second absorbing state K) exists because we consider finite Markov chains; if
N — oo, this absorbing state becomes transient. Thus we are interested mainly in the firs)ne (0
One may think that state (0) corresponds to equilibrium point,(@) in the deterministic model. In
some sense it is true, but the deterministic and Markovian states have a compléegntinature.
Firstly, every realization of the Markov chain will drop into, ) eventually; that is not the case for
the deterministic model. Secondly, in the deterministc moddl)(i3 an unstable equilibrium point,
it means that after a small perturbation the system goes away from equilibrium and yields a limit
cycle. Of course, we can not compare equilibrium points and absorbing states, but the behaviour of
the equilibrium point seems the contrary of that one of an absorbing state. In conclusion, these two
model seem to be qualitativelyftBrent and they describeffiirent systems. Note that it is true also
if you consider number of molecules instead of concentration levels and we have the same problem

also in stochastic simulation.

| consider the lowest level with a fiierent meaning; the concentration is never zero, but it
is just very small. | do not know if this assumption makes sense because in this way we lose
some information on extinction, however the Markov chain becomes ergodic. | observed that for
some values oN andM the equilibrium behaviour of the deterministic model is recovered by the
Markov chain; for example if the initial state in the Markov chain corresponds to equilibrium point
(c/b,a/b) in the deterministic model, the timed avarage behaviour of the Markov chain is similar

to the deterministic one. It is not clear why and how it is true only for particular valuésafd



84 Chapter 5. Markov chains with discrete levels and their approximations

M. Instead the Markov chain with absorbing states reaches the absorbing state later for the same

values.



Chapter 6

Conclusions

In this thesis we showed a novel and alternative style of modelling biological systems in the context
of process algebra PEPA (Calder et al., 2004). Each molecule is represented by a process and each
process has an index that represents the current level of the corresponding molecule. Actions model
reactions as usual and rates are computed following some rules. An activity graph is a graphical
representation of a PEPA model that represents increasing and descreasing of molecular concen-
trations in reactions. From an activity graph several mathematical interpretations can be derived.
We considered three possible interpretations for a PEPA model: Markov chains with discrete lev-
els of concentration, ordinary féérential equations and stochastic simulation based on Gillespie’s
algorithm (Gillespie, 1976).

We proposed a model for circadian clocks based on the core modeétopsporgGoldbeter,
2002). We showed how a model with discrete concentration levels can also repr&seantacti-
vation levels for abstract biological processes. We illustrated through some numerical experiments
how stochastic simulations converge to a deterministic model as the number of involved molecules
is suficiently large. Our approach yields results similar to the literature (Gonze et al., 2002a,b).

We analysed the relationships between Markov chains with discrete levelsfierdmtial equa-
tions. For some simple examples that can be solved analytically the average Markovian behaviour

converges to the solution of the deterministic systems as the number of levels increases. We gener-

85
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alized this result for a class of Markov chains which present some structural properties.

We used Kurtz's results on convergence of density dependent Markov chains (Kurtz, 1970). A
density dependent family of Markov chailg is a sequencgX,} of Markov processes defined by
a parametey. The states of the Markov chains are normalized with respecatal transition rates

depend on these densities.

The Markovian representation of a PEPA model with discrete levels is a parametrized Markov
chainXy(t), whereN is the number of levels. However, we showed that the sequefd®)} is not
always density dependent. We formulated fiisient and necessary structural condition on the state
space ofXy(t) in such a way that the sequeneéy(t)} is a sequence of dentity dependent Markov
chains and we can apply Kurtz’s results on convergence. We proposé@etive way to verify if a
model satifies this condition. Roughly speaking we defined a generalization of the notion of activity
graph to represent the state spaces of all the Markov chains. Then if the activity graph presents some

structural properties (e.g. boundedness), the corresponding sequence is density dependent.

We proved that we cannot apply Kurtz's theorem to the circadian clock model because some
molecule species can grow unboundedly. In gerneral we have this problem in every model with
positive feedback loops and in general with metabolic pathways. Nevertheless the class of models
whose convergence can be proved via Kurtz is quite wide. For example signalling pathway models
such as ERK pathway (Cho et al., 2003) belong to this class. We proved that the representation
of the ERK signalling pathway with discrete levels of concentrations yields results similar to the
deterministic model when the number of levelsigiciently large. These results were observed

experimentally also in Calder et al. (2005).

