
Formalising Java’s Data Race Free Guarantee

David Aspinall and Jaroslav Ševč́ık

LFCS, School of Informatics, University of Edinburgh

Abstract. We formalise the data race free (DRF) guarantee provided
by Java, as captured by the semi-formal Java Memory Model (JMM) [1]
and published in the Java Language Specification [2]. The DRF guaran-
tee says that all programs which are correctly synchronised (i.e., free of
data races) can only have sequentially consistent behaviours. Such pro-
grams can be understood intuitively by programmers. Formalisation has
achieved three aims. First, we made definitions and proofs precise, lead-
ing to a better understanding; our analysis found several hidden incon-
sistencies and missing details. Second, the formalisation lets us explore
variations and investigate their impact in the proof with the aim of sim-
plifying the model; we found that not all of the anticipated conditions in
the JMM definition were actually necessary for the DRF guarantee. This
allows us to suggest a quick fix to a recently discovered serious bug [3]
without invalidating the DRF guarantee. Finally, the formal definition
provides a basis to test concrete examples, and opens the way for future
work on JMM-aware logics for concurrent programs.

1 Introduction

Today, most techniques for reasoning about shared-memory concurrent programs
assume an interleaved semantics, although modern hardware architectures and
compilers do not guarantee one [4]. So there is a gap between languages with
shared-memory concurrency and reasoning principles for them. Java aims to
bridge the gap via a complex contract, called the Java Memory Model (JMM) [1,
2], which holds between the virtual machine and programmers. For programmers,
the JMM claims that correctly synchronised (data race free) programs only have
sequentially consistent behaviours, which means that reasoning based on inter-
leaved semantics is valid in this case. This is the data race free DRF guarantee.
For compiler writers implementing the virtual machine, the JMM constrains
permissible code optimisations; most prominently, instruction reordering.

To see why the memory model contract is needed, consider the simple pro-
gram below, with two threads sharing memory locations x and y:

initially: x = y = 0
1: r1 := x 3: r2 := y
2: y := 1 4: x := 1

The contents of the thread-local registers r1 and r2 at the end of the program
depends on the order of serialisation of memory accesses. For example, the result

r1 = 0 and r2 = 0 holds if the order of the statements is 1, 3, 2, 4. On the other
hand, the result r1 = r2 = 1 is not possible in any serialisation of the program,
and most programmers would not expect such an outcome. But if a compiler
or the low-level hardware reorders the independent instructions 1, 2 and 3, 4
in each thread, then the result r1 = r2 = 1 is possible, e.g., by executing the
statements in the sequence 2, 4, 3, 1. This kind of reordering results from simple
optimisations, such as write buffering to main memory or common subexpression
elimination. To allow these optimisations, we need a relaxed memory model that
provides weaker guarantees than global sequential consistency, but allows the
programmer some kind of control to prevent unintended behaviours.

The Java Memory Model has already been revised after the initial version
had serious flaws [5]. The current version is designed to provide:

1. a promise for programmers: sequential consistency must be sacrificed to al-
low optimisations, but it will still hold for data race free programs;

2. a promise for security : even for programs with data races, values should not
appear “out of thin air”, which prevents unintended information leakage;

3. a promise for compilers: common hardware and software optimisations should
be allowed as far as possible without violating the first two requirements.

The first requirement gives us hope for intuitive understanding, and simple pro-
gram logics, for data race free programs. Most programs should be correctly
synchronised, as recommended by [6]. The second requirement makes a security
promise for the “racy” programs: even though values may be undetermined, they
should have an origin within the computation, and not, e.g., appear from other
memory contents which may be sensitive. Considering these goals, Manson et al
[1] published proofs of two theorems. The first theorem, stating the promise for
compilers, was recently falsified — Cenciarelli et al [3] found a counterexample.
The second theorem, which is the DRF guarantee, is the topic of this paper.

Contribution. We describe a formalisation of definitions of the JMM and a proof
of the DRF guarantee it provides. We believe that this is the first theorem prover
formalisation of Java’s memory model. The exercise has provided significant
clarifications of the official definition and proof, turning up notable flaws. Our
formalisation reveals a design space for changes that preserve the DRF guarantee,
enabling us to suggest fixes for the recently discovered bug while preserving the
key guarantee for programmers. When testing our fixes on the JMM test cases [7]
we discovered another flaw in the memory model and we offer a solution for it, as
well. While we have intentionally stayed close to the informal definitions, we have
made some simplifications. The most important is that we require executions to
be finite, because infinite executions cause some tricky problems without, we
believe, illuminating the DRF proof (see Sect. 4 for further details).

Overview. The rest of this paper is organised as follows. In Sect. 2, we introduce
the basic definitions of the JMM, as we have formalised them in Isabelle, together
with some commentary to assist the reader. In Sect. 3 we give our proof of the
DRF guarantee. This considerably expands the informal proof of [8]. Sect. 4

summarises our results, collecting together changes to the JMM to repair the
bugs, discussions of the differences between our formalisation and the official
informal work, and the improvements we claim to have made. Sect. 5 concludes,
mentioning related work on other formal methods applied to memory models,
as well as our plans for future work building on the results here.

