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Abstract

We describe a language of transformations over performance models
written in PEPA [1]. This language allows many similar models to be
derived from a single input model. This in turn allows experimentation
over a variety of similar configurations of a modelled system. We then turn
our attention to the use of transformations as a probe placement language.
A stochastic probe is an observational component which may be attached
to the entire system as a global observer or to a sub-portion of the model
as a local observer. Local observers allow the calculation of such analyses
as the response-time of a service as observed by a single client. We use
our transformation language as a way for the user to describe where in
the system a local probe or probes should be placed.

1 Introduction

Computer systems are often modelled in order to predict performance char-
acteristics. Often the modeller is interested in variations on the exact system
modelled. This may be because the system in question is yet to be built, bought,
or in some other way realised, and the modeller wishes to explore options on
the final system. It may also be because the modeller wishes to know how
the current or future system will react to changes in the environment in which
the system is deployed. In general, a thorough investigation of potential per-
formance will be based on a family of related models, not just a single one.
Our concern in this paper is with generating this family of related models by
applying model transformations to a single source.

For some kinds of queries it is advantageous to re-express the model in a form
which simplifies the expression of the query. Such a modification should not be
left to the modeller since a mistake will lead them to erroneously analyse a model
with non-equivalent behaviour. We use stochastic probes [2, 3] to automatically
add probe components to the model. These probe components are generated
from a regular-expression like specification language and then automatically
attached to the model. Until now the attachment of the probe component to the
model was with a very limited choice. Either the probe is attached globally to
the entire model and therefore must observe all non-hidden activity occurrences
regardless of their origin. Alternatively the probe could be attached to a named
component of the system equation although the software would then attach the
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probe to a single copy of the first component encountered with the given name.
This restrictive scheme has now been superseded by allowing the user to specify
how the generated probe component should be attached to the model using the
transformation language detailed herein.

In this paper we work with PEPA, a stochastically-timed process algebra
where sequential components are defined using prefix and choice. PEPA models
require these sequential components to cooperate on some activities, and hide
others. A PEPA model typically consists of several sequential components such
as these, placed in cooperation. In the model

P ⊲⊳
L

Q

the sequential components P and Q cooperate on the activities in the set L.
If activity α is in the set L then P and Q are required to cooperate on α. If
activity β is not in L then either of P or Q, or both, may perform this activity
independently. When L is empty we write P ‖ Q instead of P ⊲⊳

∅
Q. We also

allow the special cooperation P ⊲⊳
∗

Q to be a synonym for P ⊲⊳
L

Q where L is
the set of activities performed by both P and Q.

Rates are associated with activities performed by each component. The
symbol ⊤ is used to indicate that the component will passively cooperate with
another on this activity. In this case the passive component may enable or
restrict the activity from being performed by the cooperating component but
the rate when enabled is determined by the actively cooperating component.
The component (a, r).P performs the activity a at rate r whenever it is not
blocked by a cooperating component and becomes the process P . The compo-
nent (a,⊤).Q passively synchronises on a and becomes process Q.

In PEPA models we often work with arrays of components. We use arrays
to represent workload (such as a number of independent clients) or resources
(such as a number of independent servers). We write P [5] to denote five copies
of the component P which do not cooperate and P [5][α] to denote five copies
of the component P which cooperate on the activity α. That is, P [5] is an
abbreviation for P ‖ P ‖ P ‖ P ‖ P and P [5][L] is an abbreviation for

P ⊲⊳
L

P ⊲⊳
L

P ⊲⊳
L

P ⊲⊳
L

P.

The PEPA language is formally defined in [1]. Applications of the language are
described in [4, 5, 6].

Structure The remainder of this paper is structured as follows: in the follow-
ing section we review related work, in Section 3 we detail model transformations
beginning with those which can be performed through the use of variable rate
parameters as well as those which cannot. This allows us to introduce our model
transformation language. Section 4 provides a brief overview of the stochastic
probe architecture for query specification and describes the use of the model
transformation language as a method for the modeller to specify the location
within the model at which an observation probe component should be attached.
Section 5 gives a full example of the use of our transformation language both
to vary the model under inspection and the placement of the observation probe
to extract the average response-time of the system concerned. Finally we draw
some conclusions in Section 6.

