Designing Interaction HCI Lecture 6

David Aspinall

Informatics, University of Edinburgh

9th October 2007

Outline

Conceptual Design

Physical Design

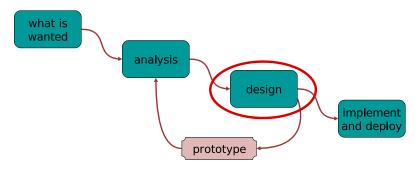
Interaction Modes

Exercise

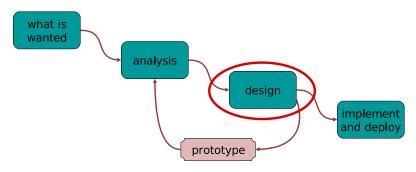
References

Outline

Conceptual Design

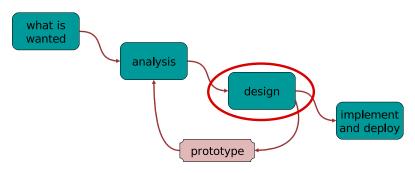

Physical Design

Interaction Modes


Exercise

References

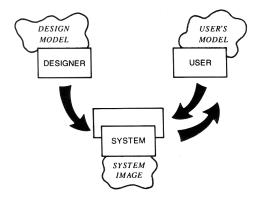
Focus on Design



Focus on Design

- How do we actually do the design?
- Temptation: start sketching windows, menus and buttons...

Focus on Design



- How do we actually do the design?
- Temptation: start sketching windows, menus and buttons...
- But we can do better by starting from thinking about the user experience we want to provide.

Conceptual Models

A **conceptual model** is the designer's intended mental model for the user of the system: a set of ideas about how it is organized and operates.

Norman (1986) called this the *design model*:

Advantages of a Conceptual Model

- A conceptual model
 - is a starting point for interaction design
 - should help the user "figure it out"
- It helps design team:
 - Not to become narrowly focused early on
 - Ask questions about how the conceptual model will be understood by users
 - Establish a set of common terms they all understand and agree upon (a standard lexicon for the project)
 - Reduce the chance of misunderstandings and confusion arising later on

See Johnson and Henderson (2002) for more motivation and methodology.

The conceptual model should specify:

metaphors or analogies used, if any

The conceptual model should specify:

- metaphors or analogies used, if any
- the (user-level) concepts to be created and manipulated

The conceptual model should specify:

- metaphors or analogies used, if any
- the (user-level) concepts to be created and manipulated
- the relationships between concepts, e.g.

attributes has-a specialisations is-a containment contains

The conceptual model should specify:

- metaphors or analogies used, if any
- the (user-level) concepts to be created and manipulated
- the relationships between concepts, e.g.

attributes has-a specialisations is-a containment contains

the mappings between concepts and task domain

The conceptual model should also specify/discuss:

the functions performed and by whom: task allocation

The conceptual model should also specify/discuss:

- the functions performed and by whom: task allocation
- the relationship between functions
 order relative position; sequential, parallel
 importance frequency or conceptual importance
 categorisations e.g., by action taxonomy, or object
 concerned

The conceptual model should also specify/discuss:

- the functions performed and by whom: task allocation
- the relationship between functions
 order relative position; sequential, parallel
 importance frequency or conceptual importance
 categorisations e.g., by action taxonomy, or object
 concerned
- how data is captured, transformed, and output

The conceptual model should also specify/discuss:

- the functions performed and by whom: task allocation
- the relationship between functions
 order relative position; sequential, parallel
 importance frequency or conceptual importance
 categorisations e.g., by action taxonomy, or object
 concerned
- how data is captured, transformed, and output

Outputs of Task Analysis can inform object and action analysis for conceptual model.

Online library

metaphor information is organised as a physical card catalogue

Online library

metaphor information is organised as a physical card catalogue

concepts item, book, periodical, issue, DVD, shelf-mark, user account, librarian, ...

Online library

metaphor information is organised as a physical card catalogue

concepts item, book, periodical, issue, DVD, shelf-mark, user account, librarian, ...

object relationships a book is a type of item; periodicals contain issues

Online library

metaphor information is organised as a physical card catalogue

concepts item, book, periodical, issue, DVD, shelf-mark, user account, librarian, ...

object relationships a book is a type of item; periodicals contain issues

mappings *item* corresponds to a physical object; *shelf-mark* to its physical location

Online library

metaphor information is organised as a physical card catalogue

concepts item, book, periodical, issue, DVD, shelf-mark, user account, librarian, ...

- object relationships a book is a type of item; periodicals contain issues
 - mappings *item* corresponds to a physical object; *shelf-mark* to its physical location

functions issue item, return item, search item

Online library

metaphor information is organised as a physical card catalogue concepts item, book, periodical, issue, DVD, shelf-mark, user account, librarian, ... object relationships a book is a type of item; periodicals contain issues mappings item corresponds to a physical object; shelf-mark to its physical location functions issue item, return item, search item

function relationships issue before return for same item; for different items, in parallel, ...

