
Functional Programming and Specification Lecture Note 2, 8 March 2011

Specifying functions in Extended ML

The Extended ML (EML) specification language is ML with minimal extensions for specifying
what programs are supposed to do, supplementing (or replacing) code — which specifies how
to do it — with logical assertions. EML is called a wide-spectrum language: there is a smooth
continuum from programs through to specifications. The ML subset of EML is executable
but the rest is not.

EML covers all of ML except references and input/output. But in this part of the course
I am going to make a very strong additional restriction:

I will only consider ML functions that are total: no exceptions and no non-
termination

This considerably simplifies the discussion of proof methods. To further simplify matters, I
will be avoiding higher-order functions and polymorphism most of the time.

Specifications in software development. In the software development process, specifi-
cations are useful:

1. As a means of communication:

• between client and developer: to set out what the client requires and the developer
agrees to supply (“requirements specification”)

• between members of a development team, to mediate dependencies between mod-
ules (“design specification”). Issues of information hiding discussed under data
abstraction apply, so part of the point of a module specification is to avoid com-
munication, in the sense that we specify exactly what a client is allowed to take
advantage of — no more and no less.

2. As a design aid:

• Writing a specification forces details to be considered early in the development pro-
cess, helping developers to understand the problem at the point where mistakes
are most costly. Since the emphasis is on “what” instead of “how”, useful general-
izations tend to naturally suggest themselves. Writing a specification is regarded
as worthwhile even if the specification is thrown away after being written.

• The program can be developed from the specification by a refinement process
(“formal program development”)

3. Testing, proof, documentation:

• As a standard for comparison when testing the program or proving that it is correct.
• As documentation of the design, for use in maintenance.

There are different kinds of specifications:

1. Informal natural language specifications. These are easy to write and read but can be
vague and ambiguous.

2. A simple program can act as a specification of a complicated program. For example, ML
can be used as a specification language for programs written in Java. Such specifications
are relatively easy to write and precise, but there is a problem with over-specification
and it is relatively difficult to prove properties. It is not always so clear what the
intention is: what aspects of the simple program are to be ignored?

1



3. Formal specifications. These are precise and can be used for formal proofs of correctness
etc., but they can be hard to write and read.

4. Semi-formal specifications, as in UML. These are easier to write than formal specifica-
tions and are very helpful in allowing designers to record their ideas at a conceptually
high level. But they are not precise enough for use in e.g. proofs of correctness using a
mechanized theorem prover.

The functional programming context is particularly well-suited to formal specifications, and
that is what we will be considering in this course.

Specifications versus ML function definitions. ML function definitions are required to
have a special form: a sequence of equations where the left-hand side has the form f(pattern)
and the right-hand side uses only the variables mentioned in the pattern. This is what makes
programs executable. Suppose that we consider just the problem of specifying functions
without the restriction that the definitions be executable. A first step towards this might be
to use unrestricted equations.

The equations we write are called axioms. Often you need more than one axiom to specify
a function.

Square root. For example, consider the problem of computing the square root of a real
number. There are various algorithms for computing this by successive approximation, e.g.
Newton’s method. But if we can use unrestricted equations, we can just write:

sqrt : real -> real

sqrt(a) * sqrt(a) = a

(See below for an improved version.)

Matrix inversion. Suppose that we have defined a datatype of matrices (let’s say square
matrices of some particular size), matrix multiplication and the identity matrix I. Matrix
inversion can be specified like this:

inv : matrix -> matrix

inv(A) * A = I
A * inv(A) = I

(Again, see below for an improved version.)

Square root, revisited. Once we’ve dropped the restriction to equations of a special form,
we can add other logical notation. For example, logical connectives: we can use andalso,
orelse, not and logical implication (implies).

Here is a better specification of sqrt, where it is only required to work for non-negative
numbers:

a >= 0.0 implies sqrt(a) * sqrt(a) = a

Matrix inversion, revisited. Or we can use universal and existential quantifiers. Here is
a better specification of matrix inversion, which takes into account that some matrices are
not invertible:

2



Exists B => (B*A=I andalso A*B=I)
implies
inv(A) * A = I andalso A * inv(A) = I

Note that the syntax for Exists (similarly Forall) is like fn in ML. This is natural because
these are also variable-binding constructs. And . is used already for qualified identifiers.

