Typing in-place update

David Aspinall Martin Hofmann

LFCS Edinburgh Institut für Informatik Munich

Motivation and background

- Goal: use in-place update rather than fresh creation of memory cells and GC *when it's safe*. "Safe" means to implement the functional semantics.
- Examples:
 - implement list append by altering first list, but ensure result is indistinguishable from a functional append.
 - implement array update as in-place update but ensure result is indistinguishable from a functional update: set:array,int,val -> array.
- Background: languages & type systems capturing complexity classes (Hofmann).
- Possible applications: embedded systems, smartcards, HDLs.

Programming with diamonds

• LFPL [MH, ESOP 2000] is prototypical first-order linear functional programming language with recursively defined functions and the following types:

 $A ::= \mathsf{N} | \Diamond | \mathsf{L}(A) | \mathsf{T}(A) | A_1 \otimes A_2$

The *diamond type* \Diamond stands for a unit of heap space.

- Diamonds give the programmer control over heap space in an abstract and type-safe way.
- Many standard examples can be typed in LFPL.

```
def list reverse(list l) = reverse_aux(l, nil)
```

- The first argument to cons has type \Diamond .
- Computing with *bounded heap space*: the only way to obtain a ◊ is by pattern matching.
- Can easily add malloc:() \rightarrow \diamond and free: \diamond \rightarrow ().

Imperative operational semantics

- LFPL is executed imperatively, using in-place update.
- Simple compilers have been written which translate to imperative languages: C, Java, JVML, and HBAL.
- More abstractly, we can give a stack-based operational semantics which updates a heap.

 $S, \sigma \vdash e \rightsquigarrow v, \sigma'$

S: Var \rightarrow SValstackv: SValstack value: integer, location, NULL, or tuple thereof σ : Loc \rightarrow HValheaph: HValheap value: stack value or record {id₁ = $v_1 \dots id_n = v_n$ }

• Diamond arguments evaluate to heap locations:

 $\frac{S, \sigma \vdash e_d \rightsquigarrow l_d, \sigma' \qquad S, \sigma' \vdash e_h \rightsquigarrow v_h, \sigma'' \qquad S, \sigma'' \vdash e_t \rightsquigarrow v_t, \sigma'''}{S, \sigma \vdash \mathsf{cons}(e_d, e_h, e_t) \rightsquigarrow l_d, \sigma'''[l_d \mapsto \{\mathsf{hd} = v_h, \mathsf{tl} = v_t\}]}$

$$S, \sigma \vdash e \rightsquigarrow l, \sigma' \qquad \sigma'(l) = \{ \mathsf{hd} = v_h, \mathsf{tl} = v_t \}$$
$$S[x_d \mapsto l, x_h \mapsto v_h, x_t \mapsto v_t], \sigma' \vdash e_c \rightsquigarrow v, \sigma''$$

 $S, \sigma \vdash \text{match } e \text{ with nil} \Rightarrow e_n \mid \text{cons}(x_d, x_h, x_t) \Rightarrow e_c \rightsquigarrow v, \sigma''$

- The typing rules must ensure type safety, and that the operational (in-place update) interpretation agrees with the set-theoretic (functional) interpretation.
- In LFPL, *linearity for heap-types* ensures this agreement. But this is overly conservative...

A drawback of LFPL

```
def sumdigits(1) =
    match | with
        nil -> 0
        | cons(d,h,t) -> h + (10 * sumdigits(t))
```

After evaluating sumdigits(1), list 1 is considered destroyed.
We can avoid this by reconstructing the argument:

But this is tedious and inefficient; we would rather relax linearity for calls to sumdigits, since it is quite safe to do so.

Relaxing linearity for heap data

• We want to express that sumdigits operates in a read-only fashion on its argument. Moreover, it returns a result which no longer refers to the list. So

cons(d,sumdigits(1),reverse(1))

is correctly evaluated, assuming left-to-right eval order.

 Other functions are read-only, but give a result which shares with the argument, e.g., nth_tail(n,1). But now

cons(d,nth_tail(2,1),cons(d',reverse(1),nil))

is *not* soundly evaluated by the imperative op sems. If l=[1,2,3], we get [[1],[3,2,1]], not [[3],[3,2,1]]. Later uses of l should only be allowed if they are also non-destructive.

Usage aspects

- The op. sems and examples motivate *usage aspects* for sub-expressions:
 - 1Destructivee.g., l in reverse(l)
 - 2 Non-destructive but shared e.g., 1 in append(k, 1)
 - **3** Non-destructive, not shared e.g., 1 in sumdigits(1)
- Aspects express relationship between heap region of arguments of a function and the heap region of its result.
- Our aspects are novel AFAWK, but related to some previous analyses of linear type systems.
 Wadler: *sequential let*. Odersky: *observer annotations* (cf.2).
 Kobayashi: δ-annotations (cf.3).

An improved LFPL

We track usage aspects of variables in the context. Each variable is annotated with an aspect *i* ∈ {1, 2, 3}:

$$x_1 \stackrel{i_1}{:} A_1, \dots, x_n \stackrel{i_n}{:} A_n \vdash e : A$$

• Each argument of a function is annotated:

+, - : N³, N³ → N nil_A : L(A) cons_A : \Diamond^1 , A², L(A)² → L(A)

 Function applications and other expressions are restricted to variables to track aspects. The let rule combines contexts, and assumes an evaluation order.

Variable typing rules

$$\overline{x \stackrel{2}{:} A \vdash x : A}$$

$$\frac{\Gamma, x \stackrel{i}{:} A \vdash e : B \qquad j \leq i}{\Gamma, x \stackrel{j}{:} A \vdash e : B} \qquad ()$$

()

$$\frac{\Gamma \vdash e : A \quad A \text{ heap-free (no } \Diamond, L(A), T(A))}{\Gamma^3 \vdash e : A} \qquad ()$$

 Γ^{i} means Γ with any 2-aspect $x_k \stackrel{?}{:} A_k$ replaced by $x_k \stackrel{i}{:} A_k$.