This work dfers several possible future extentions. The next step could be to study the conver-
gence rate of Markov models with discrete levels towards the corresponding deterministic models.
Besides it would be interesting to compare the convergence of stochastic models with discrete con-
centration levels and the one of stochastic models with individual molecule species. Another possi-
bility would be to study the behaviour of discrete stochastic models around their limit deterministic

distribution varying the number of levels.
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In order to make the framework described in this thesis more realistic it is necessary to introduce
different maximal concentrations forfidirent molecule species and to allow also arbitrary initial
concentrations.

It is important to understand which information (if any) is lost in Markovian models with few
levels and if it is possible to infer some properties of the corresponding deterministic models from
them. In this way we could perform model checking on the discrete models, e.g.using CSL logic,
and obtain results valid also for thefidirential equations.

We need to extend the results on convergence to a wider class of models. It could be necessary
to develop theoretical results similar to Kurtz's theorem.

Finally in this thesis we took in account the average behaviour of a stochastic process as a
measure correlated with the solution of the corresponding deterministic model. We observed that
under some conditions the mean is equal to the solution of the deterministic system. In general,
however, it is not true. As an example consider a deterministic model which presents sustained
osciallations, e.g. the circadian clock model. If the corresponding Markov chain is ergodic as in
our case, there exists a steady state distribution, hence the mean or any other reward function can

describe damped oscillation at most. Dealing with these problems is still an open question.






Chapter 7

Conclusioni

In questa tesi abbiamo mostrato uno stile nuovo ed alternativo per modellare i sistemi biologici nel
contesto dell'algebra di processo PEPA (Calder et al., 2004). Ogni molecalgpresentata da un
processo ed ogni processo ha un indice che rappresenta il livelo corrente della molecola corrispon-
dente. Le azioni modellano le reazioni come al solito e le veianio calcolate seguendo qualche
regola. Un grafo delle attivita una rappresentazione grafica di un modello PEPA che rappresenta
gliincrementi e i decrementi delle concentrazioni molecolari nelle reazioni. Dal grafon delleaattivit
sono derivate alcune interpretazioni matematiche. Noi consideriamo tre possibili interpretazioni di
un modello PEPA: catene di Markov con livelli discreti di concentrazione, equazifiaretiziali
ordinarie e simulazioni stocastiche basate sull'algoritmo di Gillespie (Gillespie, 1976).

Abbiamo proposto un modello per i cicli circadiani basato sul modello fondamentaieper
rospora (Goldbeter, 2002). Abbiamo mostrato come un modello con livelli discreti di concen-
trazioni pw anche rappresentare livelli di attivazione per dei processi biologici astratti. Abbiamo
illustrato attraverso qualche esperimento numerico come le simulazioni stocastiche convergano ad
un modello deterministico quando il numero di molecole coinvalfécientemente grande. Il nos-
tro approccio produce risultati simili alla letteratura (Gonze et al., 2002a,b).

Abbiamo analizzato le relazioni tra le catene di Markov con livelli discreti e le equazioni dif-

ferenziali. Per alcuni semplici esempi che possono essere risolti analiticamente il comportamento
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markoviano medio converge alla soluzione dei sistemi deterministici quando il numero di livelli
cresce. Abbiamo generalizzato questo risultato ad una classe di catene di Markov che presentano

alcune propriet strutturali.

Abbiamo utilizzato i risultati di Kurtz sulla convergenza delle catene di Markov dipendenti
dalla densi (Kurtz, 1970). Una famiglia di catene di Markdy; dipendente dalla denaie una
sequenzdX,} di processi di Markov definiti da un parametro Gli stati delle catene di Markov

sono normalizzati rispetto\ae le velocit di transizione dipendono da queste densit

