
Another type system for in-place update

David Aspinall1 and Martin Hofmann2

1 LFCS Edinburgh, Mayfield Rd, Edinburgh EH9 3JZ, UK
da@dcs.ed.ac.uk ,

WWW: www.dcs.ed.ac.uk/home/da
2 Institut für Informatik, Oettingenstraße 67, 80538 München, Germany

mhofmann@informatik.uni-muenchen.de ,
WWW: www.tcs.informatik.uni-muenchen.de/ mhofmann

Abstract. Linear typing schemes guarantee single-threadedness and so
the soundness of in-place update with respect to a functional semantics.
But linear schemes are restrictive in practice, and more restrictive than
necessary to guarantee soundness of in-place update. This has prompted
research into static analysis and more sophisticated typing disciplines, to
determine when in-place update may be safely used, or to combine linear
and non-linear schemes. Here we contribute to this line of research by
defining a new typing scheme which better approximates the semantic
property of soundness of in-place update for a functional semantics. Our
typing scheme includes two kinds of products (⊗ and ×), which allows
data structures with or without sharing to be defined. We begin from the
observation that some data is used only in a “read-only” context after
which it may be safely re-used before being destroyed. Formalizing the in-
place update interpretation and giving a machine model semantics allows
us to refine this observation. We define three usage aspects apparent from
the semantics, which are used to annotate function argument types. The
aspects are (1) used destructively, (2) used read-only but shared with
result, and (3) used read-only and not shared.

1 Introduction

The distinctive advantage of pure functional programming is that program func-
tions may be viewed as ordinary mathematical functions. Powerful proof princi-
ples such as equational reasoning with program terms and mathematical induc-
tion are sound, without needing to use stores or other auxiliary entities, as is
invariably required when reasoning about imperative programs.

Consider the functional implementation of linked list reversal, as shown in
Fig. 1 (for the moment, ignore the first argument to cons ). This definition of
reversal is readily verified by induction and equational reasoning over the set of
finite lists. On the other hand, implementing reversal imperatively using pointers
is (arguably) more cumbersome and error prone and, more seriously, would be
harder to verify using complicated reasoning principles for imperative programs.

The advantage of an imperative implementation, of course, is that it modi-
fies its argument in-place whereas in a traditional functional implementation the



result must be created from scratch and garbage collection is necessary in order
salvage heap space. We are interested in the possibility of having the best of
both worlds by using a semantics-preserving translation of functional programs
into imperative ones which use in-place update and need no garbage collection.
In previous work by the second author, a first-order functional language called

def list reverse_aux ( list l, list acc) =
match l with

nil -> acc
| cons(d,h,t) -> reverse_aux(t,cons(d,h,acc))

def list reverse ( list l) = reverse_aux(l, nil)

def list append( list l, list m) =
match l with

nil -> m
| cons(d,h,t) -> cons(d,h,append(t,m))

Fig. 1. LFPL examples

LFPL was defined, together with such a translation. LFPL relies on some user in-
tervention to manage memory but without compromising the functional seman-
tics in any way. This works by augmenting (non-nil) constructors of inductive
datatypes such as cons with an additional argument of an abstract “diamond”
resource type 3 whose elements can be thought of as heap-space areas, loosely
corresponding to Tofte-Talpin’s notion of regions [TT97].

To construct an element of an inductive type, we must supply an value of the
3 abstract type. The only way of obtaining values of type 3 is by deconstructing
elements of recursive types in a pattern match. The first argument to each use
of cons in Fig. 1 is this value of type 3; the cons on the right hand side of the
match is “justified” by the preceding cons -pattern. The correspondence need not
always be as local; in particular, values of type 3 may be passed as arguments to
and returned by functions, as well as appearing in components of data structures.

We can give a compositional translation of LFPL into C by mapping 3 to
the type void * (a universal pointer type), and implementing cons as

list_t cons(void *d, entry_t hd, list_t tl){
d->head=hd; d->tail=tl; return d;

}

Here, list_t is the type of pointers to a C struct with appropriately typed
entries head , tail , and we have elided (compulsory) typecasts to reduce clutter.
As expected, nil is implemented as a function returning a null pointer. When
receiving a non-null argument of type list_t we can save its entries as local
variables and subsequently use the pointer itself as an argument to cons() .
This implements pattern matching. For details of the translation, see [Hof00].



The main result of [Hof00] was that the semantics of the C translation agrees
with the functional semantics of the soure program provided the latter admitted a
linear typing for inductive types and 3 types, i.e., bound variables of inductive
type are used at most once. In particular, this linearity guarantees that the
memory space pointed to by a 3-value is not needed anywhere else. This prevents
function definitions like:

def list twice ( list l) =
match l with

nil -> nil
| cons(d,h,t) -> cons(d,0,cons(d,0,twice(l)))

The functional semantics of twice maps a list l to a list twice as long as l
with zero entries; on the other hand, the LFPL translation to C of the above
code computes a circular list. As one would expect, the translation of append

in Fig. 1 appends one linked list to another in place; again, the translation of
a non-linear phrase like append(l,l) results in a circular list, disagreeing with
the functional semantics. As an aside: we can implmenent twice in LFPL with
the typing list [ int * <>] -> list [ int ] , where the argument list provides the
right amount of extra space. In recent unpublished work with Steffen Jost and
Dilsun Kırlı, we have shown that the position of 3 types and their arguments
can be automatically inferred, using integer linear programming.