2 Formal Definitions for the JMM

The following definitions are from [2, 1], with minor differences described at the
end of the section. We use abstract types T for thread identifiers, ranged over by
t; M for synchronisation monitor identifiers, ranged over by m; L for variables
(i.e., memory locations), ranged over by v (in examples, x, y, etc.); and V for
values. The starting point is the notion of action.

Definition 1 (Action). An action is a memory-related operation; it is modelled
by an abstract type A with the following properties: (1) Each action belongs to
one thread, denoted T (a). (2) An action has one of the following action kinds:

– volatile read of v ∈ L,
– volatile write to v ∈ L,
– lock on monitor m ∈M,
– unlock on monitor m ∈M,

– normal read from v ∈ L,
– normal write to v ∈ L.

An action kind includes the associated variable or monitor. The volatile read,
write, lock and unlock actions are called synchronisation actions.

In contrast to an interleaved semantics, in relaxed memory models there is
no total ordering of all actions by time. Instead, the JMM imposes a total order,
called synchronisation order, on all synchronisation actions, while allowing non-
volatile reads and writes to be reordered to a certain degree. To capture the
intra-thread ordering of actions, there is a total order, called program order,
on all actions of each thread, which does not relate actions of different threads.
These orders are gathered together in the definition of an execution. An execution
allows non-deterministic behaviours because the order and visibility of memory
operations may not be fully constrained.

Definition 2 (Execution). An execution E = 〈A,P,≤po,≤so,W, V 〉, where:
– A ⊆ A is a set of actions,
– P is a program, which is represented as a function that for each thread decides

validity of a given sequence of action kinds with associated values if the action
kind is a read or a write,

– the partial order ≤po⊆ A×A is the program order,
– the partial order ≤so⊆ A×A is the synchronisation order,
– W ∈ A ⇒ A is a write-seen function. It assigns a write to each read action

from A, the W (r) denotes the write seen by r, i.e. the value read by r is
V (W (r)). The value of W (a) for non-read actions a is unspecified,

– V ∈ A ⇒ V is a value-written function that assigns a value to each write
from A, V (a) is unspecified for non-write actions a.

Following Lamport [9], an approximation of global time is now defined by the
happens-before relation of an execution. An action a happens-before b, written
a ≤hb b, if either: (1) a and b are a release-acquire pair, such as an unlock of
a monitor m and a lock of the same m, where a is ordered before b by the
synchronisation order, or (2) a is before b in the program order, or (3) there is
c such that a ≤hb c and c ≤hb b. A precise definition follows in Def. 4.

Fig. 1 shows two simple cases of the happens-before relation. In the first
execution, the write x := 42 happens-before the read of x because the accesses
to x are protected by the monitor m; the lock of m is ordered after the unlock
of m by the synchronisation order in the given execution. Similarly, a volatile
write and a volatile read from the same variable are a release-acquire pair. In the
second execution, the happens-before includes two such pairs for the variable v.
This means that the three instructions in thread 2 must happen in between the
first two and last two instructions in thread 1.

(unlock-lock) (volatile write-read)

Fig. 1. Happens before by release-acquire pairs

The precise definition of the happens-before relation is provided via an aux-
iliary synchronises-with ordering. Each is derived from a given execution.

Definition 3 (Synchronizes-with). In an execution with synchronisation or-
der ≤so, an action a synchronises-with an action b (written a <sw b) if a ≤so b
and a and b satisfy one of the following conditions:

– a is an unlock on monitor m and b is a lock on monitor m,
– a is a volatile write to v and b is a volatile read from v.

Definition 4 (Happens-before). The happens-before order of an execution
is the transitive closure of the composition of its synchronises-with order and its
program order, i.e. ≤hb= (<sw ∪ ≤po)+.

To relate a (sequential) program to a sequence of actions performed by one
thread we must define a notion of sequential validity. The next definition is new to

our formalisation and was left implicit in [1], as was the notion of program itself.
To be as abstract as possible, we consider programs as characteristic functions
on traces, i.e., thread-indexed predicates on sequences of pairs of an action kind
and a value. An action kind and value pair determines the effect of a memory
operation (e.g. a read from a variable, or a write to a variable with a given value).

Definition 5 (Sequential validity). We say that a sequence s of action kind-
value pairs is sequentially valid with respect to a thread t and a program P if
P (t, s) holds.

The next definition places some sensible restriction on executions.

Definition 6 (Well-formed execution). We say that an execution 〈A,P,≤po,
≤so,W, V 〉 is well-formed if

1. A is finite.
2. ≤po restricted on actions of one thread is a total order, ≤po does not relate

actions of different threads.
3. ≤so is total on synchronisation actions of A.
4. ≤so is consistent with ≤po, i.e. a ≤so b ∧ b ≤po a =⇒ a = b.
5. W is properly typed: for every non-volatile read r ∈ A, W (r) is a non-volatile

write; for every volatile read r ∈ A, W (r) is a volatile write.
6. Locking is proper: for all lock actions l ∈ A on monitors m and all threads t

different from the thread of l, the number of locks in t before l in ≤so is the
same as the number of unlocks in t before l in ≤so.

