
From specifications to code in Casl

David Aspinall and Donald Sannella

Laboratory for Foundations of Computer Science,
Division of Informatics, University of Edinburgh

Abstract. The status of the Common Framework Initiative (CoFI) and
the Common Algebraic Specification Language (Casl) are briefly pre-
sented. One important outstanding point concerns the relationship be-
tween Casl and programming languages; making a proper connection
is obviously central to the use of Casl specifications for software spec-
ification and development. Some of the issues involved in making this
connection are discussed.

1 Introduction

The Common Framework Initiative, abbreviated CoFI, is an open international
collaboration which aims to provide a common framework for algebraic specifica-
tion and development of software by consolidating the results of past research in
the area [AKBK99]. CoFI was initiated in 1995 in response to the proliferation
of algebraic specification languages. At that time, despite extensive past collabo-
ration between the main research groups involved and a high degree of agreement
concerning the basic concepts, the field gave the appearance of being extremely
fragmented, and this was seen as a serious obstacle to the dissemination and use
of algebraic development techniques. Although many tools supporting the use
of algebraic techniques had been developed in the academic community, none
of them had gained wide acceptance, at least partly because of their isolated
usability, with each tool using a different specification language.

The main activity of CoFI has been the design of a specification language
called Casl (the Common Algebraic Specification Language), intended for for-
mal specification of functional requirements and modular software design and
subsuming many previous specification languages. Development of prototyping
and verification tools for Casl leads to them being interoperable, i.e. capable of
being used in combination rather than in isolation. Design of Casl proceeded
hand-in-hand with work on semantics, methodology and tool support, all of
which provided vital feedback regarding language design proposals. For a de-
tailed description of Casl, see [ABK+03] or [CoF01]; a tutorial introduction is
[BM01] and the formal semantics is [CoF02]. Section 2 below provides a brief
taste of its main features. All Casl design documents are available from the
main CoFI web site [CoF].

The main activity in CoFI since its inception has been the design of Casl
including its semantics, documentation, and tool support. This work is now
essentially finished. The language design is complete and has been approved

by IFIP WG1.3 following two rounds of reviewing. The formal semantics of
Casl is complete, and documentation including a book containing a user’s guide
and reference documents are nearing completion. A selection of tools support-
ing Casl are available, the most prominent of these being the Casl Tool Set
CATS [Mos00a] which combines a parser, static checker, LATEX pretty printer,
facilities for printing signatures of specifications and structure graphs of Casl
specifications, with an encoding of Casl specifications into second-order logic
[Mos03] providing links to various verification and development systems includ-
ing Isabelle and INKA [AHMS99].

The most focussed collaborative activity nowadays is on tool development,
see http://www.tzi.de/cofi/Tools. There is also some further work on various
topics in algebraic specification in the Casl context; for two recent examples
see [MS02] and [BST02b]. However, with the completion of the design activity,
there has been a very encouraging level of use of Casl in actual applications. In
contrast with most previous algebraic specification languages which are used only
by their inventors and their students and collaborators, many present Casl users
have had no connection with its design. Casl has begun to be used in industry,
and applications beyond software specification include a tentative role in the
OMDoc project for the communication and storage of mathematical knowledge
[Koh02]. Overall, Casl now appears to be recognized as a de facto standard
language for algebraic specification.

One important aspect of any specification language is the way that specifica-
tions relate to programs. This can be a difficult issue; see [KS98] for a discussion
of some serious problems at the specification/program interface that were en-
countered in work on Extended ML. The approach taken in Casl, which is
outlined in Section 3, involves abstracting away from the details of the pro-
gramming language. This works up to a point, but it leaves certain questions
unanswered. In Section 4 we briefly outline a number of issues with the relation-
ship between Casl specifications and programs that deserve attention. Our aim
here is to raise questions, not to answer them. The discussion is tentative and
we gloss over most of the technical details.