Transformations in PEPA Models and Stochastic Probe Placement 2

UKPEW 2009 – http://ukpew.org/



2 Related work

Transformations are often applied to PEPA models to convert them into a form
which is easier to analyse because it has a recognisable structure which can
be exploited by analysis methods such as those based on product-form decom-
position of models. In [7] the authors apply transformations to PEPA models
in order to generate new models which have a product-form solution. These
newly generated models can be efficiently analysed to deliver results which are
an approximation to the true results from the original model. In [8] the authors
apply term rewriting to generate variants of a PEPA model systematically. Here
the goal is to identify quasi-reversible structure in the model as an intermediate
step towards a product-form solution based on earlier work which identified a
syntactic characterisation of PEPA models which give rise to quasi-reversible
structure [9].

In the above the authors were interested in the discrete Markovian inter-
pretation of a PEPA model but since [10] we also have the possibility to use a
continuous fluid-flow interpretation. This has given rise to other opportunities
to use model transformation to put a PEPA model in a suitable form to apply
the fluid interpretation. In [11] the authors use partial evaluation of a PEPA
model to replace a nested composition of components by a single sequential com-
ponent by partially evaluating the Markovian state-space. The authors of [12]
also transform their PEPA models before applying the fluid-flow interpretation.
The authors of that paper view passive cooperation as syntactic sugar for a par-
ticular active cooperation and their transformation removes uses of the passive
rate in PEPA models.

The present work differs from the above in that we are using transformation
to generate a related family of models which have many definitions in common,
but differ in the model configuration which is specified in the PEPA model’s
system equation. In this way it is possible for a PEPA modeller to maintain a
single PEPA source model and a set of transformations instead of a set of mod-
els, with attendant benefits for maintenance and debugging of models. Thus it
is perfectly possible to imagine any of the above transformations which help the
analysis process being applied to models which we have generated via transfor-
mation. The role which we assign to model transformation is familiar practice
in model-driven approaches to software development.

3 Model Transformations

Model transformations are a way of deriving a new model from an existing one.
This can be done either because we wish to analyse a set of similar models
because we are unsure of the actual configuration of the system which we are
modelling, perhaps because it is yet to be built or obtained. We also may wish
to predict how well an existing system can cope with changes in its operat-
ing environment such as an increase in demand. Furthermore we may seek to
investigate how a current system can be modified to cope with such changes
in operating conditions. So for example we wish to analyse the effect that re-
deploying one kind of server as another kind may have on the overall system
performance. Redeployment then is a common kind of model transformation.
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3.1 Model parameterisation

One frequently-applied change to the configuration of a model is to alter the
model parameters. Since our implementation of the PEPA allows identifiers to
be used as the initial population size of an array then this is one place where
transformations can be conveniently applied. Consider the following model:

a = 5
b = 2

. . . component definitions . . .

System
def

= ServerA[a] ‖ ServerB [b]

In this case if we wish to analyse the same system with one ServerA component
redeployed as a ServerB component we can give the model parameter transfor-
mations: a = 4, b = 3.

Alternatively if we know we are always going to be re-deploying one to the
other we may wish to enforce the constraint that the number of servers always
remains the same then we can express the model rate parameters in a different
way as shown here:

total = 7
a = 5
b = total − a

In this way we may now re-deploy a server by varying the ‘a’ population number
parameter and we cannot make the mistake of adding or removing servers. We
can still add or remove a server by increasing or decreasing ‘total’ however this
will change the number of ‘b’ servers indirectly. So in general model parametri-
sation may be used to reconfigure the system to a degree with the drawback that
we initially must set the system up with certain transformations being easier to
perform than others.

3.2 A Transformation Language

As an alternative we developed a small language of model transformations with
the intent being to automate such redeployment changes. Our language has
the basic form: pattern =⇒ replacement. A transformation such as this will
search the model for a component matching the pattern and replace it with the
replacement. Patterns may explicitly match for a given component, action or
expression form, or they may contain pattern variables which may be matched
against anything in the input model. Pattern variables have a leading question
mark. Thus when used in a pattern m and P will match only the PEPA model
variables m and P whereas ?m and ?P are pattern variables which will match
any subterm.

The subterm which a pattern variable is matched against is recorded and
subtituted into the replacement. This is best shown with some simple examples:

Example 1 (Resizing an array) In this transformation we are seeking an array
of components named P in the input model and we will substitute this with an
array of P components which is three components larger.

