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Abstract: The PEPA workbench[5] is a tool developed within the Uni-
versity of Edinburgh to allow the study of performance models written in the
Performance Evaluation Process Algebra (PEPA). The workbench contains a
rudimentary text-based debugger. This type of model is naturally suited to vi-
sualisation due to its state-based nature. Through this visualisation it should
be easier to comprehend this large amount of information. This project aims to
develop a useful visual single-step debugger for the PEPA workbench enabling
easy visualisation of discrete event based models.
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1. Introduction

Simulation, in all of its varied guises, has one base premise; through construction
and observation of a model the behaviour of some system (mechanical, economic
etc...) under certain conditions can be understood and/or predicted. Discrete
Event Simulation (DES) specifically sets out to model a dynamic system through
abstraction of ”events” within the system.

DES contains two essential concepts: Entities and Logical Relationships. Entities
represent the ”physical” attributes of the system and could be a robotic arm or
conveyor in a manufacturing line. Entities can be permanent as with the previous
example or temporary such as an item being manufactured passing down the
line. Indeed it is often the case in DES that models consist of temporary entities
passing through or being processed by permanent ones.

Logical Relationships embody the links between system entities and are anal-
ogous to relations within a Relational Database System. As with Relational
Databases it is not the complexity of the relationships themselves (e.g. conveyor
C starts when a part is waiting) but rather the number and distribution of such
relationships throughout the system that create the over-all complexity of the
model.

Traditionally a DES model is initialised with some given starting parameters and
left to run until termination. The results are then analysed and any interesting
information extracted. In industrial usage this is often adequate and existing
DES systems exist and function well within this space. However such techniques
do have their drawbacks, for instance specific unusual behaviours of the system
may be missed as they are eventually averaged out of results produced. It can
also be difficult to intuitively know whether a model is correct or not especially
when only presented with a text-based representation.

1.1 Why PEPA?

There are a number of ways of representing DES with varying degrees of pop-
ularity and flexibility. However there existed some basic criteria that an ideal
representation (language) for this project should fulfil:

• It should be flexible.

• Currently in use to keep work relevant.

• It should preferably have an existing tool-set to aid in testing / evaluation.

1



2 1. INTRODUCTION

• It should have at least a small group of users within the University of
Edinburgh for expert advice and opinion.

• It should preferably be simple!

Stochastic Process Algebra (SPA) can be both simple and flexible however one
SPA in particular demonstrates the other properties required, Performance Eval-
uation Process Algebra (PEPA). PEPA as described in [6] is an ideal candidate
language; it was created in the University of Edinburgh, has a wide user-base
both within and outwith the university and has a well developed bank of soft-
ware already in place.

SPAs in general are known to be an extremely good modelling paradigm with
wide applicability due to their properties of:

• Compositionality; systems are built out of small units which are combined
to form larger units and so on until an entire model is formed.

• Parsimony; the entire algebra consists of very little special syntax.

• Expressiveness; the algebra is very flexible and can be turned to any manner
of application.

• The ability to derive performance measures automatically.

However despite this apparent appropriateness to the task they lack wide-spread
use. This is due, in no small part, to the lack of general experience in using such
tools. The existence of software to derive models from specifications of systems
(such as UML into PEPA) has however led to a few taking up SPA as a modelling
solution.

The PEPA Model in Figure 1.1 is a very simplistic model of the interactions
between a set of computers joined by a token-ring network. It consists of 4
identical Computers (PC1x, PC4x) and a representation of the token (Sx). The
model embodies the system thus: At a given point the token is held by one
of the 4 computers. If this computer has data to send it transmits it and the
token moves. If the computer has no data to send the token simply moves on.
Additionally each computer may become ready to send at any point.

1.2 Previous PEPA Visualisation Work

There has been previous work into the visualisation of PEPA models, most no-
tably by Thomas, Munro, King and Pooley [10]. The target of this work was the
modelling of software systems. This drew focus to the ability of PEPA models
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// A PC LAN with 4 clients

// 128 States

%lambda = 2.0;

%omega = 2.0;

%mu = 2.0;

#PC10 = (arrive1,lambda).PC11 + (walkon2,infty).PC10;

#PC11 = (serve1,infty).PC10;

#PC20 = (arrive2,lambda).PC21 + (walkon3,infty).PC20;

#PC21 = (serve2,infty).PC20;

#PC30 = (arrive3,lambda).PC31 + (walkon4,infty).PC30;

#PC31 = (serve3,infty).PC30;

#PC40 = (arrive4,lambda).PC41 + (walkon1,infty).PC40;

#PC41 = (serve4,infty).PC40;

#S1 = (walkon2,omega).S2 + (serve1,mu).(walk2,omega).S2;

#S2 = (walkon3,omega).S3 + (serve2,mu).(walk3,omega).S3;

#S3 = (walkon4,omega).S4 + (serve3,mu).(walk4,omega).S4;

#S4 = (walkon1,omega).S1 + (serve4,mu).(walk1,omega).S1;

(PC10 <> PC20 <> PC30 <> PC40)

<walkon1,walkon2,walkon3,walkon4,

serve1,serve2,serve3,serve4> S1

Figure 1.1: A simple PEPA model (PC-LAN4.pepa)
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and SPA models in general to be derived from UML models, a natural design
tool of the software engineer.

The work proceeded along the lines of attempting to create the visualisation of
the model in a way most suited to Software Engineers. Ideally this would present
the model in a manner that Software Engineers were used to. The result of
this work, a prototype web-browser based navigation tool that produced output
similar to a profiler used in programming.

This PEPA ”profiler” produced an image representing the state-space embodied
by the system and demonstrated how a system moved from one state to another.
This is very like the way traditional profilers display data. It included various
possible aids to the user such as emphasis on heavily used states, of course this
could equate to a bottleneck in the real system.

This visualisation method can create certain problems, most markedly that of
an exponential state-space explosion. Even relatively simple models can have a
large number of states e.g the PC-LAN example above produces 128 states and
384 transitions and a similar example extended to 6 clients contained 768 states
and over 3000 transitions. In TMKP [10] the visualisation of such large systems
on a screen was tackled by techniques such as the aggregation of nodes or simply
allowing the whole graph to be scrollable. The other major draw-back of this
system is the specificity of its audience; the likeness of the system to a profiler is
of course useful to Software Engineers but to others could itself be a stumbling
block.

What this system lacks is the ability for the user to easily see how different system
components are interacting to perform a task. Obviously such information can be
extrapolated from state information provided in the profiler but to the uninitiated
it is certainly less than apparent. It is in this area that this project aims to
proceed, the premise being that through direct visualisation of and interaction
with the model the user could gain a better understanding of how the model
components are functioning. In essence this system should aid someone who has
not necessarily designed the model in question to understand and work with it.

1.3 PEPA Workbench

As discussed, given PEPA’s status within the University and the field as a whole
it is a natural choice for representing the discrete event models. Conveniently
the main tool used to work with PEPA models, the PEPA workbench was also
developed in Edinburgh University. It contains all the important language parsing
and lexical analysis elements along with mathematical evaluation systems that
are useful when working with models. After consulting with various users of the
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PEPA Workbench concerning visualisation based on PEPA it became apparent
that an interesting addition to the PEPA workbench could be made that would
also fulfil the goal of a visualisation system for DES.

Currently the PEPA workbench contains, as part of its toolset, a text-based
single-step debugger with forwards and backwards stepping, it does fulfil its task
well. However the amount of information can easily become overwhelming, due
mainly to the length of the text required to represent a state of the system.