2 A taste of Casl

A Casl basic specification denotes a class of many-sorted partial first-order
structures: algebras where the functions are partial or total, and where also
predicates are allowed. These are classified by signatures which list sort names,
partial and total function names, and predicate names, together with profiles of
functions and predicates. The sorts are partially ordered by a subsort inclusion
relation. Apart from introducing components of signatures, a Casl basic speci-
fication includes axioms giving properties of structures that are to be considered
as models of the specification. Axioms are in first-order logic built over atomic
formulae which include strong and existential equalities, definedness formulae
and predicate applications, with generation constraints added as special, non-

first-order sentences. Concise syntax is provided for specifications of “datatypes”
with constructor and selector functions.

Here is an example of a basic specification:

free types Nat ::= 0 | sort Pos ;
Pos ::= suc(pre : Nat)

op pre : Nat →? Nat
axioms

¬def pre(0);
∀n : Nat • pre(suc(n)) = n

pred even : Nat
var n : Nat
• even 0
• even suc(n)⇔¬even n

The remaining features of Casl do not depend on the details of the features
for basic specifications, so this part of the design is orthogonal to the rest. This
is reflected in the semantics by the use of a variant of the notion of institution
[GB92] called an institution with symbols [Mos00b]. (For readers who are unfa-
miliar with the notion of institution, it corresponds roughly to “logical system
appropriate for writing specifications”.) The semantics of basic specifications is
regarded as defining a particular institution with symbols, and the rest of the
semantics is based on an arbitrary institution with symbols. An important con-
sequence of this is that sub-languages and extensions of Casl can be defined by
restricting or extending the language of basic specifications without the need to
reconsider or change the rest of the language.

Casl provides ways of building complex specifications out of simpler ones —
the simplest ones being basic specifications — by means of various specification-
building operations. These include translation, hiding, union, and both free and
loose forms of extension. A structured specification denotes a class of many-sorted
partial first-order structures, as with basic specifications. Thus the structure
of a specification is not reflected in its models: it is used only to present the
specification in a modular style. Structured specifications may be named and a
named specification may be generic, meaning that it declares some parameters
that need to be instantiated when it is used. Instantiation is a matter of providing
an appropriate argument specification together with a fitting morphism from the
parameter to the argument specification. Generic specifications correspond to
what is known in other specification languages as (pushout-style) parametrized
specifications.

Here is an example of a generic specification (referring to a specification
named Partial Order, which is assumed to declare the sort Elem and the
predicate ≤):

spec List with Order [Partial Order] =
free type List [Elem] ::= nil | cons(hd :?Elem; tl :?List [Elem])

then

local
op insert : Elem × List [Elem]→ List [Elem]
vars x , y : Elem; l : List [Elem]
axioms insert (x , nil) = cons(x , nil);

x ≤ y ⇒ insert (x , cons (y , l)) = cons(x , insert (y , l));
¬(x ≤ y)⇒ insert (x , cons(y , l)) = cons(y , insert (x , l))

within
op order[≤] : List [Elem]→ List [Elem]
vars x : Elem; l : List [Elem]
axioms order[≤](nil) = nil ;

order[≤](cons(x , l)) = insert (x , order[≤](l))
end

Architectural specifications in Casl are for describing the modular structure
of software, in constrast to structured specifications where the structure is only
for presentation purposes. An architectural specification consists of a list of unit
declarations, indicating the component modules required with specifications for
each of them, together with a unit term that describes the way in which these
modules are to be combined. Units are normally functions which map structures
to structures, where the specification of the unit specifies properties that the
argument structure is required to satisfy as well as properties that are guaranteed
of the result. These functions are required to be persistent, meaning that the
argument structure is preserved intact in the result structure. This corresponds
to the fact that a software module must use its imports as supplied without
altering them.

Here is a simple example of an architectural specification (referring to ordi-
nary specifications named List, Char, and Nat, assumed to declare the sorts
Elem and List[Elem], Char, and Nat, respectively):

arch spec CN List =
units

C : Char ;
N : Nat ;
F : Elem → List[Elem]

result F [C fit Elem 7→ Char] and F [N fit Elem 7→ Nat]

More about architectural specifications, including further examples, may be
found in [BST02a].