All the equations so far have been implicitly universally quantified. EML requires that
this be explicit, to make it possible to catch more errors in specifications. So the matrix
inversion specification becomes:

Forall A =>
(Exists B => (B*A=I andalso A*B=I)

implies
inv(A) * A = I andalso A * inv(A) = I)

Maximum of a list. To specify the maximum element of a list, we need to say that it
belongs to the list and that it is at least as large as any list element.

Assume that we already have a function member : int * int list -> bool that checks
to see if an integer is in a list. For example,

fun member(n,l) = List.exists (fn x => x=n) l

Then we can specify:

maxelem : int list -> int

Forall l => l<>nil implies member(maxelem l, l)
Forall (a,l) => member(a,l) implies (maxelem l) >= a

String searching. As a more complicated example, consider the problem of specifying two
functions

before : string * string -> string
after : string * string -> string

Given two strings s and r, before(s, r) is the part of r before the first occurrence of s in r
and after(s, r) is the part of r after the first occurrence of s in r. So for example:

before("i","specification") = "spec"
after("i","specification") = "fication"

We can use the library function String.isPrefix : string -> string -> bool (where
String.isPrefix s r is true iff the first part of r matches s) to specify these:

Forall (s,r) => before(s,r) ^ s ^ after(s,r) = r

Forall (s,r) => Forall (t1,t2) =>
t1^s^t2=r implies String.isPrefix (before(s,r)) t1

The first axiom says that any string r (containing at least one occurrence of s) consists of the
part of r before s, then s, then the part of r after s. The second axiom says that before and
after are with respect to the first occurrence of s in r: if there is another way of decomposing
r as t1^s^t2 then before(s, r) must be an prefix of t1.

But this specification only works if s occurs in r. We need to add a precondition to the
first axiom to avoid imposing an impossible restriction when this is not the case. For example,
using a function substring : string * string -> bool,

3



Forall (s,r) =>
substring(s,r) implies before(s,r) ^ s ^ after(s,r) = r

where substring can be specified like this:

Forall (s,r) =>
substring(s,r) iff (Exists (t1,t2) => t1^s^t2=r)

The second axiom doesn’t need a precondition: if s doesn’t occur in r, its precondition
doesn’t hold so it is vacuous. So if s doesn’t occur in r, before and after are completely
unconstrained.

Note that the specifications of before and after are completely intertwined, with no
single axiom or collection of axioms that are devoted to specifying either before or after.
The second axiom constrains after even though it isn’t mentioned, because of the way that
before and after are related by the first axiom.

Loose specifications. One of the advantages of using arbitrary equations (with or without
logical notations) is that it is possible to write specifications that are purposefully vague or
loose: we can constrain a function or value without completely defining it. For example, we
haven’t specified maxelem(nil). For sqrt we didn’t say whether we want the positive or
negative square root, and we didn’t constrain the result of sqrt applied to a negative number
at all.

Loose specifications aren’t imprecise; we specify exactly the properties we require and
don’t specify properties that we don’t need. This leaves decisions to be made later in the
design process.

One way to get a loose specification is to refrain from imposing constraints. Another way
is to specify the looseness explicitly. For example, we can specify that sqrt is to produce a
result which is correct to within 1%:

Forall a =>
a >= 0.0 implies

sqrt(a) * sqrt(a) >= 0.99*a
andalso
sqrt(a) * sqrt(a) <= 1.01*a

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Summary of EML notation for axioms. Any expression of type bool can be an ax-
iom. Apart from ML’s built-in logical connectives — not, andalso and orelse for nega-
tion (¬), conjunction (∧) and disjunction (∨) — EML provides implies and iff for im-
plication (⇒) and equivalence (⇔). Logical equality (==) and inequality (=/=) may be
used at any type (explanation to follow), while ML’s computational equality (=) and in-
equality (<>) are restricted to types that admit equality, as in ML. Universal quantifica-
tion ∀x.ϕ is written Forall x => ϕ, where ϕ is an expression of type bool. Existential
quantification ∃x.ϕ is written Exists x => ϕ, and “there exists a unique” ∃!x.ϕ is written
Exists_unique x => ϕ. Quantification over multiple variables as in ∀x, y.ϕ can be written
either Forall x => Forall y => ϕ or Forall (x,y) => ϕ.

4


