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Abstract. Recently, significant advances have been made in formalised
mathematical texts for large, demanding proofs. But although such large
developments are possible, they still take an inordinate amount of effort
and time, and there is a significant gap between the resulting formalised
machine-checkable proof scripts and the corresponding human-readable
mathematical texts. We present an authoring system for formal proof
which addresses these concerns. It is based on a central document for-
mat which, in the tradition of literate programming, allows one to extract
either a formal proof script or a human-readable document; the two may
have differing structure and detail levels, but are developed together in a
synchronised way. Additionally, we introduce ways to assist production of
the central document, by allowing tools to contribute backflow to update
and extend it. Our authoring system builds on the new PG Kit architec-
ture for Proof General, bringing the extra advantage that it works in a
uniform interface, generically across various interactive theorem provers.

1 Introduction

While computer-supported proof assistants are increasingly accepted in com-
puter science, in particular in the field of formal methods, their potential for
mathematical practice is only beginning to be recognised [20]. Several substan-
tial proofs reaching hundreds or thousands of pages like the Four Colour Prob-
lem [6] or the Prime Number Theorem [11] have been formalised with the aid of
systems like Coq or Isabelle, and others like the Kepler Conjecture are currently
under development [13]. It has been suggested that computer assistants could be
generally accepted in mathematical practice if authors with no prior expertise
in theorem proving could formalise mathematical proof texts at an effectivity
estimated at one page of mathematical text per day [6].

This formalisation rate is not reached by contemporary systems, and there
are two important areas that need work. First, we need to provide systems with a
higher degree of automation so that more trivialities can be discharged with less
work. Second, we need to increase the user’s productivity by making it easier to
construct formal proofs, assisting the writing process. The first point has been
a focus for theorem prover development in the last few years, but the second
point has received less attention. In general, interface technology has been quite
neglected; many interfaces still use arcane command line syntax and basic text



editors, which do not reach the same levels of productivity as e.g., integrated
development environments (IDEs) used in software development. Modern IDEs
for programming provide sophisticated mechanisms to assist writing code, for
example, constructing templates automatically from graphical models or helping
the user to search for library functions and documentation very swiftly. Clearly,
much more could be done to assist the user in proof document authoring.

We start by taking a single proof document as the central purpose of the
development: so-called document-centred authoring. In our sense, an author-
ing system is a set of tools which assist the user in constructing the central
document, maintaining the consistency of the development and documentation
under change, and generating the views which allow fine-grained interactive
exploration of the proof detail, animating proof checking in various ways. A
machine-checkable proof script and a human-readable document describing its
content are just two different views of one document. The authoring assistance
should allow powerful graphical user interface techniques such as drag-and-drop
and point-and-click [7, 18, 1], going beyond mere text editing. Moreover, an au-
thoring system assists the user by allowing other tools, in particular the prover
itself, to edit the document as well, thus increasing productivity. We call the
mechanism for this backflow.

The context of this work is a software framework for conducting interactive
proof called the Proof General Kit (PG Kit). The main new contribution, as
presented in this paper, is the extension for assisted authoring with backflow.

Outline. Sect. 2 motivates document-centred authoring and backflow. In Sect. 3
we describe the PG Kit architecture, and its extensions for authoring. To demon-
strate the viability of our approach, we develop use cases for literate proving and
script generation in Sect. 4 and Sect. 5 respectively. Sect. 6 concludes with a sur-
vey of related work and an outlook on future work.

2 Document-Centred Authoring and Backflow

A proof script is a formal text which can be run through a proof assistant to
mechanically check the validity of the proofs therein. A proof script usually does
not contain the proofs themselves, just enough information to construct them.
Some formal proof languages do contain structuring mechanisms inspired by
human proofs, but, unfortunately, the formal syntax and in particular the level
of detail required by a proof assistant usually still precludes a proof written in
such a language to be accepted as a “textbook proof” by non-expert human
readers. In contrast, we call a proof document human-readable if it is aimed
at a presentation close to textbook proofs or journal papers; typically it may
contain a higher level of abstraction, leave out repetitive arguments, and even
omit logical steps considered distracting.