3 Specifications and programs

The primary use of specifications is to describe programs; nevertheless Casl
abstracts away from all details of programming languages and programming
paradigms, in common with most work on algebraic specification. The connec-
tion with programs is indirect, via the use of partial first-order structures or

similar mathematical models of program behaviour. We assume that each pro-
gram P determines a Casl signature Sig(P), and the programming language
at hand comes equipped with a semantics which assigns to each program P its
denotation as a partial first-order structure, [[P]] ∈ Alg(Sig(P)). Then P is re-
garded as satisfying a specification SP if Sig(P) = Sig (SP) and [[P]] ∈ [[SP]],
where Sig(SP) and [[SP]]⊆ Alg (Sig(SP)) are given by the semantics of Casl.

The type systems of most programming languages do not match that of
Casl, and partial first-order structures are not always suitable for capturing
program behaviour. In that case one may simply replace the institution that is
used for basic specifications in Casl with another one that is tailored to the
programming language at hand.

Example 3.1. A suitable institution for Standard ML (SML) would consist of
the following components.

Signatures: These would be SML signatures, or more precisely environments as
defined in the static semantics of SML [MTHM97] which are their semantic
counterparts. Components of signatures are then type constructors, typed
function symbols including value constructors, exception constructors, and
substructures having signatures. The type system here is that of SML, where
functions may be higher-order and/or polymorphic.

Models: Any style of model that is suitable for capturing the behaviour of
SML programs could be used. For example, one could take environments
as defined in the dynamic semantics of SML, where closures are used to
represent functions.

Sentences: One choice would be the syntax used for axioms in Extended ML
[KST97], which is an extension of the syntax of SML boolean expressions by
quantifiers, extensional equality, and a termination predicate.

Satisfaction: If sentences are as in EML and models are as in the dynamic
semantics of SML, then satisfaction of a sentence by a model is as defined
in the verification semantics of EML [KST97]. ut

Here is a variant of the sorting specification shown earlier, given for the SML
instantiation of Casl, by adjusting the syntax of basic specifications.

spec List with PolyOrder =
local

val insert : (α× α→ bool)→ α× α list → α list
vars x , y : α; l : α list
axioms insert leq (x , nil) = cons(x , nil);

leq(x , y)⇒ insert leq (x , cons(y , l)) =
cons(x , insert leq (y , l));

¬(leq(x , y))⇒ insert leq (x , cons(y , l)) =
cons(y , insert leq (x , l))

within
op order : (α× α→ bool) → α list → α list
vars x : α; l : α list

axioms order leq (nil) = nil ;
order leq (cons(x , l)) = insert leq (x , order leq l)

Example 3.2. An institution for a simplified version of Java could be defined by
combining and recasting ideas from µJava [NOP00] and JML [LBR01].

Signatures: A signature would represent the type information for a collection
of classes, including class names, types and names of fields and methods in
each class, and the subclass relationship between classes.

Models: A natural choice for models is based on execution traces within an
abstract version of the Java Virtual Machine [NOP00]. A trace is a sequence
of states, each including a representation of the heap (the current collection
of objects), as well as a program counter indicating the next method to be
executed and a stack containing the actual arguments it will be invoked with.

Sentences: An appropriate choice would be a many-sorted first-order logic
which has non side-effecting Java expressions as terms. When specifying
object-oriented systems, it is desirable to allow both class invariants which
express properties of the values of fields in objects, as well as method pre-post
conditions which express the behaviour of methods. Post conditions need
some way to refer to the previous state (possibilities are to use auxiliary vari-
ables as in Hoare logic [NOP00], or the Old (−) function of JML [LBR01]),
as well as the result value of the method for non void returning methods. It
would also be possible to add constructs for specifying exceptional behaviour
and termination conditions.