Figure 1.2: Text Based Single Step Debugger displaying state 1 of PC-LAN4.pepa

This lack of clarity stems mainly from the fact that the text debugger repre-
sents the entire state of the system including all cooperation sets. Although this
method does convey a lot of information it misses out some important details. For
instance it is difficult to tell which actions are enabled without close examination
of the model code and the output from the debugger. This can be laborious and
can lead to confusion especially when the number of connected components and
cooperations becomes large. It seems that a more natural solution is to allow the
user to choose which action is performed at any point and then view the results.

The representation of this information visually could potentially reduce confusion
especially with less experienced users. It would also allow users to follow the
progress of a simulation in a more natural way than is currently available in the
text-based debugger.
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1.4 Motivation

The concept of a visual debugger for the PEPA workbench provides some interest-
ing possibilities in terms of functionality above and beyond a simple visualisation
tool. The most obvious additional feature required is that of interactivity; some
way of allowing the user to step through a possible chain of actions in the system
and view the results in real-time.

It must also be noted that the PEPA workbench (the Java[8] edition in particular)
was designed with education in mind. Considering this it has very few features
to aid a new user in understanding how the models themselves are functioning,
especially in instances where the user is working with models created by others.
Indeed after initial discussion with newcomers to PEPA it was generally felt that
the existing tools were of little or no use.

These challenges along with the opportunity to produce something new and useful
(from personal experience) were major factors in the decision to take this project
in a far more specific direction than was originally intended i.e. producing a
Visual Single-Step Debugger for the PEPA Workbench.

1.5 Goals

The overall goal of this project is to produce a Visual Single-Step Debugger for
the Java Edition of the PEPA Workbench. There are also a number of high level
goals to be met:

• The tool should be able to represent PEPA models in an intuitive manner.
This is somewhat subjective so this will be established through discussion
with users of the system.

• The tool should allow interaction with the model.

• The tool should be easy to use (see above).

• The tool should function with at least the standard examples supplied with
the PEPA workbench.

• PEPA models should require no modification to work with the tool.

There are also a number of lower level ”features” as requested by users of the
PEPA Workbench.

• The tool should make a best-try layout attempt but also allow the layout
to be changed manually

• The tool should allow visual layouts to be saved and loaded.
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• The tool should allow some sort of simulation to be run on the model.

• The tool should contain some notion of history.
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2. Design

Throughout the design phase of the project two main factors had to be continually
reassessed: The usefulness of the tool in terms of a debugger and the usefulness
of the tool in terms of a visualiser.

2.1 Visualising PEPA

A PEPA model (in the simplest sense) is made up of a series of components
interacting to perform activities. A component represents an active unit of the
system such as a single PC in a LAN; the activities capture the actions of those
units e.g. a PC on a LAN becoming ready to send data. In PEPA an activity
is denoted by a pair (a, r) where a denotes the Action type of the activity and r
denotes the activity rate. However single components themselves are not particu-
larly interesting and are of little use. The compositionality of PEPA allows us to
create more complicated and interesting connected components out of single com-
ponents and activities. We can also allow components to cooperate with other
non-connected ones in order to represent interactions of units in our systems; a
PC on a LAN must cooperate with the token in order to transmit data. The
following conjunctives are available for use in creating connected components.

(.) prefix (sequence); one activity follows another.

P0

def

= (a, t).(b, u).P1

(+) choice, a component has alternate possible sets of activities to perform.

Q0

def
= (a, t).Q1 + (b, u).Q2

(<>) synchronisation (cooperation), occurring over a set of Action types, coop-
eration requires the synchronised performance of that Action in each participat-
ing component. An empty Action set can be seen as parallel and independent
behaviour.

P0
BC
{a,b}

Q0

Deciding how to visualise each of these conditions is the most delicate, and im-
portant element of this project, ideally different visualisations will be possible
however time is an ever-present limit on how much can be done.

As stated earlier, the aim here is to allow direct visualisation of the model, to
this end there must be some visual way to represent the various entities and

9
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conjunctives within the model. If a basic graph is selected as the starting point
for the system (this is natural as a PEPA model can be viewed as a description of
a Finite State Machine) parallels can be drawn between graphing elements and
the PEPA entities. Initially an individual component can be taken as a node
in the graph. A component will perform some sequence of prefixed activities
(possibly none) before entering another component (possibly itself), therefore a
sequence of actions can form an edge between components. For clarity activities
can be emphasized as minor nodes along the path of the edge. A component
with a choice is simply a component with multiple outward-bound edges. These
properties display a connected component as a single connected graph or FSM.

This possible multiplicity of edges introduces the fact that simple straight edges
from node to node are inadequate. Not only can edges flow in both directions
between nodes but multiple edges may exist in the same direction i.e. a node A
can have multiple direct paths to node B. In either of these cases simple straight
edges would result in a total loss of clarity: Action nodes from different edges
would all be visible along the same apparent edge. Also with only straight edges
it is of course impossible to display a simple loop!

As a result there are three edge types: Straight (single), Curved (multiple) and
Loop. The type of a given edge is decided by a simple comparison of the start and
end points along with a counting of the number of connecting edges. Multiple
edges from node A to node B can be easily displayed by drawing each edge with
an ever increasing radius.

Now that a concept of the representation of the graph is in mind consideration
must be given to how the state of the system is represented and also how interac-
tions with the graph are performed. The manner in which the state of the system
is displayed rests on the properties that an element may have and also on what
possible attributes Java2D provides to portray this property.

As covered certain system elements have been assigned to graph elements due to
their natural similarity. Figure 2.1 shows system elements and variables that the
user may wish to have displayed, and also shows the analogous graph elements
and their available attributes.

Obviously not all properties / dimensions need be used to visualise the system
effectively, however the selection of variables / attributes could be a major deter-
mining factor in clarity and therefore usefulness of the visualisation. In order to
aid in the clarity of the visualisation it would seem prudent to use a given graph
attribute to convey only one piece of information / variable at a time.

Firstly, given the fact that both components and activities are considered as
nodes it should be possible to easily differentiate one from the other. Each node
should also be differentiable from other nodes of the same type. The natural
way for the types to be differentiated is probably the size, if for no other reason
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System Element Variable Graph Element
Component Status : current, inactive Node
Activity Status : active, next, inactive, blocked Minor Node
Choice Rate (or probability) Edge

Graph Element Attribute
Node Size, Shape, Colour, Alpha
Edge Thickness, Colour

Figure 2.1: System Elements / Graphing Elements

than an activity is being considered a ”minor” node. Given this difference in
status and also the fact that the graphs in general contain far more activities
than components making the node representation of the activity smaller than
that of the component is an obvious step to aid clarity. Nodes of different types
could also be given a different shape however this would add little or nothing
to difference already expressed by the size. In terms of being differentiable from
nodes of the same type they already have some form of uniqueness due to their
topological position. However to help with the identification of specific nodes
each one will be labelled with the corresponding component name or action type.

Following this trend both the components and activities share a common variable:
status, it therefore makes sense to portray this in a common fashion between the
two. What attribute is used to convey status must be able to be immediately
recognisable by the user taking no real thought to perceive This is useful due
to the fact that unlike the other properties of a node, the status changes often
and in the case of using the simulation engine probably quite rapidly. It can
therefore only be colour as shape when changing rapidly is far less clear and
when considering the states; inactive, current, next and blocked there exist some
natural colour choices. As stated in [1] there exist some standards when relating
colour to the concept of progress that should be adhered to. Next and blocked
map simply to green and red (as with traffic lights), current and inactive on
the other hand have no truly natural mapping. Inactive could be considered
unimportant and almost anonymous so colouring it as the background could
work well, only showing its outline to the user. Current is important as it must
stand out from the other colours, it also seems sensible to choose a neutral colour
so blue is selected.