Considerable effort has been devoted to bridging the gap between human-
readable and machine-checkable proof, either by making practical mathematical
language more strict and hence machine-checkable, or by making prover input



languages less formal, more abstract, and hence more human-readable (see the
related work in Sect. 6.1). But the principal dilemma of different requirements
from both human readers and proof assistants remains.

An alternative approach is to accept the dichotomy of presentation levels, and
adapt techniques similar to those of literate programming [16] to weave struc-
tured, human-readable annotations into formal proof scripts. This has already
been used, for example, in literate specification environments such as HOL-Z [8]
and Isar’s integrated LATEX output mechanism [24], where terms, formulas or
proof-states can be generated into the output during the LATEX-rendering phase.
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Fig. 1. Control and document flow for document-centred authoring.

The underlying idea of these and other approaches, which also underlies
our own, is that we have one central document from which we can extract both
human-readable text and a machine-checkable proof script. This is the document-
centred approach as depicted in Fig. 1. The user edits the document in a suitable
editing environment, and the document can be evaluated by various tools, such
as the proof assistant which checks that the document contains valid proofs,
a renderer (e.g., LATEX) which typesets or renders the document into human-
readable documentation readable outwith the system, or other tools, for example
a code generator to construct executable versions of specifications.

Our main contribution to this setting is to allow the possibility of backflow
from each tool into the central document, i.e. each tool can generate text which
in turn becomes part of the document. In contrast to the mentioned Isar mech-
anism, backflow is supported during editing and not during LATEX-rendering. In
the case of the prover, the backflow can generate parts of the central proof docu-
ment to assist in writing the proof script. We concentrate on this case in Sects. 4
and 5 below, but note that the backflow can equally well originate from tools
other than the prover. For example, the LATEX component may have generated
cross-references in previous runs which were offered in a context sensitive way
when editing the central document.



Importantly, in contrast to classical literate programming, the backflow as-
sistance has to be interactive. The user needs an immediate reaction from the
system, such as searching for applicable lemmas or inspecting terms and their
types. Interactive development also means that authors can annotate their proofs
while developing them, which is easier than to annotate them afterwards.

Thus, the technical challenges we face when implementing a system to sup-
port assisted document-centred proof document authoring are interactivity, with
the document being developed incrementally, synchronisation of the different
views of the document, and the coordination of information flow between the
different views. Our system architecture is designed to meet these challenges.

3 PGIP and the PG Kit Architecture

The Proof General Kit (PG Kit) is a software framework for conducting interac-
tive proof. It evolved from the Proof General project, which constructed a generic
interface to numerous interactive theorem provers in a piecemeal approach, by
individual customisation for communication with each proof assistant. PG Kit
is instead based on a uniform mechanism, specifying the syntax of messages
exchanged between components and the protocol governing message exchanges.
This section introduces just what is needed; full details are elsewhere [2–4].
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Fig. 2. PG Kit System Architecture

Fig. 2 shows the component-based PG Kit architecture, which closely mir-
rors the document flow of Fig. 1. The broker middleware component handles the
central document; it is responsible for managing the synchronisation between
different views. The display components on the left-hand side interact with the
user. On the right side, we have proof assistants or other tools. Each display may
implement a different interaction paradigm: a text editor (e.g., Emacs) based on
textual input and cryptic key sequences; a GUI (e.g., PGWin [3]) using graph-
ical techniques such as drag-and-drop and point-and-click to construct proofs,
or a generic IDE (e.g., Eclipse [26]) with sophisticated navigation and project
management, using both graphical and textual interaction.