Satisfaction: Roughly, a class invariant is satisfied in a model if it is satisfied
in every state in the execution trace, and a method pre-post condition is
satisfied if the pre-condition implies the post condition for all pairs of states
corresponding to the particular method’s call and return points. In practice,
we need to be careful about certain intermediate states where class invariants
may be temporarily violated; see [LBR01] for ways of describing this, as well
as ways of specifying frame conditions which restrict which part of the state
a method is allowed to alter. ut

Example 3.3. An institution for Haskell-with-CASL is described in [SM02]. It is
relates closely to the normal first-order Casl institution, and has been studied
in more detail than our sketches for Java and SML above. Here is an overview:

Signatures: These consist of Haskell-style type classes including type construc-
tors, type aliases, and type schemes for operators. There is a way to reduce
rich signatures to simpler ones close to ordinary CASL, except that higher-
order functions are present.

Models: Models are over basic signatures, and given by intensional Henkin
models. Like the institutions outlined above, this choice reflects a more
computationally-oriented viewpoint, allowing particular models which cap-
ture operational interpretations.

Sentences and satisfaction: Full formulae are similar to those of first-order
Casl, but are reduced to a restricted internal logic on which satisfaction is
defined. ut

This institutional approach takes a model-theoretic view and says nothing about
how sentences can be proved to hold. For this, one would require an associated
entailment system, see [Mes89].

4 Some unresolved issues

Defining an institution for specifying programs in a given programming language,
as in the above examples, provides a link between Casl and the programming
language at hand. This gives an adequate framework for analysis of the process
of developing programs from specifications by stepwise refinement using Casl
architectural specifications, see e.g. [BST02a] and [BST02b].

Still, this seems to be only part of a bigger and more detailed story. Notice
that the syntax of programs does not appear anywhere in the institutions out-
lined in Examples 3.1 and 3.2. One would expect a full account to take into
consideration the structure of the programming language, rather than regarding
it as a monolithic set of notations for describing a model.

4.1 Combining specifications and programs

We have made the point that specification structure is in general unrelated
to program structure, and it often makes sense to use a completely different
structure for an initial requirements specification than is used for the eventual
implementation. If we are to connect the two formally, however, it is useful to
have a path between them. This is what architectural specifications in Casl are
intended to provide, as a mechanism for specifying implementation structure.

Architectural specifications in Casl can make use of certain model building
operators for defining units. These are defined analogously to the specification
building operators available for structured specifications. They including renam-
ing, hiding, amalgamation, and the definition of generic units. The semantics of
the model building operators is defined for an arbitrary institution with symbols;
but once a specific programming language is chosen, it remains to decide how
the model building operators can be realised [BST02a]. It may be that none,
some, or all of them can be defined directly within the programming language.

Example 4.1. (Continuing Example 3.1) In SML, an architectural unit is a struc-
ture (possibly containing substructures) and a generic unit corresponds to a
functor. The ways that units are combined in Casl correspond with the ways
that structures and functors are combined in SML; it is possible to define re-
naming, hiding and amalgamation within the language itself. ut

Example 4.2. (Continuing Example 3.2) In Java, an architectural unit is perhaps
best identified as a set of related classes belonging to the same package. Java has
visibility modifiers and interfaces which control access to these units, but there
is no dedicated program-level syntax for combining pieces in this higher level
of organization. Instead, the operations for constructing architectural units in
Casl must be simulated by meta-operations on Java program syntax. Moreover,

there is nothing corresponding to a generic unit: we must treat generic units as
meta-level macros which are expanded at each instantiation. ut

Even if the Casl model building operators are definable within the programming
language, it may be preferable to use source-level transformations to realise them.
This choice will be part of explaining how to instantiate Casl to a particular
programming language.

