
Stochastic Process Algebras

Allan Clark, Stephen Gilmore, Jane Hillston, and Mirco Tribastone

LFCS, School of Informatics, University of Edinburgh

Abstract. In this tutorial we give an introduction to stochastic process
algebras and their use in performance modelling, with a focus on the
PEPA formalism. A brief introduction is given to the motivations for
extending classical process algebra with stochastic times and probabilis-
tic choice. We then present an introduction to the modelling capabil-
ities of the formalism and the tools available to support Markovian
based analysis. The chapter is illustrated throughout by small examples,
demonstrating the use of the formalism and the tools.

1 Introduction

Process algebras emerged as a modelling technique for the functional analysis
of concurrent systems approximately twenty years ago. Over the last 17 years
there have been several attempts to take advantage of the attractive features of
this modelling paradigm within the field of performance evaluation.

Stochastic process algebras (SPA) were first proposed as a tool for perfor-
mance and dependability modelling in 1990 [1]. At that time there was already
a plethora of techniques for constructing performance models so the introduction
of another one could have been deemed unnecessary if it were not for the fact
that SPA offered something new—formally defined compositionality. Queueing
networks, which have been widely used for performance modelling for more than
thirty years, have an inherent compositionality but this is implicit and infor-
mal. Stochastic extensions of Petri nets have a semantic model but, in general,
no clear compositional structure. In the process algebra the compositionality is
explicit—provided by the combinators of the language—and formal—supported
by the semantics and equivalence relations of the language.

It was immediately clear that having this explicit structure within models
offers benefits for model construction:

– when a system consists of interacting components, the components, and the
interaction, can each be modelled separately;

– models have a clear structure and are easy to understand;
– models can be constructed systematically, by either elaboration or refine-

ment;
– the possibility of maintaining a library of model components, supporting

model reusability, is introduced.

Many case studies demonstrating these and other benefits have appeared in the
literature [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16].

M. Bernardo and J. Hillston (Eds.): SFM 2007, LNCS 4486, pp. 132–179, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Stochastic Process Algebras 133

A limitation of the initial SPA languages was their lack of expressiveness
with respect to timing distributions. Essentially, they restricted consideration
to models in which all durations were represented by negative exponentially
distributed random variables. Some later work has aimed to change this situation
by considering languages in which generally distributed random variables may be
associated with the actions of a model. However such models are not so amenable
to quantitative analysis and therefore their practical uptake has been limited.

The remainder of this tutorial is organised as follows. In the following section
we present a short introduction to classical process algebras as they are used
for system verification from a functional or qualitative point of view. Stochastic
process algebras generally, and the language PEPA specifically, are presented in
Section 3. Section 4 describes model analysis. The tools available to support the
approaches we have described are discussed in Section 5, and we present some
case studies in the following section. In Section 7 we continue to advanced topics
such as continuous state-space approximation.

2 Classical Process Algebras

Process algebras are abstract languages used for the specification and design
of concurrent systems. The most widely known process algebras are Milner’s
Calculus of Communicating Systems (CCS) [17] and Hoare’s Communicating
Sequential Processes (CSP) [18]. The stochastic process algebras take inspiration
from both these formalisms. Models in CCS and CSP have been used extensively
to establish the correct behaviour of complex systems by deriving qualitative
properties such as freedom from deadlock or livelock.

In the process algebra approach systems are modelled as collections of entities,
called agents, which execute atomic actions. These actions are the building blocks
of the language and they are used to describe sequential behaviours which may
run concurrently, and synchronisations or communications between them.

In CCS two agents communicate when one performs an action, a say, while
the other performs the complementary action ā. The resulting communication
action has the distinguished label τ , which represents an internal action that
is invisible to the environment. Agents may proceed with their internal actions
simultaneously but it is important to note that the semantics given to the lan-
guage imposes an interleaving on such concurrent behaviour. The basic calculus
contains the following primitives for defining agents:

prefix a.B after action a the agent becomes B

parallel composition A|B agents A and B proceed in parallel

choice A + B
the agent behaves as A or B depending
on which acts first

134 A. Clark et al.

restriction A\M
the set of labels M is hidden from out-
side agents

relabelling A[a1/a0, ..] in this agent label a1 is renamed a0

the null agent 0 this agent cannot act (deadlock)

The communication mechanism in CSP is different as there is no notion of com-
plementary actions: this is a major distinction between CCS and CSP. In CSP
two agents communicate by simultaneously executing actions with the same
label. Since during the communication the joint action remains visible to the
environment, it can be reused by other concurrent processes so that more than
two processes can be involved in the communication (multiway synchronisation).
This is the communication mechanism adopted by most of the SPA languages.

Like many other process algebras, CCS is given a structured operational
semantics (SOS), using a labelled transition system. From this a derivative tree
or graph may be constructed in which language terms form the nodes and transi-
tions are the arcs. This structure is a useful tool for reasoning about agents and
the systems they represent. It is also the basis of the bisimulation style of equiv-
alence. In this style of equivalence, the actions of an agent characterise it, so two
agents are considered to be equivalent if they are observed to perform exactly
the same actions. Strong and weak forms of equivalence are defined depending
on whether the internal actions of an agent are deemed to be observable.

In CCS and CSP, since the objective is qualitative analysis rather than quan-
titative, time is abstracted away. Various suggestions for incorporating time into
these formalisms have been investigated (see [19] for an overview). For example,
Temporal CCS [20] extends CCS with fixed delays and wait-for synchronisation
(asynchronous waiting):

fixed time delay (t) the agent must wait t time units before per-
forming its next action

wait-for synchronisation δ
the agent may idle indefinitely until its
next action is possible

non-temporal deadlock 0 the agent idles indefinitely and never
engages in further actions.

Note that most of the timed extensions, including TCCS, retain the assumption
that actions are instantaneous and regard time progression as orthogonal to the
activity of the system. In contrast, the early SPAs generally associated a random
variable, representing duration, with each action. The alternative approach, of
separating action and time, is adopted in most of the work incorporating non-
exponentially distributed durations.

Similarly process algebras are often used to model systems in which there
is uncertainty about the behaviour of a component, but this uncertainty is

Stochastic Process Algebras 135

Will the system
arrive in a

particular state?

� �

� � � �

��

� �

� � �

�����

���
�
���

Does system
behaviour match
its specification?

��

�

�

�

�
�

�

��
��� ≡

? � �

� � � �

�

� �

� � �

�����

���
�
���

Does a given
property φ hold

within the system?
φ ��������

								

� �

� � � �

�

� �

� � �

�����

���
�
���

Fig. 1. Functional analysis of process algebra

abstracted away so that all choices become nondeterministic. Probabilistic exten-
sions of process algebras, such as PCCS [21], allow this uncertainty to be quan-
tified using a probabilistic choice combinator. In this case a probability is associ-
ated with each possible outcome of a choice. In some SPA an alternative approach
is taken—we assume that a race condition resolves choices when more than one
(timed) action can occur.

The Concurrency Workbench (CWB) [22] is a tool that automates the checking
of assertions about CCS models in order to establish properties of the systems they
describe. As well as the basic calculus, it supports a synchronous variant and the
temporal extension, TCCS. The CWB allows simple properties, such as presence of
deadlock, to be checked directly, but needs more specific properties to be expressed
in a suitable logic. In the context of process algebra modelling, a process logic is a
natural way to frame properties and queries. Such logics, known as modal logics,
express assertions about changing state. There is a simple modal logic, Hennessy-
Milner logic [23], for immediate possibilities in a model, and an extended logic, the
modal μ−calculus[24], with fixed point operators for recursive definitions.

3 Stochastic Process Algebra: PEPA

Process algebras offer several attractive featureswhich are not necessarily available
in existing performance modelling paradigms. The most important of these are
compositionality, the ability to model a system as the interaction of its subsystems,

136 A. Clark et al.

How long will it take
for the system to arrive
in a particular state?

� �

� � � �

��

� �

� � �

�����

���
�
���

With what probability
does system behaviour
match its specification?

��

�

�

�

�
�

�

��
��� ≡

? � �

� � � �

�

� �

� � �

�����

���
�
���

Does a given property φ

hold within the system
within time t with probability p?

φ ��������

								

� �

� � � �

�

� �

� � �

�����

���
�
���

Fig. 2. Quantitative analysis of stochastic process algebra

formality, giving a precise meaning to all terms in the language, and abstraction,
the ability to build up complex models from detailed components but disregarding
internal behaviour when it is appropriate to do so. Queueing networks offer com-
positionality but not formality; stochastic extensions of Petri nets offer formality
but not compositionality; neither offer abstraction mechanisms.

In the early 1990s several stochastic extensions of process algebra appeared
in the literature, motivated by a desire to add quantification to process alge-
bra models and make them suitable for performance modelling. These included
TIPP [25] from the University of Erlangen, EMPA1 [26,27] from the University
of Bologna, PEPA [28,29] from the University of Edinburgh and SPADE2 [30]
from Imperial College. PEPA was the first language to be developed with the
intention of generating Markov processes which could be solved numerically for
performance evaluation, but versions of TIPP and EMPA from around the same
time are similarly Markovian based. The other Markovian-based SPA, emerged
a little later the stochastic π-calculus [31] and IMC [32] and differ in terms
of their synchronisation and treatment of delay, respectively. For the remain-
der of this section, and the following one, we concentrate on PEPA; however,
towards the end of this section we will discuss how TIPP and EMPA differ
from PEPA. SPADE was developed with a different motivation, relating to gen-
eralised semi-Markov processes and simulation. Several other calculi have also

1 Originally called simply MPA.
2 Originally called CCS+.

Stochastic Process Algebras 137

EMPA, Markovian TIPP

SPA

integrated time

orthogonal time

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

general distributions
TIPP, SPADE, GSMPA

exponential only

exponential only

exponential + instantaneous

IMC

PEPA, Stochastic π-calculus

EMPA, Markovian TIPP

general distributions
IGSMP, Modest

Fig. 3. Classification of the stochastic process algebras

incorporated generally distributed activities or delays, e.g. Modest [33],
IGSMP [34] and GSMPA [35].

PEPA (Performance Evaluation Process Algebra) extends classical process
algebra by associating a random variable, representing duration, with every
action. These random variables are assumed to be exponentially distributed and
this leads to a clear relationship between the process algebra model and a con-
tinuous time Markov process. Via this underlying Markov process performance
measures can be extracted from the model.

PEPA models are described as interactions of components. Each component
can perform a set of actions: an action a ∈ Act is described as a pair (α, r),
where α ∈ A is the type of the action and r ∈ R

+ is the parameter of the
negative exponential distribution governing its duration. Whenever a process P
can perform an action, an instance of a given probability distribution is sampled:
the resulting number specifies how long it will take to complete the action. A
small but powerful set of combinators is used to build up complex behaviour
from simpler behaviour. The combinators are familiar from classical process
algebra: prefix, choice, parallel composition and abstraction. We explain each of
the combinators informally below. A formal operational semantics for PEPA is
available in [29].

Prefix: A component may have purely sequential behaviour, repeatedly under-
taking one activity after another and eventually returning to the beginning of its
behaviour. A simple example is a web service within a distributed system, which
can serve one request at a time. Each application requiring the web service will
need to gain access to the service which will then only be made available for
another application when a response has been successfully transferred.

WS
def= (request, �).(serve, μ).(respond, �).WS

138 A. Clark et al.

In some cases, as here, the rate of an action is outside the control of this com-
ponent. Such actions are carried out jointly with another component, with this
component playing a passive role. For example, the web service is passive with
respect to the request action, as it cannot influence the rate at which requests
arrive, and this is recorded by the distinguished symbol, � (called “top”).

Choice: A choice between two possible behaviours is represented as the sum
of the possibilities. For example, if we consider an application in a distributed
system, a computation may have two possible outcomes: access to a locally avail-
able method is required (with probability p1) or access to a remote web service
is necessary (with probability p2 = 1 − p1). In this example the think action
denotes processing within the application. These alternatives are represented as
shown below:

Appl
def= (think, p1λ).(local, m).Appl

+ (think, p2λ).(request, rq).(respond, rp).Appl

A race condition governs the behaviour of simultaneously enabled actions so
the choice combinator represents pre-emptive selection with re-sampling. The
continuous nature of the probability distributions ensures that the actions cannot
occur simultaneously. Thus a sum will behave as either one summand or the
other. When an action has more than one possible outcome, e.g. the think action
in the application, it is represented by a choice of separate actions, one for each
possible outcome. The rates of these actions are chosen to reflect their relative
probabilities.

Parallel composition: As mentioned earlier, PEPA and most of the other SPA
adopt the parallel composition from CSP, rather than that from CCS. Corre-
spondingly, there is no notion of complementary actions and multiway synchro-
nisations are possible.