In terms of the choice / edge aspect we must convey the fact that for a set of
edges from a node the one with higher rate is more likely to be traversed. We
can view this as a ”capacity” for the edge, naturally a larger capacity requires a
larger edge to accommodate it so the thickness of the lines representing the edges
could be varied to show this. Edges also have direction, this will be shown by
solid arrow-heads at the end of each edge.
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PC10

PC11

arrive1

walkon2

serve1 arrive2serve2

walkon3

PC21

PC20

walkon4

PC31

PC30

serve3

walkon1

arrive3 arrive4

PC40

PC41

serve4

serve3

walk4

S1

S2

walkon2

walk2

serve1

walkon3

walk3serve2

S3

S4

walkon4

serve4

walkon1

walk1

Figure 2.2: Concept visualisation of PC-LAN4.pepa

2.2 2D or 3D (graphics)

Now that consideration has been given to what form the visualisation should
take, the method by which this representation is given to the user must also be
considered. In the above example a simple two-dimensional graph has been used
as it clearly demonstrates the layout of the nodes in the system. Of course it is
possible for PEPA models to be far more complex and contain a high number of
interconnected elements. In such instances it is obviously preferable to produce
graphs in 3D as it is extremely unlikely to be able to produce a graph that cannot
be arranged in such a way as to have no (or at least minimal) crossing edges.

Figure 2.3: Demonstration of crossing edges in 2D and 3D

Perhaps the ideal is a switchable 2D / 3D display system, only using 3D when
clarity is lost in the 2D visualisation or at the user’s request. It is this system
that would be preferred for the PEPA visualisation tool, however such a system
would be extremely time-consuming to implement and really would only be an
extension to this project. Also given the fact that PEPA models are in general
fairly loosely connected a 2D representation only will be used for this project.
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However as work proceeds the possibility of extension to 3D will be kept in mind,
preliminary work may also be made if time allows.

2.2.1 Graphics Library

There are a large number of packages available when producing visualisation
software and as such there was some consideration required when choosing the
package to be used. As with the choice of target representation language a number
of criteria would determine the library best suited to the task at hand. Firstly the
package, whatever its form should be platform independent and come with Java
bindings as this is the language of the current PEPA workbench. The package
should be simple to use and produce easily readable code. The package should be
as light-weight as possible and not require any additional software (that cannot
be included with the PEPA workbench) to be run.

OpenGL[4] was considered as it is fairly simple to use but is not entirely simple to
integrate into Java (Java 3D can be bound to it) and it is also principally used for
3D work. VTK[7] (Visualisation Toolkit) was also considered and its pipelined
approach to visualisation did seem interesting and given work could make some
very useful visualisations of PEPA, however it is far from light-weight and is not
very simple to set-up on Windows-based systems.

Finally Java2D[8] (AWT / Swing) was selected, this allows the code for the
visualisation tool to be pure Java, using no libraries outwith the standard JVM
run-time libraries. This obviously means it is extremely lightweight and also
a 2D-only API but given the desire for future extension to 3D its similarity
to Java3D[9] will allow as natural a progression as possible to made. Another
important advantage of the Java2D is the ability to add interaction with the user
in a very simple way.

2.2.2 Layout method

The greatest proportion of the graph rendering problem is deciding on the phys-
ical positioning of the nodes within the graph without the need for human inter-
vention. This problem falls to the graph layout algorithm, many such algorithms
have been created over time, varying widely in their styles and results. This large
variation is mainly attributable to the subjective nature of exactly what a ”good”
graph layout is. In the case of connected graphs such as are being visualised here,
the main concern is having a layout that looks ”even”, i.e. with few (ideally no)
crossing edges and connected nodes not being an exaggerated distance apart.

Peter Eades’ 1984 paper [2] on force-directed placement for generalised graph
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layout would seem of particular interest in this case. The heuristic therein mod-
els a graph as a physical system with nodes as ”rings” and edges as ”springs”.
Thus the edges pull connected nodes together logarithmically (as opposed to us-
ing Hooke’s law) and rings repel each other. Over repeated iterations of the
algorithm these opposed forces will even out and the system will enter a state of
equilibrium, in this state the resulting graph can be generally taken to be aes-
thetically pleasing and will generally display few or no crossed edges. As such
the algorithm will generally expose symmetry and geometric structure very well,
it is these properties that make it attractive for laying out the model graphs as
such patterns can be useful in immediately identifying flawed models.

Figure 2.4: Example of iterations of a Force Directed Placement algorithm

Eades’ original algorithm can be easily modified to display required characteristics
and to curb undesired behaviour, it can also be simply extended into 3D space
maintaining the possibility of expansion in this direction with little modification
to the layout portion of the tool.

2.3 Debugger Functionality

So far only the visual representation of the model has been discussed and the func-
tional debugger aspect has only been briefly touched upon. This tool is required
to allow navigation of the state space through interaction with the graph(s) of
the model. As mentioned earlier this should happen through the user clicking on
possible ”next” nodes, the system is then moved on into the state represented
by that node’s activation. Due to the cooperative nature of PEPA models it is
possible to move into a certain state through many different cooperating nodes
simultaneously.

It must also be considered that Graphs produced could be quite large and should
still be viewable. This requires some way to navigate around the graph, as if a
graph consists of many nodes it would be difficult to fit on screen. This requires
that the graph be navigable through use of zoom / magnification tools as well as
some sort of directional navigation through scroll bars for example.
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A specific feature requested by the user is that of customising the layout, so
the nodes must be able to be moved by hand and have all edges etc... update
accordingly. These moves should of course not be subject to the restrictions of
the force-directed placement used initially. These changes should be able to be
saved for use at a later date. After discussion with the users it was decided that
this save file should be in XML so as to be human-readable and editable, this
also allows for the graphs to be easily processed using an external layout tool if
required for extremely complex graphs.

Another feature requested by the user is the ability to run a simulation upon
the model. This should take the form of an emulated user stepping through
the graphs in weighted-random fashion. The weighting itself is derived from the
PEPA concept of rate when concerning activities. Obviously an activity with
a higher rate is more likely to happen at any given moment. This method of
selecting which action to execute is discussed in Hillston [6]. The simulation
should be able to produce traces to file so that the user may follow exactly what
happened, to see how a system reached dead-lock for instance.

There are of course many other functions that are desirable in a debugger of any
sort such as custom instrumentation of objects and break-points. However such
functions in this instance are only useful given the automated simulator portion
of the project and as such are a much lower priority over all and could easily be
implemented at a later date.
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3. Implementation

3.1 Visualisation

The visualisation of the PEPA model is to be produced using Java2D, it is im-
plemented through a series of custom components. The rendering of the graph
itself is performed through the passing of a common Graphics object that can
then have required painting applied by successive objects.

V isualSingleStepDebugger− > GraphManager2D − > Edges
− > ProcessNode
− > ActionNode

Figure 3.1: The flow of the Graphics object though

3.1.1 Constructing the Graph

Before anything can be drawn or any interaction can take place an internal repre-
sentation of the graph must be constructed based on the information concerning
the model already possessed by the PEPA workbench. This information is stored
in the Process object and its subclasses (Figure 3.2)These classes are combined to
form a tree representation of each component in the system (Figure 3.3). Using
this information it is possible to construct a visual component, a ProcessNode
(component) and all if its associated outward-bound Edges (activity chains). This
process is performed recursively within each ProcessNode object once upon ini-
tialisation of the visual debugger. The algorithm used for this processing is shown
in Figure 3.4. The results of the application of this algorithm to the example in
Figure 3.3 are shown in Figure 3.5.