Casl provides model building operations for combining units, but has no
built-in syntax for constructing basic units. One way to link to a specific pro-
gramming language would be add syntax from the programming language for
basic units (and perhaps also syntax for combining units, e.g. SML functors).
Here’s a simple example of a unit definition using SML syntax (assuming Par-
tial Order has been slightly adapted for SML syntax):

unit PairOrder : Partial Order =
struct

type Elem = int × int ;
fun leq((x1 , x2), (y1 , y2)) = (x1 < x2 orelse

(x1 = x2 andalso y1 ≤ y2))
end

This mechanism gives a Casl-based language for writing specifications with
pieces of programs inside; such specifications induce proof obligations.

Conversely, we would also like to explain so-called “wide-spectrum” ap-
proaches to specification, in which pieces of specification are written inside
programs, as exemplified by Extended ML and JML. Although adopting the
wide-spectrum approach throughout a formal development may risk early com-
mitment to a particular program structure, it is appealing for programmers
because they can be introduced to specification annotations gradually, rather
than needing to learn a whole new language.

If we have an institution IPL for a programming language PL, we can imagine
a crude way of adding assertions to the language by attaching sentences φ from
IPL to programs P . In reality, we would want to attach sentences more closely
to the area of the program they refer to, which depends on the specific language
being considered.

The two scenarios we have discussed can be visualized like this:

wide-spectrum PL CASL(IPL) + PL//oo

PL

?�

OO

IPL//oo

?�

OO

Here, “wide-spectrum PL” is a programming language PL extended with specifi-
cation annotations, and CASL(IPL) is a Casl extension for the institution IPL .

To make each side work, we need to consider how to combine the static seman-
tics of the languages to interpret pieces of programs or specifications in their
surrounding context. We have two frameworks for specifying, on the boundary
of programming and specification, but they are not quite the same.

4.2 Models of programs vs. models of specifications

The activities of specification and programming are quite different. Specifica-
tion languages put a premium on the ability to express properties of functions
and data in a convenient and concise way, while in programming languages
the concern is with expressing algorithms and data structures. This “what vs.
how” distinction leads to obvious differences in language constructs. More sub-
tle differences arise on the level of models. As explained in Section 3, the Casl
approach is to use the same kind of models for programs and for specifications.
The following example from [ST96] shows how this might lead to problems.

Example 4.3. Let φequiv be a sentence which asserts that equiv(n,m) = true iff
the Turing machines with Gödel numbers n and m compute the same partial
function (this is expressible in first-order logic with equality). Now consider the
following specification:

local
op equiv : Nat×Nat→ Bool
axioms φequiv

within
op opt : Nat→ Nat;
vars n : Nat
axioms equiv(opt(n),n) = true

This specifies an optimizing function opt transforming TMs to equivalent TMs.
(Axioms could be added to require that the output of opt is at least as efficient
as its input.) If the models in use require functions to be computable, as in
Examples 3.1 and 3.2, then this specification will have no models because there
is no computable function equiv satisfying φequiv. Yet there are computable
functions opt having the required property, for instance the identity function on
Nat. Thus this specification disallows programs that provide exactly the required
functionality.1 ut

This example demonstrates that there is a potential problem with the use of
“concrete” models like those in the operational semantics of Standard ML. The
problem does not disappear if one uses more “abstract” models, as in denota-
tional semantics and Example 3.3. Such models impose restrictions on function
spaces in order to interpret fixed point equations. Further restrictions are im-
posed in a desire to reflect more accurately the constraints that the programming
1 One way out might be to use a predicate for equiv instead of a function, extending

models to interpret predicates in such a way that predicates are not required to be
undecidable.

language imposes, for example functions in a polymorphic language like SML
might be required to be parametric, i.e. behave uniformly for all type instances
[BFSS90]. Imposing such restrictions, whatever they are, gives rise to examples
like the one above. Whether or not such an example illustrates a problem that
needs to be solved is a different question. There is also an effect on the meaning
of quantification: ∀f : τ → τ . φ is more likely to hold if the quantifier ranges
over only the parametric functions [Wad89,PA93].