7. Program order is intra-thread consistent: for each thread t, the sequence of
action kinds and values1 of actions performed by t in the program order ≤po

is sequentially valid with respect to P and t.
8. ≤so is consistent with W : for every volatile read r of a variable v we have

W (r) ≤so r and for any volatile write w to v, either w ≤so W (r) or r ≤so w.
9. ≤hb is consistent with W : for all reads r of v it holds that r 6≤hb W (r) and

there is no intervening write w to v, i.e. if W (r) ≤hb w ≤hb r and w writes
to v then2 W (r) = w.

2.1 Legal Executions

The definition of legal execution constitutes the core of the Java Memory Model,
but it appears convoluted at first sight.

Definition 7 (Legality). A well-formed execution 〈A,P,≤po,≤so,W, V 〉 with
happens before order ≤hb is legal if there is a finite “committing” sequence of
sets of actions Ci and well-formed “justifying” executions Ei = 〈Ai, P,≤poi ,≤soi

,Wi, Vi〉 with happens-before ≤hbi , such that C0 = ∅, Ci−1 ⊆ Ci for all i > 0,⋃
Ci = A, and for each i > 0 the following rules are satisfied:

1 The value of an action a is V (a) if a is a write, V (W (a)) if a is a read, or an arbitrary
value otherwise.

2 The Java Specification omits the part “W (r) = w”, which is clearly wrong since
happens-before is reflexive.

1. Ci ⊆ Ai.
2. ≤hbi |Ci = ≤hb |Ci .
3. ≤soi |Ci = ≤so |Ci .
4. Vi|Ci = V |Ci .
5. Wi|Ci−1 = W |Ci−1 .
6. For all reads r ∈ Ai − Ci−1 we have Wi(r) ≤hbi r.
7. For all reads r ∈ Ci − Ci−1 we have Wi(r) ∈ Ci−1 and W (r) ∈ Ci−1.

To get some intuition for Def. 7, we explain some examples of behaviours
that the memory model tries to rule in and out, and how they are argued about.
The structure of reasoning is to consider the desired outcome, and then explain
how it can (or cannot) arise by some (or any) execution. When considering a
possibly-legal execution, we argue that it is allowed by repeatedly extending
a committing sequence with actions which could happen in some speculated
justifying executions Ei. The aim is to commit the entire execution.

As a first example, consider the program on the first page and a desired ex-
ecution in which the result is r1 = r2 = 1. To denote actions, we use W (x, v)
for a write of value v to variable x and R(x) for a read from x. We start with
C1 being two (implicit) initialisation actions which assign the default values:
C1 = {W (x, 0),W (y, 0)}. The two reads must each see the writes of value
1, which are in opposite threads. Since writes must be committed before the
reads that see them (rule 7 of legality), we next commit the writes C2 = C1 ∪
{W (x, 1),W (y, 1)}. Finally, we can commit the reads C3 = C2 ∪ {R(x), R(y)}.
This case needs no speculation; we justify the committing sequence using only
one execution, in which reads see the default writes and all the writes write 0.

Another example of a legal execution is for the first program in Fig. 2 where
the read of x sees the write of x in the other thread and the read of y sees the first
write of y in the first thread. We again start with C1 = {W (x, 0),W (y, 0)}. To
commit the reads, we need to commit the writes with values 42 first (rules 4 and
7). As we cannot commit x:=r2 with the value 42 yet (rule 6 and intra-thread
consistency), we commit C2 = C1 ∪ {W (y, 42)} and justify it by an execution
performing the write y:=42. Committing the read r2:=y (C3 = C2 ∪ {R(y)})
enables this read to see the write W (y, 42) (thanks to rule 5) in the corresponding
justifying execution, hence we can commit the write to x with the value 42: C4 =
C3 ∪ {W (x, 42)}. Finally, committing the read r1:=x completes the committing
sequence. Note that in the final execution, the instruction y:=r1 performs the
write to y of 42, whereas the instruction y:=42 was used to justify it!

In contrast, the out of thin air behaviour in the second program of Fig. 2
cannot be achieved by any legal execution. To see this, suppose the contrary and
consider a committing sequence. The writes of 42 must be committed before the
reads (rules 4 and 7), hence when justifying the first committed of the two writes
of 42 none of the reads is committed yet, thus both the reads must see the writes
that happen-before them (rule 6). But the only writes that happen-before the
reads are the default writes of the value 0. As a result, it is not possible to justify
the first write of the value 42.

initially x = y = 0

r1 := x r2 := y

if (r1 > 0) x := r2

y := r1

if (r1 == 0)

y := 42

initially x = y = 0

r1 := x r2 := y

y := r1 x := r2

(allowed) (prohibited)

Is it possible to get r1 = r2 = 42 at the end of an execution?