List typing rules

 $\vdash \mathsf{nil}_A : \mathsf{L}(A)$

 $\overline{x_d} \stackrel{1}{:} \Diamond, x_h \stackrel{2}{:} A, x_t \stackrel{2}{:} L(A) \vdash \mathsf{cons}_A(x_d, x_h, x_t) : L(A)$

$$\Gamma \vdash e_n : B$$

$$\Gamma, x_d \stackrel{i_d}{:} \Diamond, x_h \stackrel{i_h}{:} A, x_t \stackrel{i_t}{:} L(A) \vdash e_c : B \qquad i = \min(i_d, i_h, i_t)$$

$$\overline{\Gamma, x \stackrel{i}{:} L(A) \vdash \operatorname{match} x \text{ with nil} \Longrightarrow e_n \quad | \quad \operatorname{cons}(x_d, x_h, x_t) \Longrightarrow e_c : B$$

The let rule

$$\frac{S, \sigma \vdash e_a \rightsquigarrow v, \sigma' \qquad S[x \mapsto v], \sigma' \vdash e_b \rightsquigarrow v', \sigma''}{S, \sigma \vdash \text{let } x = e_a \text{ in } e_b \rightsquigarrow v', \sigma''}$$

$$\Gamma, \Delta_a \vdash e_a : A \qquad \Delta_b, \Theta, x \stackrel{!}{:} A \vdash e_b : B \qquad \text{side condition}$$
$$\Gamma^i, \Theta, \Delta_a^i \land \Delta_b \vdash \mathsf{let} \ x = e_a \ \mathsf{in} \ e_b : B$$

Side condition prevents common variables $z \in dom(\Delta_a) = dom(\Delta_b)$ being modified before being referenced and prevents "internal" sharing in heap regions reachable from the stack.

A contraction rule for aspect 3 variables is derivable.

Correctness proof

- Aim: prove that operational semantics agrees with denotational semantics (soundness and adequacy).
- Denotational sems [[e]]_η is usual set-theoretic semantics.
 Interpret ◊ as a unit type, ignore d in cons(d,h,t).
- 1. Define **heap region** $R_A(v, \sigma)$ associated to value v at type A:
 - $R_{\mathsf{N}}(n, \sigma) = \emptyset.$
 - $R_{\Diamond}(l, \sigma) = \{l\}.$
 - $R_{\mathsf{L}(A)}(\mathsf{NULL}, \boldsymbol{\sigma}) = \emptyset.$
 - $R_{\mathsf{L}(A)}(l, \sigma) = \{l\} \cup R_A(h, \sigma) \cup R_{\mathsf{L}(A)}(t, \sigma)$ when $\sigma(l) = \{\mathsf{hd} = h, \mathsf{tl} = t\}.$

2. Define relation $v \Vdash_{A,i}^{\sigma} a$ to connect **meaningful stack values** v (to be used at aspect $i \le 2$) to semantic values.

$$- n \Vdash_{\mathsf{N},i}^{\sigma} n'$$
, if $n = n'$.

- $l \Vdash_{\diamond,i}^{\sigma} 0$, if $l \in \operatorname{dom}(\sigma)$.
- − NULL $\Vdash_{\mathsf{L}(A),i}^{\sigma}$ nil.
- $l \Vdash_{\mathsf{L}(A),i}^{\sigma} \operatorname{cons}(h,t),$ if $\sigma(l) = \{\mathsf{hd} = v_h, \mathsf{tl} = v_t\}, l \Vdash_{\Diamond,i}^{\sigma} 0, v_h \Vdash_{A,i}^{\sigma} h, v_t \Vdash_{\mathsf{L}(A),i}^{\sigma} t.$ Additionally, $R_{\Diamond}(l,\sigma), R_A(v_h,\sigma), R_{\mathsf{L}(A)}(v_t,\sigma)$ are pairwise disjoint in case i = 1.
- 3. Prove that for a typable expression $\Gamma \vdash e : C$,

$$S, \sigma \vdash e \rightsquigarrow v, \sigma'$$
 iff $\llbracket e \rrbracket_{\eta} \Downarrow$ and $v \Vdash_{C,i}^{\sigma} \llbracket e \rrbracket_{\eta}$

for i = 2 and (with condition on η), for 1. Moreover, regions in σ' relate to those in σ as expected by aspects in Γ .

Further details

- Paper gives full typing rules. Also discusses sharing in data-structures, and both \otimes and \times products.
- Home page: http://www.dcs.ed.ac.uk/home/resbnd

Experimental complicits available on our web pages.		
target	features	author
С		Nick Brown
С	tail-recursion opt	Christian Kirkegaard
HBAL	dedicated typed AL	Matthieu Lucotte
C / JVML	datatypes	Robert Atkey
Java	usage aspects , datatypes	DA & MH

• Experimental compilers available on our web pages:

Future and ongoing work on LFPL

• Consider further ways to relax linearity, handle internal sharing

separation sets $x_k :_{M_k}^{i_k} A_k \vdash e : A$ (Michal Konečný)sharing sets $x_k :_{M_k}^{S_k} A_k \vdash e : A, S, D$ (Robert Atkey)

Inference mechanisms

Reconstruct \Diamond arguments (Steffen Jost, Dilsun Kırlı)

• Higher-order functions

MH (POPL 2002) bounded space with HO

- Other features: arrays, polymorphism, ...
- Related project: *Mobile Resource Guarantees* investigating PCC for resource constraints.