P [?m] =⇒ P [?m + 3]

Concretely, if P [5] appears in the input then P [8] will appear in the output and
if Q[5] appears in the input then Q[5] will appear in the output.
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rule := pattern =⇒ replace rule
replace := pattern replacement
pattern := uppername component name

| ?uppername pattern variable
| pattern cooperationset pattern cooperation
| pattern[expr ][actions] component array

cooperationset := ‖ independent
| ⊲⊳

actions
action list

actions := ?lowername variable
| lowername one action
| lowername,actions many actions

expr := ?lowername variable
| lowername rate name
| expr binop expr binary expression
| expr relop expr comparison

relop := = | 6= | > | <
| ≥ | ≤ relational operators

binop := + | − | × | ÷ binary operators

Figure 1: The full grammar of the transformations language

Example 2 (Increasing a cooperation set) In this rule we are seeking a cooper-
ation between an array of P components and an array of Q components. When
we find this we will add the activity a to the cooperation set, placing an addi-
tional requirement on the P components to cooperate with the Q components.

P [?m] ⊲⊳
{?s}

Q[?n] =⇒ P [?m] ⊲⊳
{?s,a}

Q[?n]

Example 3 (Removing an activity from a cooperation set) In the previous ex-
ample we were adding the activity a to the cooperation set whereas here we are
removing a from the cooperation set. Note that in the second example the coop-
eration explicitly names the cooperating components as P and Q whereas here
we will match any component (including those that are themselves cooperations
or arrays of components) provided that they cooperate over a set of activities
which includes a.

?P ⊲⊳
{a,?s}

?Q =⇒ ?P ⊲⊳
{?s}

?Q

Concretely, if K ⊲⊳
{a,b,c}

L appears in the input then K ⊲⊳
{b,c}

L appears in the out-
put.

Example 4 (Redeploying a component) In this example we redeploy one P
component from a cooperation as a Q component, making the array of P com-
ponents one shorter and the array of Q components one longer.

P [?m] ⊲⊳
{?s}

Q[?n] =⇒ P [?m − 1] ⊲⊳
{?s}

Q[?n + 1]

The grammar for transformation rules is given in Figure 1.
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3.3 Redeployment

Having now seen the transformations language we can re-visit redeployment
with the use of transformations.

ServerA[?m] ⊲⊳
?l

ServerB [?n] =⇒ ServerA[?m − 1] ⊲⊳
?l

ServerB [?n + 1]

This has the advantage over the simple use of variable array components that one
need not have foreseen this change when the model was authored. In addition
we could make sure to apply this change when when ServerA and ServerB are in
direct cooperation with each other. In this particular rule we have generalised
over the actions within the cooperation set but we could have restricted ourselves
to a particular set of activities. If we are applying this rule to many model
instances it may be that we wish to restrict when it is applied. Using the
variable array syntax does not afford the modeller this expressivity but the
transformation language does.

4 Probe Placement

A probe is an observational component which we add to models in order to
analyse the behaviour of the model. A probe is a stateful component which
observes some of the activities performed by the model through passive cooper-
ation. Upon observing activities the probe component will change state in order
to record the occurrence of an activity. The modeller and/or analysing software
can then examine the state of the model simply by examining the state of the
observation probe. One advantage in doing this is that the same probe may
be applied to several different models thereby providing a consistent framework
against which to compare those models.

Probes may be written in the host process algebra (in our case PEPA) di-
rectly and then attached to the model by hand. Creating the probe itself by
hand is error-prone for a variety of reasons in particular adding what are known
as the “self-loops”. The self-loops allow the probe component to ignore — that
is observe and remain in the same state — activities which it observes in other
states. Since the probe component must cooperate over all activities which it at
some point observes it must not block the model from performing any activity
which does not change its current state. Adding such self-loops is often error-
prone. In addition the probe component may be reduced to a minimised state
machine which may remove or reduce the extent to which the state-space is
increased by the addition of the probe component. For this reason we provide a
concise regular-expression-like syntax for specifying stochastic probes which are
then automatically translated into PEPA components. The probe specification
could also be translated into other process algebra components.

Although a translated probe component could be attached to the model by
hand, we prefer an automated method. Often a user will create through some
automated means a large number of experiment models which they wish to
analyse, for example[13, 14]. The use of probes means that our measurement
specification can be portable over all the model instances. The workflow we hope
for then is to create a generic model in PEPA and associated portable probe
specification in XSP [3]. From the generic PEPA model we generate many
specialised PEPA models and from the XSP probe specification we generate
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a PEPA component which may be attached to each of the generated models.
Since the number of generated models may be in the thousands it is important
to have an automated method for attaching probes.