Fig. 2. Examples of legal and illegal executions.

Definition 8 (Sequential consistency). An execution is sequentially consis-
tent if there is a total order consistent with the execution’s program order and
synchronisation order such that every read in the execution sees the most recent
write in the total order.

Definition 9 (Conflict). An execution has a conflicting pair of actions a and
b if both access the same variable and either a and b are writes, or one of them
is a read and the other one is a write.

Definition 10 (DRF). A program is data race free if in each sequentially con-
sistent execution of the program, for each conflicting pair of actions a and b in
the execution we have either a ≤hb b or b ≤hb a.

With this definition of data race freedom, the DRF guarantee is very strong.
For example, both programs below are considered data race free.

initially: x = y = 0
r1 := x r2 := y
if (r1 > 0) if (r2 > 0)
y := 1 x := 1

v is volatile
initially: x = v = 0

x := 1 if (v == 1)
v := 1 { x := 42
if (v == 2) v := 2 }
r := x

The DRF guarantee ensures that in the first program [8], the reads of x and
y will always see 0. In the second program, the DRF guarantees that the read
r:=x can only see the write x:=42. Note that if v were not volatile, the second
program would not be data race free and the read of x could see the value 1 (but
not 0). Section 4 contains further discussion on the above definitions.

2.2 Notes on Relation to Informal Definitions

In our formalisation, we define several notions slightly differently to the informal
specification in [1]. We define actions as an abstract data type (Def. 1) instead of
a tuple containing a unique action identifier, a thread identifier, an action kind

and object involved in the action. Def. 2 (execution) differs from the one of [1]
by omitting the synchronises-with and happens-before orders, which are derived
in terms of the program and synchronisation orders, and by giving a precise
meaning to the notion of programs. Our definition of well-formed executions
(Def. 6) requires the set of actions to be finite instead of just restricting the
synchronisation order to an omega order. We will discuss the motivation for
this change in Sect. 4. We omit action kinds irrelevant for the DRF guarantee
proof – external actions and thread management actions, such as thread start,
thread finish, thread spawn and thread join3. Compared to definition of legality
in [1], we have removed rules 8 and 9 for legality as they are not important for
the proof. Finally, we strengthen the notion of sequential consistency to respect
mutual exclusivity of locks. See Sect. 4 for further details.

3 Proof of DRF Guarantee

Definition 11 (Well-formed program). We say that a program P is well-
formed if for all threads t and action kind-value sequences s, sequential validity
of s with respect to t and P implies

– sequential validity of all prefixes u of s with respect to t and P (P is prefix-
closed), and

– sequential validity of all sequences u obtained from s by changing the value
of the last action-value pair to a different value with respect to t and P ,
provided that the last action in s is a read (P is final read agnostic).

Lemma 1. If ≤p is a partial order on A and ≤t is a total order on S ⊆ A, then
≤q= (≤p ∪ ≤t)+ is a partial order on A.

Lemma 2. For any well-formed execution of a data race free well-formed pro-
gram, if each read sees a write that happens-before it, the execution is sequentially
consistent.

Proof. Using Lemma 1, (≤so ∪ ≤po)+ is a partial order. Take a topological
sort ≤t on (≤so ∪ ≤po)+. Since ≤t is a total order on a finite set, it must be
well-founded. We prove sequential consistency by well-founded induction on ≤t.

Suppose that we have a read r and all reads x ≤t r see the most recent write.
We will show that r also sees the most recent write by contradiction.

Assume that r does not see the most recent write and let w be the most
recent write to the variable read by r. Let A′ be {x |x ≤t r}. Then the execution
E′ = 〈A′, P,≤po |A′×A′ ,≤so |A′×A′ ,W [r 7→ w], V 〉 is a well-formed execution
(see Lemma 3). From the induction hypothesis, E′ is sequentially consistent (all
reads in E′ see the most recent write). From the well-formedness of E it cannot
be the case that W (r) ≤hb w ≤hb r, i.e. either W (r) and w, or w and r are a
conflicting pair of actions in both E and E′.

As a result, E′ is a well-formed sequentially consistent execution with a
conflict. This is a contradiction with data race freedom of P .
3 However, we have formalised a version that contains all these actions.

The proof of Lemma 2 is broadly similar to the informal proof in [1]. There
is a minor difference in performing a topological sort on (≤so ∪ ≤po)+ instead
of happens-before order. This guarantees consistency with the synchronisation
order, which we use in the next lemma. A more significant difference is restricting
the execution to all actions before r in ≤t order and updating W (r) to see w,
instead of constructing a sequentially consistent completion of the execution.
The reason is that sequentially consistent completion might require to insert
initialisation actions to the beginning of the execution, hence the original proof
does not work as stated, because it assumes that the sequentially consistent
completion only adds actions to the “end” of the execution (in terms of ≤t). We
discuss related issues in Sect. 4.