A different problem arises from the use of the same signatures for programs
and specifications. For specification purposes, one might want richer signatures
with auxiliary components (that are not meant to be implemented) for use in
specifying the main components (that are meant to be implemented). An ex-
ample is the use of predicates specifying class invariants in JML [LBR01]. The
addition of such auxiliary components does not seem to present substantive prob-
lems, but it is not catered for by the simple view of the relationship between
specifications and programs presented in Section 3.

4.3 Relationships between levels and between languages

A classical topic in semantics is compiler correctness, see e.g. [BL69,Mor73],
where the following diagram plays a central role:

M

PL

M ′

PL′

?

[[·]]

-�
e

-c

?
[[·]]′

Here, PL is the source language, PL′ is the target language, c is a compiler, [[·]]
and [[·]]′ are the semantics of PL and PL′ respectively, and e is some kind of
encoding or simulation relating the results delivered by [[·]] and [[·]]′. The compiler
c is said to be correct if the diagram commutes, i.e. if for any P ∈ PL the result
of interpreting P is properly related by e to the result of interpreting c(P) ∈ PL′.

Given institutions for PL and PL′, we may recast this to require compilation
to preserve satisfaction of properties. One formulation would be to require that
for all programs P ∈ PL and sentences φ over Sig(P),

[[P]] |= φ =⇒ [[P̂]]′ |= φ̂

where P̂ is the result of compiling P and φ̂ is a translation of the property φ
into the terms of P̂ . If the set of sentences over Sig (P) is closed under negation
then this is equivalent to what is obtained if we replace ⇒ by ⇔, and then this
is a so-called institution encoding [Tar00] (cf. [GR02] where the name “forward
institution morphism” is used for the same concept).

An issue of great practical importance is “interlanguage working” in which
programs in one programming language can work directly with libraries and
components written in another. One way to achieve this is via a low-level inter-
mediate language which is the common target of compilers for the programming

languages in question. Microsoft’s .NET platform is an example, with the CIL
common intermediate language [MG01]. In such a framework, faced with an
architectural specification of the form:

arch spec ASP =
units

U1 : SP1 ;
U2 : SP2

result . . .U1 . . .U2 . . .

one might consider implementing U1 in one language and U2 in a different
language. If U1 satisfies SP1 and U2 satisfies SP2, then it would be possible to
combine Û1 and Û2 as indicated in ASP to obtain a program in the common
intermediate language, with (under appropriate conditions) Û1 satisfying ŜP1
and Û2 satisfying ŜP2.

5 Conclusion

We have considered various issues in connecting programming languages to
Casl, including the possibility of connecting several languages at once to al-
low inter-language implementations.

Once we have characterised a setting for working with specifications and pro-
grams, there is more to do before we have a framework for formal development.
Perhaps the most important question is: what do we actually want to do with
our specifications?

There are various possibilities. We can use specifications as a basis for test-
ing [Gau95]; they might be used to generate code for run-time error check-
ing [WLAG93,LLP+00], or they may be used as a basis for additional static
analysis [DLNS98].

The traditional hope is to be able to prove properties about specifications,
and to prove that implementations satisfy specifications. A common approach
for this is to connect the specification language to an already existing theorem
prover. There is a range of strategies here. The extremes are represented by a
shallow embedding which formalizes just the semantics of the represented lan-
guage directly within a theorem prover’s logic, and a deep embedding, which
formalizes the syntax of the language being represented, together with a mean-
ing function which describes its semantics within the theorem prover’s logic
[RAM+92]. Shallow embeddings have the advantage of direct reasoning within
the theorem prover’s logic, but require a degree of compatibility between the
logic and the language being formalized. A deep embedding, by contrast, is
more flexible, but typically more difficult to use, so that proof principles for
the represented language may have to be derived. Deep embeddings may also al-
low formalization of meta-properties of the language being represented, although
whether this is useful or not depends on the application. Among the existing work
in connecting theorem provers to languages, the work on CATS [Mos00a] and

HasCasl [SM02] use shallow embeddings, whereas the work on µJava [NOP00]
and ASL+FPC [Asp97] use deep embeddings; in the case of µJava the object
of the formalization is to prove meta-properties about Java, rather than reason
about Java programs.