In the web service example, we have already anticipated that the application
and the web service will be working together within the same system. This will
require them to cooperate when the application needs the service offered by the
web service, which is not available locally. In contrast, the local activities of the
application can be carried out independently of the web service. Cooperation
over given actions is reflected in the parallel composition by the cooperation set,
L = {request, serve, respond} in this case. Actions in this set require the simul-
taneous involvement of both components. The resulting action, a shared action,
will have the same type as the two contributing actions and a rate reflecting the
rate of the action in the slowest participating component. Note that this means
that the rate of a passive action will become the rate of the action it cooperates
with.

If, for simplicity, we assume that the distributed system consists of just two
independent applications, the system is represented as the cooperation of the
applications and the web service as follows:

Sys1
def=

(
Appl ‖ Appl

) ��
L

WS L = {request, serve, respond}

Stochastic Process Algebras 139

The combinator ‖ is a degenerate form of the cooperation combinator, formed
when two components behave completely independently, without any cooper-
ation between them, as in the case of the two independent applications. This
pure parallel combinator can be thought of as cooperation over the empty set:
(Appl ��

∅
Appl).

Abstraction: Again, the abstraction mechanism used in SPA follows CSP rather
than CCS. It is often convenient to hide some actions, making them private to
the component or components involved. The duration of the actions is unaf-
fected, but their type becomes hidden, appearing instead as the unknown type
τ . Components cannot synchronise on τ . For example, as we further develop the
model of the distributed system we may wish to hide the access of a application
to its local method. This might lead to a new representation of the application:

Appl′ def= Appl/{local}

and a corresponding new representation of the system:

Sys2
def=

(
Appl′ ‖ Appl′

) ��
L

WS L = {request, serve, respond}

Note that this is quite different from the CCS restriction operator which prevents
actions of the given label from occurring.

Use of the hiding combinator has two implications. Firstly, it ensures that
no components added to the model at a later stage can invoke this method of
the application. Secondly, private actions are deemed to have no contribution to
the performance measures being calculated and this might subsequently suggest
simplifications to the model.

Throughout the simple example above we have used constants such as WS to
associate names with behaviours. Using recursive definitions we have been able
to describe components with infinite behaviours without the use of an explicit
recursion operator.

Representing the components of the system as separate components means
that we can easily extend our model. Now we may want to consider a distributed
system consisting of more than two applications which act independently of each
other but compete for the use of web service. To enhance fault tolerance the web
service may be replicated. This extension may be achieved compositionally by
combining more instances of the components already described. For example, in
the case of three applications and two instances of the web service we have:

Sys3
def=

(
Appl ‖ Appl ‖ Appl) ��

L
(WS ‖ WS) L = {request, serve, respond}

3.1 Designing the Language

Action durations. The selection of a negative exponential distribution as the
governing distribution for the action durations in PEPA and other SPA has
profound consequences. In terms of the underlying stochastic process, it is the
only choice which gives rise to a Markov process. In terms of the process algebra it

140 A. Clark et al.

is the only choice which preserves the well-known expansion law which underlies
the interleaving semantics. In both cases this is due to the memoryless property
of the exponential distribution: the time until the next event is independent of
the time since the last event—the exponential distribution “forgets” how long it
has already waited. Thus if we consider a process (α, r).Stop ‖ (β, s).Stop, from
the semantics we derive:

�
�

���

�
�

���

Stop ‖ (β, s).Stop (α, r).Stop ‖ Stop

Stop ‖ Stop

(α, r).Stop ‖ (β, s).Stop

(β, s)

(α, r) (β, s)

(α, r)

In a generally timed (or even deterministically timed) scenario it would be
important to record the elapsed time in the intermediate states in order to know
the residual time of the remaining activity. For example, the time needed to
complete β in Stop ‖ (β, s).Stop should reflect the time already taken to complete
activity α. However the memoryless property of the exponential distribution tells
us that the distribution of the residual time in β is the same as it was initially in
state (α, r).Stop ‖ (β, s).Stop before any time had elapsed. Thus we retain the
expansion law of classical process algebra:

(α, r).Stop ‖ (β, s).Stop =
(α, r).(β, s).(Stop ‖ Stop) + (β, s).(α, r).(Stop ‖ Stop)

Later formalisms which incorporated general distributions either avoided the
issue of residual durations by separating actions and delays (e.g. Modest [33]
and IGSMP [34]), or used a finer-grained semantics such as ST-semantics to
distinguish the start and stop of each action (e.g. GSMPA [35]).

Another major difference between the SPA formalisms concerns immediate or
instantaneous actions. EMPA has immediate actions, modelled after the imme-
diate transitions of GSPN. Each immediate action has an associated priority
level and an associated weight. Immediate actions always have higher priority
than exponentially timed actions, so a choice between such actions is resolved
by priorities. If two immediate actions of the same priority level are concur-
rently enabled, the choice is resolved on the basis of their associated weights.
The inclusion of immediate actions in TIPP, in addition to those with an asso-
ciated exponentially distributed delay, has also been investigated. These actions
were used to model logical [36] or control activities [37]. In these cases it was
assumed that the environment of the component will resolve choices, but this
opens the possibility that a model may contain non-determinism. Such a model
is considered to be under-specified.

Stochastic Process Algebras 141

Cooperation. Communication or parallel composition is the essence of com-
positionality in process algebras. It gives structure to models, indicating which
actions may be undertaken concurrently, and which cannot.

For most SPA the choice was made to adopt the multiway synchronisation
using shared names (as in CSP) rather than complementary actions (as in CCS).
This means that components or agents jointly perform actions of the same
type, when the parallel composition dictates it. The motivation was to represent
something more general than communication. In performance models interaction
often captures resource usage and the objective of the model is to study the con-
straints imposed on components by competition over resources. In this context
the multiway synchronisation offered more generality. However this choice was
independent of the quantification of action durations, as witnessed by the adop-
tion of CCS-style synchronisation in the stochastic π-calculus which generates a
Markov process in the same way as PEPA [31].

Nevertheless the quantification of action duration did pose a challenge for
the definition of cooperation. Actions which are to be performed jointly may
each have been assigned rates (durations) in their respective components. The
best way to resolve what should be the rate of the shared action has been a
topic of some debate. The differing solutions adopted have become the main
distinguishing feature of the various SPA formalisms.

The first observation is that if we view the joint action as a “synchronisation”
as in the sense of barrier synchronisation in parallel programming then the cor-
rect duration would be the maximum of the durations, i.e. the maximum of the
random variables. The unfortunate problem is that the maximum of two or more
exponentially distributed random variables is not exponentially distributed.

In PEPA it is assumed that each component has bounded capacity to carry out
activities of any particular type, determined by the apparent rate. For a component
P and action type α, the apparent rate of α in P , denoted rα(P), is the sum of
the rates of each α action enabled in P . This corresponds to the rate at which P
appears to an external observer to carry out an α action, due to the superposition
principle of the negative exponential distribution. The definition of cooperation
in PEPA is based on the assumption that a component cannot be made to exceed
its bounded capacity, meaning that the apparent rate of the shared action will be
the minimum of the apparent rates of the components involved.

In TIPP the “rate” is assumed to represent work capacity in one partner
of the synchronisation and work demand in the other. The rate of the shared
action is then taken to be the product of the two component rates. In contrast,
in EMPA it is assumed that in any synchronisation exactly one participant has
an explicit representation for the rate of the activity, all other participants being
passive with respect to this activity, prepared to proceed at the rate of the
active participant. This scheme does satisfy the principle of bounded capacity
but the restriction has implications for the compositionality of the language.
The formalisms which separate action and time evolution avoid this issue by only
allowing synchronisation on untimed actions. The issue of timed synchronisation
is discussed in [38,39] and in detail in Bradley’s thesis [40].

142 A. Clark et al.

4 Model Analysis

The formality of the process algebra approach allows us to assign a precise
meaning to every language expression. This implies that once we have a language
description of a given system its behaviour can be deduced automatically. The
meaning, or semantics, of a PEPA expression is provided by SOS rules as for
CCS, which associates a labelled multi-transition system with every expression
in the language [29].

A labelled transition system (S, T, { t−→ | t ∈ T }) consists of a set of states
S, a set of transition labels T and a transition relation t−→ ⊆ S × S. For PEPA
the states are the syntactic terms in the language, the transition labels are the
actions ((type, rate) pairs), and the transition relation is given by the semantic
rules. A multi-transition relation is used because the number of instances of a
transition (action) is significant since it can affect the timing behaviour of a
component.

Based on the transition relation, a transition diagram, called the derivation
graph (DG), can be associated with each language expression. This graph describes
all the possible evolutions of any component and provides a useful way to reason
about the behaviour of a model. A certain amount of care is needed in defining the
derivation graph. Consider a simple component, P , which will repeatedly carry
out the action a = (α, r), i.e. P

def= (α, r).P . For a classical process algebra we
need only consider which actions it is possible for an agent to perform. Thus, the
agent P + P has the same behaviour as the agent P—both are capable of an α
named action and subsequently behave as P—so these agents are considered to
be equivalent. In a SPA multiple instances of an action become apparent because
the duration of an action of that type will be the minimum of the corresponding
random variables, i.e. the apparent rate of the action will be the sum of the rates.
Thus P +P appears to carry out the first α named action at twice the rate of the
agent P . Consequently the two cannot be regarded as equivalent.

Alternative solutions have been offered for this problem. In TIPP and EMPA
supplementary labels are used to distinguish instances of multiply enabled
actions, and the underlying structure is still a labelled transition system. In
PEPA the semantics of the language is given in terms of a labelled multi-
transition system with the transition relation represented as a multi-relation
in which the multiplicities of arcs are recorded.

An example derivation graph is shown in Figure 4 where the DG of the PEPA
model Sys4, consisting of a single application accessing the web service, is shown.
For didactic purposes, in the left hand part of the figure we have expanded the
derivatives of the components Appl and WS.

Inspection of the DG allows one to derive qualitative properties of the model.
In this case, for instance, we can see that the PEPA model is free from deadlock
and live. Moreover, the Markov process underlying any finite PEPA component
can be obtained directly from the DG: a state of the Markov process is associated
with each node of the graph and the transitions between states are defined by

Stochastic Process Algebras 143

Appl
def= (think, p1λ).Appl1
+ (think, p2λ).Appl2

Appl1
def= (local, m).Appl

Appl2
def= (request, rq).Appl3

Appl3
def= (respond, rp).Appl

WS
def= (request, �).WS1

WS1
def= (serve, μ).WS2

WS2
def= (respond, �).WS

Sys4
def= Appl ��

L
WS

L = {request, serve, respond}

�
�

�
��

��

�

�

(think, p1λ) (think, p2λ)

Appl ��
L

WS

Appl1 ��
L

WS Appl2 ��
L

WS

Appl3 ��
L

WS1

Appl3 ��
L

WS2

(respond, rp)(local, m)

(request, rq)

(serve,μ)

Fig. 4. Derivation graph underlying Sys4

considering the rates labelling the arcs. Since all activity durations are exponen-
tially distributed, the total transition rate between two states will be the sum of
the activity rates labelling arcs connecting the corresponding nodes in the DG.
Starting from the DG of Figure 4, the derivation of the corresponding Markov
process is straightforward and results in the generator matrix shown below.

Q =

⎛

⎜
⎜
⎜
⎜
⎝

−λ p1λ p2λ 0 0
m −m 0 0 0
0 0 −rq rq 0
0 0 0 −μ μ
rp 0 0 0 −rp

⎞

⎟
⎟
⎟
⎟
⎠

Once obtained, the infinitesimal generator matrix can be used for a variety of
different analysis techniques. Most commonly the model is subjected to steady
state analysis. This assumes that the Markov process will eventually reach a
regular pattern of behaviour and the probability distribution over the states
of the model will cease to change, i.e. that the Markov process is ergodic. For
such models the steady state probability distribution can be derived and reveals
much information about the steady state, or equilibrium, behaviour of the model.
In addition, any Markov process (both ergodic and not) can be subjected to
transient analysis. In its simplest form a transient analysis will derive the state
probability distribution for a given starting state and after a given time. However,
it is also the basis of more sophisticated analyses such as calculating first passage
and response time distributions.

In order to ensure that the Markov process underlying a PEPA model is
ergodic, the DG of a PEPA model must be strongly connected. Necessary con-
ditions for ergodicity, at the syntactic level of a PEPA model, have been defined
[29]. For example, if cooperation occurs it must be the highest level combinator.

144 A. Clark et al.

The class of PEPA terms which satisfy these syntactic conditions are termed
cyclic components and they can be described by the following grammar:

P ::= S | P ��
L

P | P/L

S ::= (α, r).S | S + S | A

All the models we have discussed so far satisfy the syntactic conditions required
to be cyclic models.

It is well known that if the Markov process is ergodic, it is possible to compute
the steady state probability distribution over all the possible states by solving
the matrix equation πQ= 0 where Q is the generator matrix of the Markov
process and π is the state probability vector, such that

∑
i πi = 1.