Linear typing together with the resource type 3 seems restrictive at first
sight. In particular, without dynamic creation of memory in the translation, no
function can be written that increases the size of its input. Yet surprisingly, a
great many standard examples from functional programming fit very naturally
into the LFPL typing discipline, among them, insertion sort, quick sort, tree sort,
breadth-first traversal of a tree and Huffman’s algorithm. Moreover, in [Hof00]
it was shown that every non size-increasing function on lists over booleans in
the complexity class ETIME can be represented.

In spite of this positive outlook, the linear typing discipline, as any other typ-
ing scheme, rejects many semantically valid programs. In our context a program
is semantically valid if its translation to imperative code computes its functional
semantics. We cannot hope to catch all semantically valid programs by a typ-
ing discipline, of course, but we can try to refine the type system to reduce the
“slack”, i.e., the discrepancy between the semantically valid programs and those
which pass the typing discipline.

In this paper we address one particular source for slack, namely the implicit
assumption that every access to a variable is potentially destructive, i.e., changes
the memory region pointed to or affected by this variable. This is overly con-
servative: multiple uses of a variable need not compromise semantic validity, as
long as only the last in a series of multiple uses is destructive (and moreover the
results of the earlier accesses do not interfere with the ultimate destructive ac-
cess). A safe static approximation of this idea in the context of LFPL is the goal
of this paper. We present a type system which is more general than linear typing
in that it permits multiple uses of variables in certain cases, yet is sound in the
sense that for well-typed LFPL programs the imperative translation computes
the functional semantics.



1.1 Usage aspects for variables

Some examples will help to motivate our type system. A first example is the func-
tion sumlist : list [ int ] -> int which computes the sum of the elements
in an integer list.

def int sumlist( list [ int ] l) =
match l with

nil -> 0
| cons(d,h,t) -> h + sumlist(t)

With the destructive pattern matching scheme of LFPL, we must consider that
l is destroyed after evaluating sumlist(l) , although the list would actually
remain intact under any reasonable implementation. We can avoid losing the
list by returning it along with the result, rebuilding it as we compute the sum
of the elements. But this leads to a cumbersome programming style, and one
has to remember that sumlist’ : list [ int ] -> int * list [ int ] returns
its argument unmodified. A better solution is to say that from the definition
above, we see that the list is not destroyed (because the 3-value d is not used),
so we would like to assign sumlist a type which expresses that it does not
destroy its argument.

Not only should the sumlist function inspect its argument list without mod-
ifying it, but the result it returns no longer refers to the list. This means that
an expression like

cons(d,sumlist(l),reverse(l))

where d is of type 3, should also be soundly implemented, if we assume that
evaluation occurs from left to right. In other words, we can freely use the value
of sumlist(l) even after l is destroyed.

This is not the case for functions which inspect data structures without
modifying them, but return a result which contains some part of the argument.
An example is the function nth_tail which returns the nth tail of a list:

def list nth_tail( int n, list l) =
if n<=0 then l else match l with

nil -> nil
| cons(d,h,t) -> nth_tail(n-1, t)

Unlike sumlist , the result of nth_tail may be shared (aliased) with the argu-
ment. This means an expression like

cons(d,nth_tail(2,l),nil)

will be sound, but
cons(d,nth_tail(2,l),cons(d’,reverse(l),nil))

will not be soundly implemented by the in-place update version, so the second
expression should not be allowed in the language. (If l=[1,2,3] , the expression
should evaluate to the list [[3],[3,2,1]] but the in-place version would yield
[[1],[3,2,1]] ). Simpler example functions in the same category as nth_tail

include projection functions and the identity function.



As a final example, consider again the append function in Fig. 1. The im-
perative implementation physically appends the second list to the first one and
returns the so modified first argument. Thus, the first list l has been destroyed
so we should treat that in the same way as arguments to reverse . But the
second list m is shared with the result, and so should be treated in the same
way as arguments to nth_tail . This suggests that we should consider the way
a function operates on each of its arguments.

These observations lead us to distinguish three usage aspects of variables,
which are the central innovation in our type system. The usage aspects are:

– Aspect 1: modifying use, e.g., l in reverse(l)

– Aspect 2: non-modifying use, but shared with result, e.g., min append(l,m)

– Aspect 3: non-modifying use, not shared with result, e.g., l in sumlist(l) .

The numbers are in increasing order of “safety” or “permissiveness” in the type
system. Variables may only be accessed once with aspect 1. Variables can be used
many times with aspect 2, but this prevents an aspect 1 usage later if interme-
diate results are retained. Finally, variables can be freely used with aspect 3, the
pure “read-only” usage. Perhaps surprisingly, these exact distinctions appear to
be novel, but they are closely connected to several other analyses appearing in
related work [Wad90,Ode92,Kob99] — see Section 5 for precise comparisons.

Our type system decorates function arguments with usage aspects, and then
tracks the way that variables are used. For example, we have the following types:

reverse : list [t]ˆ1 -> list [t]
sumlist : list [t]ˆ3 -> int

nth_tail : list [t]ˆ2 * int ˆ3 -> list [t]
append : list [t]ˆ1 * list [t]ˆ2 -> list [t]

Heap-free types such as int will always have the read-only aspect 3. Functions
which have a heap-free result (like sumlist ) may have aspect 3 for their non
heap-free arguments, provided they are not modified when computing the result.

1.2 Sharing in data structures

The strict linear type system in LFPL prevents sharing in data structures, which
can lead to bad space behaviour in some programs. The append function shows
how we might be able to allow some limited sharing within data structures but
still use an in-place update implementation, provided we take care over when
modification is allowed. For example, we would like to allow the expression

let x=append(u,w) and y=append(v,w) in e

provided that we don’t modify both x and y in e; after either has been modified
we should not refer to the other. Similarly, we would like to allow a tree which
has sharing amongst subtrees, in the simplest case a node constructed like this:

let u=node(d,a,t,t) in e



(where d: <> and a is a label). This data structure should be safe so long as we do
not modify both branches of u. The kinds of data structure we are considering
here have a DAG-like layout in memory.