La rappresentazione markoviana di un modello PEPA con livelli discreti di concentrazione
una catena di Markov parametrizzatg(t), doveN e il numero di livelli. Ped abbiamo mostrato
che la sequenzXy(t)} none sempre dipendente dalla deasibbiamo formulato una condizione
strutturale sfficiente e necessaria sullo spazio degli staiit) per la quale la sequengsy(t)} €
una sequenza di catene di Markov dipendenti dalla deegitossiamo applicare i risultati di Kurtz
sulla convergenza. Abbiamo proposto un metoffetevo per verificare se un modello soddisfa
guesta condizione. In parole povere abbiamo definito una generalizzazione della nozione di grafo
delle attivita per rappresentare gli spazi degli stati di tutte le catene di Markov. Poi, se il grafo
delle attivia presenta alcune propmestrutturali (ci@ € bounded), la sequenza corrispondente

dipendente dalla denait

Abbiamo provato che non possiamo applicare il teorema di Kurtz al modello del ciclo circadi-
ano perck alcune molecole possono crescere senza limiti. In generale abbiamo questo problema
in ogni modello con feedback positivo ed con pathway metabolici. Nonostante questo la classe dei
modelli la cui convergenza puessere provata via Kurizabbastanza vasta. Ad esempioi modelli
per pathway di segnali biologici come quello per ERK (Cho et al., 2003) appartengono a questa
classe. Abbiamo provato che la rappresentazione del pathway del’ERK con livelli discreti di con-
centrazione produce risultati simili al modello deterministico quando il numero di lavslificien-

temente grande. Questi risultati sono stati osservati numericamente anche in Calder et al. (2005).

Questo lavoro si presta a diverse possibili estensioni future. Il prossimo passo potrebbe essere

studiare la velocit di convergenza dei modelli di Markov con livelli discreti verso il corrispondente



91

modello deterministico. Inoltre sarebbe interessante confrontare la convergenza dei modelli sto-
castici con livelli discreti di concentrazione e quella dei modelli stocastici con le singole molecole.
Un’altra possibilia potrebbe essere studiare il comportamento dei modelli stocastici discreti intorno
alla loro distribuzione limite deterministica variando il numero di livello.

Per rendere I'approccio descritto in questa tegingalisticoe necessario introdurreftiérenti
concentrazioni massime per tipi di molecol&elienti e permettere anche arbitrarie concentrazioni
iniziali.

E importante capire quale informazione viene persa (se accade) nei modelli markoviani con
pochi livelli e see possibile inferire alcune propréetlei corrispondenti modelli deterministici da
guesti. In questo modo potremmo eseguire del model checking sui modelli discreti, ad esempio
usando logiche tipo CSL, ed ottenere risultati validi anche per le equaziteriediziali.

E necessario estendere i risultati della convergenza ad una classepia di modelli. Potrebbe
essere necessario sviluppare risultati teorici simili al teorema di Kurtz.

Infine in questa tesi abbiamo preso in considerazione il comportamento medio dei processi sto-
castici come misura relazionata con la soluzione del corrispondente modello deterministico. Abbi-
amo osservato che sotto certe condizioni la meédiguale alla soluzione del sistema deterministico.

In generale, pér, none vero. Per esempio considera un modello deterministico che prensenta delle
oscillazioni periodiche, ad esempio il modello per il ciclo circadiano. Se la corrispondente catena
di Markov & ergodica come nel nostro caso, esiste una distribuzione steady state, quindi la media
0 qualsiasi altra funzione di rewarding gpdescrivere al i delle oscillazioni smorzate. Gestire

questi problemé ancora una questione aperta.






Appendix A

PEPA: the language

In this chapter a brief introduction to PEPA language can be found. The explanation is quite informal

and readers interested in details can have a look at the work of Jane Hillston Hillston (1995).

A.l Syntax

In PEPA systems are representecasiponentsvhich take part t@ctivities The syntax of PEPA

is defined by the following grammar rules:

(0]
Il

(@r).X|S+S

B
Il

PXPIP/LIX

HereS is asequential componeandP is amodel componenkX is a constant name which refers to
a sequential component. We assume that every constarg associated to exactly one sequential
component. We observe that operatgr can be only at top level; this is a necessary condition for
the ergodicity of the underlying Markovian model (Hillston, 1995). PEPA has five combinators:
prefix, choice, constant, hiding and cooperation.

Prefix is the basic component to build up complex systems, the proegsksR carries out

actiona at rater and then it behaves & The prefix @, r) is termed activity whiley is the action
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type and the rate of the activity.

Choice models competition between two processes: the compdhen represents a system
which may evolve either int® or Q.

Constant allows us to assign nhames to components, for examﬁfé(a, r).P means that vari-
able X behaves as process, ¢).P.