Lemma 3 (Cut-and-update). Let P be a well-formed program, 〈A,P,≤po

,≤so,W, V 〉 a well-formed execution, ≤hb its happens-before order, ≤t a total
order on A, r ∈ A a read action of variable v, and w ∈ A a write action to v
such that:

– ≤t is consistent with ≤so and ≤hb,
– for every read r ∈ A we have W (r) ≤hb r,
– w is the most recent write to r in ≤ t, i.e. w ≤t r and for all writes w′ to

variable v either w′ ≤t w or r ≤t w′,

Let A′ be {x |x ≤t r}. Then the execution 〈A′, P,≤po |A′×A′ ,≤so |A′×A′ ,W [r 7→
w], V 〉 is a well-formed execution.

Proof. It is straightforward (although tedious) to establish all the conditions
from Def. 6 for well-formedness of 〈A′, P,≤po |A′×A′ ,≤so |A′×A′ ,W [r 7→ w], V 〉.

The following is our formal equivalent of Theorem 3 from [1]; ensuring this
property is a key motivation behind the definitions of the JMM.

Theorem 1 (DRF guarantee). Any legal execution E of a well-formed data
race free program is sequentially consistent.

Proof. From Lemma 2 it is sufficient to show that every read in E sees a write
that happens-before it. From the legality of E we have a committing sequence
{Ci, Ei} justifying E. We will show by induction on i that all reads in Ci see
writes that happens-before them.

The base case is trivial (C0 = ∅). For the induction step, let’s assume that
all reads r ∈ Ci−1 we have W (r) ≤hb r. We will show that for any read r ∈ Ci

we get W (r) ≤hb r.
Note that Ei is sequentially consistent: Let ≤hbi

be happens-before of Ei.
Using the induction hypothesis with rules 2, 5 we obtain W (r) ≤hbi r for all
reads r ∈ Ci−1. Using rule 6, for all reads r ∈ Ai − Ci−1 we have W (r) ≤hbi r.
Thus, Ei is sequentially consistent by Lemma 2.

Because the program is correctly synchronised, Ei is sequentially consistent,
and r and W (r) are accessing the same variable, r and W (r) must be ordered

by ≤hbi in Ei and thus in E (rules 2 and 7). From well-formedness of E we have
r 6≤hb W (r), so we must have W (r) ≤hb r. This proves the induction step.

Since each read has to appear in some Ci we have proved that all reads in E
see writes that happen-before them, thus E is sequentially consistent.

Note that we use rule 2 for legality (≤hbi
|Ci

=≤hb |Ci
) only to compare

W (r) and r. Rules 1, 3, 4 and the first part of rule 7 for legality (i.e. ∀r ∈
Ci −Ci−1. r is read ⇒ Wi(r) ∈ Ci−1) are not used in the proof at all. Also note
that rule 1 is implied by rule 2.

4 Results of the Formalisation

Our formalisation has resulted in a clarification of the JMM definitions in several
areas. We have also deviated from the JMM in a few places for simplification.

The most significant changes are restricting the executions to be finite and
omitting default initialisation actions because of inconsistencies in the JMM
definitions. Fixing these inconsistencies introduces strange artifacts in infinite
executions, which is why we confine the executions to be finite. As a side product,
this also simplifies proofs without sacrificing anything important, we believe.

We have refined the memory model in several ways. We have clarified the
notion of intra-thread consistency and identified the precise interface with the
sequential part of Java. Moreover, we strengthen the DRF guarantee by con-
sidering a stronger definition of sequential consistency that requires existence of
a total order consistent with program order and synchronisation order, making
it respect mutual exclusion. In the proof itself, we fix small inconsistencies and
eliminate proof by contradiction in favour of induction where possible, and we
state and prove the technically challenging Cut-and-update lemma (Lemma 3).

Finally, we identify the requirements on legality that are necessary to prove
the DRF guarantee. This allows us to formulate a weaker notion of legality that
fixes the recently discovered bugs in the memory model.

In the following paragraphs we discuss each of the contributions in detail.

Fixing the bugs by weakening legality. The formal proof of Theorem 1(DRF
guarantee) revealed that Def. 7 (legality) is unnecessarily strong. We propose
(and have checked) a weaker legality requirement by omitting the rule 3 (≤soi

|Ci
=≤so |Ci

) and replacing rules 2 and 7 in Def 7 by the following weaker ones4:

2. For all reads r ∈ Ci we have W (r) ≤hb r ⇐⇒ W (r) ≤hbi
r, and r 6≤hbi

W (r),
7. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1.

This fixes the counterexample to Theorem 1 of [1] discovered by Cenciarelli et
al [3]. We conjecture that this fix would also enable a correct proof to be given.

While manually testing the weaker notion of legality on the documented
causality tests [7], we found a previously unreported problem of the existing
4 NB: we must keep rule 4, which is needed to prohibit the out of thin air behaviours.