Once all of the ProcessNodes, Edges and associated ActionNodes have been cre-
ated it is then required that Graphs be built out of them. This would be a simple
task, however in PEPA the resultant graphs can be non-connected so it is not
just a matter of picking a node and traversing edges to discover the members of
a given graph. The solution used does follow a broadly similar principle however
before joining a graph the connected neighbours of a node n are checked to see
if the connected node nc already has a graph if so n joins this graph instead of a
new one.

17
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Process Subclasses Function Contains
Var The Var subclass represents

a variable name. For a
given component this is the
other component at the end
of a series of activities.

1 String: the name of the
component referenced.

Prefix The Prefix represents a se-
quential activity.

1 Process: the rest of the
chain. 1 Activity: this ac-
tivity

Sum The Sum represents a sim-
ple choice between two pos-
sible paths

2 Process: representing the
string of activities on etiher
side of the choice.

Coop The Coop represents the set
action types over-which a
pair of components cooper-
ate.

2 Process: Either of type
Coop or Var. 1 QSet: Con-
taining all action types in-
volved in this cooperation.

Figure 3.2: Existing sub-classes of Process

P
def

= (a, t).P2
+ (b, t).(c, t).P3

(a) PEPA Model State-
ment

Sum

Prefix

Activity Prefix

Activity Var

Prefix

ActivityVar

(a,t) (b,t)

(c,t)

P2

P3

(b) Equivalent Process tree

Figure 3.3: Example of PEPA model and Process tree
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ProcessNode.extractProcess( Process p ){

if(p is a Var){

create a new Edge between this ProcessNode and p;

return

}

if(p is a Sum){

extractProcess(p left operand);

extractProcess(p right operand);

return

}

if(p is a Prefix){

extractProcess(Process following p)

add Action represented by p to last Edge created

return

}

else{

return

}

}

Figure 3.4: Algorithm used for Process extraction

(b,t) (c,t)

P P3

P2
(a,t)

Figure 3.5: Results of algorithm in Figure 3.4 run on Figure 3.3(a)
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Graph.createGraphs(){

for each ProcessNode p{

if p has no graph{

g = new Graph

p.findGraph(g)

if g has no members discard it

}

}

}

ProcessNode.findGraph(g){

graph = g

for each ProcessNode pn with an Edge to this{

if(pn.graph != null){

graph = pn.graph

break

}

}

graph.addNode(this)

for each ProcessNode pn with an Edge to this{

if(pn.graph = null){

pn.findGraph(g)

}

}

}

Figure 3.6: Algorithm used find Graphs
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P BC
K

(Q BC
L

R)

where K = {a} and L = {b, c}

(a) PEPA System Equation

{a}

P {b,c}

Q R

(b) Equivalent Coop tree

Figure 3.7: Example of PEPA system equation and Coop tree

Once the graph structures have been read in, the final step in creating the internal
representation of the graphs is to create a set of relationships to represent the
cooperation pairs and sets. These details are taken from the system equation that
creates the PEPA model from the connected components; this equation is of the
form discussed previously for PEPA cooperation statements. The representation
of this within the PEPA workbench is again a tree-structure, this time consisting
of only Process.Coop objects. This tree is interpreted in a very similar way to
the extractProcess function above; in this case each iteration returns the set of
graphs it used, the root returning all the nodes of the graph.

3.1.1.1 Edges

The three edge types; straight, curves and loops were defined in section 2.1. An
area of significant investigation was that of how best to represent these given the
tools available within the Java2D framework.

Straight edges were of course simple to implement as Line objects could be used.
These edges also allow for simple placement of ActionNodes which are placed
along the edge proportionally.

Curved edges caused somewhat more of a problem. Java2D does include very
flexible Curve2D objects representing various classes of curve. Unfortunately it
is not possible to iterate along these curves with any in-built functions and this
is required to place ActionNodes along the path of the edge.

There exists in Java2D a GeneralPath object which allows a path to be made
up of numerous sub-curves, lines and points. The GeneralPath allows for the
iteration along its sub-paths but only one segment as a time i.e. for sub-curves
c1, c2 and c3 it is only possible to iterate the control points of each of these
curves. What this implies is that to place n ActionNodes along the path of a
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curve the GeneralPath must contain n + 1 sub-paths. Creating these sub-paths
is reasonably simple, however to create them to appear as one complete smooth
curve is more complicated. This in turn leads to a circular argument due to the
required location of the start and end points of the sub-curves. These points
must be placed in an evenly spaced manner along the main curve, in other words
these are the very points that this solution hopes to find!

The solution comes through using another Java2D class. the Ellipse2D. Using
this it is possible to define an ellipse and create a path from any arc along its
edge. It is possible to create a evenly distributed set of n + 1 arcs by producing
these at 180/n + 1 deg each. This principle is shown in Figure 3.8.

Figure 3.8: Demonstration of drawing curve sections using ellipse arcs

Loops are produced in a broadly similar fashion to the curves described above
however in this case the curves are a complete circle.

It should be noted at this stage in the implementation that the design called for
variable edge widths to represent the probability of that edge being taken. It was
soon discovered that the range of edges realistically available (not too narrow or
too wide) was very small. This problem coupled with others such as the difficulty
in dealing with ”infinite” rates or the changes in effective rate due to cooperation
caused this idea to be left-out of this prototype system.
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3.1.2 Layout

The layout algorithm implemented is almost exactly that of Peter Eades 1984
force-directed placement algorithm displayed in Figure 3.9. This algorithm was
designed with this static-placement scenario in mind.

The repellent force between any two vertices is given by:
Repulse(d) = C3/d2

The attractive force between any two nodes connected by an edge is:
Attract(d) = C1 × ln(d/C2)

Where d is the distance between vertices
1.place vertices of graph G in random locations
2.repeat M times:

a)calculate force on each vertex ~F using above functions

b)move vertex by C4 × ~F

Constant Recommended value Value used
C1 2.0 2.0
C2 1.0 1.0
C3 1.0 12500.0
C4 0.1 0.1
M 100 500

Figure 3.9: Eades’ Force Directed Placement Algorith and constants

This algorithm is designed to be applied iteratively as many times as required to
produce what is considered a ”good” layout. As can be seen in the table above
only values of C3 and M are varied in this implementation of the algorithm.
The change to C3 comes about as without it the layouts are far too small in the
coordinate system used, and appear as all nodes of the graph resting on top of
one another. The value shown above was found through simple trial and error
and seemed to give good graph sizes relative to the initial window size. The
iterative constant, M was altered as with the recommended 100 graphs appeared
to still be in a state of flux and would not settle for another 200 to 300 iterations,
500 was chosen as a safe number as the graph should generally have settled in
a minimum by this point. In some instances of more complicated graphs this
state may be only a local minimum in terms of the energy of the graph. Even
in such a local minima the layout produced, in virtually all instances, is still a
”good” layout in terms of being geometrically even and pleasing to the human
eye. However it may contain more crossing edges than the optimum obtainable
solution.

Some thought was given as to how exactly the forces should be applied to PEPA
graphs given the two classes of node (Process (component) and Action (activity)).
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Action nodes as discussed are placed along graph edges to draw emphasis to the
current activity state of that edge. It therefore seems natural that these nodes
should have no influence upon the position of the edge which they lie along.
Thus the Process nodes act as the vertices of the graph and are used for FDP
calculations, the Action nodes are then placed evenly along their respective edges.

Although the algorithm described works well on most graphs, problems occur
when applying it to multiple disconnected graphs as are generally generated by a
PEPA file. The main problem faced is that of graphs ”flying” off to infinity with
no attractive forces to keep them in proximity. This can be solved by simply
adding the required attractive (and repulsive) forces between graphs, however
this will generally lay the graphs out in a circular fashion, this is contrary to the
expected layout which would follow the PEPA system equation. The solution
deemed most suitable in this case is to perform layout on a per-graph basis then
place each graph on the screen side-by-side in the order determined by the PEPA
system equation.