The probability distribution of the states of the model is often not the ultimate
goal of performance analysis. Performance measures such as throughput and
utilisation are often derived via a reward structure which is defined over the
Markov process. This can either be done explicitly by the modeller, or as we
will see, automatically by the tool for commonly required measures. A reward
structure associates a value or reward with each state of the model. For steady
state measures, the expected value of the reward (i.e. the sum over the entire
state space of (probability of a state × reward in that state)) is calculated. In a
process algebra it can be easier to associate rewards with actions. In this case the
reward associated with a state will be the total reward attached to the actions
that the state enables. Note that in PEPA no reward can be attached to internal,
τ , actions.

4.1 Case Studies

As originally intended, PEPA has been applied to study the performance charac-
teristics of a number of computer and communication systems. Initial examples
focussed on well-known standard performance evaluation abstractions such as
multi-server multi-queue systems [41] and various queueing systems [4]. How-
ever over time more realistic case studies emerged, both from the PEPA group
and from others. For example, in [42] the performance impact of fault-tolerant
protocols within a distributed system framework is evaluated. In [5] Bowman
et al. develop a model of multimedia traffic characteristics and use it to derive
quality of service measures such as jitter, throughput and latency. In an investi-
gation of ways in which to ease the development of parallel database systems, the
STEADY group at the Heriot-Watt University proposed the use of performance
estimators. PEPA was used to verify the output of the performance estimators
for a number of particular configurations and therefore improve confidence in
the approach [43].

In recent work a group at the PRiSM Laboratory of the University of Versailles
are working on a novel active rule-based approach to active networks (networks
in which intermediate nodes supplement routing of data with some computation)
[44]. A PEPA model was used to study the impact of the “active” traffic on the
non-active cross-traffic in terms of loss rate and latency within an active switch

Stochastic Process Algebras 145

[45]. Furthermore the models were validated against simulation models of the
same system and showed very good agreement [46].

In addition, the formalism has been applied to a number of other problems
which are beyond the usual arena of computer performance evaluation.

Inland shipping. Luk Knapen of Hasselt applied PEPA to study traffic flow
within the inland shipping network of Belgium focussing in particular on the
locks and movable bridges.

Robotic workcells. Robert Holton of the University of Bradford used PEPA
models to analyse the performance and functional correctness of a robotic
workcell designed for a automated manufacturing system [3,2].

Cellular telephone networks. A team from the PRiSM Laboratory at the
University of Versailles considered a problem of dimensioning in a cellular
telephone network. They used a PEPA model to study the impact on call
blocking and dropping of allocating bandwidth resources between micro and
macro-cell level [8]. They took advantage of automatic aggregation [47].

Automotive diagnostic expert systems. Console et al. of the University of
Turin constructed a PEPA model of an automatic diagnostic system to be
deployed in a car. A large number of sensors were placed around the car and
some number could trigger an alarm. The role of the PEPA model was to pro-
vide probabilistic reasoning to resolve the likely cause of the alarm based on
previous observations of the timing and frequency of individual faults [48].

5 Tool Support

Case studies of the size and complexity described above are only possible if the
modelling process has adequate support. In this section we describe some of
the tool support which is available for performance modelling using stochastic
process algebras. We focus primarily on the tools which support PEPA and the
analysis techniques that they offer. There is a brief discussion of other SPA tools
at the end of the section.

5.1 PEPA Tools

The PEPA Plugin Project. The PEPA Plugin Project is a software tool for
reasoning about the various stages of the Markovian analysis of PEPA models.
The tool is implemented as a collection of plug-ins for Eclipse [49], an extensible
integrated development environment for a large variety of programming and
modelling languages such as Java, C++, Python and UML. This framework was
chosen for three main reasons. First, Eclipse is a freely available product. Second,
it is widely supported by a growing community of users and businesses. Third, it
can run on a variety of platforms, as it is implemented in Java and the graphical
library used for the user interface is available on many operating systems.

The functionalities of the tool are accessible both programmatically and
through a more user-friendly graphical interface. In the remainder of this sec-
tion we focus on the latter method. Resources of an Eclipse workspace can be

146 A. Clark et al.

manipulated using two main classes of tools, editors and views. The former
follow the traditional open-save-close cycle pattern. The latter are typically used
to navigate resources, modify properties of a resource and provide additional
information on the resource being edited.

The PEPA Plugin contributes an editor for the language and views which
assist the user during the entire cycle of model development. Static analysis is
used for checking the well-formedness of a model and detecting potential errors
prior to inferring the derivation graph of the system. A well-formed model can be
derived, i.e. the underlying Markov process is extracted and the corresponding
state space can thus be navigated and filtered via the State Space view. Finally,
the CTMC allows numerical steady-state analyses such as activity throughput
and component utilisation.

Editor. A PEPA editor is opened for files in the Eclipse workspace which have
the pepa extension. The editor provides a convenient way to run a parser which
translates the model description in the PEPA language into an in-memory repre-
sentation suitable for further processing. This form is represented graphically in
the AST view by means of a hierarchical structure for the model. The in-memory
model also acts as an intermediate form for converting PEPA models into external
formats. In particular, the PEPA plugin project provides an exporter to EMF [50],
the de-facto standard for data exchange within the Eclipse framework.

Static Analysis. Static analysis deals with checking the well-formedness of a PEPA
model. Because of its low computational cost, static analysis is performed every
time the text of the model description is saved. The output of this tool is a con-
tribution of a list of messages to the already existing Eclipse Problem view. The
information provided can be grouped into two categories: warnings are messages
about low priority problems which do not prevent further processing; errors are
instead critical problems which must be fixed in order to continue the model devel-
opment process. For instance, basic warning messages are about rate or process
definitions which are defined in the model description but never used; error mes-
sages can be about rate or process names which are used but never defined.3

More advanced static analysis is carried out to detect potential local dead-
locks, redundant declaration of actions of the cooperation operator and ung-
uarded component uses giving rise to non-well-founded definitions of processes,
i.e. self-containing processes. In order to fulfill these tasks, the model’s in-
memory representation is iteratively walked to create two support data struc-
tures: complete action types set and used definition set.

The complete action type set A of a component is the set of all the action
types which can performed by the component during its evolution. This set can
be calculated according to Tab. 2. For example, if we consider the model in Fig. 5
(for the sake of clarity we omit the actual rate values) then the complete action
type sets of its constants are as follows:

3 It is worthwhile noting that rate names must be declared before using them in a prefix
definition. However, there is no such a rule with regards to process definitions.

Stochastic Process Algebras 147

A(P1) = {α, β, γ, δ}
A(P2) = {α, β, γ, δ}
A(P3) = {α, β, γ, δ}
A(Q1) = {α, β, ε, η}
A(Q2) = {α, β, ε, η}
A(Q3) = {α, β, ε, η}

(5.1)

The used definition set U of a component is the set of all the constants which the

Table 2. Rules for deriving the complete action type set

Constant A def= P A(A) = A(P)
Prefix (α, r).P A

�
(α, r).P

�
= {α} ∪ A(P)

Choice P + Q A(P + Q) = A(P) ∪ A(Q)
Cooperation P ��

L
Q A(P ��

L
Q) = A(P) ∪ A(Q)

Hiding P\{L} A(P\{L}) = A(P) − L

component behaves as during its evolution. This set can be calculated according
to the rules in Tab. 3. The used definition sets of the constants of the model in
Fig. 5 are as follows:

U(P1) = {P1 ,P2 ,P3}
U(P2) = {P1 ,P2 ,P3}
U(P3) = {P1 ,P2 ,P3}
U(Q1) = {Q1 ,Q2 ,Q3}
U(Q2) = {Q1 ,Q2 ,Q3}
U(Q3) = {Q1 ,Q2 ,Q3}

(5.2)

P1 def= (α, r).P2 + (β, s).P3
P2 def= (γ, t).P1
P3 def= (δ, u).P1
Q1 def= (α, �).Q2 + (β, �).Q3
Q2 def= (ε, v).Q1
Q3 def= (η, w).Q1
P1 ��

{α,β}
Q1

Fig. 5. An example of PEPA model

Let us consider two processes which cooperate over a non-empty set of action
types. A local deadlock is a condition that may occur when one process cannot
proceed because it is in a state where it is synchronised on an activity which can
never be performed by its partner. The model in Fig. 6 exhibits a local deadlock

148 A. Clark et al.

Table 3. Rules for deriving the used definition set

Constant A def= P {P} ∪ U (P)
Prefix (α, r).P U(P)
Choice P + Q U(P) ∪ U(Q)
Cooperation P ��

L
Q U(Q) ∪ U(R)

Hiding P\{L} U(P)

in the initial state, because the action type α cannot be performed by either
Q1 or Q2 . Local deadlock conditions are critical errors which can be statically
detected by examining the used definition set of each cooperation of a model. In
particular, a cooperation P ��

L
Q gives rise to a deadlock on the action α if the

following condition holds:

∃α ∈ L : α �∈ A(P) ∩ A(Q), α ∈ A(P) ∪ A(Q) (5.3)

The tool emits warning messages if it discovers the existence of redundant def-
inition of action types in cooperation sets. A cooperation specifies a redundant
action type α if the following condition holds:

∃α ∈ L : α �∈ A(P) ∪ A(Q) (5.4)

The used definition set allows for the detection of non-guarded recursive defini-
tions of components. In Fig. 7 is shown a model exhibiting such a condition. A
subset of the infinite labeled transition system of component P1 is:

P1
(γ,t)→ P2 ‖ P3 ‖ P3
(γ,t)→ P2 ‖ P3 ‖ P3 ‖ P3
(γ,t)→ P2 ‖ P3 ‖ P3 ‖ P3 ‖ P3
(γ,t)→ · · ·

This gives rise to an infinite-state Markov chain. We wish to work with finite-
state Markov chains so we reject definitions such as these as being ill-formed.

P1 def= (α, r).P2
P2 def= (γ, t).P1
Q1 def= (β, s).Q2
Q2 def= (ε, v).Q1
P1 ��

{α}
Q1

Fig. 6. Example of a PEPA model with local deadlock

Stochastic Process Algebras 149

. . .

P1 def= P2 ‖ P3
P2 def= (γ, t).P1
. . .

Fig. 7. Example of a PEPA model with non-guarded recursive definitions of compo-
nents

The used definition set is calculated for each process constant A def= P which
defines a cooperation (in the example, U(P1) would be calculated). Such a con-
stant is not well-formed if the following condition holds:

A ∈ U(A) (5.5)

The PEPA Plugin project provides a tool for state space derivation, i.e. the
process of extracting a Markov process from the labeled transition system of the
PEPA model. The output of the tool is the state space and the corresponding
infinitesimal generator of the CTMC. The state space can be navigated and
filtered via the State Space view. The state space is represented in a tabular
form: the first column is the state number; then follow as many columns as the
number of top-level components of the system. The tabular representation of the
state space of the model in Fig. 5 would be as in Tab. 4.

Table 4. Tabular representation of the state space of the example model

State Number First Component Second Component
1 P1 Q1
2 P3 Q3
3 P3 Q1
4 P1 Q3
5 P2 Q2
6 P2 Q1
7 P1 Q2

A variety of filter options is available in order to narrow down the number
of states shown in the view. The user can exclude/include states which have a
sequential component in a particular local state or states which contain unnamed
processes (i.e., prefixes). More precise filtering can be obtained by means of a
pattern language which allows the user to match local states which contain
given top-level component local states at specified positions. The components
are separated by vertical bars and a wild-card is used to disregard positions
which are of no interest. According to the example in Fig. 5, the pattern P1
| * would match the states whose first top-level component is in state P1,

150 A. Clark et al.

thus displaying states 1,4,7; the pattern * | Q2 would match states 5,7. For a
more concise description of the filter, the generic pattern P is considered as an
abbreviation of P | * | ... | *.

Additionally, the plug-in contributes the Single Step Navigator, a tool for
walking the state space. This is particularly useful for debugging purposes. It
consists of two tables containing the list of incoming and outgoing states. The
sequential components which cause the transition to be performed are high-
lighted and an option allows the user to make filtered states not walkable.

A model whose state space is derived successfully is amenable to performance
analysis which can be carried out by calculating the steady-state probability
distribution of the CTMC over the state space. The user interface provides a
dialogue wizard which guides the user through this process. The wizard is a
graphical interface to the MTJ toolkit [51], the library used for the numerical
solution of the Markov chain, allowing the user to choose and tune the parameters
of an extensive selection of solvers and preconditioners.

After the model is successfully solved, the State Space view is updated with
information on the obtained steady-state probability distribution which is shown
on an additional column. Additional analysis can be carried out via the Per-
formance Evaluation view, which permits throughput and utilisation analysis.
Throughput is an action-related metric showing the rate at which an action
is performed at steady-state; utilisation is related to a sequential component
showing the steady-state distribution probability over its local states.

In order to better illustrate these metrics, let us consider the model in Fig. 8
consisting of one single sequential component evolving through three local states.
With rates r = 2, s = 1, t = 1 the utilisation figures are P1 = 0.2, P2 = 0.4, P3 =
0.4 whereas throughput is 0.4 for each action.

