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Abstract 

The aim of any modelling exercise is to develop a better understanding of 
the system that is being studied, however it is unfortunately not always easy 
to understand abstract performance models or the metrics that are derived 
from them.  In this tutorial paper we focus on the facilitation of more reliable 
performance prediction through better understanding of models and 
solutions in the context of a stochastic process algebra. As well as being 
confident that the model is accurate, the designer must also have confidence 
in the measures derived.  Partly this is a matter of ensuring that the correct 
measures are derived, but also that those measures are sufficiently bounded 
to be applicable.   

 
 
1. Introduction 
 
Increasingly, practitioners in mainstream software engineering are recognising the need for 
qualitative predictions of the services that their software systems provide.  This is especially 
evident in the growing fields of WWW based applications and component based systems 
where there is a large amount of interaction between system elements and non-functional 
information, such as timing, which is crucial to usability.  Traditional, post-development, 
code-based metrics are no longer adequate indicators of a products ability to maintain a 
market position and a wide range of analysis techniques typically need to be applied.  
Performance modelling provides one such class of evaluation techniques.  At the same time it 
is recognised that future software development must not lead to large, inflexible, legacy type 
systems.  A far greater emphasis has therefore been put on understanding the structure of 
existing complex software systems, applications in development and the impact of changes.  
A valuable set of visualisation techniques has been developed over recent years to support 
comprehension of such systems [31,32,45,46]. 
 
Because of the properties of compositionality, parsimony and expressiveness, the possibility 
of including domain information and the ability to automatically derive performance 
measures, stochastic process algebra (SPA), such as PEPA [23], are an extremely good 
modelling paradigm for a wide variety of different domains.  In addition, it has been 
successfully demonstrated that performance models can be automatically derived from design 
specifications in the Unified Modelling Language (UML) [28,29,30,33,35,37,38] and that 
SPA models can be related directly to code [18,39].  These developments have enabled 
performance models, and in particular SPA models, to be studied by software engineers with 
little or no experience of stochastic modelling. 
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Figure 1.1: A typical performance modelling cycle 
 
Figure 1.1 shows a typical modelling cycle.  The process starts with an elementary design, or 
system specification, which is then used to specify a performance model of the system.  To 
facilitate easier solution, or in order to include additional features such as reward structures 
the model may be manipulated into an alternative form, which is then solved to derive 
performance measures.  Since measures are insufficient in themselves to fully analyse the 
system, they must be applied, or interpreted, to facilitate the evaluation of the design and 
development of improvements.  Clearly, it is vital that the designer has confidence in the 
measures that are derived in order that any changes made to the design are valid.  Measures 
taken from the model must therefore be related to properties of the system rather than the 
model and must be accurate and predictable.  In addition the designer must have confidence 
that the model which is solved accurately depicts the behaviour of the system which is being 
designed.   
 
By using an established design notation, such as UML, and automatically deriving a 
performance model, in SPA for example, the designer can have some confidence that there is 
a strong relationship between the model and the design.  The model specification process, as 
presented by Pooley and King [37], relies on identifying the observable behaviour and 
interaction between objects in the design specification in order to identify the action 
sequences and synchronisation that need to be included in the model.  In addition, because the 
objects in the design and the model are the same, the design notation may be used to 
explicitly define performance measures in terms of these objects.  The quality of the measures 
derived is determined by the solution techniques employed, variance analysis allows the 
degree of reliability of measures to be predicted and variance reduction improves confidence 
of those measures [8].  
 