3.2 Interaction

The goal of this project is to not only create a visualisation system for PEPA
models but also allows these models to be interacted with, fulfilling the role of a
debugger of sorts. This interaction is handled through the Java interaction system
utilising EventListeners etc The active component is the GraphManager2D, this
provides an interface to the visualisation both directly through the user clicking
on the graphs and to the other debugger components such as buttons and text
fields.

3.2.1 Interpreting State

Probably the most complicated part of the project as a whole is interpreting the
state of the system at any point in time. The state control portion of the tool
(the StateInterpreter) is built upon the foundation laid by the PEPA Workbenchs
existing Single Step Debugger. The aim of the StateInterpreter is to examine the
strings representing the current state and possible next states of the system and
colour the graph accordingly , as well as assigning too each ”next” node the
number of the state it represents.

To perform these tasks thought must first be given to what state is represented
by a given node. The two types of node represent state in a different way: For
a ProcessNode the state can be simply read off as the name of that state. For
ActionNodes however the state represented can be found by repeatedly prefixing
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the states of the ActionNodes following it on its edge until a ProcessNode is
encountered.

The states for the two labeled nodes
are:

1 = S2
2 = (walk2,omega=2.0).S2

= (serve1,mu=2.0).(walk2,omega=2.0).S2

(a) Node states

serve3

walk4

S1

S2

walkon2

walk2

serve1

walkon3

walk3serve2

S3

S4

walkon4

serve4

walkon1

walk1

1

2

(b) Equivalent Coop tree

Figure 3.10: An Example of State Text for two nodes.

Now it is possible to start to interpret the state text available to the visualiser.
The first step is to decide upon the nodes representing the current state of the
system. These can be identified by comparing the state text for each node (Fig-
ure 3.10) to the list of states found in the system equation describing the current
state. Each nodes state text that is found therein is marked as current. There
are two additional factors to be considered for correctness: If a ProcessNode is
current and it is connected by a no-action transition to another ProcessNode (e.g.
P = (a, t).C + Q) then the other ProcessNode (Q) is also marked current. Also
an ActionNode can only be marked current if its previous state was ”next”.

The next step is to highlight possible next nodes. This is performed in a similar
manner to that of current states however in this case there are multiple states
to be considered. Initially we can narrow down the nodes to be examined as
only those that are one-step from each node now marked current. For a current
ProcessNode these are the first ActionNode on each edge, and for a current
ActionNode this is the node immediately following it. Now each node in the
one-step set must be checked to see if the state it represents appears in any of the
possible next system states. If so it is marked as next and has the corresponding
state number assigned to it (this is only provisional) if it does not it is marked
as blocked.

The following step is the most complicated part of the StateInterpreter system.
It is also the most important as through this step the cooperations of the compo-
nents of the model are displayed. This step starts with a list of every currently
enabled node, this list is then iterated over with the following algorithm:

The first part of the algorithm determines first if this node is being cooperated on
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(if not it is left enabled). If the node is cooperated on then every graph cooper-
ating on the node must also have an instance of the same type of action enabled.
This is a deep search as just checking graphs that cooperate directly with ANs
graph could lead to unwanted additional iteration of the main loop. The second
part of the loop makes sure that all cooperating actions are activated no matter
which instance is selected by the user. This means that if a set of cooperating
nodes reach this stage of the algorithm there exists a possible next state in which
all cooperating actions have been performed. This part of the algorithm func-
tions by checking each possible next system state against the individual states
of all cooperating nodes; as soon as one is not included that system state string
is rejected. The first acceptable state is retained and its number assigned to all
cooperating ActionNodes. Upon the next repaint the highlighted nodes (next,
current and blocked) will now correctly represent the state of the system.

3.2.2 Simulation Running

In order to achieve one of the goals requested by the user a basic simulation
system is to be implemented in addition to the manual single-step debugger. In
essence this simulator will perform the same actions as the user would, however
in a weighted-random fashion.

Set of all enabled actions E
Set of all types in E is T
Set of all activities of type t is At ⊂ E
rt min rate of all activities in At

rt is the determining rate of action type t

R is the set of all rt

let T∞ be set of all t such that st = ∞

if |T∞| = 0 then
probability of given type t is rt ×

1
P

x∈T∞
rx

else

probability of t =

{

1

|T∞|
if rt = ∞

0 otherwise

The selection made is based on random doubles between 0 and 1 produced by
the Java Random object.

The SimulatronRunner allows the user to interact with the graph whilst it is
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running. This allows the user to potentially force the model into unlikely states
that may be rarely (or never) entered by the simulation itself.

The simulator can be run for a fixed number of iterations or indefinitely and also
paused and resumed at will by the user. Varying degrees of feedback can also
be produced from simply outputting the state string for every state entered to
giving details of the probabilistic choice made. This trace output can either be
placed in a file or the standard output as selected by the user.
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Top: for each AN in enabledANs

if AN in set of shared actions{

let coopG be the set of all graphs cooperating on AN

let coopAN be all enabled instances of AN in coopG

let statesStrings be all possible next-state strings

for each Graph G in coopG{

if( G contains no active instance of AN){

set all coopAN to blocked

remove all coopAN from enabledAN

break Top:

}

}

ST: for each state in stateStrings{

if state contains AN.state{

for each cAN in coopAN{

if not (state contains cAN.state){

break ST:

}

}

AN.stateNumber = state.stateNumber

for each cAN in coopAN{

coopAN.stateNumber = state.stateNumber

}

}

}

}

}

Figure 3.11: Final part of state-extraction process to determine states due to
cooperation



4. Evaluation

Completing the implementation of any system has no bearing upon how success-
fully it fulfilled its intended purpose. In fact this applies to visualisation more
than most areas due to its subjective nature.

The eventual visualisation operates as follows:

Setup:

• The visual single step debugger (VSSD) can be started once a valid PEPA
file is loaded into the workbench and its state-space derived.

• The VSSD extrapolates the various pieces of information required from the
PEPA Workbench. It performs an initial layout of the graphs based on
Force Directed Placement. Each graph is then placed on screen based on
their position in the system equation.

• The state of the system is then extracted, colouring nodes appropriately
(blue = current, green = next, red = blocked, grey = inactive).

Interaction:

• The user may move any single major node through clicking and dragging
with the right mouse button. Similarly the whole graph can be moved with
the middle mouse button. The user may view the current or next state
represented by any node by holding down the left mouse button over the
target node. The system may be moved on by clicking any next node with
the left mouse button.

• The user can step backwards and forwards through the history of actions
taken by using the arrow buttons. This functions like a Web Browser history
that most users will be familiar with.

• The current layout of the system may be saved at any time by clicking the
”Save” button, the file is then written to an XML file selected by the user.
This file can then be loaded by using the ”Load” button.

• Should the layout be too small or too large the user may zoom in / out and
resize the visualisation to fit the window by using the appropriate buttons
(Zoom IN, Zoom Out, Set To Window)

• A trace can be written to a file by selecting ”Trace File” this trace can then
be enabled or disabled through the ”Enable Trace” check-box.

• A simulation can be run by clicking ”Start” this starts the pseudo-random
SimulationRunner. The simulation can be stopped at any time by click-

29
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ing ”Stop” (”Start” will then resume the simulation). The speed of the
simulation can be altered by changing the delay between iterations. This
is entered in milliseconds in the ”Simulation Delay” box and then can be
applied. The simulation rate can be changed at any time whether the sim-
ulation is running or not.