JMM—it violates the causality tests 17–20. Our weaker legality (revised rule
7) validates these examples while properly validating the other test cases. For
example, causality test case 20 says that the program below should allow the
result r1 = r2 = r3 = 42, because optimisations may produce this (see [7] for
details):

initially x = y = 0
T1 T2 T3
join T3 r2 := y r3 := x
r1 := x y := r2 if (r3 == 0)
y := r1 x : = 42

However, it appears that this is not legal, because when committing the write
r1:=x, the write of 42 to y must be already committed, hence the read of x must
see a write to x with value 42. By rules 6 and 7 of legality, this write to x must
be committed and it must happen-before the read. However, there is no such
write. With the weaker legality we are not constrained by rule 7.

Inconsistency for initialisation actions. The Java Memory Model requires that

The write of the default value (zero, false, or null) to each variable
synchronises-with to the first action in every thread [8]

and defines synchronises-with as an order over synchronisation actions. This
is inconsistent with the definition of synchronisation actions; ordinary writes
are not synchronisation actions. Moreover, the JMM does not specify the thread
associated with the initialisation actions and how they are validated with respect
to intra-thread consistency.

There are several solutions to this. The SC- memory model [10] suggests
having a special initialisation thread and letting its termination synchronise-
with first actions of other threads. In our approach, we have tried to stay close
to the JMM and instead we defined a new kind of synchronisation action—
an initialisation action. These actions belong to a special initialisation thread
that contains only the initialisation actions for all variables accessed in the pro-
gram. The initialisation actions behave like ordinary write actions except they
synchronise-with the thread start action of each thread. Note that in both the
SC- and our formalisation, there is no significant difference between treating
initialisation actions differently from normal write actions. We have checked a
second version of our formalisation which adds initialisation actions to Def. 1.

Infinite executions. The JMM does not require finiteness of well-formed execu-
tions. Instead, the synchronisation order must be an omega order. Although it
is not stated explicitly in the JMM specification, the discussion of fairness in
[8] implies a progress property that requires threads in finite executions to be
either terminated or deadlocked. Combination of the progress with the initial-
isation actions introduces an unpleasant artifact. One would expect that this
program:

while(true) { new Object() { public volatile int f; }.f++; }

has just one infinite execution. However, an infinite number of variables f must
be initialised. These initialisations must be ordered before the start of the thread
performing the loop, which violates omega-ordering of the synchronisation order.
As a result, this program does not have any well-formed execution in the current
JMM. A similar issue also breaks the proof of Lemma 2 in [1], as noted in the
paragraph following the proof given there. In our approach we do not require
the finite executions to be finished5. This allows us to use the Cut-and-update
lemma instead of the sequentially consistent completion used in [1].

Sequential consistency. Sequential consistency in the JMM requires existence of
a total order consistent with program order such that each read sees the most
recent write in that total order. This definition allows the program

initially x = y = z = 0
r1 := y lock m lock m
x := r1 r2 := x y := 1

z := 1 r3 := z
unlock m unlock m

to have a sequentially consistent execution resulting in r1 = r2 = r3 = 1 ,
using the total order lock m, lock m, y:=1, r1:=y, x:=r1, r2:=x, z:=1, r3:=z,
unlock m, unlock m. Taking the most recent writes as values of reads, this order
surprisingly results in r1 = r2 = r3 = 1. One can check that this cannot happen
in any interleaved execution respecting mutual exclusivity of locks.

To make sequential consistency compatible with the intuitive meaning of
interleaved semantics, we have formalised sequential consistency by requiring
existence of a total order consistent with both the program order and synchro-
nisation order and proved the DRF guarantee for this case. Since our definition
of sequential consistency is stricter, the definition of data race free program
becomes weaker (equivalent; it turns out) and consequently the DRF guaran-
tee in the original setting directly follows from our DRF guarantee for stronger
sequential consistency.

Requirements on thread management actions. For thread management, the JMM
introduces further actions for thread start, termination, spawn and join. In
well-formed executions, the JMM requires certain actions to be ordered by the
synchronises-with order, e.g., thread spawn must synchronise-with the corre-
sponding thread start, thread finish synchronises-with thread join. However, it
is also necessary to prohibit executions from other undesirable behaviours, such
as running threads that have not been spawned.

To address this in our formalisation, we introduce a constant for application’s
main thread and we specify that (1) for any thread except the main thread there

5 We believe that this does not affect observational equivalence, since observable be-
haviours are finite by the definition of [1]. But we have not checked this formally.

is a unique thread spawn action, (2) there is no thread spawn action for the main
thread, (3) each thread has a unique thread start action that is ordered before all
actions of that thread in the program order, (4) for each thread there is at most
one thread terminate action, and there is no action ordered after the terminate
action in the program order.