In the following section we cover a basic introduction to performance modelling with 
stochastic process algebra, aimed at experienced performance engineers with little or no 
previous knowledge of stochastic process algebra.  We present several examples covering the 
informal translation of models from stochastic Petri nets and queueing networks to stochastic 
process algebra.  In Section 3 visual techniques from program comprehension are applied to 
performance models to aid understanding and improve confidence that the model accurately 
reflects design.  Some visual representations are also used to derive design views in UML to 
provide meaningful feedback in a modelling cycle. 
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2. Stochastic Process Algebra 
 
Stochastic process algebra, extensions to classical process algebra such as CCS [34] and CSP 
[26], add several attractive features to performance modelling:  

• Compositionality  
• Formality 
• Abstraction 

From a specification point of view these features allow models to be constructed.  
• Concisely 
• With their meaning incorporated explicitly  
• In a way most natural to the modeller  

They also allow complex models to be analysed and solved efficiently and automatically. 
 
A number of stochastic process algebra have been defined, among them 

• PEPA [23](University of Edinburgh, UK) 
• TIPP [19](University of Erlangen, Germany) 
• EMPA [4](University of Bologna, Italy)  
• SPADE (Imperial College, London, UK) 

 
Although there are semantic differences between these process algebra the modelling 
differences are not great, the exception being SPADE which allows generally distributed 
actions and model solution by simulation.  In this paper we concentrate on PEPA, although 
most of our argument is clearly applicable the other algebra with some small modification. 
 
2.1. PEPA 
 
PEPA is a Markovian process algebra, meaning all events occur in response to exponentially 
distributed delays.  Models are defined as the interaction of components which engage, singly 
or multiply in activities. Each component may be atomic or composed of other components.  

Each activity a 
def

 (α , r) has an action type α and is exponentially distributed with rate r or 
passive with distinguished rate 

�
.  There are a small number of combinators which are used to 

define models. 
 

Constant: A 
def

 B used to assign names to components. 
Prefix: (α , r).P  the component engages in action α at rate r and subsequently behaves as P. 
Choice: P+Q  the component behaves as either P or Q, the choice is determined by a race 
condition  on the first action to complete. 
Hiding: P/L the actions in the set L are not visable outside P and cannot be shared. 
Co-operation:  P     Q the components proceed independently with any activities whose types 
do not occur in the cooperation set L.  Activities with action types in the set L are only 
enabled in P     Q when they are enabled in both P and Q.  In PEPA the shared activity occurs 
at the rate of the slowest participant. If an activity has an unspecified rate in a component, the 
component is passive with respect to that action type. 
 
2.2. Queueing Network Models 
 
PEPA can be used to specify many models that can also be specified using other modelling 
paradigms.  It is a simple matter to describe queues in PEPA using a state-based approach, it 
is also possible to use a job based approach.  By constructing PEPA components of queues, 
large queueing network models can be formed relatively easily in PEPA, although some care 
is needed to ensure correct naming of shared actions. 
 

= 

= 

  L 

  L 
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Figure 2.1 shows a state-based model of an M/M/1/N queue.  The model is defined as the 
interaction of two components: the queue component and an arrival/service component.  The 
queue component represents the number of jobs present in the queue and determines what 
arrival and service actions are possible.  We define the queue to be passive and sharing 
actions arrival and service with the other component, S.  When behaving as Queue0  no 
service is possible (obviously there are no jobs to serve) as the service is not present here and 
it is a shared action, in this instance the component S cannot fire the service action.  Similarly 
the arrival action is blocked when the queue behaves as QueueN (the queue is full).   
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: An M/M/1/N queue in PEPA 
 
 
Clearly it would be simple to model this system as a single component or split the arrival and 
service elements of S into separate components.  Within this simple set up it is easy define 
interrupted services or Markov-modulated arrival processes.  In Figure 2.2 the component S 
has been replaced by a two phase process.  When behaving as S1 arrivals and services occur as 
previously, however in S0 the service process is blocked and the arrivals occur at a different 
rate.  The behaviour is switched between the two by the actions sleep and wakeup, which are 
not shared with the queue. 
 