The “not modifying both parts” flavour of these examples leads us to include
two kinds of products in our language. Consider binary trees. In a linear setting
we have two kinds of trees, one corresponding to trees laid out in full in mem-
ory (⊗-trees), the other corresponding more to an object-oriented representation
(×-trees) under which a tree can be sent messages asking it to return the out-
ermost constructor or to evolve into one of its subtrees. In ordinary functional
programming these two are extensionally equivalent; in the presence of linearity
constraints they differ considerably. The ⊗-trees allow simultaneous access to all
their components thus encompassing e.g., computing the list of leaf labellings,
whereas access to the ×-trees is restricted to essentially search operations. Con-
versely, ⊗-trees are more difficult to construct; we must ensure that their overall
size is polynomially bounded which precludes in particular the definition of a
function which constructs the full binary tree of depth n. On the other hand,
the typing rules would allow construction of a full binary ×-tree, which is repre-
sented as a rather small DAG. The novelty here is that we can reflect in the type
system the kind of choices that a programmer would normally make in selecting
the best data representation for a purpose.

The product already in LFPL as studied to date is the tensor product (de-
noted by ⊗, resp. * in code), accessed using a pattern matching construct:

match p with x*y -> e

This allows both x and y to be accessed simultaneously in e. (Typing rules are
shown in the next section). Given a ⊗-product of two lists, we can access (maybe
modify) both components; to be sound, the two lists must have no sharing.

The cartesian product (denoted ×, resp. X in code) which corresponds to
the & connective of linear logic has a different behaviour. We may access one
component or the other, but not both; this means that the two components may
have sharing. With our usage aspects, we can be more permissive than allowing
just access to one component of the product. We can safely allow access to both
components, so long as at most one component is modified, and if it is, the
other one is not referenced thereafter. The pairing rule for cartesian products
has a special side condition which allows this. Cartesian products are accessed
via projection functions:

fst : (t X u)ˆ2 -> t
snd : (t X u)ˆ2 -> u

The usage aspect 2 here indicates that the result shares with the argument,
which is the other part of enforcing the desired behaviour.

To allow data structures with sharing, we can give constructors arguments of
cartesian product types. Ideally, we would allow the user to choose exactly where
cartesian products are used and where ⊗-products are used, to allow the user to
define datatypes appropriate for their application. For the purpose of exposition
in this paper, however, we will treat both lists and tree types as primitives, and
consider just the ⊗-product style data structures as used in LFPL.



O’Hearn and Pym’s “bunched implications” [OP99] are also based on ⊗ and
× coexisting. In our case, × is not a true categorical product since the ×-pairing
operation 〈−,−〉 is partial; it was shown in [Hof99] that implementing 〈e1, e2〉 as
a closure (λt.if t then e1 else e2) recovers the categorical product, but it requires
heap space, violating heap size boundedness.

2 Syntax and typing

Syntax. The grammar for the types and terms of our improved LFPL is given
in Fig. 2. For brevity, we use N also for the type of booleans (as in C). Types
not containing diamonds 3, lists L(−) or trees T(−) are called heap-free, e.g. N
and N⊗N are heap-free. We use x and variants to range over (a set of) variables
and f to range over function symbols.

A ::= N | 3 | L(A) | T(A) | A1 ⊗A2 | A1 ×A2

e ::= c | f(x1, . . . , xn) | x | let x = ex in e | if x then x1 else x2

| e1 ⊗ e2 | match x with (x1 ⊗ x2)⇒e | (e1, e2) | fst(e) | snd(e)
| nil | cons(xd, xh, xt) | match x with nil⇒en|cons(xd, xh, xt)⇒ec
| leaf(xd, xa) | node(xd, xa, xl, xr)
| match x with leaf(xd, xa)⇒el|node(xd, xa, xl, xr)⇒en

Fig. 2. LFPL grammar

To simplify the presentation, we restrict the syntax so that most term formers
can only be applied to variables. In practice, we can define the more general forms
such as f(e1, . . . , en) easily as syntactic sugar for nested let-expressions. Also,
compared with [Hof00] we will use a different translation scheme, where every
non-nullary constructor of inductive type takes exactly one 3-argument, rather
than a 3-argument for every ordinary argument of inductive type. This is closer
to the Java compilation described in [AH01].

A program consists of a series of (possibly mutually recursive) function def-
initions of the form f(x1, . . . , xn) = ef . These definitions must be well-typed.
To help ensure this, a program is given together with a signature Σ, which is
a finite function from function symbols to first-order function types with usage
aspects, i.e. of the form Ai11 , . . . , A

in
n → A. In the typing rules we will assume a

fixed program with signature Σ.
We keep track of usage aspects for variables as introduced above. We write

x
i
: A to mean that x:A will be used with aspect i ∈ {1, 2, 3} in the subject of

the typing judgement. A typing context Γ is a finite function from identifiers to
types A with usage aspects. If x

i
: A ∈ Γ we write Γ (x) = A and Γ [x] = i.

We use familiar notation for extending contexts. If x 6∈ dom(Γ ) then we write

Γ, x
i
: A for the extension of Γ with x

i
: A. More generally, if dom(Γ )∩dom(∆) = ∅



then we write Γ,∆ for the disjoint union of Γ and ∆. If such notation appears in
the premise or conclusion of a rule below it is implicitly understood that these
disjointness conditions are met. We write e[x/y] for the term obtained from e
by replacing all occurrences of the free variable y in e by x. We consider terms
modulo renaming of bound variables.