Hiding is a mechanism to abstract away some aspects of a component’s behaviour. For instance,
the proces® \ {a} hides the actio and prevent other processes to join in.

Cooperationallows two processes to be synchronized over a set of actions. In exprEsz:;i(m
processe® andQ must cooperate on actions contained in thelsdtut other enabled actions are
carried out independently and concurrently. Whea empty, we writeP||Q instead ofP Q.

When a component enables an activity whose action type is in the cooperation set, it will be
stuck until the other component enable an activity of that type. The rates of shared activities depend
on the rate of both cooperands’ rates. In other words, the appearent rate of a shared activity is the
rate of the slower component.

Sometimes a component may be passive with respect to an action in a cooperation set. Consider
for example a client waiting for a service. In these cases the rate of the activity is unspecified
(symbol T) and it depends on the rate of the activity of the other cooperand. All passive actions
must be synchronized in the final model.

The action types which a compondptcan next undertake form the set of the current action
types of P, denotedA(P). The activities which a compone® can next perform are the current

activities of P, denotedAct(P).

A.2 Semantics

The structured operational semantics of PEPA are shown in Figure A.2.

Definition A.2.1 (Hillston (1995)). The apparent rate of action typein a component P, denoted

ro(P) is the sum of the rates of all activities of typeén Act(P). More formally,
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Prefix
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Choice )
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(ar) _,
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Hiding
(@)
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(o)
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(@¢l)
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E/L —% E’/L

(@ el)

Cooperation
(@)
E—F

(a,r)
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(¢l)

N

E b GG E b F

(@¢l)

(a.r1) (a.r2)

E-SE FiB
(@R _, ,
Esa FD B F

r ro
nELEETH

(@el)

where R =

Constant

EY e
— def
N (A=E)

A—SFE

Figure A.1: PEPA Structured Operational Semantics
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r fa=g8

re((8,1).P) =
0 ifa=0

r(x(P + Q = ra/(P) + ra/(Q)

r(P) ifa¢l
e 1,(P/L) =
0 if el
° ra(P BI:Q Q) — min(r(l(P)9 ra(Q)) |f a €l

I'(,(P) + ra(Q) if aé L
For a PEPA component the set of derivatives is the set of all the behaviours into which the

component can evolve.

Definition A.2.2 (Hillston (1995)). The derivative set of a PEPA component C is denoté@)ds

and defined recursively as the smallest set of components such that:
e CeddC);

e if C; € d9C) and there exists a Act(C;) such that ¢—a> Cj, then G € dgC).



Appendix B

Model specifications

In this chapter we report the algebraic specifications in PEPA language for each model presented in
this thesis. For every specifications we list also the underlying mathematical interpretations, such as
ordinary diferential equations, reactions for Gillespie’s algorithm and Markov chains with discrete
levels of concentrations.

Ordinary diferential equations are described with the standard mathematical representation.
Experiments were carried out using Runge-Kutta 5 method implemented irf@dt&ye (Eaton,

2005), an high-level Matlab-like language for solving linear and nonlinear problems numerically.

Stochastic simulations are described by a set of chemical reactions using the built-in language of
Dizzy (Ramsey, 2006). Dizzy is a chemical kinetics simulation software package written in the Java
programming language. It allows to define models as systems of chemical reactions. It performs
several kinds of stochastic and deterministic simulations (e.g. Gillespie)

Markov chains are described using PRISM language (Parker et al., 2006) following conventions
described in (Calder et al., 2005). PRISM is a probabilistic model checker written in Java for
modelling and analysing probabilistic systems. It supports continuous time Markov chain models
and implements CSL model checking (Aziz et al., 1996), a logic to express properties of steady
state and transient behaviour of Markov processes. Transient and steady state analysis of Markov

chains was performed using CSL formulas

97
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B.1 Circadian clock model

Several theoretical models have been proposed for circadian clockaredt organisms (Gold-
beter, 2002). Following Gonze et al. (2002a) we consider the minimal model initially suggested
for circadian rhythms itNeurospora M represents mRNA whil®c andPy are the clock proteins

into the cytosol and into the nucleous respectivéty. is synthesized from the mRNM, then it

is either transported into the nucleus or degrada®dexerts a negative feedback on transcription

of its gene or else it goes out of the nucleus. Degradations are controlled by enzymes. The time

clock gene nuclear
transcription protein N
k k
v, 1 2
k, .
M mRNA s » cytosolic

l protein ¢
Vi i Va

evolution of the concentrations involved in the model is given by the following kinetic equations,

amp _ K M)

dt CK+[Pa"  km+[M]
dPc] [Pc]

at = ksM - ded"'—[PC] — k1[Pc] + ko[ Pn]
d[Pn]

gt ki[Pc] — kz[Pn]
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PEPA model