3.1 The Message Protocol PGIP

The mechanism for directing proof used by PG Kit is known as the PGIP
protocol, for Proof General Interactive Proof. The order of message exchanges is
given by an informal specification [2] and enforced dynamically by the central
broker component. The syntax of PGIP messages is defined by an XML schema
written in RELAX NG [21]. There is a secondary schema called PGML, for
Proof General Markup Language, which is used for annotating concrete syntax
within messages (for example, to generate clickable regions) and to represent
mathematical symbols.4 To define the protocol, we distinguish several kinds of
messages, including: display commands which are sent from the display to the
broker, arising from user input; display messages sent to the display from the
prover or broker, which contain output for the user, and prover commands which
are sent to the prover and affect the internal (proof-relevant) state of the prover.

Messages are exchanged over channels implemented as Unix pipes or sock-
ets. Compared with simple RPC mechanisms like XML RPC, PGIP message
exchange is more permissive, allowing multiple responses. We need this because
interactive provers may send a lot of information while a proof proceeds, and a
proof may be slow or even diverge (e.g., in proof search). It is essential that this
feedback is displayed eagerly so the user can take action as soon as possible.

3.2 The Central Document

The central document is the main artefact of the system. The two principal
views on the central document are the machine-checked proof script consisting of
prover commands, and the human-readable documentation. These are extracted
from relevant parts of the central document. Note that all document content is
in principle free-form and manually generated, but the backflow concept allows
tools to assist the user in constructing both proof script and documentation.

PGIP manipulates the central document in an unspecified concrete syntax
(subject to a few constraints) by marking up the contents with PGIP commands
that give the document the structure needed. Fig. 3 shows a proof script in a
fictional simple tactical language and its markup in PGIP.5

The proof script mark-up is more fine-grained than the documentation, be-
cause it needs to be evaluated interactively. Typical proof script markup are the
elements <opengoal>, <proofstep> and <closegoal>, which start a proof,
perform a proof step, and end a proof, but also markup for the start and end
of a theory etc. Documentation is marked up as a <litcomment> element (not
yet shown), and proper comments, for the author’s eyes only, are marked up as
<comment>. The corresponding (trivial) proof document could read:

Lemma 3.14 (Simple): ”length (tl xs) = length xs - 1”.
Proof: trivial.

4 MathML is another possibility, but PGML should be easier for existing systems.
5 To save head scratching: this is provable with tl []=[] and (0-1)::nat=0.



goal "length (tl xs) = length xs - 1"

/* proof by case distinction, then it’s trivial */

case_tac "xs" THEN simp_tac THEN simp_tac

qed "Simple"

<opengoal>goal ”length (tl xs) = length xs − 1”</opengoal>
<comment> /∗ proof by case distinction, then it’s trivial ∗/</comment>
<proofstep> case tac ”xs” THEN simp tac THEN simp tac</proofstep>
<closegoal> qed ”Simple”</closegoal>

Fig. 3. A proof script and its PGIP markup.

It is not very enlightening for the human reader, neither revealing the main
argument, the proof structure, nor the lemmas and definitions used in the proof.
We will show refinements of this running example later on.

3.3 Interaction and Authoring

When the broker reads a document or when the user edits the document, it
is first parsed, causing the PGIP markup to be inserted. On the marked up
document, we can perform the following operations:

– Interactive evaluation by the prover. The broker does this on user request,
by sending parts of the script to the prover for evaluation (using a simple
linear notion of dependency, or a more fine grained dependency analysis if
supported by the prover); it corresponds to ‘stepping through the proof’,
and supports the incremental development of proof scripts.

– Extracting the proof script by removing all annotation comments and PGIP
markup. We obtain a proof script which we can feed directly to the prover,
without broker intervention, to validate it.

– Extract the documentation by extracting all literate comments and (possibly)
interleaving formatted prover commands. We obtain a document which we
can render to produce a human-readable documentation.

The document may be updated by user editing as usual, or by the backflow
mechanism. Backflow is characterised by what part of the document it targets:
documentation backflow contains documentation content, e.g. a display of the
current proof state or a named theorem or constant definition, which becomes
part of the documentation; whereas script backflow contains proof script content,
which is provided to assist the user in constructing a proof (typically by the
prover itself), and which in turn becomes prover input.

