
Typing in-place update

David
Aspinall

LFCS

Edinburgh

Martin
Hofmann

Institut für Informatik

Munich

Motivation and background

• Goal: use in-place update rather than fresh creation of
memory cells and GC when it’s safe. “Safe” means to
implement the functional semantics.

• Examples:

— implement list append by altering first list, but ensure
result is indistinguishable from a functional append.

— implement array update as in-place update but ensure
result is indistinguishable from a functional update:
set:array,int,val -> array.

• Background: languages & type systems capturing
complexity classes (Hofmann).

• Possible applications: embedded systems, smartcards,
HDLs.

2

Programming with diamonds

• LFPL [MH, ESOP 2000] is prototypical first-order linear

functional programming language with recursively defined

functions and the following types:

A ::= N | ♦ | L(A) | T(A) | A1 ⊗A2

The diamond type ♦ stands for a unit of heap space.

• Diamonds give the programmer control over heap space in

an abstract and type-safe way.

• Many standard examples can be typed in LFPL.

3

Diamond trading

def list reverse(list l) = reverse_aux(l, nil)

def list reverse_aux(list l,list acc) =

match l with

nil -> acc

| cons(d,h,t) -> reverse_aux(t,cons(d,h,acc))

• The first argument to cons has type ♦.

• Computing with bounded heap space: the only way to obtain

a ♦ is by pattern matching.

• Can easily add malloc:() -> ♦ and free:♦ -> ().

4

Imperative operational semantics

• LFPL is executed imperatively, using in-place update.

• Simple compilers have been written which translate to

imperative languages: C, Java, JVML, and HBAL.

• More abstractly, we can give a stack-based operational

semantics which updates a heap.

S,σ ` e v,σ ′

S : Var→ SVal stack

v : SVal stack value: integer, location, NULL, or tuple thereof

σ : Loc→ HVal heap

h : HVal heap value: stack value or record {id1 = v1 . . . idn = vn}

5

• Diamond arguments evaluate to heap locations:

S,σ ` ed ld, σ ′ S,σ ′ ` eh vh, σ ′′ S,σ ′′ ` et vt , σ ′′′

S,σ ` cons(ed, eh, et) ld, σ ′′′[ld,{hd=vh, tl = vt}]

S,σ ` e l, σ ′ σ ′(l) = {hd=vh, tl=vt}
S[xd , l, xh , vh, xt , vt], σ ′ ` ec v,σ ′′

S,σ ` match e with nil => en | cons(xd, xh, xt) => ec v,σ ′′

• The typing rules must ensure type safety, and that the operational

(in-place update) interpretation agrees with the set-theoretic

(functional) interpretation.

• In LFPL, linearity for heap-types ensures this agreement. But this

is overly conservative. . .

6

A drawback of LFPL

def sumdigits(l) =

match l with

nil -> 0

| cons(d,h,t) -> h + (10 * sumdigits(t))

After evaluating sumdigits(l), list l is considered destroyed.
We can avoid this by reconstructing the argument:

def sumdigits’(l) =

match l with

nil -> (nil,0)

| cons(d,h,t) -> let (t’,n) = sumdigits’(t)

in (cons(d,h,t’), h + (10 * n))

But this is tedious and inefficient; we would rather relax
linearity for calls to sumdigits, since it is quite safe to do so.

7

Relaxing linearity for heap data

• We want to express that sumdigits operates in a read-only

fashion on its argument. Moreover, it returns a result which

no longer refers to the list. So

cons(d,sumdigits(l),reverse(l))

is correctly evaluated, assuming left-to-right eval order.

• Other functions are read-only, but give a result which shares

with the argument, e.g., nth tail(n,l). But now

cons(d,nth_tail(2,l),cons(d’,reverse(l),nil))

is not soundly evaluated by the imperative op sems. If

l=[1,2,3], we get [[1],[3,2,1]], not [[3],[3,2,1]].

Later uses of l should only be allowed if they are also

non-destructive.

8

Usage aspects

• The op. sems and examples motivate usage aspects for

sub-expressions:

1 Destructive e.g., l in reverse(l)

2 Non-destructive but shared e.g., l in append(k,l)

3 Non-destructive, not shared e.g., l in sumdigits(l)

• Aspects express relationship between heap region of

arguments of a function and the heap region of its result.

• Our aspects are novel AFAWK, but related to some previous

analyses of linear type systems.

Wadler: sequential let. Odersky: observer annotations (cf.2).