4.1 Local Probes

The simplest way to attach a probe component to the model is to attach it in
cooperation with the entire system equation as in:

System ⊲⊳
L

Probe

where L is the alphabet of the probe — that is the set of activities which the
probe component will observe. This places the probe as a global observer, how-
ever often this is not appropriate. A common example is when we are calculating
the response-time profile of a given service. We are therefore interested in the
response-time as observed by each component, not as observed by the service
itself. The probe may be specified as:

request :start, response:stop

If the resulting probe component is attached globally as above then we will
incorrectly measure the response-time as observed by the service which will
likely be out of sync with that observed by any given client, for more details
see [15]. Instead we wish to attach the probe to a single client. Suppose that
the System equation is made up by:

System
def

= Service[m] ⊲⊳
K

Client[n]

where m is generally less than n and K is the set of activities which each Client
must cooperate with some Service to perform. This cooperation set may be
more than simply {request , response} for example there may be a restart .

In contrast to a global observer probe, we intend for the probe to be attached
as a local observer to a single client, thus we transform the system equation into:

System
def

= Service[m] ⊲⊳
K

(Client[n − 1] ‖ (Client ⊲⊳
L

Probe))

The current method for this is to prefix a component name to the front of the
probe specification as in:

Client :: request :start, response:stop

This tells the software to find a single Client component within the system
equation, splitting up an array of such Client components if necessary. For
some models this is sufficient, however this has always been a temporary solu-
tion knowing that some more sophisticated probe placement language would be
required. Consider for example the system in which clients are attached to one
or more different kinds of services:

(Client[m] ⊲⊳
L

ServiceA) ‖ (Client[n] ⊲⊳
L

ServiceB)

If we can only prefix probes with component names then there is no way to
express that we wish to attach a local probe to a client which is communicating
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with ServiceB , not one which is communicating with ServiceA. Here one could
re-write the model however this is not always straightforward and in addition
one of our guiding principles in the design of our measurement specification
language is never to require the modeller to alter their model. This helps to
ensure that our query specifications are robust and reusable.

4.2 Using Transformations

We can use the transformation language as a probe placement language. A probe
specification then becomes two things: a probe definition and a transformation
rule which describes the context in which the probe is to be used.

The probe name tells the software a name to define the probe component as,
this is in order that the user may use this name as part of the replacement part
on the right-hand side of a transformation rule. We write the probe definition
and give a name to the probe and then couple this with a transformation rule
specifying how to place the probe within the model. A simple local probe may
be specified as:

• Probe = request :start, response:stop

• Client[?n] =⇒ (Client ⊲⊳
∗

Probe) ‖ Client[?n − 1]

Notice the use of the special ⊲⊳
∗

operator ensuring that the user need not
calculate the alphabet of the probe themselves but instead allow the software
to do this for them automatically.

Our previous example with two kinds of services in which we were unable
to place a local probe onto a client which cooperates with ServiceB is now
straightforward using the transformation language:

Client[?s] ⊲⊳
L

ServiceB =⇒ ((Client ⊲⊳
∗

Probe) ‖ Client[?s − 1]) ⊲⊳
L

ServiceB

This gives rise to the full system equation:

(Client[m] ⊲⊳
L

ServiceA) ‖ (((Client ⊲⊳
∗

Probe) ‖ Client[n − 1]) ⊲⊳
L

ServiceB)

4.3 Average Response-time Example

We return to a simple model with a number of clients and services giving rise
to the system equation:

Client[m] ⊲⊳
L

Service[n]

with L = {request , response}. Note that we do not know much about the be-
haviour of the clients and the services only that they cooperate over the request
and response activities. We wish to measure the response-time as observed by
a single client. When calculating response-time quantiles we must separate out
a particular client to observe and in the previous section we saw how we can do
this using a probe and a transformation rule.