5 Conclusion

We have formally verified the guarantee of sequential consistency for data race
free programs in the Java Memory Model. We believe that this is one of the first
theorem prover formalisations of the JMM and its properties; it has shown that
the current JMM is still flawed, although perhaps not fatally so. The topic was
an ideal target for formalisation: we started from a highly complex informal def-
inition that is difficult to understand and for which it is hard to be certain about
the claims made. Indeed, while we were working on the DRF proof (Theorem 3
of [1]), Cenciarelli et al [3] meanwhile showed a counterexample to Theorem 1
of [1] that promised legality of reordering of independent statements. We dis-
covered another bug while justifying causality test cases [7]. The second part of
the contract, the out of thin air promise, was not proved or stated in [1], and is
demonstrated only on small prohibited examples so far.

In keeping with the TPHOLs recommendation for good cross-community ac-
cessibility of papers, we have avoided theorem prover-specific syntax throughout.
The formalisation occupies about 4000 lines in Isabelle/Isar [11], and takes un-
der a minute to check. Our definitions build on the standard notion of relations
in Isabelle/HOL as a two-place predicate together with a set representing the
domain; nevertheless we had to establish some further properties required for
the proof. To explore all definitions, we had to produce multiple versions of the
scripts; current theorem prover technology still makes this harder than it ought
to be. For those who are interested in the Isabelle specifics, we have made our
formalisation available on the web.6

Related Work. In the computer architecture world, there is a long history of
work on weak memory models. These models usually specify allowed memory
operation reorderings, which either preserve sequential consistency for data race
free programs, i.e. they provide the DRF guarantee [12], or provide mechanisms
for enforcing ordering (memory barriers). For a detailed survey, see [4, 13].

Until recently, the programming languages community has mostly ignored the
issues of memory models and relied on specifications of the underlying hardware
(this is the case for, e.g., C, C++, and OCaml). But programmers write programs
that execute incorrectly under memory models weaker then sequential consis-
tency. For example, Peterson’s mutual exclusion algorithm and double-checked
locking are known to be incorrect for current hardware architectures [14, 15].
This has encouraged recent progress on adapting the work on hardware memory
models to define and explain the memory models of programming languages [16,
6 Please see: http://groups.inf.ed.ac.uk/request/jmmtheory/.

17]. However, these techniques either violate the out of thin air property, or do
not allow advanced optimisation techniques that remove dependencies. This was
the reason for Java to adopt the memory model based on speculations [1, 18],
which has spawned semantic investigation like [3] as well as our own study.

Likewise, little work has yet been done to formalise behaviours of hardware or
software memory models in formal verification community. As far as we know all
program logics and theorem prover based methodologies [19–21] for concurrent
shared memory assume interleaved semantics, which implies sequential consis-
tency. The DRF guarantee, formalised in this paper, ensures that these methods
are correct for data race free programs. The data race freedom can be established
inside the program logics themselves, or using dedicated type systems [22, 23]. A
complete framework for thread-modular verification of Java programs, including
the data race freedom and atomicity verification, is currently being developed
in the Mobius project [24].

More work has been done to verify properties of small programs or data struc-
tures using state exploration techniques. Huynh and Roychoudhury [14] check
properties of C# programs by examining all reachable states of a program, while
accounting for reorderings allowed by the CLI specification [25]. Burckhardt et
al [26, 27] use a SAT solver to perform bounded tests on concurrent data struc-
tures in relaxed memory models. To explore proposals for replacing the early
JMM [16, 28], Yang et al [29] built a flexible framework for modelling executions
in memory models with complex reordering and visibility constraints. To our
knowledge, the only formal verification tool for the current JMM is the data
race analysis by Yang et al [30]. However, data race freedom is a relatively easy
property to show—only sequentially consistent executions need to be examined.
The declarative nature of the JMM and its speculative justifications make it very
hard to explore all executions of the given program; the obligation to find an
execution for each committed action quickly blows up the state space. Our the-
orem proving approach differs from state exploration in the typical way: we aim
to verify general properties of the memory model rather than justify behaviour
of individual programs automatically.

Future Work. The next direction for our analysis is to formalise the description
and verification of the techniques used to justify optimisations in the allowed
causality tests for the JMM [7]. We hope to begin this by formally checking
Theorem 1 of [1] with our fix to legality.

The out of thin air guarantee is the main motivation for the JMM. Without
this requirement, we could define the memory model easily by allowing all code
transformations and executions that appear sequentially consistent for DRF pro-
grams [12] and leave the behaviour for programs that are not correctly synchro-
nised unspecified. The notion of “out of thin air” is mostly example driven—we
only have specific behaviours of concrete programs that should be prohibited
and a general intuition that in two groups of threads, each group using disjoint
sets of variables, there should not be any information leak from one group to
the other, e.g., a reference allocated by a thread in the first group should not be

visible to any read performed by a thread in the other group. We plan to state
and prove these properties formally.

Although it is not described here, we have instantiated our framework with
a simple sequential language that is sufficient to express simple examples, such
as the ones in Fig. 2 or in [7]. However, the backwards style of reasoning in
the JMM makes it difficult to show illegality of individual executions and we
need to find better ways. Moreover, adding allocation to the language makes
it impossible to verify validity of a thread trace separately, because we need to
ensure freshness globally. To address this, our idea is to index locations by their
allocating thread, but we have not explored the impact of this yet.