In a couple of the typing rules we need some additional notation for ma-
nipulating usage aspects on variables. The “committed to i” context ∆i is the
same as ∆, but each declaration x

2
: A of an aspect 2 (aliased) variable is re-

placed with x
i
: A. If we have two contexts ∆1, ∆2 which only differ on usage

aspects, so dom(∆1) = dom(∆2) and ∆1(x) = ∆2(x) for all x, then we de-
fine the merged context Γ = ∆1 ∧ ∆2 by dom(Γ ) = dom(∆1), Γ (x) = ∆1(x),
Γ [x] = min(∆1(x),∆2(x)). The merged context takes the “worst” usage aspect
of each variable.

Signatures. We treat constructors as function symbols declared in the signature.
We also include primitive arithmetic and comparison operations in the signature.
Specifically, we can assume Σ contains a number of declarations:

+,−, <,> : N3,N3 → N
nilA : L(A)
consA : 31, A2, L(A)2 → L(A)
leafA : 31, A2 → T(A)
nodeA : 31, A2,T(A)2,T(A)2 → T(A)
fstA×B : (A×B)2 → A
sndA×B : (A×B)2 → B

for suitable types A as used in the program. The comma between argument types
is treated as a ⊗-product, which means that these typings, and the corresponding
elimination rules below, describe lists and trees with simultaneous access to
subcomponents. Hence they must be implemented without sharing unless the
access is guaranteed to be read-only. (For trees ST(A) with unrestricted sharing
between components we could use the typing:

sharednodeA : 31, (A× ST(A)× ST(A))2 → ST(A).

In this typing, there can be sharing amongst the label and subtrees, but still
no sharing with the 3 argument, of course, since the region pointed to by the
3-argument is overwritten to store the constructed cell.)

Typing rules. Now we explain the typing rules, shown in Fig. 2, which define
a judgement of the form Γ ` e : A. Most rules are straightforward. We use an
affine linear system, so include weak. In var, variables are given the default
aspect 2, to indicate sharing. If the result is a value of heap-free type, then with
raise we can promote variables of aspect 2 to aspect 3 to reflect that they do
not share with the result. The rule drop goes the other way and allows us to
assume that a variable is used in a more destructive fashion than it actually is.



` c : N
(const)

x
2
: A ` x : A

(var) Γ ` e : A

Γ,∆ ` e : A
(weak)

Γ ` e : A A heap-free

Γ 3 ` e : A
(raise) Γ, x

i
: A ` e : B j ≤ i

Γ, x
j
: A ` e : B

(drop)

f : Ai1 , . . . , Ain → B in Σ

x1
i1
: A1, . . . , xn

in
: An ` f(x1, . . . , xn) : B

(fun)

Γ ` e1 : C Γ ` e2 : C

Γ, x
3
: N ` if x then e1 else e2 : C

(if)

Γ,∆1 ` e1 : A ∆2, Θ, x
i
: A ` e2 : B

Either ∀z.∆1[z] = 3,
or i = 3,∀z.∆1[z] ≥ 2,∆2[z] ≥ 2

Γ i, Θ,∆i
1 ∧∆2 ` let x = e1 in e2 : B

(let)

x1
2
: A1, x2

2
: A2 ` x1 ⊗ x2 : A1 ⊗A2

(⊗-pair)

Γ,∆1 ` e1 : A1 Θ,∆2 ` e2 : A2 condition ?

Γ,Θ,∆1 ∧∆2 ` (e1, e2) : A1 ×A2

(×-pair)

Γ, x1
i1
: A1, x2

i2
: A2 ` e : B i = min(i1, i2)

Γ, x
i
: A1 ⊗A2 ` match x with (x1 ⊗ x2)⇒e : B

(pair-elim)

Γ ` enil : B

Γ, xd
id
: 3, xh

ih
: A, xt

it
: L(A) ` econs : B i = min(id, ih, it)

Γ, x
i
: L(A) ` match x with nil⇒enil|cons(xd, xh, xt)⇒econs : B

(list-elim)

Γ, xd
id
: 3, xa

ia
: A ` eleaf : B

Γ, xd
id
: 3, xa

ia
: A, xl

il
: T(A), xr

ir
: T(A) ` enode : B i = min(ia, id, il, ir)

Γ, x
i
: T(A) ` match x with leaf(xd, xa)⇒eleaf|node(xd, xa, xl, xr)⇒enode : B

(tree-elim)

Fig. 3. Typing rules



The let rule is somewhat intricate. The context is split into three pieces:
variables specific to the definition e1, in Γ ; variables specific to the body e2,
in Θ; and common variables, in ∆1 and ∆2, which may be used with different
aspects in e1 and e2. First, we type-check the definition to find its type A. Then
we type-check the body using some usage aspect i for the bound variable x. The
way the bound variable x is used in the body is used to commit any aliased
variables belonging to e1. For example, if x is used destructively in e2, then all
aliased variables in Γ and ∆1 are used destructively in the overall expression;
this accounts for the use of Γ i and ∆i in the conclusion. The aspects in ∆1 and
∆2 are merged in the overall expression, taking into account the way that x is
used in e2. The side condition prevents any common variable z being modified in
e1 or e2 before it is referenced in e2. More exactly, ∆1[z] = 1 is not allowed (the
value of the variable would be destroyed in the binding); ∆1[z] = 3 is always
allowed (the value of the variable has no heap overlap with the binding value),
and ∆1[z] = 2 is allowed provided neither i = 1 nor ∆2[z] = 1 (the value of
the common variable may have aliasing with e2, provided it is not partly or
completely destroyed in e2: the modification may happen before the reference).
As an instance of let, we get a derived rule of contraction for aspect 3 variables.