T = (mve).Th+ (of f, T).T'

T £ (onT).Th

R" £ (onVon).R

R £ (off, TR

ML E (m, T).MP + (UM vgr). MP

M" = (per, ks).M" + (bm V). M!

EN, = (bmvpm).E},

El, = (umvym).E +(cmvem).Ef,
Ch = (umvym).Cl, + (cm Vem).Cl,
Cy = (bmvpm).C,

P. = (pCu T).PL + +(pc, ko).PL + (UPC Vypo). PR
PL = (pn k)P + (bPG Vbpo)- P
ER. = (bPG Vbpo)-Eh,
Ep, = (UPGVupd)-EP_ + (CPG Vepo)-EP
Ch. = (UPG Vupd)-Ch_ + (CPG Vepo) Ch,
Ch = (bPGVoRd.Ch,

PL £ (pnT).P

Pl £ (pey, ka).PL + (0f f, Vorr).Pl,

TP B (R B (M B2 ) B9 Cyg) B (P 3 ER) 59 G ) B P)))

Whered = {m,of f,on}, K = {of f}, L = {umbm}, M = {umbmcm}, N = {pci}, O = {upc bpd,
P = {upc bpc cpg andR = {pn, pc}. In the initial state we have high concentrations of enzymes

(Em andEp.) and the transcription machinefyis working at high level; instead concentrations of
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the enzyme-substrate complex€y(andCp,.) and of MRNA (M), citosolic proteinPc and nuclear

proteinPy are low.

Activity graph

ODE model
I = Ve[ TIPN] + VorlR]
I = Vore[TI[PN] -~ VorlR]
I = VT] ~ Vor{MI[En] + Vum * [Cu]
B = vy MI[Ewm] + VurlCu] + Ve Cu]
eml - = Vo MI[Em] = VurdCm] = VemlC]
I = K{M] - ka[Pc] + ke[ Pn] — Vbpd Pc][Erc] + Vupd Cre]
% = —Vopd Pcl[Erc] + Vupd Cpc] + Vepd Cpc ]
d[i'?] = Vppd Pcl[Erc] — Vupd Crc] — Vepd Crc]

- = ki[Pc] — ka[Pn] = Vot ¢[T][Pn]
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Dizzy model

#model "clock";

// volume parameter

OMEGA = 1000;

// deterministic rates

vs = 0.5 ;
off = 0.4 ;
on = 0.2 ;
vbm = 16.5;
vum = 3.0;
vem = 0.3;
vbpc = 165.0;
vupc = 15.0;
vepe = 1.5;
kl =0.2;

k2 = 0.2;

ks = 2.0;

// stochastic rates
S_VS = VS ;
s_off = off / OMEGA ;

s_on = on ;

s_vbm = vbm / OMEGA;
s_vum = vum;

s_vcm = vcm;
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vbpc / OMEGA;

s_vbpc
S_vupc = Vvupc;

S_VCpC = VvCpc;

s_kl1 = ki1;
s_k2 = k2;
s_ks = ks;

// initial population
EM = 1*OMEGA;

M=0;

CM = 0;

EPC

1*QMEGA;
PC =0;

CPC = 0;

PN = 0;

T 1*OMEGA;

R = 0;

enzyme_mRNA_combine,

enzyme_substrate_separate,

degradate_mRNA,

enzyme_PC_combine,EPC + PC -> CPC, s_vbpc;

enzyme_PC_separate,CPC -> EPC + PC, s_vupc;

EM + M -> (M

cM -> EM + M

M -> EM

degradate_PC,CPC -> EPC, s_vcpc;

translation,M -> M + PC, s_ks;

S_vbm;

s_vum;

s_vcm;
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move_into_nucleous,PC -> PN, s_kl1;

move_out_of_nucleous,PN -> PC, s_k2;

transcription,T -> T + M, s_vs;
switch_off,T + PN -> R, s_off;

switch_on,R -> T, s_on;