Suppose we instead wish to simply record the average response-time. This
can be done with an application of Little’s Law [16]. As before we can apply the
response-time probe (request :start, response:stop) to a single client. However this
increases the state-space size of the model, so if we are stretching our analysis as
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far as possible (perhaps the reason we have dropped the requirement of obtaining
a full response-time quantile profile) then we wish to avoid this. The average
response-time can be calculated by attaching a probe to all clients. In the
common case that the states along the passage for the client are distinguished
anyway this will not increase the state space. We can still use Little’s Law; by
dividing the number of local client probes within the passage by the throughput
of the request activity we obtain the average response-time of the system. We
can specify such a measurement as:

• Probe = request :start, response:stop

• Client[?m] =⇒ (Client ⊲⊳
∗

Probe)[?m]

5 Case Study

To demonstrate these techniques we model an ecommerce site. Customers may
browse the items for sale on a browse server which responds to search queries
to display appropriate item pages. Once the user has browsed for a while they
may decide to buy, in which case they are directed to the payment server. The
payment server takes longer to provide a confirmation page because the method
of payment must be confirmed. A PEPA model of this arrangement is shown
in Figure 2. In this model all users eventually buy something which is arguably
unrealistic. If we wished to avoid this we could have two classes of users.

The system can be configured by altering the following model parameters:

users the average number of users within the system,

b the number of browse servers,

p the number of payment servers, this will generally be less than the number

of browse servers since fewer payments than browse requests are made,

r browse the rate at which a user requests a new page,

r pay the rate at which a user decides to purchase an item and requests con-

firmation of payment, this will be somewhat less than the rate at which
users browse pages since a user will typically browse several pages before
deciding to buy,

r send page the rate at which a browse server can send pages, and finally,

r send confirm the rate at which a payment server can process payments this
will generally be somewhat slower than r send page since the payment
server must contact the financial institution for confirmation of available
funds.

5.1 CTMC Results

With a small number of users it is possible to analyse this model using com-
pilation from the PEPA model to a continuous-time-Markov-chain. We set the
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User
def

= (browse, r browse).Waiting
+ (pay, r pay).Paying

Waiting
def

= (sendPage,⊤).User

Paying
def

= (sendConfirm,⊤).User

BrowseServer
def

= (sendPage, r send page).BrowseServer

PaymentServer
def

= (sendConfirm, r send confirm).PaymentServer

Servers
def

= BrowseServer[b] ‖ PaymentServer[p]

System
def

= User[users] ⊲⊳
L

Servers

where
L = {sendPage, sendConfirm}

Figure 2: A PEPA model of an online media distribution service.

numbers of users with the rate users = 5, to correspond to this we also keep the
number of servers of each kind low with b = p = 2.

We performed three passage analyses over this model. The first two were
the response-times as observed by a single user for the browse and payment
servers. For the browse server we must measure between the activities browse
and sendPage but only those performed by a single user. Similarly for the
response-time of the payment server we measure between the activities pay and
sendConfirm. The first probe is:

• Probe = browse:start, sendPage:stop

• User[?n] =⇒ (User ⊲⊳
∗

Probe) ‖ User[?n − 1]

The second probe is similarly defined and attached as:

• Probe = pay:start, sendConfirm:stop

• User[?n] =⇒ (User ⊲⊳
∗

Probe) ‖ User[?n − 1]

The results of these two analyses are shown in graph (a) of Figure 3 along
with the results of the third passage analysis. This seeks to analyse the time
taken from a user first browsing until they are sent a confirmation of their
purchase. This uses the same probe placement transformation as the previous
two analyses but measures between a browse activity and a sendConfirm activity
using this (browse:start, sendConfirm:stop) probe specification. From the results
we see that, as expected, the browsing response-time is very fast, the payment
confirmation takes a little longer but is reasonable and has a high probability of
completing within 10 time-units. Each user however has less than a forty-percent
chance of completing the passage from first browse to payment confirmation
within ten time units, since the user will on average browse ten times before
initiating a payment which must then complete at the slower rate.

5.2 ODE Results

The CTMC analysis provides detailed results but suffers from the well-known
state-space explosion problem. As we increase the number of users of the system
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Figure 3: Graph (a) depicts the cumulative distribution function of three pas-
sages using CTMC analysis with a small number of clients. Graph (b) depicts
the time-series analysis with a large number of clients using ODE analysis to
plot the population of components against time.

the state space of the resulting CTMC grows exponentially. Very quickly we
reach the point at which analysis becomes very expensive and then infeasible.
An alternative method of analysis involves the translation of the PEPA model
into a set of ordinary differential equations as proposed by Hillston [10]. Using
this method we are able to analyse the same model with many more users
as well as more servers. We initially set the number of users with users =
500. The number of server processes now becomes the number of physical
machines multiplied by the number of threads running on each server machine.
Therefore the number of server components are: b = 8 × browse threads and
p = 8 × payment threads, where browse threads and payment threads become
additional rate parameters which may be ranged over. We speculated that a
payment server would have fewer threads and so we set our initial values to;
browse threads = 50 and payment threads = 20.