The only constructor rules we need are for the two kinds of pairs. The rule
for constructing a ×-pair ensures that all variables which are shared between the
components have aspect at least 2. The “condition ?” in rule ×-pair is:

– ∆1[z] ≥ 2 and ∆2[z] ≥ 2 for all z ∈ dom(∆1) = dom(∆2).

which ensures that no part of memory shared between the components is de-
stroyed when the pair is constructed. (A more liberal condition which considers
evaluation order is possible, but we omit it here.)

In the destructor rules we type-check the branches in possibly extended con-
texts, and then pass the worst-case usage aspect as the usage for the term being
destructed. For example, if we destroy one half of a pair in pair-elim, so x1 has
usage aspect 1, then the whole pair is considered destroyed in the conclusion.

3 Imperative operational semantics

To establish the correctness of our typing rules, we need to formalize the intended
in-place update interpretation of the language. In [Hof00], a translation to ‘C’
and a semantics for the target sublanguage for ‘C’ was used. Here we instead
use an abstract machine model; this allows us to more easily consider alternative
translations to other languages, such as the Java translation given in [AH01], or
a typed assembly language interpretation, as given in [AC02]. The interpretation
we consider here is closest to the Java translation from [AH01].

Let Loc be a set of locations which model memory addresses on a heap. We
use l to range over elements of Loc. Next we define two sets of values, stack
values SVal, ranged over by v, and heap values HVal, ranged over by h, thus:

v ::= n | l | NULL | (v, v)
h ::= v | {f1 = v1 . . . fn = vn}



A stack value is either an integer n, a location l, a null value NULL, or a pair
of stack values (v, v). A heap value is either a stack value or an n-ary record
consisting of named fields with stack values. A stack S:Var ⇀ SVal is a partial
mapping from variables to stack values, and a heap σ:Loc ⇀ HVal is a partial
mapping from locations to heap values. Evaluation of an expression e takes place
with a given stack and heap, and yields a stack value and a possibly updated
heap. Thus we have a relation of the form S, σ ` e ; v, σ′ expressing that the
evaluation of e under stack S and heap σ terminates and results in stack value
v. As a side effect the heap is modified to σ′.

The only interesting cases in the operational semantics are the ones for the
heap datatypes, which make use of 3-values as heap locations. For example, the
following rules for cons:

S, σ ` ed ; ld, σ
′ S, σ′ ` eh ; vh, σ

′′ S, σ′′ ` et ; vt, σ
′′′

S, σ ` cons(ed, eh, et) ; ld, σ
′′′[ld 7→{hd=vh, tl = vt}]

S, σ ` e ; l, σ′ σ′(l) = {hd=vh, tl=vt}
S[xd 7→ l, xh 7→ vh, xt 7→ vt], σ

′ ` econs ; v, σ′′

S, σ ` match e with nil⇒enil|cons(xd, xh, xt)⇒econs ; v, σ′′

In the constructor rule, the first argument ed of cons is a term of 3 type, which
we evaluate to a heap location ld. We then evaluate the head and the tail of
the list in turn, propagating any changes to the heap. Finally, the result is the
location ld where we make the cons cell by updating the heap, using a record
with hd and tl fields. The match rule performs the opposite operation, breaking
apart a cons-cell.

This operational semantics describes the essence of our in-place update inter-
pretation of the functional language, without considering more complex trans-
lations or optimizations that might be present in a real compiler.

4 Correctness

In this section we will prove that for a typable program, the imperative opera-
tional semantics is sound with respect to a functional (set-theoretic) semantics.

Set-theoretic interpretation. We define the set-theoretic interpretation of types
[[A]], by setting [[N]] = Z, [[3]] = {0}, [[L(A)]] = finite lists over [[A]], [[T(A)]] =
binary [[A]]-labelled trees, and [[A⊗B]] = [[A×B]] = [[A]]× [[B]]. To each program
(Σ, (ef )f∈dom(Σ)) we can now associate a mapping ρ such that ρ(f) is a partial
function from [[A1]]× . . . [[An]] to [[B]] for each f : Ai11 , . . . , A

in
n → B. This meaning

is given in the standard fashion as the least fixpoint of an appropriate composi-
tionally defined operator, as follows. A valuation of a context Γ is a function η
such that η(x) ∈ [[Γ (x)]] for each x ∈ dom(Γ ); a valuation of a signature Σ is a
function ρ such that ρ(f) ∈ [[Σ(f)]] whenever f ∈ dom(Σ). To each expression
e such that Γ `Σ e : A we assign an element [[e]]η,ρ ∈ [[A]] ∪ {⊥} in the obvious
way: function symbols and variables are interpreted according to the valuations;



basic functions and expression formers are interpreted by the eponymous set-
theoretic operations, ignoring the 3-type arguments in the case of constructor
functions. The formal definition of [[−]]η,ρ is by induction on terms. A program
(Σ, (ef )f∈dom(Σ)) is then the least valuation ρ such that

ρ(f)(v1, . . . , vn) = [[ef ]]ρ,η

where η(xi) = vi, for any f ∈ dom(Σ).
Notice that this set-theoretic semantics does not say anything about space

usage and treats 3 as a single-point type; its only purpose is to pin down the
functional denotations of programs so that we can formally state a correctness
result for the in-place update operational interpretation.