Documentation backflow is treated specially. To help with synchronisation
we want to record requests for documentation backflow in the document itself.
Then we can regenerate those parts of documentation when the proof is rerun
or adjusted: the proof state display which we have inserted previously might
have changed, for example. In the same way that the broker tracks the status of
prover commands (described in [4]), it can track the status of those parts of the
document generated by backflow to see if they are up-to-date or not.



3.4 Proof Commands and Operations

The proof script part of a document contains a sequence of prover commands in
PGIP, but not all prover commands can appear in a proof script. We distinguish
proper commands which can appear from improper commands which cannot.

The broker does not know about the concrete syntax of the system, so we
provide a way to construct them by filling in configurable templates with identi-
fiers and raw text. An <operationsconfig> configuration message provides a
prover-specific set of prover types and prover operations. The prover types (not
to be confused with the theorem prover’s logical notion of type, if it has one!)
are used to provide context menus, icons, and drag-and-drop actions (cf [18]).
Prover operations may be used to build up commands by textual substitution.
They can be bound to input events, and may then be invoked by a menu item
or drag-and-drop.

The improper commands are used for controlling and inspecting the prover’s
state, and cannot appear in the proof script being developed. A standard im-
proper command is <undostep> which undoes the last proof step in a de-
velopment. In the next section we introduce the idea of allowing configurable
improper commands to generate backflow for feeding back into the document.
This is a much more powerful way of generating prover commands than the
<operationsconfig> templates because it can be context sensitive and involve
arbitrary external tools.

3.5 Extending PGIP: Interactions for Authoring

The extensions for assisted authoring comprise the <litcomment> element and
the backflow. They are not part of the original design, but backwards compatible.

As mentioned above, the documentation is generated from parts of the doc-
ument which the prover does not see. We call these parts literate comments
to distinguish them from ordinary comments which are not part of the docu-
mentation. A literate comment contains either text or documentation backflow-
generating directives. A directive contains the PGIP command which gener-
ates the documentation (these exist already in PGIP as the proofctxt entity),
and the resulting markup in PGML. An example of a proofctxt element is
<showproofstate> which embeds the current proofstate in the document. Here
is a fragment of the RELAX grammar for the new commands:6

litcomment = element litcomment { format attr?, (text | directive)∗ }
directive = element directive { (proofctxt, pgml) }
format attr = attribute format { token }

The format attribute can be used to specify the output format if the prover
supports more than one output format, e.g. LATEX, HTML or plain text. We also
allow all proper proof commands to have an optional nodisplay attribute, e.g.
for <opengoal>:

opengoal = element opengoal { display attr?, thmname attr?, text }
display attr = attribute nodisplay { xsd:boolean }

6 see [21] to better understand the format of these rules.



The nodisplay attribute allows us to suppress proof commands for document
output (e.g., to replace “by simp tac” with “Proof is obvious”).

The other new element is <scriptinsert>, for script backflow:
scriptinsert = element scriptinsert { metavarid attr?, text }
metavarid attr = attribute metavarid { token }

To see how <scriptinsert> works, consider the usual PGIP protocol: after a
prover command is sent to the prover, the prover may send a number of prover
messages such as <normalresponse> or <proofstate>, followed by a final
<ready> message to indicate its availability. A <scriptinsert> sent by the
prover causes the text of the message to be inserted into the central document
at the current point of processing, after being parsed. Fig. 4 illustrates this. The
optional metavarid attribute specifies an alternative location in the document.

...

Prover

<scriptinsert>cmd</scriptinsert>

command

<normalresponse ...>

<ready>

<proofstate ...>

Broker

comment
more comment

more commands
more comments

<opengoal> command
</opengoal>

cmd

Proof Document

Fig. 4. Backflow

Having described PGIP and its extensions, we next show use cases which
demonstrate the extensions at work, to clarify their use and show their viability.

4 Literate Proving Made Easy

This section demonstrates how documentation backflow can provide literate
proving facilities in a generic system architecture.