Kobayashi: δ-annotations (cf.3).

9

An improved LFPL

• We track usage aspects of variables in the context. Each

variable is annotated with an aspect i ∈ {1,2,3}:

x1
i1
: A1, . . . , xn

in
: An ` e : A

• Each argument of a function is annotated:

+, - : N3,N3 → N

nilA : L(A)

consA : ♦1, A2, L(A)2 → L(A)

• Function applications and other expressions are restricted

to variables to track aspects. The let rule combines

contexts, and assumes an evaluation order.

10

Variable typing rules

x
2
: A ` x : A

(VAR)

Γ , x
i
: A ` e : B j ≤ i

Γ , x
j
: A ` e : B

(DROP)

Γ ` e : A A heap-free (no ♦, L(A), T(A))

Γ

3 ` e : A
(RAISE)

Γ

i means Γ with any 2-aspect xk
2
: Ak replaced by xk

i
: Ak.

11

List typing rules

` nilA : L(A)

xd
1
: ♦, xh

2
: A,xt

2
: L(A) ` consA(xd, xh, xt) : L(A)

Γ ` en : B

Γ , xd
id
: ♦, xh

ih
: A,xt

it
: L(A) ` ec : B i =min(id, ih, it)

Γ , x
i
: L(A) ` match x with nil => en | cons(xd, xh, xt) => ec : B

12

The let rule

S,σ ` ea v,σ ′ S[x , v],σ ′ ` eb v′, σ ′′

S,σ ` let x = ea in eb v′, σ ′′

Γ ,∆a ` ea : A ∆b,Θ, x
i
: A ` eb : B side condition

Γ

i,Θ,∆ia ∧∆b ` let x = ea in eb : B

Side condition prevents common variables

z ∈ dom(∆a)=dom(∆b) being modified before being

referenced and prevents “internal” sharing in heap regions

reachable from the stack.

A contraction rule for aspect 3 variables is derivable.

13

Correctness proof

• Aim: prove that operational semantics agrees with

denotational semantics (soundness and adequacy).

• Denotational sems �e�η is usual set-theoretic semantics.

Interpret ♦ as a unit type, ignore d in cons(d,h,t).

1. Define heap region RA(v,σ) associated to value v at type A:

— RN(n,σ) = ∅.

— R♦(l, σ) = {l}.
— RL(A)(NULL, σ) = ∅.

— RL(A)(l, σ) = {l} ∪ RA(h,σ)∪ RL(A)(t, σ)
when σ(l) = {hd = h, tl = t}.

14

2. Define relation v σA,i a to connect meaningful stack values
v (to be used at aspect i ≤ 2) to semantic values.

— n σN,i n
′, if n = n′.

— l σ♦,i 0, if l ∈ dom(σ).

— NULL σL(A),i nil.

— l σL(A),i cons(h, t),
if σ(l) = {hd=vh, tl = vt}, l σ♦,i 0, vh σA,i h, vt σL(A),i t.
Additionally, R♦(l, σ), RA(vh, σ), RL(A)(vt , σ) are
pairwise disjoint in case i = 1.

3. Prove that for a typable expression Γ ` e : C ,

S,σ ` e v,σ ′ iff �e�η ⇓ and v σC,i �e�η

for i = 2 and (with condition on η), for 1. Moreover, regions
in σ ′ relate to those in σ as expected by aspects in Γ .

15

Further details

• Paper gives full typing rules. Also discusses sharing in

data-structures, and both ⊗ and × products.

• Home page: http://www.dcs.ed.ac.uk/home/resbnd

• Experimental compilers available on our web pages:

target features author

C Nick Brown

C tail-recursion opt Christian Kirkegaard

HBAL dedicated typed AL Matthieu Lucotte

C / JVML datatypes Robert Atkey

Java usage aspects, datatypes DA & MH

16

http://www.dcs.ed.ac.uk/home/resbnd

Future and ongoing work on LFPL

• Consider further ways to relax linearity, handle internal

sharing

separation sets xk :ikMk Ak ` e : A (Michal Konečný)

sharing sets xk :Sk Ak ` e : A,S,D (Robert Atkey)

• Inference mechanisms

Reconstruct ♦ arguments (Steffen Jost, Dilsun Kırlı)

• Higher-order functions

MH (POPL 2002) bounded space with HO

• Other features: arrays, polymorphism, . . .

• Related project: Mobile Resource Guarantees investigating

PCC for resource constraints.

17