Heap regions. Given a stack value v, a type A and a heap σ we define the
associated region RA(v, σ) as the least set of locations satisfying

– RN(n, σ) = ∅,
– R3(l, σ) = {l},
– RA×B((v1, v2), σ) = RA⊗B((v1, v2), σ) = RA(v1, σ) ∪RB(v2, σ),
– RL(A)(NULL, σ) = ∅,
– RL(A)(l, σ) = {l} ∪ RA(h, σ) ∪ RL(A)(t, σ) when σ(l) = {hd = h, tl = t}

(otherwise ∅),
– RT(A)(l, σ) = {l} ∪RA(v, σ), when σ(l) = {label = v},
– RT(A)(l, σ) = {l}∪RA(v, σ)∪RT(A)(tl, σ)∪RT(A)(tr, σ), when σ(l) = {label =
v, left = tl, right = tr} (otherwise ∅).

It should be clear that RA(v, σ) is the part of the (domain of) σ that is relevant
for v. Accordingly, if σ(l) = σ′(l) for all l ∈ RA(v, σ) then RA(v, σ) = RA(v, σ′).
If A is a heap-free type, then RA(v, σ) = ∅.

Meaningful stack values in a heap. Next, we need to single out the meaningful
stack values and relate them to the corresponding semantic values. A stack value
is meaningful for a particular type and heap if it has a sensible interpretation
in the heap for that type. For instance, if σ(a) = {hd = 1, tl = NULL} then a
would be a meaningful stack value of type L(N) with respect to σ and it would
correspond to the semantic list [1]. Again, w.r.t. that same heap (a, a) would be
a meaningful stack value of type L(A)×L(A) corresponding to the semantic pair
([1], [1]) ∈ [[L(A)× L(A)]]. That same value (a, a) will also be a meaningful stack
value of type L(A) ⊗ L(A) in case it will be used in a read only fashion. This
occurs for example in the term f(x⊗x) when f : (A⊗A)3 → B. This means that
“meaningfulness” is parametrised by the aspect with which the value is going to
be used. No distinction is made, however, between aspects 2 and 3 in this case.

Given a stack value v, a type A, a heap σ, a denotation a ∈ [[A]] and an
aspect i ∈ {1, 2, 3}, we define a five-place relation v σA,i a which expresses that
v is a meaningful stack value of type A with respect to heap σ corresponding to
semantic value a in aspect i. It is defined inductively as follows:

– n σN,i n
′, if n = n′.



– l σ3,i 0.
– (v1, v2) σA1×A2,i

(a1, a2) if vk σAk,i ak for k = 1, 2.
– (v1, v2) σA1⊗A2,i

(a1, a2) if vk σAk,i ak for k = 1, 2. Additionally,RA1(v1, σ)∩
RA2(v2, σ) = ∅ in case i = 1.

– NULL σL(A),i nil.
– l σL(A),i cons(h, t), if σ(l) = {hd=vh, tl = vt}, l σ3,i 0 and vh σA,i h

and vt σL(A),i t. Additionally, R3(l, σ), RA(vh, σ), RL(A)(vt, σ) are pairwise
disjoint in case i = 1.

– l σT(A),i leaf(a) if σ(l) = {label=va} and l σ3,i 0 and va σA a. Additionally,
R3(l, σ) ∩RA(va) = ∅ in case i = 1.

– l σT(A),i node(a, l, r) if σ(l) = {label=va, left=vl, right=vr} and l σ3,i 0 and
va σA,i a and vl σA,i l and vr σA,i r. Additionally R3(l, σ), RA(va, σ),
RT(A)(vl, σ), RT(A)(vr, σ) are pairwise disjoint in case i = 1.

Notice that σA,2 and σA,3 are identical, whereas σA,1 prevents any “internal
sharing” within ⊗-product types in the heap representation. We extend this
relation to stacks and valuations for a context, by defining S σΓ η thus:

– S(x) σΓ (x),Γ [x] η(x) for each x ∈ dom(Γ )
– x 6= y and RΓ,x(S, σ) ∩RΓ,y(S, σ) 6= ∅ implies Γ [x] ≥ 2, Γ [y] ≥ 2.

where as a shorthand, RΓ,x(S, σ) =def RΓ (x)(S(x), σ). So S σΓ η holds if
stack S and heap σ are meaningful for the valuation η at appropriate types and
aspects, and moreover, the region for each aspect 1 variable does not overlap with
the region for any other variable. (Informally: the aspect 1 variables are safe to
update.) Below we use the shorthand RΓ (S, σ) =def

⋃
x∈dom(Γ )RΓ,x(S, σ).

Correctness theorem. With this definition of meaningfulness in place, we can
prove that the evaluation of a term under a meaningful stack and heap gives
a meaningful result corresponding to the set-theoretic semantics. As usual, we
prove a stronger statement to get an inductive argument through.

Theorem 1. Assume the following data and conditions:

1. a program P over some signature Σ with meaning ρ,
2. a well-typed term Γ ` e : C over Σ for some Γ, e, C,
3. a heap σ, a stack S and a valuation η, such that S σΓ η

Then S, σ ` e ; v, σ′ for some (uniquely determined) v, σ′ if and only if [[e]]η,ρ
is defined. Moreover, in this case the following hold:

1. RC(v, σ′) ⊆ RΓ (S, σ),
2. if l 6∈ RΓ (S, σ) then σ(l) = σ′(l),
3. if l ∈ RΓ,x(S, σ) and Γ [x] ≥ 2 then σ(l) = σ′(l),
4. v σ

′

C,2 [[e]]η,ρ,
5. S σΓ 1 η implies v σ

′

C,1 [[e]]η,ρ and RC(v, σ′)∩RΓ,x(S, σ) = ∅ when Γ [x] = 3.