P1 def= (α, r).P2
P2 def= (β, s).P3
P3 def= (γ, t).P1

Fig. 8. A tiny PEPA model with one sequential component

Experimentation is a tool for sensitivity analysis. The user can supply ranges
for rate values against which the performance metrics described above are cal-
culated. Results are then shown in the form of graphs for which a number of
exporting options are available.

The Imperial PEPA Compiler. The Imperial PEPA Compiler (IPC) [52] pro-
vides an alternative implementation of the PEPA language, providing a bridge to
performance analysis tools developed at Imperial College by Knottenbelt and his
group [53,54].

The ipc tool translates an input PEPA model into the Petri net notation pro-
vided by Dnamaca [53]. Its support for the PEPA language is comprehensive.

Stochastic Process Algebras 151

Apparent rates are supported, as are anonymous components. The great advan-
tage of accessing the functionality of the Dnamaca analyser is that other forms
of analysis (beyond steady-state) become available.

The steady state probability distribution represents the behaviour of the sys-
tem at equilibrium, where the influence of the initial state of the system is no
longer measurable. Some performance measures of interest cannot be derived
from the results of steady state analysis. Examples of performance measures in
the class of non-equilibrium measurements include mean time to failure analysis,
as computed in the evaluation of dependable systems. Other examples include
the probabilistic quality-of-service guarantees which underpin most commer-
cial service level agreements (SLAs): e.g. the probability that a 10-node clus-
ter should be able to process 3000 database transactions in less than 6 seconds
should be greater than 0.915; or a train service should not run more than 10
minutes late more than 20% of the time.

More generally, such measures necessitate the computation of passage-time
quantiles which detail the probability of passing through the system evolution
from a start state to an end state (or a set of starting states to a set of end states).
The computation of such measures depends on the aggregate time behaviour
across a whole system of complex interactions. The computation of passage-time
quantiles depends on transient analysis of the CTMC, which is more expensive
than steady-state analysis in both run-time and memory consumption.

Via ipc, the unique solution capabilities of Dnamaca become available and
because of this it is possible to efficiently perform passage time analysis over
PEPA models [52,54]. Start and end points are specified using the concept of
stochastic probes developed by Argent-Katwala, Bradley and Dingle [55]. Sto-
chastic probes are themselves PEPA components which have been generated
from regular expression-based inputs.

The PRISM model checker. PRISM is a probabilistic model checker devel-
oped by Kwiatkowska’s group at the University of Birmingham. It supports
discrete time Markov chains and Markov decision processes as well as CTMCs.
The standard input to PRISM is a model described in a simple reactive modules
language. PEPA was integrated into the tool via a compiler which translates
PEPA models into this language. The developers at the University of Birm-
ingham extended PRISM’s modelling capabilities to implement at the binary
decision diagram level PEPA’s combinators (cooperation and hiding).

Integration into PRISM enables model checking of the CTMC underlying a
PEPA model against properties expressed in Continuous Stochastic Logic (CSL)
[56]. It also provides access to the efficient numerical solutions of PRISM based
on MTBDDs [57] and sparse matrix representation. PRISM has been applied
successfully to a number of PEPA (and PEPA net) case studies [58,59].

The Möbius modelling platform. The Möbius modelling framework [60] was
developed at the University of Illinois Urbana-Champaign. It is both a multi-
formalism and multi-paradigm modelling tool, i.e. it aims to offer the user a
choice of model description techniques and solution methods. Moreover it is

152 A. Clark et al.

designed to allow a model to be composed of submodels which may be expressed
in different formalisms. It has a broad spectrum of users in North America.
Integrating PEPA into Möbius offered opportunities to present stochastic process
algebra to users who were previously unfamiliar with the formalism, and to
expore the possibilities of interaction between modelling formalisms [61].

5.2 Related Work

Over the years, several software tools have been made available for support-
ing computer-aided analysis with process algebra. TwoTowers [62], for example,
provides a similar range of tools for the stochastic process algebra EMPAgr.

TIPP-Tool. The TIPP-Tool is a prototype modelling tool for creating and eval-
uation TIPP models of parallel and distributed systems. It supports a LOTOS-
oriented input language and as well as facilities to apply functional analysis
based on reachability analysis, it provides a set of numerical solution modules
for the stationary and transient analysis of the Markov process underlying a
TIPP specification [63,64].

In order to evaluate the performance of the specification the derived transi-
tion system serves as a base for further reduction into a Markov process. For the
steady state analysis of the underlying Markov process a variety of numerical
algorithms are available: LU-factorization, power method, and Gauss-Seidel iter-
ation scheme. TIPP-Tool supports also transient analysis by providing methods
to compute the mean time to absorption of an absorbing Markov chain or the
transient state probabilities. For the latter a refined randomisation scheme is
provided.

The result of numerical analysis is usually a vector with state probabilities. In
order to obtain more sophisticated and expressive results the user can specify mea-
sures. This is done via rewards that are assigned to states which match a regular
expression which the user must specify. Series of experiments are also supported
by allowing rates to be symbolic variables. The specification of the model, as well
as the measures and experiments, is supported through a graphical user interface.

TwoTowers. TwoTowers [62], which supports modelling with the SPA language
EMPA, builds on two existing tools, CWB-NC [65] for functional analysis and
MARCA [66] for performance analysis. The specification language for TwoTowers
is EMPAr, an extension of EMPA to include the specification of rewards—in the
subsequent analysis these rewards are used to derive performance measures. The
other SPA tools include the facility to associate a reward structure with a model;
in EMPAr the reward structure is assumed to be an integral part of the model.

TwoTowers has a graphical user interface written in Tcl/Tk. This interface
allows the user to edit and compile specifications and provides access to the vari-
ous analysis routines. CWB-NC provides a suite of functional analysis techniques:
model checking, equivalence checking, preorder checking and reachability analy-
sis. MARCA provides for both steady state and transient performance analysis
of the underlying Markov process. In addition there is a simulation engine which
allows models to be simulated.

Stochastic Process Algebras 153

More information about TwoTowers is available at:
(http://www.sti.uniurb.it/bernardo/twotowers).

MoDeST. The MoDeST modelling language (Modelling and Description lan-
guage for Stochastic Timed systems) [33] enriches a process algebra with atomic
statements to control the granularity of transitions, non-deterministic and proba-
bilistic branching and timing. The MoDeST language provides conventional
programming constructs such as iteration, alternatives, atomic statements, and
exception handling in the style of user-friendly specification languages such as
Promela. The MoDeST semantics maps each MoDeST specification onto a sto-
chastic timed automata, a modelling formalism which subsumes timed, stochastic
and probabilistic automata.

The MoDeST language has been integrated into the Möbius multi-paradigm
modelling framework [67] as an atomic model. MoDeST models which do not use
non-determinism can be assessed quantitatively using the discrete-event simulator
of Möbius or its Markovian analysers. MoDeST models are mapped onto C++
code which links against the Möbius Abstract Functional Interface (AFI).

Verification of properties of MoDeST models can be performed using the CADP
Tools [68].

6 Case Studies

6.1 Roland the Gunslinger

In this subsection we consider a sequence of small examples based around a char-
acter known as “Roland the Gunslinger”. These simple models are intended to be
intuitive to understand but yet show some of the main features of the language
and demonstrate a variety of solution techniques. A more substantial example is
presented in the following subsection.

Roland alone. Roland Deschain is a gunslinger and his primary activity is fir-
ing his gun which is a six-shooter, i.e. there is room in the barrel for six bullets
at a time. When his gun is empty Roland will reload the gun and then continue
shooting.

Roland6
def= (fire, rfire).Roland5

Roland5
def= (fire, rfire).Roland4

Roland4
def= (fire, rfire).Roland3

Roland3
def= (fire, rfire).Roland2

Roland2
def= (fire, rfire).Roland1

Roland1
def= (fire, rfire).Rolandempty

Rolandempty
def= (reload, rreload).Roland6

154 A. Clark et al.

If we suppose that Roland has two guns then he should be allowed to fire either
gun independently. A simplistic way to model this is to have two instances of
Roland in parallel:

Roland6 ‖ Roland6

However, this model does not capture the fact that Roland needs both hands in
order to reload either gun. The simplest way to fix this is to assume that Roland
only reloads both guns when both are empty.

Roland6 ��
{reload}

Roland6

In the remaining models, we consider only the case of Roland using his shotgun,
which has only two bullets before it needs reloading, and requires both hands for
firing.

Choice. In the first straightforward model of Roland, he was simply firing his
guns. We now consider a model which captures the possibility that Roland will
miss or hit his target.

Upon his travels Roland will encounter some enemies with whom he will have
no choice but to enter combat. In this model it is assumed that his enemies do not
possess the skill required to seriously harm Roland. Therefore he never dies but
simply encounters villians and fires at them until he successfully hits them. Each
hit is assumed to be fatal and it is assumed that a sense of honour prevents an
enemy from attacking Roland if he is already involved in a gun fight.

The rates involved in this model are given in Table 5; each is measured in sec-
onds, so a rate of 1.0 would indicate that the action is expected to occur once every
second. There is one special parameter, phit-success which is a probability measure,
used to calculate the values for the rates rhit and rmiss.

Rolandidle
def= (attack, rattack).Roland2

Roland2
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Roland1

Roland1
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Rolandempty

Rolandempty
def= (reload, rreload).Roland2

Table 5. Parameter settings for the Roland2 model

parameter value explanation
rfire 1.0 Roland can fire the gun once per-second
phit-success 0.8 Roland has an 80% success rate
rhit 0.8 rfire × phit-success

rmiss 0.2 rfire × (1 − phit-success)
rreload 0.3 It takes Roland about 3 seconds to reload
rattack 0.01 Roland is attacked once every 100 seconds

Stochastic Process Algebras 155

Steady-State Analysis. This model can be used to calculate the probability that at
any time Roland is involved in a battle. Using steady state analysis this amounts
to calculating the probability that Roland is in any of the states in which a battle is
on-going, i.e. Roland2, Roland1 and Rolandempty . Alternatively one can calculate
the probability that Roland is in the single peaceful state Rolandidle and subtract
it from 1. This was done for the above model, for the parameter values shown in
Table 5, giving the result:

State Measure ’roland peaceful’ % 100 seconds

mean 9.5490716180e-01

This shows that there is more than a 95 percent chance that Roland is not cur-
rently involved in a gun battle. This is intuitively what we would expect since he
is attacked once every 100 seconds and will usually take around one second to fire
each bullet. Two bullets then cost him a further three seconds to reload, however
since his success rate is at 80 percent, he will often not need to reload.

Transient Analysis. Transient analysis could be used here to determine the proba-
bility that Roland will have killed some enemy within a given time, say two
minutes, of starting off on his travels.

Passage-Time Analysis. An example of a passage-time analysis for this model
would calculate the probability that at a given time after he is attacked, Roland
has killed his attacker. This would involve calculating the probability that the
model performs a hit action within the given time after performing an attack
action.

The graph on the left hand side of Figure 9 shows an example of this kind
of analysis. It shows the probability that Roland will successfully perform a hit
action a given time after an attack action. This also confirms our instincts con-
cerning the steady-state analysis. Since there is a 95 percent chance that Roland
is not involved in a gun battle, and one occurs about once every 100 seconds, then
we should expect gun battles to last for around five seconds. Looking at the graph
on the left hand side of Figure 9 we see that the probability that Roland has per-
formed a hit action five seconds after an attack action is quite high at just over 90
percent.

We can also measure, for example, the probability that Roland will miss after
having been attacked. This probability is somewhat low. One of the reasons is
that, if Roland hits the target with his first shot then in order to observe a miss
action in the model we will have to wait until Roland is attacked again. The graph
on the right hand side of Figure 9 shows the probability curve for the same time
period as the first graph. Because the attack rate is low, in this period of time
it is unlikely that Roland will be attacked for a second time. For this reason the
graph looks similar to the first graph, but translated down the probability axis.
The initial rise in probability corresponds, as in the first graph, to the probability
that Roland will fire his gun within that time.

156 A. Clark et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

P
r

time

Probability that Roland will have hit after an attack

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 1 2 3 4 5 6 7 8 9 10

P
r

time

Probability that Roland will have missed after an attack

Fig. 9. Probability of events occurring after an attack event

Cooperation. We now consider the model augmented to allow the enemies of
Roland to fight back. However, they are currently somewhat ineffective and always
miss Roland when they fire. (The next model will fix this.) This model can be used
to calculate properties such as the likelihood that an enemy will manage to fire one
shot before they are killed by Roland.

Table 6. Parameters for the enemies

parameter value explanation
rattack 0.01 Roland is attacked once every 100 seconds
re-miss 0.3 Enemies can fire only once every 3 seconds

Rolandidle
def= (attack, �).Roland2

Roland2
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Roland1

Roland1
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Rolandempty

Rolandempty
def= (reload, rreload).Roland2

Enemiesidle
def= (attack, rattack).Enemiesattack

Enemiesattack
def= (fire, re-miss).Enemiesattack + (hit, �).Enemiesidle

Roland2 ��
{hit}

Enemiesidle

Notice that in this model the behaviour of the enemy has been simplified. There is
no running out of bullets or reloading. This model can be thought of as an approxi-
mation to a more complicated component similar to the one which models Roland.
The rate at which the enemy fires encompasses all of the actions, including the
reloading of an empty gun. The analyses associated with this model are very sim-
ilar to those for the previous model. Steady-state analysis can be used to determine
the likelihood that Roland is currently in a peaceful state.