When the resulting set of ODEs are solved we obtain a time-series mapping
which plots the population size of each kind of component in the model against
time. For our initial values this gives rise to the graph (b) on the right of
Figure 3. Initially all of the users are in the User state but very quickly the
users perform one of the browse or pay activities to move into one of the two
states Waiting or Paying. From this analysis alone we can see that the capacity
of the browse servers is high enough and as a result, after an early spike the
number of users waiting on the browse server to respond becomes close to zero.
When this occurs the behaviour of the Paying and User populations change,
but these too become stable and we see that the majority of users are waiting
on a payment server to respond suggesting that we should increase the capacity
of the payment servers.

In order to obtain steady-state results from this kind of analysis we continue
to solve the ODEs for larger and larger times until the population sizes become
stable as they have in our example in graph (b) of Figure 3 by around time 100.
At this point we have reached the steady-state of the model, and we know that
in the long run this will be the average population sizes of the components of
the model.

We desire a measure of the responsiveness of the system, but as of yet there
is no way to obtain the passage-time probability distributions as we have for
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the CTMC analysis. However as we mentioned in Section 4.3 it is possible to
use the steady-state to calculate the average response-time.

Here we focus on the response-time of the payment server however the same
kind of analysis can be used to analyse the responsiveness of the browse server
or the user time from first browse to completed payment. Our approach will
be to attach a request/response style probe to every single user. We then take
the steady-state population of all the local probes which are in the Running
state. That is, those probes which have observed a pay without yet observing
an associated sendConfirm. This in turn indicates how many users are waiting
for a response from the payment server. With this value we take the steady-
state throughput of the activity which begins a passage (i.e. the pay activity).
By dividing the number of users waiting on a response by the throughput of the
pay we calculate the average response-time of the payment servers as observed
by a single user. The probe specification is therefore:

• Probe = pay:start, sendConfirm:stop

• User[?n] =⇒ (User ⊲⊳
∗

Probe)[?n − 1]

In this example we could just take the population size of the user components
in the ‘Paying’ state. However we use stochastic probes to guard against future
modifications of the model which may add users states between the beginning
and ending events of the passage in question. Indeed for analysing the time
from first browse to eventual purchase there is no user state that corresponds
to “within the passage” and hence we would require a probe component.

Unfortunately the attachment of a probe component to every user compo-
nent translates the model into a format which is not suitable for translation
into ODEs. All process arrays must be arrays of sequential components and
cannot contain cooperations. The solution is to apply a partial evaluation of
the (User ⊲⊳

∗
Probe) component to obtain a sequential component which is iso-

morphic to the original cooperation. This process has been described in [11]
and may be automated.

We make the reasonable assumption that the response-time is dependent
upon how many users are attempting to access the system. With this in mind
we perform sensitivity analysis over the number of users, by varying the number
of users while retaining all other rates constant and using the ODE analysis to
calculate the response-time of both the ‘browse’ and ‘pay’ requests. The results
are shown in the graph (a) on the top left of Figure 4. This plots the average
response-time of both the browse and pay requests. We note that there is
spare capacity on the browse servers because the response-time is very low and
remains so even as the number of users is increased. However as the number of
users increase this has significant impact on the response-time of users waiting
on confirmation from a payment server. This suggests that the system may be
improved by redeploying one or more browse servers as payment servers as we
do in the following subsection.

5.3 Redeployment

We wish to predict how robust the system is to changes in its operating environ-
ment. In particular to increases in the number of users or the number of users
who are making purchases. Since there are more than one of each kind of server
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Figure 4: Sensitivity analysis for the number of users based on the number of
redeployed servers.

the system can attempt to combat a changing environment by redeploying one
kind of server as another. We may try these transformations:

BrowseServer[?m] ‖ PaymentServer[?n]
=⇒

BrowseServer[?m − browse threads] ‖ PaymentServer[?n + payment threads]

BrowseServer[?m] ‖ PaymentServer[?n]
=⇒

BrowseServer[?m + browse threads] ‖ PaymentServer[?n − payment threads]
The first transformation redeploys a browse server as a payment server and

the second redeploys a payment server as a browse server. Of course more than
one server may be redeployed by changing the expressions, for example two
servers in: [?m + (2 × browse threads)].