B.2 Decay model

We consider a simple model which describes the degradation process of a kind of molecule or

substancé\. The deterministic behaviour is represented by the followitfiggintial equations,

da(t)
Tdt

a(0)

—pa(t)
Ao

It is easy to verify that the system solution is given by,

att) = Age*t

PRISM model

stochastic

const int N = 1000;
const int MAX = 100;
const double R = MAX/N;

const double mu = 0.5;
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module AProcess

A: [0..N] init N;

[degradate] (A>0)-> A*R : (A’=A-1);
[null] (A=0) > 1: (A’=A);

endmodule

module ConstantProcess

dummy: bool init true;

[degradate] (dummy=true) -> mu/R : (dummy’=true);

endmodule

system
AProcess || ConstantProcess

endsystem

rewards
true: A*R:

endrewards

CSL properties

//.Torepresents, time

const,double,T;

//_time _dependent_behaviour
//.return._reward_A*R_at_.instant._time . (I)._T.

R=?.[_I=T.]
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B.3 Growth model

We consider a model which represents growing of a population of molecules ofkifde diter-

ential equation is given by

da(t)

ot - Aa(t)

a0) = Ap>0
The only solution is

att) = Aget
PRISM model
stochastic

const int N = 100;
const double lambda = 0.5;

const double AQ® = 2.0;

module AProcess

A: [1..N] init 1;

[degradate] (A<N)-> (A*AQ) : (A’=A+1);
[null] (A=N)-> 1: (A’=A);

endmodule

module ConstantProcess
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dummy: bool init true;
[degradate] (dummy=true) -> lambda/A® : (dummy’=true);

endmodule

system
AProcess || ConstantProcess

endsystem

rewards
true: A*R;

endrewards

CSL properties

// T represents time

const double T;

// time dependent behaviour

// return reward A*R at instant time (I) T.

R=?[I=T]

B.4 ERK pathway model

The ERK signalling pathway is a biological process involved in cellular division affiekrdntiation.
Here, we consider a model presented in Cho et al. (2003) that describes how RKIP regulates the

behaviour of the ERK pathway. In Figure 5.6 there is a graphical representation of the model.
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PEPA model

0]
my[1]
Mp[0]
Mp[1]
mg[0]
mg[1]
my[0]
my[1]
ms[0]
me[1]
me[0]
me[1]
my[0]

my[1]

~N

r7

ril

(r2, Vip).mu[1] + (s, Vig).m[1]

(r1,vr,).my[O]

(r2, Vr,).M2[1] + (r11, Viy,)-Me[1]
(r1, vr,).mg[0]

(r2, Vi,)-mg[d] + (ra, Vi,).mg[1]
(r2, Vr,)-mg[0] + (13, Viy).mg[O0]
(3, Viy)-ma[1]

(r,Vr,)-mu[0] + (rs, Vi).ma[0]
(rs, Virs)-ms[1] + (rs, Vis).ms[1]
(r7, Vi;)-ms[0]

(rs, Vrs)-me[1] + (F10, Viyo)-Me[1]
(roVirg)-me[0]

(r7, Viz)-my[1]

(re, Virs)-M7[0]



108

Chapter B. Model specifications

Activity graph

mg[0]
mg[1]
mg[0]
mo[1]
Muo[0]
Mio[1]
my1[0]

my[1]

(re, Vre)-mg[1]

(r7, Vi;).mg[0] + (ra, Vis)-Me[0]
(r4, Vr,)-Mo[1] + (rg, Vig)-Mo[1]
(3, Vir;)-mo[O]

(F10, Viy0)-Mao[1]

(r9, Vrg).Myo[0]

(ro, Vrg).My1[1]

(r10, Vryp)-mMa[0] + (r11, Vry,)-m1[0]
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ODE model

The following set of nonlinear ODEs is extracted from the PEPA model and it is the same as that

one in Cho et al. (2003).