This theorem expresses both the meaningfulness of the representation of se-
mantic values on the machine, and the correctness of the operational semantics
with respect to the set-theoretic semantics. The five consequences capture the
expected behaviour of the imperative operational semantics and the variable as-
pects. In brief: (1) no new memory is consumed; (2) heap locations outside those
reachable from input variables are unchanged in the result heap; (3) in-place up-
dates are only allowed for locations in the regions of aspect 1 variables; (4) the
operational semantics agrees with the set-theoretic result for aspects 2 and 3; (5)
if the heap additionally has no variable-variable overlaps or “internal” sharing
for aspect 2 variables, then the meaningfulness relation also holds in aspect 1 (in
particular, there is no internal sharing within the result value v), and moreover,
there is no overlap between the result region and the region of any aspect 3
variable. This means it is safe to use the result in an updating context.

Specialising this perhaps daunting theorem to the particular case of a unary
function on lists yields the following representative corollary:

Corollary 1. Let P be a program having a function symbol f : L(N)i → L(N).
If σ is a store and l is a location such that l points in σ to a linked list with

integer entries w = [x1, . . . , xn] in σ then ρ(f)(w) is defined iff [x 7→ l], σ `
f(x) ; v, σ′ for some v, σ′ and in this case v points in σ′ to a linked list with
integer entries ρ(f)(w).

Additionally, one can draw conclusions about the heap region of the result list
depending on the value of i.

In further work (partly underway) we are examining the two kinds of product
in more detail, and considering array types with and without sharing between
entries. We are also looking at dynamically allocated store via built-in functions
new :→ 3 and dispose : 31 → N. These built-ins can be implemented by inter-
facing to an external memory manager, for example, using malloc and free
system calls augmented with a free list. This allows more functions to be defined
but breaks the heap-bounded nature of the system, in general.

5 Conclusions and related work

We defined an improved version of the resource-aware linear programming lan-
guage LFPL, which includes usage aspect annotation on types. We also added
datatypes based on cartesian products, to allow sharing in data structures on
the heap. Using an operational semantics to formalize the in-place update inter-
pretation, we proved that evaluation in the language is both type-sound for a
memory model and correct for a set-theoretic functional semantics.

The philosophy behind LFPL is that of providing a static guarantee that
efficient in-place implementations are used, while allowing as many programs as
possible. The guarantee is enforced by the type system. This is in contrast to
various other proposed systems which perform static analysis during compila-
tion, or mix linear and non-linear typing schemes, to achieve compilations which
are often efficient in practice, but which provide no absolute guarantee. In its



pure form, LFPL does not include any instructions for allocating heap space,
so all computation is done in-place, using constant heap space. This guarantee
is provided for any program which can be written in the language. Apart from
differences in philosophy, our usage aspects and their semantic motivation from
the memory model are somewhat novel compared with previous work. Related
ideas and annotations do already appear in the literature, although not always
with semantic soundness results. We believe that our system is simpler than
much of the existing work, and in particular, the use of the resource type 3 is
crucial: it is the appearance of 31 in the typing of constructors like cons that
expresses that constructors are given an in-place update interpretation. Without
the resource type 3 there would be no aspect 1 component.

Here is a necessarily brief comparison with some of the previous work. The
closest strand of work begins with Wadler’s introduction of the idea of a sequen-
tial let [Wad90]. If we assume that e1 is evaluated before e2 in the expression

let x=e1 in e2[x]

then we can allow sharing of a variable z between e1 and e2, as long as z is not
modified in e1 and some other side-conditions which prevent examples like

let x=y in append(x, y).

Our rule for let follows similar ideas. Odersky [Ode92] built on Wadler’s idea
of the sequential let. He has an observer annotation, which corresponds to our
aspect 2 annotations: not modified, but still occurs in the result. He too has
side conditions for the let rule which ensure soundness, but there is no proof
of this (Odersky’s main result is a type reconstruction algorithm). Kobayashi
[Kob99] introduces quasi-linear types. This typing scheme also allows sharing
in let expressions. It has a δ-usage which corresponds roughly to our aspect 3
usage. Kobayashi’s motivation was to statically detect points where dealloca-
tion occurs; this requires stack-managed extra heap, augmenting region analy-
sis [TT97]. Kobayashi also allows non-linear use of variables (we might similarly
add an extra aspect to LFPL to allow non-linear variables, if we accepted the use
of a garbage collector). Kobayashi proves a traditional type soundness (subject
reduction) property, which shows an internal consistency of his system, whereas
we have characterised and proved equivalence with an independently meaningful
semantic property. It might well be possible to prove similar results to ours for
Kobayashi’s system, but we believe that by considering the semantical property
at the outset, we have introduced a rather more natural syntactic system, with
simpler types and typing rules.

There is much other related work on formal systems for reasoning or type-
checking in the presence of aliasing, including for example work by Reynolds,
O’Hearn and others [Rey78,OTPT95,Rey00,IO01]; work on the imperative λ-
calculus [YR97]; uniqueness types [BS96], usage types for optimised compilation
of lazy functional programs [PJW00] and program analyses for destructive ar-
ray updates [DP93,WC98] as automated in PVS [Sha99]. There is also related
work in the area of compiler construction and typed assembly languages, where



researchers have investigated static analysis techniques for determining when
optimisations such as in-place update or compile-time garbage collection are ad-
missible; recent examples include shape analysis [WSR00], alias types [SWM00],
and static capabilities [CWM99], which are an alternative and more permissive
form of region-based memory management. One of our future goals is to relate
our work back to research on compiler optimizations and typed low-level lan-
guages, in the hope that we can guarantee that certain optimizations will always
be possible in LFPL, by virtue of its type system. This is in contrast to the
behaviour of many present optimizing compilers, where it is often difficult for
the programmer to be sure if a certain desirable optimization will performed by
the compiler or not. Work in this directions has begun in [AC02], where a typed
assembly language is developed which has high-level types designed to support
compilation from LFPL, to obviate the need for garbage collection.