Online library

metaphor information is organised as a physical card catalogue concepts item, book, periodical, issue, DVD, shelf-mark, user account, librarian, ... object relationships a book is a type of item; periodicals contain issues mappings *item* corresponds to a physical object; shelf-mark to its physical location functions issue item. return item. search item function relationships issue before return for same item; for different items, in parallel, ... data new items added by typing data

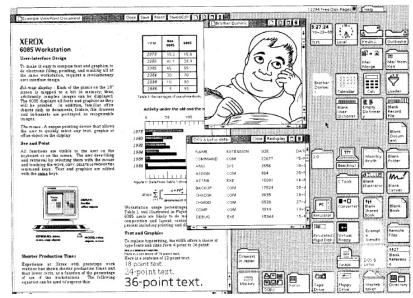
Metaphors

 Interface metaphors combine familiar knowledge with new knowledge in a way that will help the user understand the product.

Metaphors

- Interface metaphors combine familiar knowledge with new knowledge in a way that will help the user understand the product.
- Benefits:
 - make learning easier
 - enhances understanding of conceptual model
 - introduce innovation and widen accessibility

Metaphors


- Interface metaphors combine familiar knowledge with new knowledge in a way that will help the user understand the product.
- Benefits:
 - make learning easier
 - enhances understanding of conceptual model
 - introduce innovation and widen accessibility
- Three steps to consider:
 - 1. understand functionality
 - 2. identify potential problem areas
 - 3. generate metaphors

Classic example: Visicalc (1979)

- Ledger sheet analogy
- Interaction and computation

Classic example: The Xerox Star

[http://www.digibarn.com/friends/curbow/star/retrospect/index.html]

Issues with interface metaphors

- A metaphor can have a big impact so should be carefully considered:
 - How much structure does it provide?
 - How much is relevant to the problem?
 - Is it easy to represent?
 - How extensible is it?

Issues with interface metaphors

- A metaphor can have a big impact so should be carefully considered:
 - How much structure does it provide?
 - How much is relevant to the problem?
 - Is it easy to represent?
 - How extensible is it?
- Problems:
 - Break conventional or cultural rules
 - Constrain designers in problem space
 - Conflict with design principles
 - Forces user into one mode of understanding
 - May transfer over bad design
 - May limit imagination for new conceptual model

Infamous failure: Microsoft Bob (1995)

[See http://toastytech.com/guis/bob.html]

Outline

Conceptual Design

Physical Design

Interaction Modes

Exercise

References

- We may have lots or little choice:
 - a new special-purpose physical product, with our own choice of input/output features
 - new I/O mechanisms for existing device
 - new usage of existing mechanisms
 - standard device (e.g., PC) with standard mechanisms

- We may have lots or little choice:
 - a new special-purpose physical product, with our own choice of input/output features
 - new I/O mechanisms for existing device
 - new usage of existing mechanisms
 - standard device (e.g., PC) with standard mechanisms
- Recall cognitive and psychological design influences from earlier lectures, used to inform physical design (human motor function, affordances, natural mappings, etc).

- We may have lots or little choice:
 - a new special-purpose physical product, with our own choice of input/output features
 - new I/O mechanisms for existing device
 - new usage of existing mechanisms
 - standard device (e.g., PC) with standard mechanisms
- Recall cognitive and psychological design influences from earlier lectures, used to inform physical design (human motor function, affordances, natural mappings, etc).
- However physical I/O controls are realised, we will want to choose the:
 - interaction modes for using inputs
 - presentation methods for using outputs

- We may have lots or little choice:
 - a new special-purpose physical product, with our own choice of input/output features
 - new I/O mechanisms for existing device
 - new usage of existing mechanisms
 - standard device (e.g., PC) with standard mechanisms
- Recall cognitive and psychological design influences from earlier lectures, used to inform physical design (human motor function, affordances, natural mappings, etc).
- However physical I/O controls are realised, we will want to choose the:
 - interaction modes for using inputs
 - presentation methods for using outputs

Outline

Conceptual Design

Physical Design

Interaction Modes

Exercise

References

Modes of interaction can be classified as:

instructing user tells system what to do, by typing commands, selecting menu options, pressing keys or buttons, speaking commands

Modes of interaction can be classified as:

instructing user tells system what to do, by typing commands, selecting menu options, pressing keys or buttons, speaking commands

conversing user has dialogue with system; typing questions and/or responses, or uses speech input/output

Modes of interaction can be classified as:

instructing user tells system what to do, by typing commands, selecting menu options, pressing keys or buttons, speaking commands

conversing user has dialogue with system; typing questions and/or responses, or uses speech input/output

manipulation user interacts with physical or virtual objects, e.g., holding, moving, opening, closing; object is a *focus* of attention

Modes of interaction can be classified as:

instructing user tells system what to do, by typing commands, selecting menu options, pressing keys or buttons, speaking commands

conversing user has dialogue with system; typing questions and/or responses, or uses speech input/output

manipulation user interacts with physical or virtual objects, e.g., holding, moving, opening, closing; object is a *focus* of attention

exploration user moves through physical or virtual environment

Modes of interaction can be classified as:

instructing user tells system what to do, by typing commands, selecting menu options, pressing keys or buttons, speaking commands

conversing user has dialogue with system; typing questions and/or responses, or uses speech input/output

manipulation user interacts with physical or virtual objects, e.g., holding, moving, opening, closing; object is a *focus* of attention

exploration user moves through physical or virtual environment

Other possibilities and higher-level classifications exist, e.g., we may interact by learning, problem solving, socializing, searching, ...