Following are some visualisations of example PEPA files supplied with the PEPA
Workbench.
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(a) Entire model

(b) Automated layout of ”Sender” in Alternating Bit

Figure 4.1: Example visualisation of AlternatingBit.pepa
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(a) PC-LAN4.pepa

(b) ActiveBadge.pepa

Figure 4.2: Other example visualisations
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4.1 Performance

Even though much of the intensive calculation in the visualisation system takes
place only once it is still desirable for it to be as efficient as possible.

4.1.1 Graph Loading

The process of loading the graphs as described previously (Section 3.1.1) consists
of four distinct phases. These phases are shown below along with the order of
their implementing algorithms runtime:

Component names are read in and appropriate ProcessNodes made.
One ProcesNode is created for each component so runtime is O(N) where N is
the number of components in the system.

Each ProcessNode extracts its definition from the Process object de-
scribing that component.
Figure 3.4: The time to extract a given edge is O(|AN |) where |AN | is the number
of ActionNodes on the edge. This is done |n| times per node whre |n| is the degree
of the node. This is done for every node giving a runtime of O(N × |n| × |AN |).
Given this it is possible to give a lower bound of o(N). In general the run time
will be bounded O(N 2) as unless there are a huge number of activities a fully-
connected graph would take O(c × N 2) where c is the number of edges from a
given node A to B.

The Graphs are extrapolated from the ProcessNode information.
Figure 3.6: This algorithm is designed in such a way that each node is only
considered once. This results in a runtime of O(N).

Cooperations are taken from the Process.Coop object.
This algorithm is a simple tree iterator. The size of this tree is not determined
by the number of components defined but by the number of components in the
system equation. This results in a runtime of O(|SE|) where |SE| is the number
of components in the system equation.

Firgure 4.3 shows a graph produed by running the visualisation tool on a series of
models (PCLAN2, PCLAN4, PCLAN6, Alternating Bit and Active Badge) all of
which are supplied with the PEPA Workbench. As the results show the processes
of reading in names and finding graphs is linear in N . Also as stated above the
extraction of Process details is greater than O(N) however less than O(N 2). It
can also be seen that as expected the extraction of cooperations is not bound to
N at all.
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Figure 4.3: Time taken to create various graphs from Process data

4.1.2 Layout

The Force Directed Placement algorithm used (as described in Figure 3.9) is
known to run in O(N 2) where N is the number of major (Process) nodes in the
system, however this does not give the whole story. A major determining factor
in the algorithms runtime is the number of edges in the graph. Highly connected
graphs will take considerably longer to layout than sparsely connected ones in
real terms, although running O(N 2). This can be seen in Figure 4.4.

These results were taken using cj-technologys JProfiler 2.3 [3]. It was discovered
that between 30 40% of the runtime result in Figure 4.4 was attributable to
the method call required to retrieve the centre-point of each node. This was
somewhat surprising and would certainly be an avenue for investigation in the
future should it be decided that the current Layout algorithm was unacceptably
slow.

4.1.3 State Interpretation

The running time of the state extraction process is more difficult to generalise
however it again can be split into several stages:

Decide on current nodes.
The implemented algorithm performs this in O(Nall) time, in this case Nall is all
nodes, major and minor in the system.
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Figure 4.4: Time taken for Force Directed Placement of various graphs

Decide on possible next nodes.
The algorithm to check if a node is possibly next is implemented in O(s× |N+1|)
where N+1 is the one-step-set (as described in Section 3.2.1) of all current nodes.
N+1 is bounded by the number of ActionNodes in the system as only an Ac-
tionNode can be next. The factor s is introduced as potentially all nodes must
be checked of all possible next states.

Disable remaining nodes.
This operation takes |N+1| checks and (possible) assignments and thus is in per-
formed in O(|N+1|) time.

Check nodes for cooperation restrictions.
For this portion of the algorithm the worst case is that every next node cooperates
with every other next node. In this case the runtime is O((|N+1|)

2) however this
can be greatly reduced as when a node a node and its set of cooperating nodes are
finalised they are dropped from the list to be checked resulting in the above case
completing in O(|N+1|) time! As it stands the runtime is bounded by o(|N+1|)
and O(|(N+1)

2|).

In practice it is the final section that determines the overall run time of the
algorithm and not just because it has the dominating O run time. In practical
terms it is the complexity of the cooperations that the component is involved
in will ultimately determine how long extracting the state of the system takes.
It can also be considered that the number of possible next nodes in a system is
rarely large so it is unlikely that this portion of the program would become a
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stumbling block.

4.2 Goals Met

At the outset of this project several key goals were introduced to decide whether
or not it was a success. Users were consulted to gather their reactions to the
implemented system. Their reaction to how successfully these goals were achieved
follows:

The tool should be able to display PEPA models in an intuitive manner.
The PEPA models are essentially displayed as Finite State Machines, given the
construction of a PEPA model this seemed like the most natural choice. Indeed
after consulting with users of the system it transpired that this was the way
many preferred to draw models when constructing them. Also it was found that
being able to move components around and zoom / navigate the visualisation
space was a well-liked feature. However it was indicated that the ability to
hide or ”minimise” specific components would be very desirable. In fact as with
any program there are many such improvements that could be made these are
discussed in section 4.4.

The tool should be easy to use.
Despite the rather limited user interface on this prototype, feedback in this area
was generally good with reservations about button placement etc being the worst
of the comments.

The tool should allow interaction with the model.
As discussed in various preceding sections the model is fully interactive. The
state-related interaction was well-liked by all asked. In terms of layout-interaction
there were two main features found lacking: It is not possible to select a sub-
group of nodes form a graph to be moved at once. Also when moving the graph
it is placed (significantly) below and right of the pointer rather than where the
pointer is released. This was a problem that had been missed in testing due to
the test system lacking a middle mouse button and was somewhat unexpected.
The problem was quickly resolved however.

The tool should function with at least the standard examples supplied
with the PEPA workbench.
This it does flawlessly, all can be fully visualised and simulated without problem.
This allows new users to start using the PEPA Workbench ”out-of-the-box” to
learn about the example models included and see how PEPA models function.

PEPA models should require no modification to work with the tool.
This is, for the most part true. However there are two syntactical parts of PEPA
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that require the program to be modified to visualise properly. Both of these
problems can be adjusted through substitution and relabeling without altering
them semantically. Again these problems and their solutions (linguistic and pro-
grammatic) are described in section 4.4.

In addition to the feedback detailed above, the project was discussed at various
stages with the originators of the PEPA Workbench. The response was highly
enthusiastic with a desire to include the Visual Debugger in a future release of the
Workbench being expressed. To this end it was decided that work on the Visual
Debugger will continue following the end of this project. This work will entail
modifications detailed in the following sections and should result in an extremely
useful tool to aid users of the PEPA Workbench.

4.3 Limitations

As with the development of any system when creating software it is impossible
to create a system that works perfectly under every set of circumstances. This is
especially true of prototype or proof-of-concept systems. Indeed this is the case
for the PEPA Visual Debugger. The two (known) limitations have to do with
some syntactic elements of PEPA.

4.3.1 Prefixed Choice

The first limitation is to do with a choice occurring within a series of prefixed
activities as shown in Figure 4.5.

P
def

= (a, t).((b, t).P1 + (c, t).P2)

Figure 4.5: Example of a prefixed choice.