% = —kamu(O)me(t) + kems(t) + ksma(t)
% = —kamu®)Mmp(t) + kema(t) + kymua(t)
% = Kamu())ma(t) — kama(t) — ksma(€)mo(t) + kamu(t)
I~ omsyms(t) — kamu() — kemy()
% = ksmu(t) — kems(t)my (1) + krme(t)
% = ksmy(t) — kome(t)Muo(t) + Kzomys(t)
% = —kems(®)Mmy(t) + kymg(t) + keme(t)
% = kems(t)my(t) — kymg(t) — keme(t)
% = —kema(t)Mo(t) + kema(t) + keme(t)
% = —kome(t)Muo(t) + keomy(t) + kyamya(t)
d”;ltl(t) = kome(t)Mo(t) — kaomua(t) — Keamua(t)

PRISM model

Source code as in Calder et al. (2005).

stochastic

const int N = 3;

const double Ro = 2.5/N;
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rate k1 = 0.53;

module RAF1
RAF1: [0..N] init N;

[r1] (RAF1 > 0) -> RAF1*Ro: (RAF1’ = RAF1 - 1);

[r2] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);
[r5] (RAF1 < N) -> 1: (RAF1’ = RAF1 + 1);

endmodule

module RKIP

RKIP: [0..N] init N;

[r1] (RKIP > 0) -> RKIP*Ro: (RKIP’ = RKIP - 1);
[r2] (RKIP < N) -> 1: (RKIP’ = RKIP + 1);

[r8] (RKIP < N) -> 1: (RKIP’

RKIP + 1);
endmodule

module RAF1RKIP
RAF1RKIP: [®..N] init O;

[r1] (RAFIRKIP < N) -> 1: (RAFIRKIP’ = RAFIRKIP + 1);

[r2] (RAF1RKIP > 0) -> RAF1RKIP*Ro: (RAF1RKIP’ RAF1RKIP - 1);

[r3] (RAFI1RKIP > 0®) -> RAF1RKIP*Ro: (RAF1RKIP’

RAF1RKIP - 1);
[r4] (RAFIRKIP < N) -> 1: (RAF1RKIP’ = RAFIRKIP + 1);
endmodule

module ERKPP
ERKPP: [0..N] init N;

[r3] (ERKPP > 0®) -> ERKPP*Ro: (ERKPP’ = ERKPP - 1);
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[r4] (ERKPP < N) -> 1: (ERKPP’ = ERKPP + 1);
[r11] (ERKPP < N) -> 1: (ERKPP’ = ERKPP + 1);

endmodule

module RAF1RKIPERKPP
RAF1RKIPERKPP: [0..N] init O;
[r3] (RAF1RKIPERKPP < N) -> 1: (RAF1RKIPERKPP’ = RAF1RKIPERKPP + 1);

[r4] (RAF1RKIPERKPP > 0) -> RAF1RKIPERKPP*Ro: (RAF1RKIPERKPP’ = RAF1RKIPERKPP - 1);

[r5] (RAF1RKIPERKPP > 0) -> RAF1RKIPERKPP*Ro: (RAF1RKIPERKPP’ RAF1RKIPERKPP - 1);

endmodule

module ERK

ERK: [0..N] init O;

[r5] (ERK < N) -> 1: (ERK’ = ERK + 1);

[r9] (ERK > 0) -> ERK*Ro: (ERK’ = ERK - 1);
[r10] (ERK < N) -> 1: (ERK’ = ERK + 1);
endmodule

module RKIPP

RKIPP: [0..N] init O;

[r5] (RKIPP < N) -> 1: (RKIPP’ = RKIPP + 1);

[r6] (RKIPP > 0) -> RKIPP*Ro: (RKIPP’ = RKIPP - 1);
[r7] (RKIPP < N) -> 1: (RKIPP’ = RKIPP + 1);

endmodule

module RP

RP: [0..N] init N;
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[r6] (RP > 0) -> RP*Ro: (RP’ = RP - 1);

[r7] (RP < N) -> 1: (RP’ =RP + 1);

[r8] (RP < N) -> 1: (RP’ RP + 1);

endmodule

module MEKPP

MEKPP: [0..N] init N;

[r9] (MEKPP > 0) -> MEKPP*Ro: (MEKPP’ = MEKPP - 1);
[r10] (MEKPP < N) -> 1: (MEKPP’ = MEKPP + 1);

[r11] (MEKPP < N) -> 1: (MEKPP’ = MEKPP + 1);

endmodule

module MEKPPERK
MEKPPERK: [0..N] init O;
[r9] (MEKPPERK < N) -> 1: (MEKPPERK’ = MEKPPERK + 1);