Stochastic Process Algebras 157

It is also sometimes useful to carry out a validation of the model by calculating
a metric which we believe we already know the value of. For example in this model
we could make such a sanity check by calculating the probability that the model
is in a state in which Roland is idle but the enemies are not, or vice versa. This
should never occur and hence the probability should be zero.

Transient analysis could again be used to calculate the expected time before
Roland is attacked or the expected time before Roland has made a kill.

Sensitivity Analysis. Due to the roles which activities play in creating the
dynamics of our stochastic process algebra model it may be that increasing the
rate of one activity increases the score obtained by the model on our chosen per-
formance measure of interest. Conversely, increasing the rate of another activity
may decrease the score which we get. Changing one rate a little may vary the score
a lot. Changing another rate a lot might only vary the score a little. The study of
how changes in performance depend on changes in parameter values in this way
is known as sensitivity analysis.

Sensitivity analysis is performed by solving the model many times while vary-
ing the rates slightly. For this model we chose to vary three of the rates involved
and measured for each combination of rates the passage-time probability that the
model performs a hit action after performing an attack action.

The results are shown in Figure 10. The first three graphs measure the sensi-
tivity of each of the three rates. The top left graph shows the effect that varying
the phit-success parameter has. The top right graph depicts the effect of varying the
rfire rate and finally the middle left graph shows the rreload rate.

From these graphs one can deduce that the strongest influence is from the
phit-success parameter. To see this, notice the greater curvature of the graph of
probability against time as the value of the phit-success parameter is increased. In
contrast, the top right and middle left graphs show little of the warping that is
seen in the first graph.

In the final three graphs we measure the effect that varying one rate has, on the
effect of another rate. In most models the effect which one rate has depends on the
values of the other rates. For example, in our model, clearly if both the rreload and
rfire rates are small then the effect of the phit-success is large since Roland pays
a large penalty whenever he misses. If, however, these two rates are large then
Roland pays less of a penalty for missing and hence the effect of increasing (or
decreasing) phit-success is diluted.

To keep such graphs comprehensible to humans we fix the time at which the
probability is measured. The first of these graphs on the middle right of Figure 10
measures the effect of varying rreload against phit-success. Similarly the bottom left
graph depicts varying rreload against rfire; and finally, the bottom left varies rfire
and phit-success. This final graph is interesting. On the far left it can be seen that
when the rfire is low, as we increase phit-success there is close to a linear increase in
the probability. However, when the rfire is high the graph of probability against
phit-success rises sharply and then becomes less steep. This is most likely because
when the rfire rate is high, the penalty for Roland reloading is also relatively high
in comparison and therefore the benefit of avoiding this is greater.

158 A. Clark et al.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0
 1 2 3 4 5 6 7 8 9 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

Sensitivity of cumulative distribution function to hitSuccess

hitSuccess

Time

Pr

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1 2 3 4 5 6 7 8 9 10
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Pr

Sensitivity of cumulative distribution function to fireRate

fireRate

Time

Pr

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0
 1 2 3 4 5 6 7 8 9 10

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Pr

Sensitivity of cumulative distribution function to reloadRate

reloadRate

Time

Pr

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

Sensitivity of the effect of reloadRate against hitSuccess

reloadRate

hitSuccess

Pr

 0.55
 0.6
 0.65
 0.7
 0.75
 0.8
 0.85

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1
0.55
 0.6
0.65
 0.7
0.75
 0.8
0.85

Pr

Sensitivity of the effect of reloadRate against fireRate

reloadRate

fireRate

Pr

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

Sensitivity of the effect of hitSuccess against fireRate

fireRate

hitSuccess

Pr

Fig. 10. Graphs of cumulative distribution function sensitivity to changes in rates for
the passage from attack to Roland killing the enemy

Accurate Enemies. We now allow the enemies of Roland to actually hit him.
This means that Roland may die. It is important to note that this has the conse-
quence that the model will always deadlock. The underlying Markov process is no
longer ergodic.

To maintain the simplicity of the model we assume that the enemies can only
hit Roland once every 50 seconds. Note that this rate approximates the rate of
a more detailed model in which we would assign a process to the enemies which
is much like that of the process which describes Roland. That is, it can fire and
miss, run out of bullets and reload etc. before finally hitting Roland. The only new
parameter is re-hit which is assigned a value 0.02 to reflect this assumption.

Stochastic Process Algebras 159

Rolandidle
def= (attack, �).Roland2

Roland2
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Roland1

+ (e-hit, �).Rolanddead

Roland1
def= (hit, rhit).(reload, rreload).Rolandidle + (miss, rmiss).Rolandempty

+ (e-hit, �).Rolanddead

Rolandempty
def= (reload, rreload).(reload, rreload).Roland2 + (e-hit, �).Rolanddead

Rolanddead
def= Stop

Enemiesidle
def= (attack, rattack).Enemiesattack

Enemiesattack
def= (e-hit, re-hit).Enemiesidle + (hit, �).Enemiesidle

Roland2 ��
{hit,attack,e-hit}

Enemiesidle

Steady-State Analysis. This model has the interesting property that the model
will always deadlock: because there is an infinite supply of enemies eventually
Roland will always die. This means that steady-state analysis would not be used
on such a model, although a possible use would be as a validation of the model,
as was done for the previous model.

Transient Analysis. Transient analysis on this model can be used to calculate the
expected time at which Roland will die, or rather the probability that Roland is
dead after a given amount of time. As the time increases this should tend towards
probability 1.

Passage-Time Analysis. As before, the passage-time analysis on this model would
be used to calculate the probability of a given event happening at a given time
after another given event. Here we might again choose the starting event to be an
attack on Roland, and the ending event could be either Roland dying or Roland
winning the gun fight.

More Cooperation. The cooperation so far has involved the synchronisation
between two processes on events that they have either caused directly or are
directly affected by. In this section cooperation is used to synchronise between
components of the model such that they observe events which they neither directly
cause nor are directly affected by. In this particular example an accomplice is
befriended by Roland from time to time and whenever an enemy attacks, Roland
and the accomplice fight together. Whenever either one of them kills the enemy
the other must observe this action, so as to stop firing at a dead opponent.

The component representing Roland is now modified to include actions, which
Roland does not participate in, such as his accomplice killing the enemy, but which
nevertheless alter Roland’s state and therefore must be witnessed.

160 A. Clark et al.

Table 7. Parameter values for the accomplice

parameter value explanation
rbefriend 0.001 Roland befriends a stranger once every 1000 seconds
ra-fire 1.0 the accomplice can also fire once per second
pa-hit-success 0.6 the accomplice has a 60 percent accuracy
ra-hit 0.6 rfire × phit-success

ra-miss 0.4 rfire × (1.0 − phit-success)
ra-reload 0.25 it takes the accomplice 4 seconds to reload

Rolandidle
def= (attack, �).Roland2 + (befriend, rbefriend).Rolandidle

Roland2
def= (hit, rhit).Rolandhit + (a-hit, �).Rolandidle + (miss, rmiss).Roland1

Roland1
def= (hit, rhit).Rolandhit + (a-hit, �).(reload, rreload).Rolandidle

+ (miss, rmiss).Rolandempty

Rolandhit
def= (enemy-die, �).(reload, rreload).Rolandidle

Rolandempty
def= (reload, rreload).Roland2 + (a-hit, �).(reload, rreload).Rolandidle

The attack is assumed to be a concerted effort between Roland and his accomplice
but we do not wish to leave Roland vulnerable when he has no accomplice. For this
reason the representation of the accomplice includes a state when the accomplice
is absent. In this state the accomplice component will passively participate in any
attack which Roland makes. The alternative would be that Roland was blocked
from attacking when he had no accomplice. Also note that, just as Roland wit-
nesses if the accomplice kills the enemy, the accomplice also witnesses if Roland
kills the enemy.

Accompliceabs
def= (befriend, rbefriend).Accompliceidle + (hit, �).Accompliceabs

+ (attack, �).Accompliceabs

Accompliceidle
def= (attack, �).Accomplice2

Accomplice2
def= (a-hit, ra-hit).Accomplicehit + (hit, �).Accompliceidle

+ (miss, rmiss).Accomplice1 + (enemy-hit, �).Accompliceabs

Accomplice1
def= (a-hit, ra-hit).Accomplicehit

+ (hit, �).(reload, ra-reload).Accompliceidle

+ (miss, rmiss).Accompliceempty + (enemy-hit, �).Accompliceabs

Accomplicehit
def= (enemy-die, �).(reload, ra-reload).Accompliceidle

Accompliceempty
def= (reload, ra-reload).Accomplice2 + (enemy-hit, �).Accompliceabs

+ (hit, �).(reload, ra-reload).Accompliceidle

Stochastic Process Algebras 161

The component representing the enemy is similar to before.

Enemiesidle
def= (attack, rattack).Enemiesattack

Enemiesattack
def= (enemy-hit, re-hit).Enemiesattack + (enemy-die, �).Enemiesidle

The system equation is as follows:

(Roland2 ��
{hit,a-hit,befriend}

Accompliceabs) ��
{attack,enemy-die,enemy-hit}

Enemiesidle

Steady-State Analysis. As before steady-state analysis can be used to determine
the probability that at any given time Roland is involved in a gun battle. Addition-
ally this can now be used to determine the likelihood that Roland is on his own or
has an accomplice. It is interesting to note the relations between the rates involved
in the model and the subsequent probabilities. Additionally the relations between
each of the steady-state proabilities. Since Roland cannot perform a befriending
action while currently involved in a confrontation with an enemy, the probabilty
that Roland is in such a battle clearly affects the probability that he is alone in
his quest. So for example if Roland’s success rate is reduced then gun battles will
take longer to resolve, hence Roland will be involved in a gun battle more often,
and therefore he will befriend fewer accomplices.

Transient Analysis. An additional transient analysis would be to determine the
expected time after Roland has set off before he meets his first accomplice.

Passage-Time Analysis. As with all the previous models the passage-time analy-
sis will measure the probability starting from an attack action. Possible actions
to stop the analysis at would be the event of the enemy’s death or that of the
accomplice. Since all gun battles now end in the enemy being killed stopping the
analysis there would give us the expected duration of any one gun battle. Stopping
the analysis with the death of the accomplice would also incorporate the chance
that the enemy is killed but a further enemy attacks and hits the accomplice. How-
ever, the extra probability of this is rather small because of the low-rate at which
Roland is attacked. Finally the passage-time analysis could be stopped on either
of the two hit events, this would give us the probability at a given time after an
attack event that either the accomplice or the enemy has been shot.

This model also presents a further possible starting action besides that of the
attack action, that is the befriend action. An interesting passage-time query would
be the probability that a given length of time after a befriend action has occurred
that a enemy-hit action occurs. This would give the modeller an estimate of the
duration of Roland’s friendships.

Hiding. There is a possible deficiency in the above model. What if the enemy
starts to perform a befriend action (or equally a hit or a-hit action)? This would
invalidate our model as it would model strange things happening, for example if
Roland would not be able to meet any new accomplices. Of course the problem
is not that the enemy might use this as an underhand tactic since it is the mod-
eller that is describing the enemy component. The problem is that the modeller

162 A. Clark et al.

is fallible and may make a mistake, especially if the enemy component becomes
more complex. One way to avoid this is to ‘hide’ those actions only Roland and
the accomplice should cooperate on.

To do this for our model we can simply change the system equation to read:

((Roland2 ��
L1

Accomplice)/L1) ��
L2

Enemiesidle

where L1 = {hit, a-hit, befriend} and L2 = {attack, enemy-die, enemy-hit}.

6.2 Web Service Composition

As example of a realistic case study, we consider an example of a business applica-
tion which is composed from a number of offered web services. Furthermore there
is an access control issue, as it must be ensured that the web service consumer
has the requisite authority to execute the web services it requests. A schematic
representation of the system is depicted in Fig. 11.

1

2

4

6

7

3

8

5

WS component
for SMS

Application
Logic

Session
Manager

Location request

WS SMS notification

MMS deliveryLocation result

Start Session

SMS

End Session

Check request validity

Web Service Consumer

Web Service Provider

Policy Access Provider

WS component
for MMS

WS component
for location

Fig. 11. Schematic representation of the web service composition

The scenario is as follows. Several web services are combined to define the busi-
ness logic of an application. For example, consider an application to find the near-
est restaurant for a user and show it on a map. This could involve web services for
SMS and MMS handling in addition to the User Location web service. Moreover, a
user should not be able to gain access to location information of an arbitary user.