 
 
 
 
 

Figure 2.2: Service interruptions and variable arrival rate 
 
When considering models of multiple queues, where jobs may progress from one queue to the 
next, the service action in one component must act as an arrival action in another.  Such a 
situation is illustrated in Figure 2.3.  In PEPA this kind of consequence must be defined using 
the same named action in both components, which can be confusing (a renaming operation 
would be useful).  For example, in Figure 2.3 the action service1 is used to mean both a 
departure from the first queue and an arrival at the second, they are clearly different ways of 
viewing the same event.  In the second queue we have used two kinds of service event, leave 
causes the job to leave the system and feedback which triggers an arrival into the first queue 
(the counterpart to service1). 
 
A great many queueing behaviours can be modelled using PEPA (see [5,41,42]), although the 
use of a textual interface in the PEPA Workbench does not always make such models easy to 
define or interpret.  To this ends a queueing interface for PEPA, called Dr PEPA, has been 
built by Jim Newton at the University of Durham.  Dr PEPA accepts PEPA scripts and parses 
them to see if they conform to a known way of specifying a queue (only a state-based 
representation is handled).  If the model parses successfully the tool draws a graphical 
representation of the model, using colour to depict the different components in both the script 
and the drawing.  The tool also supports simple navigation mechanisms to locate components 
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in the script or drawing and an edit an update function from the script to the drawing.  As yet 
Dr PEPA does not support graphical editing of PEPA scripts.  A sample screen shot from Dr 
PEPA is shown in Figure 2.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3: Two M/M/1 queues in tandem 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: "Dr PEPA" queueing model interface for PEPA 
 
 
2.3. Stochastic Petr i Nets 
 
Of course, a graphical based formalism for performance modelling has been available for 
sometime in the form of stochastic Petri nets [1].  In general it is easy to informally translate 
models between stochastic process algebra and stochastic Petri nets, although there are no 
immediate actions in PEPA.  A comparison between PEPA and GSPN has been made by 
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Donatelli et al [14,15], who defined a set of Petri net equivalents to the basic PEPA 
constructs, shown in Figure 2.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5: Basic constructs in PEPA and GSPN (From Donatelli et al [15]) 
 

This equivalence equates GSPN, place and PEPA constants and GSPN transitions are PEPA 
actions.  A more formal approach has been taken by Ribaudo [40], and Bernado et al in 
integrating tool support for EMPA and GSPN by defining EMPA in terms of GSPN 
semantics [2,3]. 
 
Figure 2.6 shows a simple model of a processor using a resource.  The processor does an 
initial think action before requiring to use the resource.  Following completion of the use 
action the processor returns to thinking and the resource must go through an update phase 
before being available for use once more.  If the think action completes before the 
corresponding update then the processor must wait.  The PEPA and GSPN specifications 
shown give rise to models with identical Markov chains. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6: A simple PEPA model of resource usage with an equivalent GSPN representation 
 
A slightly more complex example is given in Figure 2.7.  Here the processor must get and 
subsequently release a lock on two resources, a Bus and Memory, following release the two 
resources are immediately available once again.  Of course, there is little point in locking a 
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resource if only one process has access to it.  Figure 2.8 shows an extension to the previous 
model with two competing processes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7: PEPA model of resource locking with an equivalent GSPN representation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8: Multiple instances vs. multiple tokens 
 

On first inspection the two methods for extending the model, adding an extra token in GSPN 
and adding a second instance of the processor component, appear to be equivalent.  However, 
the two methods do not give rise to identical models.  The distinction can be seen if we 
consider the firing of a think action/transition.  In the GSPN model a token moves from P1 to 
P2, whichever token moves the subsequent markings are identical.  In the PEPA model 
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however, either the first instance processor performs the action or the second instance does, 
leading to two distinct successors: 
 

(P2||P1)           Bus            Memory 
 
and, 

(P1||P2)           Bus            Memory 
 
 
In practice most practical performance measures will not distinguish between these two cases, 
however, it should be noted that they are not identical. 
 
 
3. Understanding performance models 
 
There are several reasons for a system designer not to trust the results from a performance 
model: 
• Don’ t understand the model behaviour. 
• Measures don’ t relate to the design. 
• Wrong metrics. 
• Wrong method of solution (not always obvious!). 
• Incomplete information. 
 