Consider a prover with a simple tactic language used to write the proof in
Fig. 3 shown previously. Neither the structure nor the relevant definitions and
lemmas are obvious from this script, and, as typical for LCF-style provers, the
intermediate proof states of the underlying reasoning are completely implicit.

We are now going to add literate proving facilities to this prover, based
on LATEX. First, proofs are enclosed in a proof environment, and \com marks
literate comments (inside proofs). The content of literate comments is just usual
LATEX code. We also need concrete syntax for the directives, e.g. \proofstate.
Finally, there are pragmas (comments which have a side-effect while processing
the script), such as:



%% declare_config cname [= expr]
%% hide [cname]
%% show [cname]

These can be used to set or reset the nodisplay attribute. The hide and show
pragmas may optionally have a configuration name like short or detailed that
allows for the generation of different versions of a proof document during render-
ing. Configuration names may be expressed in terms of other previously declared
configuration names, e.g.

%% declare_config both = short or detailed

The resulting LATEX document and the concrete document flow is shown in
Fig. 5. As we can see, the parsing adds the necessary markup to the central
document. The proof is run in the broker by just stepping through it, skipping
over comments, and filling in the proofstate or the references to lemmas in the
literate comment. After that, the second literate comment in the proof reads (we
have elided the actual proofstate and displayed theorems):

<litcomment>\com{If the list is empty, we have to show:

<directive><showproofstate/><proofstate>...</proofstate></directive>

which follows by simplification from

<directive><showid name="List.tl_def.1"/><term>...</term></directive> and

<directive><showid name="Nat.diff_0_eq_0"/><term>...</term></directive>.

Notice that the proofstate (the elided part) is encapsulated by the <proofstate>
element, such that if we rerun the script, it will be replaced by the then cur-
rent proofstate. The same holds for lemmas or theorems like <thm>. From this
document, we can extract both a proof script and LATEX documentation easily.

Our approach is quite generic: we just need to integrate the parser for some
concrete syntax; in principle, it should be possible to generate the XML-formats
used by OpenOffice, for example. Of course, this kind of literate programming is
enhanced if the prover can generated typeset output to embed in the document.

5 Script Backflow

Here is our sample proof again, this time in Isabelle/Isar, which makes the
structure of the case distinction quite explicit:

lemma ”length (tl xs) = length xs − 1”:
proof (cases xs)

case Nil thus ?thesis by simp
txt{∗ If the list is empty, we have to show: @{proofstate}

which follows from simplification with @{thm Nat.diff 0 eq 0}
and @{thm{List.tl def.1}.∗}

next
case (Cons y ys) thus ?thesis by simp txt{∗ ... ∗}

qed



\begin{document}
Here follows a stunning insight from the 

Central document with PGIP markup:

<litcomment>
\begin{document} ...
\begin{proof}
</litcomment>
<opengoal> goal "length (tl xs) = length xs − 1"<opengoal>

Parsing 

Intial user input:

\begin{document}
Here follows a stunning insight from the 
weird and wonderful world of mathematics:
\begin{proof}
 goal "length (tl xs) = length xs − 1"
 \com{The proof proceeds by case distinction:}
%% hide
 case_tac "xs"

 \com{Otherwise, we have: \proofstate{}}
 \com{which is a consequence of \thm[List.tl_def.2]{}
      and arithmetic calculations.}
 THEN simp_tac
%% show

\end{proof}
\end{document}

<litcomment>\com{The proof proceeds by case distinction:}</litcomment>
<proofstep display="false">case_tac "xs"</proofstep>

goal "length (tl xs) = length xs − 1"

  THEN simp_tac
  case_tac "xs"

  qed "simple"
  THEN simp_tac

weird and wonderful world of mathematics:

DocumentationProof script

Prover

<litcomment>\com{If the list is empty, we have to show: 

 qed "Simple"