Stochastic Process Algebras 163

This is where the access control aspect becomes important. Therefore, in addi-
tion to the requested web services, the web service provider may need to interact
with some authorisation component to check that the current user has the correct
authority to access the requested information. In adddition the service provider
may stipulate some further conditions, such as that only one location request may
be made per session:

1. The user activates a service by sending an SMS to a service centre number.
This is handled by an appropriate web service.

2. This initiates a start-session message to be sent to the Policy Access Provider.
3. A notification is sent to the application that an SMS has arrived.
4. The application requests the user’s location from a location web service.
5. The web service contacts the session managerwithin the policy access provider

to check the validity of the request.
6. If the validity check is OK the location web service will return the location to

the application which uses it to construct the appropriate map for the user.
7. This is then passed as an MMS to the MMS web service which delivers it to

the user.
8. The MMS web service terminates the session with the Session Manager.

We model such a system with the following PEPA model. It has three types of
model component, corresponding to the three large rectangles in Figure 11. Note
that although the Web Service Provider consists of three distinct elements, we
are interested in the session associated with each Web Service Consumer. Each
session is associated with an instance of the Web Service Provider. Thus, concur-
rency is introduced into the model by allowing multiple sessions rather than by
representing the constituent web services separately.

ComponentCustomer . The customer’s behaviour is simply modelled with two
local states. In the first state the customer sends a request to the system via the
getSMS action. She then waits for a response which triggers the getMap transi-
tion if it is successful. Therefore we associate the user-perceived system perfor-
mance with the throughput of this action, which can be calculated directly from
the steady-state probability distribution of the underlying Markov chain.

Customer def= (getSMS , r1).Customer1

Customer1
def= (getMap, �).Customer + (get404 , �).Customer

In this model sending either an error message get404 or the requested map occur
at the same rate r8 and MMS passing between web services is ten times as fast as
the communication with the user.

Component WSConsumer . The web service consumer, WSConsumer , fol-
lows a simple pattern of behaviour. Once it is notified that a session has been
started by the user (via SMS message), it initiates a request for the user’s current
location and waits for a response. If the request was valid, the location is returned
and used to compute the appropriate map for the user, which is then sent via an
MMS message, using the web service for this.

164 A. Clark et al.

WSConsumer def= (notify , �).WSConsumer2

WSConsumer2
def= (locReq , r4).WSConsumer3

WSConsumer3
def= (locRes , �).WSConsumer4

+ (locErr , �).WSConsumer

WSConsumer4
def= (compute, r7).WSConsumer5

WSConsumer5
def= (sendMMS , r9).WSConsumer

Component WSProvider . As explained above, although the Web Service
Provider can be viewed as consisting of three independent web services, the use of
sessions restricts a user’s access to these services to be sequential. We assume that
there is a distinct instance of the component WSProvider for each distinct session.
As each would be in a distinct thread it is reasonable for there to be concurrency at
this level. The activities of the component are as outlined in the scenario above.
Note that the checkValid action is represented twice, to capture the two possi-
ble distinct outcomes of the action. If the check is successful the location must be
returned to the Web Service Consumer in the form of a map (getMap). However,
if the check revealed an invalid request (locErr) then an error must be returned
to the Web Service Consumer (get404) and the session terminated (stopSession).

WSProvider def= (getSMS , �).WSProvider 2

WSProvider 2
def= (startSession, r2).WSProvider 3

WSProvider 3
def= (notify , r3).WSProvider 4

WSProvider 4
def= (locReq, �).WSProvider 5

WSProvider 5
def= (checkValid , 99 · �).WSProvider 6

+ (checkValid , �).WSProvider 10

WSProvider 6
def= (locRes , r6).WSProvider 7

WSProvider 7
def= (sendMMS , �).WSProvider 8

WSProvider 8
def= (getMap, r8).WSProvider 9

WSProvider 9
def= (stopSession , r2).WSProvider

WSProvider 10
def= (locErr , r6).WSProvider 11

WSProvider 11
def= (get404 , r8).WSProvider 9

Component PAProvider . In our model the Policy Access Provider has a very
simple behaviour. It simply maintains a thread for each session and carries out
the validity check on behalf of the Web Service Provider. This representation of
the PAProvider is stateful.

Stochastic Process Algebras 165

PAProvider def= (startSession, �).PAProvider 2

PAProvider 2
def= (checkValid , r5).PAProvider 3

PAProvider 3
def= (stopSession , �).PAProvider

An alternative design is to have a stateless implementation, as below.

PAProvider def= (startSession, �).PAProvider
+ (checkValid , r5).PAProvider
+ (stopSession , �).PAProvider

We will contrast these two versions in our model analysis.

Model Component WSComp. The complete system is represented by some
number of instances of the components interacting on their shared activities:

WSComp def=
(
(Customer [NC] ��

L1
WSProvider [NWSP])

��
L2

WSConsumer [NWSC]
)

��
L3

PAProvider [NPAP]

where the cooperation sets are

L1 = {getSMS , getMap, get404}
L2 = {notify , locReq, locRes , locErr , sendMMS}
L3 = {startSession, checkValid , stopSession}

and NC , NWSC , NWSP and NPAP are the number of instances of Customer ,
WSConsumer , WSProvider and PAProvider respectively.

6.3 Performance Analysis of the Web Service Composition Case
Study

In this section we carry out steady-state analysis on the Web Service Composition
case study in order to tune the parameters of the system. To accomplish this task
we use a modified version of the model in which the customer is explicitly modelled
as a component of the system. The values for each rate are shown in Table 8.

Suppose that we want to design the system in such a way that it can handle 30
independent customers. The modeller may have constraints on some parameters
such as the network delays because those are limited by the available technology.
However, there are a number of degrees of freedom which let her vary, for example,
the number of threads of control of the components of the system. The purpose is
to deliver a satisfactory service in a cost-effective way. The simplest example of a
cost function may be a linearly dependency on the number of copies of a compo-
nent or the rate at which an activity is performed.

The graph in Fig. 12 shows the throughput of the getMap action as the num-
ber of customers varies between 1 and 30. Each line represents a given number of

166 A. Clark et al.

Table 8. Parameters used in the performance analysis of the Web Service composition

parameter value explanation
r1 0.0010 rate at which customers request maps
r2 0.5 rate at which a session can be started
r3 0.1 notification exchange between consumer and provider
r4 0.1 rate at which requests for customer’s location can be satisfied
r5 0.05 rate at which the provider can check the validity of the incom-

ing request
r6 0.1 rate at which location information can be returned to the

consumer
r7 0.05 rate at which maps can be generated
r8 0.02 rate at which MMS messages can be sent from provider to

customer
r9 10.0 ∗ r8 rate at which MMS messages can be sent via the Web Service

copies of the WSProvider component in the system. When the total number of
customers is 30, two providers lead to a throughput which is twice as much as in
the base system configuration with one provider only. However, as the number of
provider increases the incremental benefit becomes less significant. In particular,
the system with four copies is just 8.7% faster than the system with three. In the
following we set to three the copies of WSProvider .

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t g

et
M

ap

Number of Customers

Number of WSProviders=1
Number of WSProviders=2
Number of WSProviders=3
Number of WSProviders=4

Fig. 12. Throughput of getMap for changes in the number of WSProvider and customers

In Fig. 13 is shown the effect that the rate at which the users initiate the request
(r1) has on the getMap throughput for different values of the copies of the
WSConsumer . Every line starts to plateau at approximately r1 = 0.010 following

Stochastic Process Algebras 167

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

T
hr

ou
gh

pu
t g

et
M

ap

Rate r1

Number of WSConsumers=1
Number of WSConsumers=2
Number of WSConsumers=3

Fig. 13. Throughput of getMap for changes in the number of WSConsumer and r1

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

T
hr

ou
gh

pu
t g

et
M

ap

Rate r5

Number of PAProviders=1
Number of PAProviders=2
Number of PAProviders=3

Fig. 14. Throughput of getMap for changes in the number of PAProvider and r5

an initial sharp increase. This suggests that the system can guarantee satisfactory
behaviour under the constraint that the users’ request rate is below that thresh-
old. In addition, the graph gives the modeller insights into the optimal number
of operating threads of control of WSConsumer , which we believe is two as the
additional third copy is not well matched by performance boost. Hence, in order
to tune PAProvider—the remaining system component—we set WSConsumer to
that value.

168 A. Clark et al.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

T
hr

ou
gh

pu
t g

et
M

ap

Rate r5

Number of PAProviders=1
Number of PAProviders=2
Number of PAProviders=3

Fig. 15. Throughput of getMap for changes in the number of stateful PAProvider and
r5

The same approach can be applied to the optimisation of the number of copies
of PAProvider . Here we are particularly interested in the overall impact of the
rate at which the validity check is performed. Slower rates may mean more com-
putationally expensive validation, whereas faster rates may involve less accuracy
and lower security of the system. Such effects are measured in Fig. 14 where the
getMap throughput is plotted against r5 for different PAProvider pool sizes. A
sharp increase followed by a constant levelling off suggests that optimal rate values
lie on the left of the plateau, as faster rates do not improve the system considerably.
As for the optimal number of copies of PAProvider , deploying two copies rather
than one dramatically increases the quality of service of the overall system. With
a similar approach as previously discussed, the modeller may want to consider the
trade-off between the cost of adding a third copy and the throughput increase.

Evaluation of an alternative design of PAProvider . We conclude this sec-
tion by showing how this model can be used to evaluate alternative designs of parts
of the system. Here, we focus on PAProvider which has been originally modelled
as a stateless component. Any of its services can be called at any point, the correct-
ness of the system being guaranteed by implementation-specific constraints such
as session identifiers being uniquely assigned to the clients and passed as parame-
ters of the method calls.

Another design of a component which offers the same functionalities is that of
a stateful provider. In PEPA such a service can be modelled as a sequential com-
ponent with three local states (see above). This implementation has the conse-
quence that there can never be at any point in time more than NWSP WSProvider
which have started a session with a PAProvider . This is because the provider has
to release a previous session in order to start another one.

Stochastic Process Algebras 169

The graph in Fig. 15 measures the same metrics as in Fig. 14 when the stateful
provider is employed. It shows that the incremental gain in adding more copies
has become more noteworthy. However, the modeller may want to prefer the orig-
inal version, as three copies of the stateful provider deliver about as much as the
throughput of only one copy of the stateless implementation.

7 Advanced Topics

Like all state based modelling techniques, stochastic process algebra models are
subject to the problem of state space explosion — the generated models may be
intractable because of their size. A variety of techniques have been proposed for
tackling this problem in the context of stochastic process algebra. Below we briefly
discuss two of them:

– model reduction and model simplification via equivalence relations;
– fluid approximation of the state space.

7.1 Equivalence Relations and Model Manipulation

The state space explosion problem arises because although the compositionality
of SPA can greatly aid model construction, in general the compositionality does
not assist in the model solution and the resulting models may be too large to solve.
This has led to research into how model simplification and aggregation techniques
can be applied in the process algebra setting. Many such techniques are known in
the context of Markov processes but are based on conditions phrased in terms
of the process or its generator matrix. Moreover application of these techniques
often relies on the expertise of the modeller. The challenge for SPA has been to
define such model manipulation techniques in the context of the process algebra,
in such a way that it can subsequently be applied automatically. Some significant
results have been achieved in this area through the use of equivalence relations
which provide the basis for comparing and manipulating models within a formal
framework. Furthermore the compositionality of the process algebra allows these
techniques to be applied to part of the model whilst maintaining the integrity of
the model as a whole.

There have been two principal approaches to model manipulation in SPA:

model simplification: Here an equivalence relation is used in order to establish
behavioural or observational equivalence between models. The aim is to replace
one model by an equivalent one which is more desirable from a solution point
of view. Once the desirable model has replaced the original, the underlying
Markov process is generated as usual, associating one state with each node in
the labelled transition system generated by the semantics. Equivalence rela-
tions which have been used in this way are weak isomorphism in PEPA [29,69],
Markovian bisimulation and weak bisimulation in TIPP [70].

model aggregation: Here an equivalence relation is used in order to establish
behavioural or observational equivalence between states within a model. The

170 A. Clark et al.

aim is to use an alternative mapping from the labelled transition system, given
by the semantics of the model, to the underlying Markov process. The equiv-
alence relation is used to partition the nodes of the labelled transition system
into equivalence classes. Then, instead of the usual one-to-one correspondence
between nodes and states, one state in the underlying Markov process is asso-
ciated with each equivalence class of nodes. The hope is that this will generate
a Markov process with a smaller number of states. The equivalence relation
which has been used in this way is variously called strong equivalence (PEPA)
[29], Markovian bisimulation (TIPP) [71], and extended Markovian bisimula-
tion equivalence (EMPA) [27].

Equivalence relations and model manipulations will be discussed in more detail in
another chapter within this volume [72].

The basis of aggregation is the observation that it can be sufficient to con-
sider the behaviour of one element within an equivalence class of elements who
all behave in the same way. The simplest way in which such equivalence classes
arise is if we have repeated instances of identical components within the model. For
this case, for PEPA models we have developed an automatic method which gener-
ates the CTMC corresponding the equivalence classes, rather than the individual
states, on-the-fly [47]. This relies on a canonical representation of states within
the model which makes it clear syntactically when they are equivalent, while also
keeping track of how many instances there are in each such equivalence class.