The results in graphs (b), (c) and (d) of Figure 4 show the effect on the
response-time of both the ‘browse’ and ‘pay’ requests for varying numbers of
redeployments together with the initial results where there are no redeployments
reshown for comparison. As a sanity check graph (b) redeploys payment servers
as browse servers. Since there was already enough browse server capacity the
browsing users gain no benefit from this as their response-time is very fast
before the redeployments. However the response-time of the payment requests
is worsened with more redeployment of payment servers.

Graph (c) shows the attempt to more evenly distribute the server capacity
by redeploying one or two browse servers as payment servers. These results
are encouraging as even at large numbers of users the browse response-time is
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still not significantly affected but we have managed to reduce the response-time
of the payment requests. This suggests that the system should by default be
configured without an even number of servers but with ten payment servers and
six browse servers.

Flushed with the success of redeploying two payment servers graph (d)
now shows what happens when we redeploy further browse servers as payment
servers. Here though we have started to go too far, at this level of redeployment
the payment server is always fast enough but the browse server response-time
starts to increase. From this we tentatively conclude that the correct configu-
ration should be two or three browse servers redeployed as payment servers but
of course further analysis of throughput of actual purchases would be required
in practice.

Finally from all of the results we note that regardless of the configuration
the system copes well whenever the number of users is less than 2000 which
might suggest that some servers could be turned off at times of low-demand.

6 Conclusions

We have developed a language for describing transformations over PEPA mod-
els. This has proven to have two uses, the first of which is as a way to pro-
grammatically derive families of models from one original model and thereby
systematically analyse the effect of changing the model. This allows the modeller
to analyse the robustness of a system to changes in its operating environment
including the modification of the system itself. The second use is as a probe
placement language. The use of local probe components which can restrict their
observations to a sub-component of the entire model is crucial for accurate and
detailed performance measurements; we have found that this is particularly the
case for passage-time analysis. Until now formal placement of the probe com-
ponent automatically derived from the probe-specification has been ad-hoc and
limited. The transformation language described in this paper provides an es-
sential component of the probe-based query specification framework. That we
have been able to fill this gap using an otherwise useful transformation language
reduces the amount of learning necessary for a new user to obtain the analyses
they desire.

We have shown that by utilising this probe placement mechanism the same
probe specification may be used to analyse two different models for both com-
plete response-time distributions and average response-time changing only the
placement transformation rule. Using this we analysed response-time quantiles
in a model which could be compiled to a CTMC and then use the same probe for
analysing the average response-time of a model with a much larger component
population through compilation to ordinary differential equations.

We also provide further usage of two separate compilation techniques for
PEPA models and hence further evidence of the utility of this approach seen
before in [11].

The work described here has been fully implemented in the International
PEPA Compiler [17, 18] which is available for free download from the PEPA
Web site at http://www.dcs.ed.ac.uk/pepa.

In the future we hope to add some computed transformations to our language
of transformations. These include such transformations as partial evaluation and
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concatenation of non-cooperating sequential activities. As we have mentioned
above partial evaluation can convert a model inappropriate for fluid-flow analysis
into one which may be analysed. This could be controlled by the user through
the use of transformation functions, such as:

P ⊲⊳
?a

Q =⇒ PE (P ⊲⊳
?a

Q)

where the function PE (P ) performs partial evaluation over the process P . Some
models may be simplified into models which then admit more efficient solution
techniques such as transforming a model into a queuing model as done in [19].
Although partial evaluation always transforms the model into an equivalent
model other simplfying transformations may change the behaviour of the model
and hence must only be applied under direct human instruction. A good ex-
ample is the concatenation of sequential activities in order to make the model
less stiff. A stiff model has some very large rates which hinders solution but if
we are interested in only average behaviour then we can transform a sequential
process such as: (a, r1).(b, r2).(c, r3).P into (abc, 1/( 1

r1
+ 1

r2
+ 1

r3
)).P provided

that the process is not involved in any cooperation over any of the three activi-
ties concerned. The combined rate will be low if any of the three original rates
are low and hence we may obtain a solution in much less time. Once again we
would use a transformation rule involving a function such as:

P =⇒ Coalesce(P, [a, b, c])

where the function Coalesce(P, actions) coalesces any sequence in the process
P involving only the given actions.
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