We see the work reported here as a step along the way towards a powerful
high-level language equipped with notions of resource control. There are more
steps to take. We want to consider richer type systems closer to those used in
present functional programming languages, in particular, including polymorphic
and higher-order types. For the latter, recent work by the second author [Hof02]
shows that a large class of functions on lists definable in a system with higher-
order functions can be computed in bounded space. Another step is to consider
inference mechanisms for adding resource annotations, including the 3 argu-
ments (we mentioned some progress on this in Section 1) and usage aspects, as
well as the possibility of automatically choosing between ⊗-types and ×-types.
Other work-in-progress was mentioned at the end of the previous section. We
are supporting some of the theoretical work with the ongoing development of an
experimental prototype compiler for LFPL; see the first author’s web page for
more details.

Acknowledgements. The authors are grateful to Michal Konečný and Robert Atkey
for discussion and comments on this work.

References

[AC02] David Aspinall and Adriana Compagnoni. Heap bounded assembly lan-
guage. Technical report, Division of Informatics, University of Edinburgh,
2002.

[AH01] David Aspinall and Martin Hofmann. Heap bounded functional program-
ming in Java. Implementation experiments, 2001.

[BS96] E. Barendsen and S. Smetsers. Uniqueness typing for functional languages
with graph rewriting semantics. Mathematical Structures in Computer Sci-
ence, 6:579–612, 1996.

[CWM99] Karl Crary, David Walker, and Greg Morrisett. Typed memory management
in a calculus of capabilities. In Proceedings ACM Principles of Programming
Languages, pages 262–275, 1999.

[DP93] M. Draghicescu and S. Purushothaman. A uniform treatment of or-
der of evaluation and aggregate update. Theoretical Computer Science,
118(2):231–262, September 1993.



[Hof99] Martin Hofmann. Linear types and non size-increasing polynomial time
computation. In Logic in Computer Science (LICS), pages 464–476. IEEE,
Computer Society Press, 1999.

[Hof00] Martin Hofmann. A type system for bounded space and functional in-place
update. Nordic Journal of Computing, 7(4):258–289, 2000. An extended
abstract has appeared in Programming Languages and Systems, G. Smolka,
ed., Springer LNCS, 2000.

[Hof02] Martin Hofmann. The strength of non size-increasing computation. In
Proceedings ACM Principles of Programming Languages, 2002.

[IO01] Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mu-
table data structures. In Conference Record of POPL 2001: The 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 14–26, New York, 2001. ACM.

[Kob99] Naoki Kobayashi. Quasi-linear types. In Proceedings ACM Principles of
Programming Languages, pages 29–42, 1999.

[Ode92] Martin Odersky. Observers for linear types. In B. Krieg-Brückner, edi-
tor, ESOP ’92: 4th European Symposium on Programming, Rennes, France,
Proceedings, pages 390–407. Springer-Verlag, February 1992. Lecture Notes
in Computer Science 582.

[OP99] Peter W. O’Hearn and David J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2):215–243, 1999.

[OTPT95] P. W. O’Hearn, M. Takeyama, A. J. Power, and R. D. Tennent. Syntactic
control of interference revisited. In MFPS XI, Conference on Mathemat-
ical Foundations of Program Semantics, volume 1 of Electronic Notes in
Theoretical Computer Science. Elsevier, 1995.

[PJW00] Simon Peyton-Jones and Keith Wansbrough. Simple usage polymorphism.
In Proc. 3rd ACM SIGPLAN Workshop on Types in Compilation, Montreal,
September 2000.

[Rey78] J. C. Reynolds. Syntactic control of interference. In Proc. Fifth ACM Symp.
on Princ. of Prog. Lang. (POPL), 1978.

[Rey00] John C. Reynolds. Intuitionistic reasoning about shared mutable data struc-
ture. In Jim Davies, Bill Roscoe, and Jim Woodcock, editors, Millennial
Perspectives in Computer Science, pages 303–321, Houndsmill, Hampshire,
2000. Palgrave.

[Sha99] Natarajan Shankar. Efficiently executing PVS. Technical report, Computer
Science Laboratory, SRI International, 1999.

[SWM00] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In
G. Smolka, editor, Programming Languages and Systems, volume 1782,
pages 366–381. Springer LNCS, 2000.

[TT97] M. Tofte and J.-P. Talpin. Region-based memory management. Information
and Computation, 132(2):109–176, 1997.

[Wad90] Philip Wadler. Linear types can change the world. In M. Broy and C. B.
Jones, editors, IFIP TC 2 Working Conference on Programming Concepts
and Methods, pages 561–581, Sea of Gallilee, Israel, 1990. North-Holland.

[WC98] Mitchell Wand and William D. Clinger. Set constraints for destructive array
update optimization. In Proc. IEEE Conf. on Computer Languages ’98,
pages 184–193, 1998.

[WSR00] Reinhard Wilhelm, Mooly Sagiv, and Thomas Reps. Shape analysis. In
Proceedings Compiler Construction, CC 2000, 2000.

[YR97] H. Yang and U. Reddy. Imperative lambda calculus revisited, 1997.