<directive><showproofstate/><proofstate>...</proofstate></directive>
which follows by simplification from <directive><showid name="List.tl_def.1"
<thm>tl []= []</thm></directive> and 
<directive><showid name="Nat.diff_0_eq_0"/><thm>0− 1= 0</thm></directive>.}

\end{proof} \end{document} </litcomment>

</litcomment>
<proofstep display="false">THEN simp_tac</proofstep>
<litcomment> . . . </litcomment>
<proofstep display="false">THEN simp_tac</proofstep>
<closegoal>qed "simple"</closegoal>
<litcomment>

\begin{proof}
goal "length (tl xs) = length xs − 1"
\com{The proof proceeds by case distinction:}
\com{If the list is empty, we have to show: 

 \com{If the list is empty, we have to show: \proofstate{}}
  which follows by simplification from \thm[List.tl_def.1]{}
  and \thm[Nat.diff_0_eq_0]{}.}
 THEN simp_tac

\com{Otherwise, we have: 
      \proofstate{length(tl(x::xs’))=length(xs’)−1}}

  \thm[List.tl_def.2]{tl (x::xs)=xs}.}
\com{which is a consequence of

  which follows by simplification
  from \thm[List.tl_def.1]{tl [] = []}
  and \thm[Nat.diff_0_eq_0]{0−n=0}.}

  \proofstate{length (tl ([])) = length ([])− 1}

\end{proof}
qed "simple"

\end{document}

LaTeX

Fig. 5. Literate proving.



However, the text is much longer than the tactical proof above, and even though
this verbosity is exactly what makes Isar proofs easier to read and more sta-
ble to maintain, proofs become laborious to type at the outset. The only input
inherently required of the user (after starting the proof) is the decision to per-
form a case distinction (cases), and the name of the variable ”xs”. Given this,
the prover can choose the right case distinction rule according to the type of
the variable; this results in the patterns, their local variables, etc., which are
transferred to the PG broker as a template via backflow:

proof (cases xs)
case Nil thus ?thesis <proof>

next
case (Cons y ys) thus ?thesis <proof>

done

Afterwards, the user can continue to fill in the two actual proofs (for the place-
holder <proof>) in the case branches. For the subproof shown, the prover can
also yield the list of lemmas used in the simplifications included in the template:

txt{∗ which follows from simplification with @{thm Nat.diff 0 eq 0}
and @{thm{List.tl def.1}. ∗}

(the prover could even be more clever and try to fill in obvious proofs by checking
whether simplification or other automatic proof patterns would succeed, and
documenting appropriately). In a graphical interface, the proof template above
would be generated by a mouse-click for the selection of the proof method cases
and two keystrokes to type xs. These three user actions replace the tedious typing
of the complete text. Other proof methods such as proof by induction could be
generated using the same backflow mechanisms.

The protocol for script backflow. In detail, the above interaction between prover,
broker and display proceeds as follows. Suppose a user event such as a menu
select, mouse click or drag-and-drop has occurred. The prover operation (as
described in Sect. 3.4) triggered by this event causes the display to send a prover
command, which is marked as proper or improper, to the broker. If it is a proper
prover command, the broker inserts it into the proof script; if it is an improper
prover command, it is transferred to the prover directly.

We need the prover to configure the displays to bind events to prover opera-
tions; this is done once, in the initial startup phase (operation configurations in
PGIP are intended for displays). Then whenever the event occurs, the display
evaluates the operation. This may require more input from the user, e.g. the
variable name in the case distinction example above; to this end, operations can
have inputforms configured which describe this additional input, e.g. here a one-
line string input with prompt “Name of variable”. Finally, the prover evaluates
the command, which results in a backflow to the broker.

Fig. 6 shows the resulting flow of messages, slightly abridged. In the con-
figuration phase, the prover sets up an operation casedist op, which requires
a string (the name of the variable) as user input. The operation is bound to a
menu entry Case distinction in the menu Prove by (there will be other menus
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type of variable,
produces template
for case distinction
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<displayconfig>

  <inputform>

   <pgipstring>
   <prompt>Name of variable</prompt>
  </inputform>

 </opn>
</displayconfig>
<menuadd path="Prove by/Case Distinction"

Prover

Broker relays
display configuration

Display Broker

<displayconfig>...