References

[ABK+03] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. Mosses, D. San-
nella and A. Tarlecki. Casl: The common algebraic specification language.
Theoretical Computer Science, 2003. To appear.

[AHMS99] S. Autexier, D. Hutter, H. Mantel and A. Schairer. System description:
INKA 5.0 – a logic voyager. Proc. 16th Intl. Conf. on Automated Deduction.
Springer LNAI 1632, 207–211, 1999.

[AKBK99] E. Astesiano, B. Krieg-Brückner and H.-J. Kreowski, editors. Algebraic
Foundations of Systems Specification. Springer, 1999.

[Asp97] D. Aspinall. Type Systems for Modular Programming and Specification.
PhD thesis, University of Edinburgh, 1997.

[BFSS90] E. Bainbridge, P. Freyd, A. Scedrov and P. Scott. Functorial polymorphism.
Theoretical Computer Science, 70:35–64, 1990.

[BL69] R. Burstall and P. Landin. Programs and their proofs: An algebraic ap-
proach. B. Meltzer and D. Michie, editors, Machine Intelligence 4, 17–43.
Edinburgh University Press, 1969.

[BM01] M. Bidoit and P. Mosses. A gentle introduction to Casl. Tutorial,
WADT/CoFI Workshop at ETAPS 2001, Genova. Available from http:
//www.lsv.ens-cachan.fr/˜bidoit/CASL/, 2001.

[BST02a] M. Bidoit, D. Sannella and A. Tarlecki. Architectural specifications in
Casl. Formal Aspects of Computing, 2002. To appear.

[BST02b] M. Bidoit, D. Sannella and A. Tarlecki. Global development via local
observational construction steps. Proc. 27th Intl. Symp. on Mathematical
Foundations of Computer Science, Warsaw. Springer LNCS, 2002. To
appear.

[CoF] CoFI. The Common Framework Initiative for algebraic specification and
development, electronic archives. Notes and Documents accessible from
http://www.brics.dk/Projects/CoFI/.

[CoF01] CoFI Language Design Task Group. Casl – The CoFI Algebraic Spec-
ification Language – Summary, version 1.0.1. Documents/CASL/v1.0.1/
Summary, in [CoF], 2001.

[CoF02] CoFI Semantics Task Group. Casl – The CoFI Algebraic Specification
Language – Semantics, version 1.0. Documents/CASL/Semantics, in [CoF],
2002.

[DLNS98] D. Detlefs, K.R.M. Leino, G. Nelson and J. Saxe. Extended static checking.
Technical Report #159, Compaq SRC, Palo Alto, USA, 1998.

[Gau95] M.-C. Gaudel. Testing can be formal, too. Intl. Joint Conf. on Theory
and Practice of Software Development (TAPSOFT’95), Aarhus. Springer
LNCS 915, 82–96, 1995.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory for specifi-
cation and programming. Journal of the Assoc. for Computing Machinery,
39:95–146, 1992.

[GR02] J. Goguen and G. Roşu. Institution morphisms. Formal Aspects of Com-
puting, 2002. To appear.

[Koh02] M. Kohlhase. OMDoc: An open markup format for mathematical doc-
uments, version 1.1. Available from http://www.mathweb.org/omdoc/
index.html, 2002.

[KS98] S. Kahrs and D. Sannella. Reflections on the design of a specification
language. Proc. Intl. Colloq. on Fundamental Approaches to Software En-
gineering. European Joint Conferences on Theory and Practice of Software
(ETAPS’98), Lisbon. Springer LNCS 1382, 154–170, 1998.

[KST97] S. Kahrs, D. Sannella and A. Tarlecki. The definition of Extended ML: A
gentle introduction. Theoretical Computer Science, 173:445–484, 1997.