Since the static cooperation combinators remain unchanged in all states of a
model, it is often convenient to represent the states in vector form. The state vec-
tor records one entry for each sequential component of the PEPA model. These
components will be present in each derivative of the model, although they will
change their local state or derivative. Thus the global state can be represented as
a vector or sequence of local derivatives.

If a model contains equivalent components there may be multiple states within
the model which exhibit the same behaviour and so we may aggregate the model.
The derivation graph is then constructed in terms of equivalence classes of syntac-
tic terms and this is used as the basis of the CTMC construction [47]. Canonicalisa-
tion involves reordering entries within the vector in a way that strong equivalence,
the Markovian bisimulation of PEPA models, is respected, but which places ele-
ments within subvectors of equivalent components in lexicographical order. Fur-
ther details can be found in [47].

7.2 Continuous State Space Approximation

Even with the use of aggregation some model still remain too large to be read-
ily analysed using Markovian techniques. Recent work has considered a radically
different approach to tackling the state space explosion problem when modelling
with a process algebra such as PEPA [73]. The approach is based on two shifts
from the usual perspective:

– Firstly, we do not aim to calculate the probability distribution over the entire
state space of the model. We choose a more abstract state representation in

Stochastic Process Algebras 171

terms of state variables, quantifying the types of behaviour evident in the
model.

– Secondly, we assume that these state variables are subject to continuous
rather than discrete change.

Once these adjustments are made the system is amenable to efficient solution as
a set of ordinary differential equations (ODEs), leading to the evaluation of tran-
sient, and in the limit, steady state measures.

State representation. As we have seen the usual state representation is in terms
of the syntactic forms of the model expression, or when aggregation is applied, in
terms of a canonical representation of an equivalence class of states.

The work on continuous approximation proposes an alternative vector form for
capturing the state information of models with repeated components. In the state
vector form, even when the canonical representation is used there is one entry
in the vector for each sequential component in the model. When the number of
repeated components becomes large this can be prohibitively expensive in terms
of storage. In the alternative vector form there is one entry for each local derivative
of each type of component in the model. Two components have the same type
if their derivation graphs are isomorphic. The entries in the vector are no longer
syntactic terms representing the local derivative of the sequential component, but
the number of components currently exhibiting this local derivative.

To clarify the distinction between the two vector forms consider the small exam-
ple defined below, consisting of interacting processors and resources:

Processor0
def= (task1, r1).Processor1

Processor1
def= (task2, r2).Processor0

Resource0
def= (task1, r1).Resource1

Resource1
def= (reset, s).Resource0

(Resource0 ‖ Resource0) ��
{task1}

(Processor0 ‖ Processor0)

The canonical state vector form corresponding to this example with the given
configuration is shown in Figure 16a). Here the initial state is represented explic-
itly as ((Resource0,Resource0), (Processor0,Processor0)){task1}. In contrast, in
the numerical vector form, shown in Figure 16b), the initial state is (2, 0, 2, 0)
where the entries in the vector are counting the number of Resource0, Resource1,
Processor0, Processor1 local derivatives respectively, exhibited in the current state.
In the canonical state vector representation we record the number of elements in
each equivalence class (shown in square brackets in Figure 16a). The total rate
of the transitions between the canonical states is derived from this number of
instances, the number of enabled activities and their relative probabilities. In the
numerical state vector representation each vector is a single state and the rates of
the transitions between states are derived directly from the vector and the activity
rate, as explained below.

172 A. Clark et al.

(task2, r)
2 (reset, s)

(task2, 2r)
2

(task2, r)
2

(task1, r)1(task2, r)
2

(task1, r)1(task2, 2r)2

(task1, 2r)1

(task2, 2r)
2

(task1, r)1

a) Aggregated state space in canonical form

((Resource , Resource), (Processor , Processor))

((Resource , Resource), (Processor , Processor))

((Resource , Resource), (Processor , Processor))

((Resource , Resource), (Processor , Processor)) ((Resource , Resource), (Processor , Processor))

((Resource , Resource), (Processor , Processor))((Resource , Resource), (Processor , Processor))

(reset, 2s)

((Resource , Resource), (Processor , Processor))((Resource , Resource), (Processor , Processor))

0 0 0 0

0 0

0 0 0 0 0

0 0

0

1

1 1

11 1 1

1 1 1 1 1 0

1 1

1

1 1 0

1 0

0

[1]

[2]

[4]

[1]

[2]

[1]

[2]

[2]

[1]

(reset, 2s)

(reset, 2s)(reset, s)

(reset, s)

(task2, r)
2

(task2, 2r)2

2(task2, 2r)

b) Vector state space

(2, 0, 0, 2) (1, 1, 1, 1)

(0, 2, 0, 2)

(2, 0, 2, 0)

(2, 0, 1, 1)

(1, 1, 0, 2) (0, 2, 1, 1)

(1, 1, 2, 0)

(0, 2, 2, 0)

(reset, s)

(task2, 2r)
(task1, r)

(task1, 2r)

(task1, r)

(task1, r)

(reset, s)(task2, r)

(reset, s) (task2, r)

(reset, 2s)

(reset, 2s)

(reset, 2s)

1

1

1
12

2

2

Fig. 16. Illustrative example of contrasting state representations

In the current configuration of the model, with two instances of each component
type, it is clear that the state vector form and the numerical vector form each
have four elements, but if we consider a configuration with ten instances of each
component type it becomes clear that the numerical form is much more compact.

The numerical vector form for an arbitrary PEPA model is defined as follows.

Definition 1 (Numerical Vector Form). For an arbitrary PEPA model M
with n component types Ci, i = 1, . . . , n, each with Ni distinct derivatives, the
numerical vector form of M, V(M), is a vector with N =

∑n
i=1 Ni entries. The

entry vij records how many instances of the jth local derivative of component type
Ci are exhibited in the current state.

If there is a large number of instances of each component type the domain of values
of each entry in V(M) is large. If Ki is the number of components of type Ci in the
initial configuration of the model then each entry in the ith subvector will have
domain 0, . . . , Ki.

The system is inherently discrete with the entries within the numerical vector
form always being non-negative integers and always being incremented or decre-
mented in steps of one. When the numbers of components are large these steps

Stochastic Process Algebras 173

are relatively small and we can approximate the behaviour by considering the
movement between states to be continuous, rather than occurring in discontin-
uous jumps. In this case we can replace the discrete event system represented by
the derivation graph of a PEPA process by a continuous model, represented by a
set of coupled ordinary differential equations. The numerical vector form of state
representation is an intermediate step to achieving that. Considering these states
of the process and the activities which are enabled, and the states they lead to, we
are able to construct an activity matrix which records the impact of each activity
type on the number of each component type. From this the appropriate system of
ODEs is derived (see [73] for details).

Small example revisited. Let us consider again the small example considered
earlier, assuming now that there are large numbers of processors and resources:

Processor0
def= (task1, r1).Processor1

Processor1
def= (task2, r2).Processor0

Resource0
def= (task1, r1).Resource1

Resource1
def= (reset, s).Resource0

(Resource0 ‖ · · · ‖ Resource0) ��
{task1}

(Processor0 ‖ · · · ‖ Processor0)

Let n1 denote the number of Processor0 entities, n2 the number of Processor1
entities, n3 the number of Res0 entities and n4 the number of Resource1 entities.
The activity matrix corresponding the component definitions is shown in Fig. 17.

task1 task2 reset
Processor0 −1 +1 0 n1

Processor1 +1 −1 0 n2

Resource0 −1 0 +1 n3

Resource1 +1 0 −1 n4

Fig. 17. Activity matrix for the simple Processor-Resource model

From the matrix, we derive each differential equation in turn. For state variable
ni, consider row i. Each non-zero entry in the row will results in one term within
the equation.

dn1(t)
dt

= −r1 min(n1(t), n3(t)) + r2n2(t)

dn2(t)
dt

= r1 min(n1(t), n3(t)) − r2n2(t)

dn3(t)
dt

= −r1 min(n1(t), n3(t)) + sn4(t)

dn4(t)
dt

= r1 min(n1(t), n3(t)) − sn4(t)

174 A. Clark et al.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100

Processor0
Processor1
Resource0
Resource1

Fig. 18. Graph showing the changing numbers of copies of Processor0, Processor1,
Resource0 and Resource1 as a function of time, obtained by numerically integrating the
differential equations for this system. The values of the rates were r1 = 0.125, r2 = 0.003
and s = 0.1.

Note that the form of the system of equations is independent of the number of
components included in the initial configuration of the model. The only impact of
changing the number of instances of each component type is to alter the initial con-
ditions. Thus, if there are initially 1024 processors, all starting in state Processor0
and 512 resources, all of which start in state Resource0, the initial conditions will
be:

n1(0) = 1024 n2(0) = 0 n3(0) = 512 n4(0) = 0

Numerically integrating the differential equations for this system to generate a
time series plot for the first 100 seconds of the system evolution starting from the
above initial value problem produces the graph shown in Fig. 18.

8 Conclusions and Summary

In this tutorial we have described an algebraic description technique, based on a
classical process algebra, and enhanced with timing information. This extension
results in models which may be used to calculate performance measures as well as
deduce functional properties of the system. Several interesting analysis techniques
of SPA models including steady state, transient and response time analysis of the
underlying CTMC have been discussed, together with an introduction to the tools
which support these analysis techniques. We have demonstrated the approach on
a number of small models as well as a more realistic example of a service-oriented
architecture. Finally we outlined some more advanced topics related to SPA and
highlighted some on-going work.

Stochastic Process Algebras 175

Acknowledgements

This work has been supported by the project EU FET-IST Global Computing 2
project SENSORIA (”Software Engineering for Service-Oriented Overlay Com-
puters” (IST-3-016004-IP-09)). Jane Hillston is also supported by EPSRC
Advanced Research Fellowship EP/c543696/01.

References

1. Herzog, U.: Formal description, time and performance analysis: A framework.
Technical Report 15/90, IMMD VII, Friedrich-Alexander-Universität, Erlangen-
Nürnberg, Germany (September 1990)

2. Holton, D.: A PEPA specification of an industrial production cell. In Gilmore,
S., Hillston, J., eds.: Proceedings of the Third International Workshop on Process
Algebras and Performance Modelling, Special Issue of The Computer Journal, 38(7)
(December 1995) 542–551

3. Gilmore, S., Hillston, J., Holton, D., Rettelbach, M.: Specifications in Stochastic
Process Algebra for a Robot Control Problem. International Journal of Production
Research 34(4) (1996) 1065–1080

4. Thomas, N., Hillston, J.: Using Markovian process algebra to specify interactions
in queueing systems. Technical Report ECS-LFCS-97-373, Laboratory for Foun-
dations of Computer Science, Department of Computer Science, The University of
Edinburgh (1997)

5. Bowman, H., Bryans, J., Derrick, J.: Analysis of a multimedia stream using stochas-
tic process algebra. In Priami, C., ed.: Sixth International Workshop on Process
Algebras and Performance Modelling, Nice (September 1998) 51–69

6. Console, L., Picardi, C., Ribaudo, M.: Diagnosis and Diagnosability Analysis using
PEPA. In: Proc. of 14th European Conference on Artificial Intelligence, Berlin
(August 2000) A longer version appeared in the Proc. of 11th Int. Workshop on
Principles of Diagnosis (DX00), Morelia, Mexico, June 2000.