When a form such as this is encountered by the ExtractProcess Algorithm (Fig-
ure 3.4) it is completely mis-represented and can result in some very unusual
visualisations. However thanks to the compositionality of PEPA a syntactic so-
lution does exist:

P
def

= (a, t).Pb

Pb

def

= (b, t).P1 + (c, t).P2

Figure 4.6: Example of an algebraically correct solution to Figure 4.5

Although the above is a correct solution in PEPA terms it is a great inconvenience
to user to have to remove anything of this form from their PEPA models. Doing
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this could render the files themselves less readable and require the construction of
models in a less intuitive manner. There are however two possible programmatic
solutions.

One possible solution and perhaps the simplest is to perform the above transfor-
mation automatically as the model is being interpreted by the visualiser. This
would allow the visualisation to be at least one correct adaptation of the model.
This introduces a non-determinism of sorts into the visualisation and is not desir-
able as the visualisation produced should not contradict what the user expects.
This solution could also be considered a ”hack” as it does reflect a truly correct
interpretation of the given model.

The more desirable solution is to correctly engineer a true representation of pre-
fixed (or sequential) choice. This should take the form of a new class of node com-
bining properties of both ProcessNode and ActionNode. This new class (Choice-
ActionNode) would display the characteristics of an ActionNode such as repre-
senting an activity pair and also in the way it represented state (see Section 3.2.1).
The ChoiceActionNode would also display characteristics of a ProcessNode such
as have multiple out-ward bound edges and would also be involved in layout cal-
culations. The creation of the ChoiceActionNode is the preferred solution and
should be implemented in any future work on the Visual Debugger.

4.3.2 Multiple Component Instances

The second limitation is concerned with the ability for a modeller to use multiple
instance of a connected component within the system equation.

P
def

= (a, t).P

Q
def

= (a,∞).Q

(P BCP BCP ) BC
{a}

Q

Figure 4.7: Example of multiple composition of the same componenet.

In this case the visualisation created will only contain one instance of the con-
nected component P. This is of course incorrect, again contradicting what was
expected by the user.

Once again thanks to the compositionality of PEPA a (algebraically equivalent)
solution exists that requires some modification of the code representing the model.
In this case multiple copies of the repeated component could be made e.g. P ||P ||P
would become P ||P10||P20. This of course goes against the parsimonious nature
of PEPA and would require possibly a lot of extra work by the user. Proceeding
in this way also carries the penalties to readability and intuitiveness discussed
above.
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P
def
= (a, t).P

P0
def

= (a, t).P0

P1
def

= (a, t).P1

Q
def

= (a,∞).Q

(P BCP0 BCP1) BC
{a}

Q

Figure 4.8: Example of solution to Figure 4.7

The most realistic programmatic solution to this problem requires modification of
the way a connected component is represented within the visualiser. Specifically
it would require further abstraction between the name of a node and its iden-
tifier within the visualisation system. It is in some ways similar to the manual
method described above however would be performed seamlessly to the user. The
method proposed proceeds thus: For every repeated connected component create
a clone of the original connected component changing the internal identifier of
each sub-component in some common way e.g. a common suffix as described
above. The same translations would also have to be performed to every system
state examined by the state interpreter so the state P1||P ||P1 BC

{a}
Q becomes

P1||P01||P102 BC
{a}

Q. This run-time translation is simple and correct due to the

fact that state strings do not change order. If this translation is performed trans-
parently to the StateInterpreter it is possible to leave it and systems relying on
it unchanged. Each translation need only be performed once so could be done
statically or on-demand as needed. This solution is easily implementable and
would have been used in this system had time allowed.

4.4 Future Improvements

Almost all software tools have room for expansion; there are always new tech-
nologies that could be integrated and additional user requirements that could be
implemented. The PEPA visual debugger is such a tool, currently only in the
prototype stage there are many features that could be added to make it a more
useful tool.

4.4.1 Short Term

In the short term there are several features that would enhance both the debug-
ging and visualisation capabilities of the tool.

Unified File Format
One simple but useful extension of the current system would be to combine
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layout information and a PEPA model in a single file. In this way the creator
of a model can edit the code as they wish and then setup what they consider an
appropriate visual layout. All of this information could then be packaged in a
single XML file (for example) and given to others working with the model. Once
loaded into the PEPA Workbench the visualiser would not be required to perform
layout, significantly reducing start up time for the tool when working with larger
models.

Further Debug Options
Many more instrumentation possibilities exist than are currently implemented.
These include methods such as breakpoints: A running simulation could stop as
soon a certain state is entered or node becomes activated. Also being able to
view the properties of a given node may be useful such as; the number of times
it has be current, next or blocked or perhaps the amount of time spent in a given
state. This could in turn lead to watches being introduced where certain node or
graph properties can be kept track of in some centralised view or even the trace
file.

Edges Revisited
As discussed in the implementation section the concept of variable edge widths
had to be abandoned in this version of the visualiser. In the future this could be
revisited as this may yet be a useful method to visualise more about the system.
The problem of limited usable line thicknesses could be overcome if the transition
is made to another graphical toolset. It may also be desirable to display he same
property in a different manner such as dashed lines or even line colour. The other
problems described would have to be overcome or possibly ignored should they
be deemed unimportant (froma a usability standpoint) by users of the tool.

4.4.2 3D

As discussed previously the transition of the model into a 3D graphical space
has always been of interest. Due to time constraints this was not possible in
this project however several interesting 3D paradigms have been considered as
possible future 3D visualisations. Any work in this area would probably be best
carried out in Java3D as it would allow very simple integration with the existing
functionality.

There is a ”simple” method which would be to make a direct translation from
2D to 3D. In such a translation nodes would become spheres and edges would be
cylinders tipped with cones (to form a kind of 3D arrow). This would be simple
enough as all layout techniques are still valid; the vectors used simply become
one element longer.

Even though this is a simple mapping of graph elements it would present several
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key benefits to the visualisation such as crossing edges only becoming view de-
pendent. It would also potentially allow the user to visualise much larger graphs
in a given screen space.

This change would of course have some draw backs such as the visualisation
becoming slightly less intuitive as it is unlikely the user themselves would visualise
a system in 3D space. It also complicates the navigation; requiring rotation and
zoom to follow activity as nodes closer to the viewer may occlude other relevant
nodes. There could also be problems associated with editing of the layout due to
the interaction with a 2D view of a 3D space.

Some of these problems could be minimised if the transition to 3D is given a little
more thought.

4.4.2.1 Multi-Planar Component Separation

The favoured extension to the simple 3D case has been dubbed Multi-Planar
Component Separation (MPCS). The idea in the MPCS visualisation is to divide
the 2D graphs (which are of course displayed on a single plane) onto separate
Virtual Planes (VP). Each VP would be independently movable in the 3D space.
This would allow cooperation to be expressly visualised by links and possible
colouring of each plane. Especially complicated connected components could
also take up more than one VP lessening the annoyance of crossing edges.

Figure 4.9: Conceptual diagram of an MPCS visualisation

This method could also be used as a form of aggregation as particular sub-graphs
could be packaged into a single node then expanded onto another plane to allow
close inspection of its behaviour. This feature along with the ability to ”push”
components that are of little interest into the background could allow a user to
easily direct their attention to the specific areas of interest.
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This method is attractive as it can be seen to be adding useful functionality to
the tool rather than adding 3D for its own sake.

4.4.3 Visual Editing

Once the user has a tool to visualise their models it is likely that they themselves
will start to visualise models in a similar fashion. It also seems natural to assume
that when a user is creating models they are unlikely to do so purely in code.
During talks with users it was apparent that it was a common practice to sketch
out ideas before coding them.

In the current state of the system it is a simple procedure to turn the graphs
produced into a string representation that matches the original PEPA file. Con-
sidering this and the users preference to sketching models rather than simply
coding them, the idea of visual model editing seems like a logical next step for
the system.