[LBR01] G. Leavens, A. Baker and C. Ruby. Preliminary design of JML. Tech-
nical Report TR #98-06p, Department of Computer Science, Iowa State
University, 2001.

[LLP+00] G. Leavens, K.R.M. Leino, E. Poll, C. Ruby and B. Jacobs. JML: notations
and tools supporting detailed design in Java. OOPSLA 2000 Companion,
Minneapolis, 105–106, 2000.

[Mes89] J. Meseguer. General logics. Logic Colloquium ’87, 275–329. North Holland,
1989.

[MG01] E. Meijer and J. Gough. A technical overview of the commmon language in-
frastructure. Available from http://research.microsoft.com/˜emeijer/
Papers/CLR.pdf, 2001(?).

[Mor73] F. Morris. Advice on structuring compilers and proving them correct. Proc.
3rd ACM Symp. on Principles of Programming Languages, 144–152. ACM
Press, 1973.

[Mos00a] T. Mossakowski. Casl: From semantics to tools. Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2000), European
Joint Conferences on Theory and Practice of Software, Berlin. Springer
LNCS 1785, 93–108, 2000.

[Mos00b] T. Mossakowski. Specification in an arbitrary institution with symbols.
Recent Trends in Algebraic Development Techniques: Selected Papers from
WADT’99, Bonas. Springer LNCS 1827, 252–270, 2000.

[Mos03] T. Mossakowski. Relating Casl with other specification languages: the
institution level. Theoretical Computer Science, 2003. To appear.

[MS02] P. Machado and D. Sannella. Unit testing for Casl architectural specifi-
cations. Proc. 27th Intl. Symp. on Mathematical Foundations of Computer
Science, Warsaw. Springer LNCS, 2002. To appear.

[MTHM97] R. Milner, M. Tofte, R. Harper and D. MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

[NOP00] T. Nipkow, D. von Oheimb and C. Pusch. µJava: Embedding a program-
ming language in a theorem prover. F.L. Bauer and R. Steinbrüggen,
editors, Foundations of Secure Computation. Proc. Intl. Summer School
Marktoberdorf 1999, 117–144. IOS Press, 2000.

[PA93] G. Plotkin and M. Abadi. A logic for parametric polymorphism. Proc.
of the Intl. Conf. on Typed Lambda Calculi and Applications, Amsterdam.
Springer LNCS 664, 361–375, 1993.

[RAM+92] R. Boulton, A. Gordon, M. Gordon, J. Herbert and J. van Tassel. Experi-
ence with embedding hardware description languages in HOL. Proc. of the
International Conference on Theorem Provers in Circuit Design: Theory,
Practice and Experience, Nijmegen, 129–156. North-Holland, 1992.

[SM02] L. Schröder and T. Mossakowski. HasCasl: Towards integrated specifica-
tion and development of haskell programs. Proc. 9th Intl. Conf. on Alge-
braic Methodology And Software Technology, Reunion. Springer LNCS, this
volume, 2002.

[ST96] D. Sannella and A. Tarlecki. Mind the gap! Abstract versus concrete models
of specifications. Proc. 21st Intl. Symp. on Mathematical Foundations of
Computer Science, Cracow. Springer LNCS 1113, 114–134, 1996.

[Tar00] A. Tarlecki. Towards heterogeneous specifications. D. Gabbay and M. van
Rijke, editors, Proc. of the Intl. Conf. on Frontiers of Combining Systems
(FroCoS’98), 337–360. Research Studies Press, 2000.

[Wad89] P. Wadler. Theorems for free! Proc. of the 4th Intl. Conf. on Functional
Programming and Computer Architecture. ACM Press, 1989.

[WLAG93] R. Wahbe, S. Lucco, T. Anderson and S. Graham. Efficient software-based
fault isolation. ACM SIGOPS Operating Systems Review, 27(5):203–216,
December 1993.