Finally, we hope that with a simplified and clear memory model, we will have
a firmer basis for studying logics for concurrent programs which respect weaker
memory models, which is our overall objective.

Acknowledgements. The second author is supported by a PhD studentship awarded
by the UK EPSRC, grant EP/C537068. Both authors also acknowledge the sup-
port of the EU project Mobius (IST-15905).

References

1. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL ’05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages, New York, NY, USA, ACM Press (2005) 378–391

2. Gosling, J., Joy, B., Steele, G., Bracha, G.: Memory Model. In: Java(TM) Language
Specification, The (3rd Edition) (Java Series). Addison-Wesley Professional (2005)
557–573

3. Cenciarelli, P., Knapp, A., Sibilio, E.: The Java memory model: Operationally,
denotationally, axiomatically. In: 16th ESOP. (2007)

4. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
Computer 29(12) (1996) 66–76

5. Pugh, W.: The Java memory model is fatally flawed. Concurrency - Practice and
Experience 12(6) (2000) 445–455

6. Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concur-
rency in Practice. Addison-Wesley Professional (2005)

7. Pugh, W., Manson, J.: Java memory model causality test cases (2004) http:

//www.cs.umd.edu/∼pugh/java/memoryModel/CausalityTestCases.html.
8. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. Submitted to Special

POPL Issue. (2005)
9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Commun. ACM 21(7) (1978) 558–565
10. Adve, S.: The SC- memory model for Java (2004) http://www.cs.uiuc.edu/

∼sadve/jmm.
11. Wenzel, M.: The Isabelle/Isar reference manual (2005) http://isabelle.in.tum.

de/doc/isar-ref.pdf.
12. Adve, S.V., Aggarwal, J.K.: A unified formalization of four shared-memory models.

IEEE Trans. Parallel Distrib. Syst. 4(6) (1993) 613–624
13. Kawash, J.: Limitations and Capabilities of Weak Memory Consistency Systems.

PhD thesis, The University of Calgary (2000)

14. Roychoudhury, A.: Formal reasoning about hardware and software memory models.
In: ICFEM, London, UK, Springer-Verlag (2002) 423–434

15. Bacon, D., et al.: The “double-checked locking is broken” declaration (2001) http:
//www.cs.umd.edu/∼pugh/java/memoryModel/DoubleCheckedLocking.html.

16. Maessen, J.W., Shen, X.: Improving the Java memory model using CRF. In:
OOPSLA, New York, NY, USA, ACM Press (2000) 1–12

17. Saraswat, V., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory
models. In: ACM 2007 SIGPLAN Conference on Principles and Practice of Parallel
Computing, ACM (2007)

18. Manson, J.: The Java memory model. PhD thesis, University of Maryland, College
Park (2004)

19. Ábrahám, E., de Boer, F.S., de Roever, W.P., Steffen, M.: An assertion-based
proof system for multithreaded Java. TCS 331(2-3) (2005) 251–290

20. Flanagan, C., Freund, S.N., Qadeer, S., Seshia, S.A.: Modular verification of mul-
tithreaded programs. Theor. Comput. Sci. 338(1-3) (2005) 153–183

21. Moore, J.S., Porter, G.: The apprentice challenge. ACM Trans. Program. Lang.
Syst. 24(3) (2002) 193–216

22. Flanagan, C., Freund, S.N.: Type-based race detection for Java. In: PLDI, New
York, NY, USA, ACM Press (2000) 219–232

23. Boyapati, C., Rinard, M.: A parameterized type system for race-free Java pro-
grams. In: OOPSLA, New York, NY, USA, ACM Press (2001) 56–69

24. Huisman, M., Grigore, R., Haack, C., Hurlin, C., Kiniry, J., Petri, G., Poll, E.:
Report on thread-modular verification (2007) Mobius project deliverable D3.3.
Available from http://mobius.inria.fr.

25. Microsoft: Standard ECMA-335 Common Language Infrastructure (CLI) (2005)
26. Burckhardt, S., Alur, R., Martin, M.M.K.: Bounded model checking of concurrent

data types on relaxed memory models: A case study. In Ball, T., Jones, R.B., eds.:
CAV. Volume 4144 of LNCS., Springer (2006) 489–502

27. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: Checking consistency of
concurrent data types on relaxed memory models. In: PLDI, San Diego, California,
USA, ACM Press (2007)

28. Manson, J., Pugh, W.: Semantics of multithreaded Java. Technical Report CS-
TR-4215, Dept. of Computer Science, University of Maryland, College Park (2001)

29. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: UMM: an operational memory
model specification framework with integrated model checking capability: Research
articles. Concurr. Comput. : Pract. Exper. 17(5-6) (2005) 465–487

30. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Memory-model-sensitive data race
analysis. In Davies, J., Schulte, W., Barnett, M., eds.: ICFEM. Volume 3308 of
LNCS., Springer (2004) 30–45