These problems generally arise because the modelling and design tasks are divorced and the 
system designer only sees the results of the modelling study and does not have in depth 
knowledge of stochastic modelling.  An over reliance on automated methods can mean that a 
non-expert modeller solves a model that has been over simplified or with inappropriate 
assumptions made. 
 
In the analysis of a PEPA model a derivation graph is formed in order to compute the states of 
the underlying Markov chain.  This graph is not presented explicitly to the modeller by the 
PEPA Workbench tools [11,17], rather it is an important mechanism used to study the PEPA 
model and derive a numerical solution. This type of graph structure is extremely similar to 
call graphs used in program comprehension and as such the same set of tools can be used to 
visualise them.  Figure 3.1 shows the PEPA specification for a shared resource system, 
adapted from Hillston [23], and Figure 3.2 shows its derivation graph. 
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Figure 3.1: PEPA specification of a shared resource model. 
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Figure 3.2: A coloured derivation graph 

 
The graph is enhanced using colour to show what agents are participating in the actions and 
are subsequently evolved.  In the case of shared activities multiple coloured arrows indicate 
the participating agents, filled head arrows indicate active actions and open headed arrows 
indicate passive actions.   Clearly this is a small model and it is possible to view the entire 
model and derivation graph without difficulty, however, the inclusion of the graph and the 
addition of colour add to the ease by which non-experts may understand the evolution of this 
model.  Given a larger state space the size of the full derivation graph in this form quickly 
becomes unmanageable.  Several possibilities exist for handling problems of scale in static 
2D representations, briefly these may be summarised as: 

• Elimination.  Nodes with only one subsequent action may be removed and actions 
combined. 

• Aggregation.  Similar nodes, or nodes relating only to internal activities of agents, are 
combined. 

• Decomposition.  Each individual component is viewed in isolation, although it behaves 
in the same way as in the full model.  

• Highlighting.  Although the entire graph is displayed, certain arcs and nodes are 
emphasised (such as those pertaining to the evolution of a particular component).  
Highlighting can be used to show sequences of independent behaviour. 

• Layer ing.  The entire graph is viewed in simple form with gross aggregation of nodes.  
Aggregated nodes may be selected for expansion within the full graph or as a separate 
graph.  

• Abstraction. The entire graph is viewed in simple form with gross aggregation of nodes; 
the detailed behaviour within the aggregated nodes may be shown in miniature, as if 
from a distance. 

• Windowing.  The entire graph is displayed within a sliding window, a miniature 
representation of the graph may be used to show the position of the window to aid 
navigation. 

Using the above example there is little scope for elimination, except for removing the node 
P||P   R' and compounding the subsequent update preceding task actions to give two 
task+update arcs to P||P      R from P'||P     R' and P||P'      R'  respectively.  There is scope for 
aggregation by exploiting the symmetry of the graph. 
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Figure 3.3: Decomposed view and highlighted derivation graph for resource component, R. 
 

Figure 3.3 shows the resource component in isolation and highlighted within the derivation 
graph.  Within this simple example there is only a limited benefit from such representations 
over the coloured derivation graph.  The alternate actions, use followed by update, are clearly 
evident in the highlighted derivation graph, showing that the resource component in the 
model behaves as expected.  In larger models, with more complex components, sequences of 
independent actions can be highlighted   
 
Thus far we have presented information in a solution oriented manner, that is, with nodes 
being equivalent to states in the underlying Markov process. Nodes are the primary 
conceptual foci of graph representations and so in viewing a derivation graph, the user places 
state as the principal model object. However, designers generally have little or no concept of 
state, but rather tend to consider software systems as collections of functions or activities 
performed according to certain ordering constraints. The translation from the state based 
derivation graph to a functional, or activity oriented, view is a simple matter of exchanging 
nodes and arcs, so that the nodes represent actions and the arcs represent pre- and post-
conditions. Alternatively we could present such a view using call stack representations which 
have been used successfully in program visualisation [46].  
 