Instructing

- Shell command line interpreters for operating systems
- Menu and key-driven GUI shells for OSes and applications
- VCRs, hi-fis, alarm clocks, vending machines, etc.

Instructing

- Shell command line interpreters for operating systems
- Menu and key-driven GUI shells for OSes and applications
- VCRs, hi-fis, alarm clocks, vending machines, etc.
- Advantages:
 - Quick and efficient
 - Good in case of repetition or multiple objects (especially if programmable)

Instructing

- Shell command line interpreters for operating systems
- Menu and key-driven GUI shells for OSes and applications
- VCRs, hi-fis, alarm clocks, vending machines, etc.
- Advantages:
 - Quick and efficient
 - Good in case of repetition or multiple objects (especially if programmable)
- Disadvantages:
 - Hard to learn
 - Seldom standardised
 - May be overly specific

Vending machines

Conversing

- Help facilities (Microsoft's Office Assistant paper clip, Bob)
- Search engines (http://www.ask.com, although Jeeves has now retired)
- Phone services (voice recognition query answering/navigation)
- Virtual shopping or support assistants

Conversing

- Help facilities (Microsoft's Office Assistant paper clip, Bob)
- Search engines (http://www.ask.com, although Jeeves has now retired)
- Phone services (voice recognition query answering/navigation)
- Virtual shopping or support assistants
- Advantages
 - No special knowledge required; onus on system to understand user

Conversing

- Help facilities (Microsoft's Office Assistant paper clip, Bob)
- Search engines (http://www.ask.com, although Jeeves has now retired)
- Phone services (voice recognition query answering/navigation)
- Virtual shopping or support assistants
- Advantages
 - No special knowledge required; onus on system to understand user
- Disadvantages:
 - Limited scope of understandability
 - Dialogue can become one-sided and cumbersome

Manipulation

- Shneiderman (1983) coined the term **Direct** Manipulation (DM).
- Digital objects should allow interaction analogous to how physical objects are manipulated
- Core DM principles:
 - Continuous representation of objects and actions
 - Physical actions and button pressing instead of issuing commands with complex syntax
 - Rapid reversible actions with immediate feedback on object of interest
- Examples:
 - desktop files metaphor in OSes and applications
 - also true manipulable objects: physical objects with sensors (e.g. Wii controller)

Issues around DM

- Advantages of direct manipulation include:
 - Novices can learn the basic functionality quickly
 - Intermittent users can retain operational concepts over time
 - Error messages rarely needed
 - Users can immediately see if their actions are furthering their goals and if not do something else
 - Users experience less anxiety; gain confidence and feel in control

Issues around DM

- Advantages of direct manipulation include:
 - Novices can learn the basic functionality quickly
 - Intermittent users can retain operational concepts over time
 - Error messages rarely needed
 - Users can immediately see if their actions are furthering their goals and if not do something else
 - Users experience less anxiety; gain confidence and feel in control
- But there are drawbacks, e.g.:
 - Some people take the metaphor of direct manipulation too literally
 - Not all tasks can be described by objects and not all actions can be done directly
 - Some tasks are better achieved through delegating rather than manipulating e.g., spell checking

Exploring

- 3D desktop virtual worlds where people navigate using mouse around different parts to socialize (e.g., Second Life)
- CAVEs (Computer Automatic Virtual Environment) where users navigate by moving whole body, arms, and head
- physical context-aware environments, embedded with sensors, that present digital information to users at appropriate places and times (e.g. cell phone tourism, smart home)
- Currently rather specialised, will be more important in future with rise of ubiquitous computing.

Outline

Conceptual Design

Physical Design

Interaction Modes

Exercise

References

Exercise: Interface for Robot Cleaner

Design an interface for controlling a robot vacuum cleaner.

- 1. Extend and deepen the task analysis for house cleaning given in the previous lecture, to consider:
 - individual tasks that performed by the robot
 - interactions necessary to control the robot
- 2. Propose a suitable conceptual model
- 3. Consider the physical design of the system
- 4. ... and interaction modes that would be appropriate for different tasks.
- 5. Justify your choices.

Outline

Conceptual Design

Physical Design

Interaction Modes

Exercise

References

References

leff Johnson and Austin Henderson.

Conceptual models: begin by designing what to design. interactions, 9(1):25-32, 2002.

D. A. Norman.

Cognitive engineering.

In User Centered System Design, pages 31–61. Lawrence Erlbaum Association. 1986.

Ben Shneiderman.

Direct manipulation: A step beyond programming languages. *IEEE Computer*, 16(8):57–69, 1983.

Sharp, Rogers and Preece.

Interaction Design.

Wiley, second edition, 2007.

Some slides here are adapted from this book's materials, at http://www.id-book.com.

Further reading: Dix et al, Chapters 6, 7, 8, 18.