7. Hillston, J., Kloul, L.: Performance investigation of an on-line auction system. Con-
currency and Computation: Practice and Experience 13 (2001) 23–41

8. Forneau, J., Kloul, L., Valois, F.: Performance modelling of hierarchical cellular
networks using PEPA. Performance Evaluation 50(2–3) (November 2002) 83–99

9. Brodo, L., Degano, P., Gilmore, S., Hillston, J., Priami, C.: Performance evalu-
ation for global computation. In Priami, C., ed.: Global Computing: Program-
ming environments, languages, security, and analysis of systems. Proceedings of the
IST/FET International Workshop (GC 2003). Volume 2874 of LNCS., Rovereto,
Italy, Springer-Verlag (February 2003) 229–253

10. Buchholtz, M., Gilmore, S., Hillston, J., Nielson, F.: Securing statically-verified
communications protocols against timing attacks. Electr. Notes Theor. Comput.
Sci. 128(4) (2005) 123–143

11. Hillston, J., la Kloul, L., Mokhtari, A.: Towards a feasible active networking sce-
nario. Telecommunication Systems 27(2–4) (October 2004) 413–438

12. Fourneau, J.M., Kloul, L.: A precedence PEPA model for performance and reliabil-
ity analysis. In Horváth, A., Telek, M., eds.: Formal Methods and Stochastic Models
for Performance Evaluation: Third European Performance Engineering Workshop
(EPEW 2006). Number 4054 in LNCS, Springer-Verlag (June 2006) 1–15

176 A. Clark et al.

13. Duguid, A.: Coping with the parallelism of BitTorrent: Conversion of PEPA to
ODEs in dealing with state space explosion. In Asarin, E., Bouyer, P., eds.: For-
mal Modeling and Analysis of Timed Systems, 4th International Conference, FOR-
MATS 2006, Paris, France, September 25-27, 2006, Proceedings. Volume 4202 of
Lecture Notes in Computer Science., Springer (2006) 156–170

14. Gilmore, S., Tribastone, M.: Evaluating the scalability of a web service-based dis-
tributed e-learning and course management system. In Mario Bravetti, M.T.N.n.,
Zavattaro, G., eds.: Third International Workshop on Web Services and Formal
Methods (WS-FM’06). Volume 4184 of Lecture Notes in Computer Science., Vienna,
Austria, Springer (2006) 156–170

15. Razafindralambo, T., Valois, F.: Performance evaluation of backoff algorithms in
802.11 ad-hoc networks. In: PE-WASUN ’06: Proceedings of the 3rd ACM interna-
tional workshop on Performance evaluation of wireless ad hoc, sensor and ubiquitous
networks, New York, NY, USA, ACM Press (2006) 82–89

16. Razafindralambo, T., Valois, F.: Stochastic behavior study of backoff algorithms in
case of hidden terminals. In: Proceedings of the 17th Annual IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06),
IEEE Press (2006) 1–6

17. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
18. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
19. Nicollin, X., Sifakis, J.: An Overview and Synthesis on Timed Process Algebras. In:

Real-Time: Theory in Practice. Springer LNCS 600 (1991) 526–548
20. Moller, F., Tofts, C.: A Temporal Calculus for Communicating Systems. In Baeten,

J., Klop, J., eds.: CONCUR’90. Volume 458 of LNCS., Springer-Verlag (August
1989) 401–415

21. Jou, C.C., Smolka, S.: Equivalences, Congruences and Complete Axiomatizations
of Probabilistic Processes. In Baeten, J., Klop, J., eds.: CONCUR’90. Volume 458
of LNCS. Springer-Verlag (August 1990) 367–383

22. Edinburgh Concurrency Workbench.
http://homepages.inf.ed.ac.uk/perdita/cwb/

23. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In
de Bakker, J.W., van Leeuwen, J., eds.: Proceedings 7th ICALP, Noordwijkerhout.
Volume 85 of Lecture Notes in Computer Science., Springer-Verlag (July 1980) 299–
309

24. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Science
27(3) (1983) 333–354

25. Götz, N., Herzog, U., Rettelbach, M.: TIPP—a language for timed processes and
performance evaluation. Technical Report 4/92, IMMD7, University of Erlangen-
Nürnberg, Germany (November 1992)

26. Bernardo, M., Gorrieri, R., Donatiello, L.: MPA: A Stochastic Process Algebra.
Technical Report UBLCS-94-10, Laboratory of Computer Science, University of
Bologna (May 1994)

27. Bernardo, M., Gorrieri, R.: A Tutorial on EMPA: A Theory of Concurrent Processes
with Nondeterminism, Priorities, Probabilities and Time. Theoretical Computer
Science to appear (1998)

28. Hillston, J.: PEPA - Performance Enhanced Process Algebra. Technical report,
Dept. of Computer Science, University of Edinburgh (March 1993)

29. Hillston, J.: A Compositional Approach to Performance Modelling. PhD thesis,
Department of Computer Science, University of Edinburgh (April 1994) CST-107-
94.

http://homepages.inf.ed.ac.uk/perdita/cwb/

Stochastic Process Algebras 177

30. Strulo, B.: Process Algebra for Discrete Event Simulation. PhD thesis, Imperial
College (1993)

31. Priami, C.: Stochastic π-Calculus. The Computer Journal 38(6) (1995)
32. Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Quality. Vol-

ume 2428 of LNCS. Springer (2002)
33. D’Argenio, P., Hermanns, H., Katoen, J.P., Klaren, R.: MoDeST: A modelling lan-

guage for stochastic timed systems. In: Process Algebra and Probabilistic Methods,
Springer-Verlang LNCS 2165 (2001) 87–104

34. Bravetti, M., Gorrieri, R.: The theory of Interactive Generalized Semi-Markov
Processes. Theoretical Computer Science 282(1) (June 2002) 5–32

35. Bravetti, M., Bernardo, M., Gorrieri, R.: From EMPA to GSMPA: Allowing for
general distributions. In Brinksma, E., Nymeyer, A., eds.: Proc. of the 5th Int.
Workshop on Process Algebras and Performance Modeling (PAPM ’97). (1997) 17–
33

36. Rettelbach, M.: Probabilistic Branching in Markovian Process Algebras. The Com-
puter Journal 38(6) (1995) Special Issue: Proc. of 3rd Process Algebra and Perfor-
mance Modelling Workshop.

37. Hermanns, H., Rettelbach, M., Weiß, T.: Formal Characterisation of Immediate
Actions in SPA with Nondeterministic Branching. The Computer Journal 38(6)
(1995) Special Issue: Proc. of 3rd Workshop on Process Algebras and Performance
Modelling.

38. Hillston, J.: The nature of synchronisation. In Herzog, U., Rettelbach, M., eds.:
Proceedings of the Second International Workshop on Process Algebras and Per-
formance Modelling, Erlangen (November 1994) 51–70

39. Ribaudo, M.: Understanding Stochastic Process Algebras via their Stochastic Petri
Net Semantics. In Herzog, U., Rettelbach, M., eds.: Proc. of 2nd Process Algebra
and Performance Modelling Workshop. (1994)

40. Bradley, J.: Towards Reliable Modelling with Stochastic Process Algebras. PhD
thesis, Department of Computer Science, University of Bristol (1999)

41. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

42. Clark, G., Gilmore, S., Hillston, J., Ribaudo, M.: Exploiting modal logic to express
performance measures. In Haverkort, B., Bohnenkamp, H., Smith, C., eds.: Com-
puter Performance Evaluation: Modelling Techniques and Tools, Proceedings of the
11th International Conference. Number 1786 in LNCS, Schaumburg, Illinois, USA,
Springer-Verlag (March 2000) 211–227

43. Dempster, E.W., Tomov, N.T., Lü, J., Pua, C.S., Williams, M.H., Burger, A., Tay-
lor, H., Broughton, P.: Verifying a performance estimator for parallel DBMSs. In:
Proceedings of EuroPar (EuroPar’98). (September 1998)

44. Bouzeghoub, M., Kloul, L., Mokhtari, A.: A new active network framework based
on active rules. Technical Report 2002/21, PRiSM, Université de Versailles (2002)

45. Hillston, J., Kloul, L., Mokhtari, A.: Active nodes performance analysis using
PEPA. [74] 244–256

46. Hillston, J., Kloul, L., Mokhtari, A.: Towards a feasible active networking scenario.
Telecommunication Systems 27(2–4) (2004) 413–438

47. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA
models. IEEE Transactions on Software Engineering 27(5) (May 2001) 449–464

48. Console, L., Picardi, C., Ribaudo, M.: Diagnosis and Diagnosability Analysis using
Process Algebras. In: Proc. of 11th Int. Workshop on Principles of Diagnosis
(DX00), Morelia, Mexico (June 2000)

178 A. Clark et al.

49. Eclipse.org home. http://www.eclipse.org
50. Eclipse Modeling Framework. http://www.eclipse.org/home
51. Matrix Toolkit for Java. http://rs.cipr.uib.no/mtj/
52. Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Derivation of passage-time

densities in PEPA models using IPC: The Imperial PEPA Compiler. In Kotsis, G.,
ed.: Proceedings of the 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems, University
of Central Florida, IEEE Computer Society Press (October 2003) 344–351

53. Knottenbelt, W.: Generalised Markovian analysis of timed transition systems. Mas-
ter’s thesis, University of Cape Town (1996)

54. Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Extracting passage times
from PEPA models with the HYDRA tool: A case study. [74] 79–90

55. Argent-Katwala, A., Bradley, J., Dingle, N.: Expressing performance requirements
using regular expressions to specify stochastic probes over process algebra models.
In: Proceedings of the Fourth International Workshop on Software and Performance,
Redwood Shores, California, USA, ACM Press (January 2004) 49–58

56. PRISM. http://www.cs.bham.ac.uk/∼dxp/prism/index.php
57. Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi-terminal binary decision dia-

grams to represent and analys e continuous time markov chains. In: Proc. of 3rd
Intl. Workshop on the Numerical Solution of Mark ov Chains. (1999) 188–207

58. Gilmore, S., Kloul, L.: A unified tool for performance modelling and prediction. In
S. Anderson, B.L., Felici, M., eds.: Proceedings of the 22nd International Conference
on Computer Safety, Reliability and Security (SAFECOMP 2003). Volume 2788 of
LNCS., Springer-Verlag (2003) 179–192

59. Gilmore, S., Hillston, J., Kloul, L., Ribaudo, M.: Software performance modelling
using PEPA nets. In: Proceedings of the Fourth International Workshop on Software
and Performance, Redwood Shores, California, USA, ACM Press (January 2004)
13–24

60. Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J.M., Sanders,
W.H., Webster, P.: The Möbius modeling tool. In: Proc. of 9th Int. Workshop on
Petri Nets and Performance Models, Aachen, Germany (September 2001) 241–250

61. Clark, G., Sanders, W.: Implementing a stochastic process algebra within the
Möbius modeling framework. In de Alfaro, L., Gilmore, S., eds.: Proceedings of the
first joint PAPM-PROBMIV Workshop. Volume 2165 of Lecture Notes in Computer
Science., Aachen, Germany, Springer-Verlag (September 2001) 200–215

62. : TwoTowers 5.1. http://www.sti.uniurb.it/bernardo/twotowers/
63. Hermanns, H., Mertsiotakis, V.: A Stochastic Process Algebra Based Modelling

Tool. In: Proc. of the 11th UK Performance Engineering Workshop for Computer
and Telecommunication Systems, Springer (1995)

64. Hermanns, H., Herzog, U., Klehmet, U., Mertsiotakis, V., Siegle, M.: Compositional
performance modelling with the TIPPtool. In: Proc. of 10th International Confer-
ence on Modelling Techniques and Tools for Computer Performance Evaluation.
Volume 1469 of LNCS., Palma de Mallorca, Springer-Verlag (1998)

65. Cleaveland, W., Sims, S.: The NCSU Concurrency Workbench. In: Proc. of Int.
Conf. on Computer Aided Verification (CAV’96). Volume 1102 of LNCS., Springer-
Verlag (1996) 394–397

66. Stewart, W.: Introduction to the Numerical Solution of Markov Chains. Princeton
University Press (1994)

http://www.eclipse.org
http://www.eclipse.org/home
http://rs.cipr.uib.no/mtj/
http://www.cs.bham.ac.uk/~dxp/prism/index.php
http://www.sti.uniurb.it/bernardo/twotowers/

Stochastic Process Algebras 179

67. Bohnenkamp, H., Courtney, T., Daly, D., Derisavi, S., Hermanns, H., Katoen, J.P.,
Klaren, R., Lamb, V., Sanders, W.: On integrating the Möbius and Modest mod-
eling tools. In: Proceedings of the 2003 International Conference on Dependable
Systems and Networks (DSN’03), IEEE Computer Society Press (2003)

68. Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. Technical Report
RT-254, INRIA (2001)

69. Clark, G.: An Extended Weak Isomorphism for Model Simplification. In Brinksma,
E., Nymeyer, A., eds.: Proc. of 5th Process Algebra and Performance Modelling
Workshop. (1997)

70. Mertsiotakis, V.: Approximate Analysis Methods for Stochastic Process Algebras.
PhD thesis, Universität Erlangen–Nürnberg, Martensstraße 3, 91058 Erlangen (Sep-
tember 1998)

71. Hermanns, H., Rettelbach, M.: Syntax, Semantics, Equivalences and Axioms for
MTIPP. In Herzog, U., Rettelbach, M., eds.: Proc. of 2nd Process Algebra and
Performance Modelling Workshop. (1994)

72. Bernardo, M.: Behavioural equivalences and model manipulations. In Bernardo,
M., Hillston, J., eds.: Formal Methods for Performance Evaluation. LNCS. Springer
(2007)

73. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the
Second International Conference on the Quantitative Evaluation of Systems, Torino,
Italy, IEEE Computer Society Press (September 2005) 33–43

74. Jarvis, S., ed.: Proceedings of the Ninteenth UK Performance Engineering Work-
shop, University of Warwick (July 2003)

	Introduction
	Classical Process Algebras
	Stochastic Process Algebra: PEPA
	Designing the Language

	Model Analysis
	Case Studies

	Tool Support
	PEPA Tools
	Related Work

	Case Studies
	Roland the Gunslinger
	Web Service Composition
	Performance Analysis of the Web Service Composition Case Study

	Advanced Topics
	Equivalence Relations and Model Manipulation
	Continuous State Space Approximation

	Conclusions and Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