[r10] (MEKPPERK > 0) -> MEKPPERK*Ro: (MEKPPERK’

MEKPPERK - 1);

[r11] (MEKPPERK > 0) -> MEKPPERK*Ro: (MEKPPERK’

MEKPPERK - 1);

endmodule

module RKIPPRP

RKIPPRP: [0..N] init 0;

[r6] (RKIPPRP < N) -> 1: (RKIPPRP’ = RKIPPRP + 1);

[r7] (RKIPPRP > @) -> RKIPPRP*Ro: (RKIPPRP’ = RKIPPRP - 1);
[r8] (RKIPPRP > ®) -> RKIPPRP*Ro: (RKIPPRP’ = RKIPPRP - 1);

endmodule

module Constants
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fake: bool init true;

[r1] (fake) -> k1/Ro: (fake’ = true);

[r2] (fake) -> 0.0072/Ro: (fake’ = true);
[r3] (fake) -> 0.625/Ro: (fake’ = true);
[r4] (fake) -> 0.00245/Ro: (fake’ = true);
[r5] (fake) -> 0.0315/Ro: (fake’ = true);
[r6] (fake) -> 0.92/Ro: (fake’ = true);
[r7] (fake) -> 0.00122/Ro: (fake’ = true);
[r8] (fake) -> 0.87/Ro: (fake’ = true);
[r9] (fake) -> 0.8/Ro: (fake’ = true);
[r10] (fake) -> 0.0075/Ro: (fake’ = true);
[r11] (fake) -> 0.071/Ro: (fake’ = true);

endmodule

rewards
true: MEKPP*Ro;

endrewards

CSL logic

We can verify if a Markov chain is density dependent using CSL logic. In other words, we need to
prove that, when some products of a reaction have Hy¢hen reagents of the reaction have level
zero. As usuaN is the maximal level.

The following properties in CSL represent the probabilities that the reagents of a reaction have
level greater than zero when some products have level eqiirt@very point of the evolution of
the system . Since all the probabilities are zero for the ERK model, the Markov chain is density

dependent foN. Readers can try to verify this property for increasing valugs.of
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P=?[true U ((RAF1 > 0 & RKIP>0) | RAF1RKIPERKPP>0® ) & RAF1RKIP=N]
P=?[true U RAF1=N & (RAF1RKIP>0 | RAF1RKIPERKPP>0)]

P=?[true U RKIP=N & (RAF1RKIP>0® | RKIPPRP>0)]

P=?[true U RAF1RKIPERKPP=N & (RAF1RKIP>® & ERKPP>0)]

P=?[true U ERKPP=N & (MEKPPERK>0 | RAF1RKIPERKPP>0)]

P=?[ true U MEKPPERK=N & (MEKPP>0 & ERK>0)]

P=?[true U MEKPP=N & MEKPPERK>0]

P=?[true U ERK=N & RAF1RKIPERKPP>0]

P=?[true U RKIPP=N & (RAF1RKIPERKPP>® | RKIPPRP>0)]

P=?[ true U RP=N & RKIPPRP>0]

P=?[true U RKIPPRP=N & (RKIPP>0 & RP>0)]
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Glossary of biological terms

Here, readers who do not have familiarity with molecular biology can find a definition of the bio-

logical terms used in this thesis. Definition are taken and adapted from Alberts et al. (2004).

DNA molecule formed by a long chain of nucleotides. It containts hereditary information.

messenger RNA (mRNA) molecule formed by a long chain of nucleotides. It is a complemen-
tar “copy” (without non coding regions) of one or more genes and contains information to

produce proteins.
enzyme protein that catalyzes a specific chemical reaction.

protein a molecule formed by a sequence of amino acids. Proteins have several functions, e.g.

signalling, transporting and structure.

gene a region of DNA that controls a hereditary characteristic, usually it corresponds to a single

protein or RNA.

transcription copying a strand of DNA into a complementary RNA sequence. Transcription is
undertaken by the enzyme RNA polymerase. In eucaryotes transcription occurs inside the

nucleus.
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translation creating of a sequence of amino acids using a sequence of mRNA. It occurs on a

ribosome outside the nucleus.

nucleus membrane-bounded organelle in a eucaryotic cell. It contains DNA.
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