In the discussion above we have proposed representations from performance and behavioural 
viewpoints that aid understanding of the evolution of the entire model. We now concentrate 
on views of the high level objects and the interfaces that are formed between them by 
synchronised actions. Visualisations such as these allow the designer to observe that the 
objects in the model correspond to objects in the design and that the way in which those 
objects interact is similarly represented. At this level of abstraction it is not necessary for us to 
present the detailed sequences of behaviour that lead to these interactions, rather how the 
interaction is facilitated (the shared action) and possibly any pre-conditions. Much of the 
necessary information for this is contained in statements containing the cooperation 
combinator, for example the following statement taken from a model by Holton [2]: 

}ready_blank{S
}put_to_ready{S

}blank_load,ready_DBelt,blank_unload,pick_to_ready{S

))Crane
S

DBelt(Press)Table
S

Belt((
S

RobotWorkcell

=
=
=

3

2

1

221

   

   ||  ||             def

 

Figure 3.4: PEPA model element of a workcell specification 
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Robot, Belt, Table, Dbelt, Crane and Press are the initial agents of each of the five 
components representing a robot arm, a feed belt, an elevating table, a deposit belt, a lifting 
crane and a press respectively. Parsing this statement it is easy to deduce that Belt (the feed 
belt) interfaces with Table (elevating table) and Dbelt (deposit belt) interfaces with Crane (the 
crane). Furthermore, each of these subsystems operates without direct interface to each other 
or with Press, but all components possibly interface with the robot.  Working only from this 
model component it is not possible to deduce what actions the robot shares with each of the 
other individual components. This problem may be overcome by also parsing the component 
specifications to determine what components participate in which actions. The resultant 
representation is shown in Figure 3.5; the complexity of the components indicated by the size 
of the circles representing them.  We have also animated this view to show model evolution 
along different paths. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5: Component Interface view 
 
As well as providing a useful high level representation in its own right, the visualisation of 
component interfaces also provides a useful navigation mechanism to support more detailed 
behaviour. Figure 3.6 shows a prototype navigation tool written in HTML using Holton's 
production cell example [27].  

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.6: A prototype navigation tool 
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There are three frames, one contains the visual representation of the component interfaces, 
one contains the entire PEPA specification and the third contains a derivation graph view of a 
single component. The different representations are colour coordinated so that the user can 
see what component is in view by the colour it is displayed in. The interface diagram acts as a 
map; clicking on a component changes the PEPA script to the corresponding position. This 
prototype tool demonstrates how even very simple graphical representations can collectively 
give a far greater aid to comprehension. 
 
 
4. Der iving UML from SPA models  
 
Because stochastic process algebra, such as PEPA, are formally defined and have formal 
notions of equivalence it is possible to define transformations which automatically translate 
one specification to one or more others in a provably correct manner.  However, the majority 
of the motivations for performing such transformations and some of the notions of 
equivalence used relate more to the state space of the solution than the behaviour of the model 
as related to the design [24].  It is therefore necessary for the designer to be able to have 
confidence that the altered model still relates to the design in an understandable way from a 
design perspective.  An obvious solution to this problem might be to derive a UML 
specification directly from the altered SPA specification, the reverse of the process described 
by Pooley and King [37].  
 
We consider three of the many modelling mechanisms used in UML, state charts, 
collaboration diagrams and sequence diagrams.  State charts show the states and transitions of 
components.  They record dependencies between the state of a component and its reaction to 
messages.  Clearly there is a close relation to decomposed derivation graphs.  Figure 3.8 
shows UML state charts for the components of a resource use model specified in Figure 3.1.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Statechart of a simple resource use model 
 
The dependencies between the components over the shared use action are depicted by 
introducing an extra Boolean condition, avail.  This condition provides the simple blocking 
mechanism on the shared action when it is not defined.  The concurrent nature of the 
components is not explicitly stated and it is not clear whether the competition between 
instances of P is represented. 
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update( )/avail:=True use( )/avail:=False 
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Collaboration diagrams record the links between components and their interactions.  Clearly 
there is a close relation to the individual component interface view.  Figure 3.9 shows a 
collaboration diagram for the model of resource use specified in Figure 3.1 and Figure 3.10 
shows a collaboration diagram of Holton's model of a production workcell.   