Although not entirely straight forward the implementation of such a system is
by no means unrealistic. There are certain obvious modifications to the user
interface such as a palette of components and the ability to draw edges etc Once
the user is also able to modify the system equation the only other substantial
feature required is the ability to merge separate connected components in some
sort of sensible manner. Most likely this would be done by prompting the user
to select the new representative component to be placed in the system equation.

Unfortunately due to the fact that the current simulator works on top of the
existing single step debugger any modification to the models would require re-
derivation to be run. This reliance on the derived state space is another possible
area for improvement. Through development of the SimulationRunner it became
apparent that it was not necessarily required as the simulation could explore the
state space on the fly. This would greatly streamline the process of visual editing.

This addition to the PEPA workbench could potentially revolutionise the way
PEPA models are worked with and used. It would especially open the door to
prospective users who have no experience of Stochastic Process Algebra. This
is important as some find SPA intimidating but could still use its power and
flexibility for their own purposes.



5. Conclusion

The proposed goal for this project was to create a visualisation system for finite
state autonoma representing a discrete event simulation. This was gradually
changed to building a Visual Debugger for the PEPA Workbench through the
apparent need for such a system and the authors desire to build something useful.
It should be noted that in the end these goals did coincide as almost any DES
can be represented in PEPA.

The projects goals can be split broadly into making a PEPA visualiser and making
an interactive debugger. The first of these goals has been achieved as even taking
into account the limitations discussed in 4.3 every model is still visualisable.
The second goal has been achieved to a point where it functions at least the
functionality of the existing text-based debugger plus some additional features
(such as tracing).

As it stands the Visual Debugger is already a useful tool especially as a tool for
those less familiar with PEPA. It may even enable those more expert to experi-
ment with their models in new ways. However as mentioned the development of
the tool is by no means as an end. Given the possible improvements stated and
the authors own intention to continue this work the PEPA Visual Single Step
Debugger looks set become a powerful tool for the analysis and manipulation of
PEPA models.
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Appendix A. PEPA Files

A.1 PC-LAN2.pepa

// A PC LAN with 2 clients

// 16 States

%lambda = 2.0;

%omega = 2.0;

%mu = 2.0;

#PC10 = (arrive1,lambda).PC11 + (walkon2,infty).PC10;

#PC11 = (serve1,infty).PC10;

#PC20 = (arrive2,lambda).PC21 + (walkon1,infty).PC20;

#PC21 = (serve2,infty).PC20;

#S1 = (walkon2,omega).S2 + (serve1,mu).(walk2,omega).S2;

#S2 = (walkon1,omega).S1 + (serve2,mu).(walk1,omega).S1;

(PC10 <> PC20 ) <walkon1,walkon2, serve1,serve2> S1
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A.2 PC-LAN6.pepa

// A PC LAN with 6 clients

// 768 States

%lambda=2;

%omega=3;

%mu=1;

#PC10 = (arrive,lambda).PC11 + (walkon2,infty).PC10;

#PC11 = (serve1,infty).PC10;

#PC20 = (arrive,lambda).PC21 + (walkon3,infty).PC20;

#PC21 = (serve2,infty).PC20;

#PC30 = (arrive,lambda).PC31 + (walkon4,infty).PC30;

#PC31 = (serve3,infty).PC30;

#PC40 = (arrive,lambda).PC41 + (walkon5,infty).PC40;

#PC41 = (serve4,infty).PC40;

#PC50 = (arrive,lambda).PC51 + (walkon6,infty).PC50;

#PC51 = (serve5,infty).PC50;

#PC60 = (arrive,lambda).PC61 + (walkon1,infty).PC60;

#PC61 = (serve6,infty).PC60;

#S1 = (walkon2,omega).S2 + (serve1,mu).(walk2,omega).S2;

#S2 = (walkon3,omega).S3 + (serve2,mu).(walk3,omega).S3;

#S3 = (walkon4,omega).S4 + (serve3,mu).(walk4,omega).S4;

#S4 = (walkon5,omega).S5 + (serve4,mu).(walk5,omega).S5;

#S5 = (walkon6,omega).S6 + (serve5,mu).(walk6,omega).S6;

#S6 = (walkon1,omega).S1 + (serve6,mu).(walk1,omega).S1;

(PC10 <> PC20 <> PC30 <> PC40 <> PC50 <> PC60)

<walkon1,walkon2,walkon3,walkon4,walkon5,walkon6,

serve1,serve2,serve3,serve4,serve5,serve6> S1
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A.3 AlternatingBit.pepa

// The Alternating Bit Protocol modelled by James Edwards in

// the paper "Process Algebras for Protocol Validation and Analysis",

// Proceedings of PREP 2001

// should have 94 states

// an example file for use with the Java Edition of the PEPA Workbench 0.9 and beyond

def = 1.0;

retry=1.0;

loss = 1.0;

S0 = (gm, def).(send0, def).S1;

S1 = (gm, def).S2 + (time0, retry).S3 + (ack0, infty).S5 + (ack1, infty).S1;

S2 = (time0, retry).S4 + (ack0, infty).S6 + (ack1, infty).S2;

S3 = (send0, def).S1;

S4 = (send0, def).S2;

S5 = (gm, def).(send1, def).S7;

S6 = (send1, def).S7;

S7 = (gm, def).S8 + (time1, retry).S6 + (ack0, infty).S7 + (ack1, infty).S0;

S8 = (time1, retry).S9 + (ack0, infty).S8 + (ack1, infty).S3;

S9 = (send1, def).S8;

R0 = (recv0, infty).(cm, def).(a0, def).R1;

R1 = (recv0, infty).(a0, def).R1 + (recv1, infty).R2;

R2 = (cm, def).(a1, def).R3;

R3 = (recv1, infty).(a1, def).R3 + (recv0, infty).R4;

R4 = (cm, def).(a0, def).R1;

M0 = (send0, infty).M1 + (send1, infty).M2 + (a0, infty).M3 + (a1, infty).M4;

M1 = (drop, loss).M0 + (recv0, def).M0;

M2 = (drop, loss).M0 + (recv1, def).M0;

M3 = (drop, loss).M0 + (ack0, def).M0;

M4 = (drop, loss).M0 + (ack1, def).M0;

(S0 <send0, send1, ack0, ack1> M0) <recv0, recv1, a0, a1> R0
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A.4 ActiveBadge.pepa

// A small model (72 states) of a location tracking system based on

// active badges made by Stephen Gilmore, Jane Hillston and

// Graham Clark. The paper ‘‘Specifying performance measures for

// PEPA’’ appeared in the proceedings of Fifth International AMAST

// Workshop on Real-Time and Probabilistic Systems, Bamberg 1999.

// The proceedings were published as Springer-Verlag LNCS 1601.

// an example file for use with the Java Edition of the PEPA Workbench 0.9 and beyond

r = 1.0;

m=1.0;

s=1.0;

P14 = (reg14, r).P14 + (move15, m).P15;

P15 = (reg15, r).P15 + (move14, m).P14 + (move16, m).P16;

P16 = (reg16, r).P16 + (move15, m).P15;

S14 = (reg14, infty).(rep14, s).S14;

S15 = (reg15, infty).(rep15, s).S15;

S16 = (reg16, infty).(rep16, s).S16;

DB14 = (rep14,infty).DB14 + (rep15,infty).DB15 + (rep16,infty).DB16;

DB15 = (rep14,infty).DB14 + (rep15,infty).DB15 + (rep16,infty).DB16;

DB16 = (rep14,infty).DB14 + (rep15,infty).DB15 + (rep16,infty).DB16;

P14 <reg14,reg15,reg16>(S14 <> S15 <> S16) <rep14, rep15, rep16> DB14