<inputcmd improper="true"
 casedist "xs"</inputcmd>

Phase 1: initialisation
Phase 2: runtim

e

menu entry.
User selects 

   <field name="casevar">

  <opcmd improper="true">casedist "%casevar"</opcmd>

<dostep>casedist "xs"</dostep>

<scriptinsert>proof (cases "xs") 
 case Nil ...</scriptinsert>

Add new text to proof script.

 <opn name="casedist_op">

         opn="casedist_op"></menuadd>

Fig. 6. Message exchange for backflow in the case distinction situation.

and sub-menus). When users activate that menu, the operation is executed and
they will be asked to input the variable name, e.g. by typing in an input form
or by pointing to it in the proofstate display. The placeholder %casevar in the
operation command is replaced with the input, and the command is sent to the
broker. According to the configuration (the attribute improper), it is marked
as an improper command, so the broker relays the command to the prover. The
prover analyses the type of the variable, decides case distinction on lists is ap-
propriate, with one case for the empty and non-empty lists each, and generates
the corresponding backflow. The generated proof template text is inserted into
the proof script.

PGIP has a generic display model, where simpler displays (e.g. text-based
ones) are free to ignore configurations which only make sense for graphical dis-
plays. The only adjustment needed here over the description in [3] is to allow
improper commands as well as proper ones. Note how only the prover needs
knowledge about the logical structure of the proof, the types involved and so on;
from the broker’s and displays’ point of view, the protocol is completely generic.

5.1 Calculational Proof

Calculational proof is probably the most well-known proof presentation paradigm
as it is taught in school mathematics. Here is an example in Isar (which uses Is-
abelle’s axiomatic type class mechanism to restrict instances of the type variable
’a to those satisfying the group axioms):

theorem group right one: ”x ∗ one = (x::’a::group)”
proof −



have ”x ∗ one = x ∗ (inverse x ∗ x)”
by (simp only: group left inverse)

also have ”... = x ∗ inverse x ∗ x”
by (simp only: group assoc)

also have ”... = one ∗ x”
by (simp only: group right inverse)

also have ”... = x”
by (simp only: group left one)

finally show ?thesis .
qed

This is already quite readable, and the generation of proof presentations that
abstract the proof technical details fully or up to the names of the used lemmas in
each step are straightforward. As an Isar proof text, this proof pattern requires
the user to type all the intermediate proof stages; they may be abbreviated by
meta-variables ?X1,. . . , ?Xn, but it is still cumbersome. GUI-supported backflow
helps here substantially: the user states only the overall goal, selects calculational
proof, and sets a focus on a subterm (e.g., x * inverse x) serving as the redex
of a theorem, and a theorem (e.g., group left inverse).

In this scenario, the construction of backflow is quite complex and requires the
development of specialised tactic support. The main problem is to generate proof
scripts that are as general and reusable as possible, ideally avoiding positional
referencing by using general methods such as

by (simp only: group assoc)

instead of a left-to-right one-step application such as
by (rule tac P=% x. x ∗ (inverse x ∗ x) = x in subst[OF group assoc.assoc]).

The technique of proof abstraction is based on generate-and-test heuristics for
successful proof attempts with the fall-back of the least general proof method.

5.2 Window Inferencing

Logically, calculational proof depends on the transitivity of equality which allows
us to string together a sequence of lemmas the form ti = ti+1 for i = 1, . . . , n to
one theorem t1 = tn+1. Window inferencing [12] is a generalisation of calcula-
tional proof where instead of an equation we have a non-disjoint family of binary
relations. Window inferencing also allows us to apply rules to subterms of the
current proof state; this is referred to as opening a window on that subterm, and
it may produce additional assumptions (e.g. opening a window on the positive
branch of a conditional adds the condition as an assumption). When closing a
window, implicit monotonicity reasoning is executed to validate replacing a focus
with the result of the sub-derivation in a window at the next higher level.