Figure 3.9: Collaboration diagram of a simple resource use model 
 
It is worth comparing Figure 3.10 with the interface view of the same model shown in Figure 
3.5.  The interface view incorporates some additional features which are not available in 
UML, principally the use of colour, which facilitates comprehension, and the size of the 
circles used to indicate the complexity of components.  The advantage of the UML diagram is 
that it is a standard which is more likely to be familiar to designers. 
  
 
 
 
 
 

 
 
 
 

Figure 3.10: Collaboration diagram of Holton's workcell model 
 
Sequence diagrams record necessary sequences of interactions between components and offer 
a similar functionality to animated component views.  Figure 3.11 shows a sequence diagram 
of Holton's workcell model and Figure 3.12 shows a sequence diagram for the resource use 
model.  Both diagrams show only partial evolution of the models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11: Sequence diagram of Holton's workcell model 
 
The lines below each of the component names show time evolution, the boxes on those lines 
show when the component is activated.  The colour in the box indicates that the component is 

Belt 
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Robot Press 

ready_to_put 
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load_blank 
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Belt Table Robot Press DBelt Crane 
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(or at least has the potential of) actively participating in actions, whereas a clear box indicates 
that the component may only be passively participating in actions.  Where there is no box 
(only the time line) the component is in a blocked state.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12: Sequence diagram of a resource use model  
 
The difficulty in using sequence diagrams comes in adequately representing the 
synchronisation of shared actions.  The approach we have used is to show an initialisation of a 
shared action as a two-way communication between the participating components (double 
headed arrow with dot-dashed line) and the end of a shared action as a one-way 
communication from the active to the passive partner.  In the resource use model the is 
competition between the two instances of P, both of these are allowed to initialise their use 
actions, but obviously one will complete first causing the resource to become unavailable.  
This will block the other instance of P, so clearly there needs to be some communication from 
R to P to cease the use (this is shown as a single headed dot-dashed arrow).   
 
The models for synchronisation in PEPA and the other stochastic process algebra have been 
subject for some debate during their development [25,7], the ultimate choice being made 
principally according to meaning in a stochastic model rather than any particular real world 
interpretation.  Other models of synchronisation, such as synchronisation on points, as appear 
in message passing systems, rather than on shared actions, would have an easier interpretation 
in sequence diagrams. 
 
 
4. Concluding remarks 
 
This paper aims to present a position rather than a solution.  Presented here are a set of ideas 
that head towards the goal of making performance models, in particular SPA models, more 
usable for the non-modelling expert.  We are still a long way from our goal and much work 
remains to be done to develop the notions we have presented here, however we are creating a 
direction that is reducing the concept gap between modellers and designers.  In particular we 
are aiming at presenting models and model solutions from a component perspective that the 
designer can identify with, rather than a global state space view so often favoured by 
modellers.   
 

P R P 
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One area where progress has been slow is in presenting the stochastic nature of models.  
Software engineers have rarely had an education that includes much probability theory, hence 
understanding the different behaviours that arise from using different probability distributions 
is difficult.  A clear example of this is the over reliance on averages as performance measure, 
but when the variance for that property is large the average behaviour is almost never actually 
observed.  Another case in point is the time to reach a steady state.  In reality a system may 
take days or weeks to reach a steady state, by which time the traffic profile may have altered 
considerably.  The performance modeller can, with a little more difficulty, derive variance, 
tail distributions and transient solutions, but these must be understood by the designers and 
managers to be truly useful.  Clearly much remains to be done. 
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