Previous work has shown how window inferencing can be implemented as a
tactic in Isabelle, using a dedicated GUI for window inferencing [19]. Here, we
can achieve the same thing using annotated terms in PGML and backflow in
PGIP. The special input field %selected can be used in operations to denote
the selected subterm (on displays that do not support subterm selection, these



operations will be ignored). The operation to open a window then sends the
command open_win %selected, which causes the command open win p to be
sent to prover (via the broker, as in Fig. 6), and the prover constructs the relevant
subterm and context from p. The path p is in the prover’s internal abstract syntax
representation of the term, it only makes sense to the prover and needs to be
post-processed to render a PGML string. Again, with only modest support from
the prover, we can add a very useful high-level feature for assisting document
authoring.

6 Conclusions

We have presented a new component-based system architecture for authoring
mathematical documents together with formal proofs. It extends the generic PG
Kit infrastructure for interactive proof. The novel concept in extending proof
script editing to authoring is the support of component backflow on the protocol
level PGIP as well as in its implementation in the broker.

The implementation of our design is ongoing. The broker architecture, with
an Emacs-based and an Eclipse-based display, has been developed and is avail-
able as a prototype [3, 4]. The authoring extensions have been added to this
prototype and support from provers (in particular, Isabelle) is anticipated in
future development versions.

6.1 Related Work

The basic idea of the document-centred approach can be traced back to Knuth’s
work on literate programming [16]. In the context of formal proof and formali-
sation of mathematics, the field can be divided into two fundamentally different
approaches: one tries to make formal proofs more human-readable, or one tries
to make textbook-proofs more formal or at least intuit their underlying formal
structure. In the former line of research stands Automath [9], Mizar [23], and
its descendants like Isabelle/Isar [25] or Coq’s integrated documentation facil-
ity coqdoc that can extract a document offline in various formats. Théry’s ap-
proach [22] bridges the gap by defining an XML format for manually annotating
statements in mathematical papers to link them to formal counterparts, wherein
proofs must be supplied; consistency is checked in a prover. Similar approaches
include Weak Type Theory [15], MathLang [14]), or the Dialog project [5]. In a
sense in the opposite direction, Kohlhase [17] works on the existing mathematical
corpus of LATEX papers and tries to capture their semantic content automatically
with additional markup.

Although we take formal proof as the starting point, our document-centred
approach eases the task of reconstructing a human-readable format during formal
proof development, using the information available via backflow from the presen-
tation of terms and proofstates, or the information from certain automated proof
strategies or advanced techniques like proof planning [10]. Of course, the result-
ing annotations are merely organised text, kept consistent by using references to



theorems, etc., which are resolved late in the presentation process. Integrating
with the complementary approach of [15] with respect to these annotations is
worth investigating.

6.2 Outlook and Future Work

This paper describes authoring facilities on the document level. An important
future direction is to study large and richly connected developments, spanning
multiple proof script files and proof modules, and supporting reordering in pro-
ducing the human-readable documentation. The framework partly addresses this
at the moment because there are PGIP elements describing file-level commands
and dependencies between prover commands (relying on information from the
theorem prover), so to extend the example in Sect. 4 we can add commands
like \openscriptfile{example.thy} and \closescriptfile to indicate desti-
nation script files; several files may then be produced on processing.

Another interesting use case for our architecture would be to have the prover
insert proof objects into the document via backflow. Here, a proof object would
just be formal object which can be reconstructed by the prover on demand to
show the validity of the proof. This would allow a proof to be more or less
completely informal except for the embedded proof objects, which could be used
to validate the formal content.

Finally, we want to conduct usability studies to substantiate the claim that
assisted authoring increases productivity compared to unassisted editing. A good
evaluation methodology would be to investigate usability for mid-sized proofs
using well-known HCI techniques (e.g., keystroke-measures), as well as to collect
subjective experience reports from larger proof authoring projects.
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