
Functional Programming and Specification Lecture Note 4, 15 March 2011

Specifying structures in Extended ML

Axioms can be used to specify structures too. A structure will typically contain several
functions, and we just have to specify each of them.

For example, here is a structure that implements an unbounded array of integers indexed
starting from 0, using a list of integers to represent the array:

structure Array =
struct
type array = int list
val empty = nil
fun put(n,v,nil) = if n=0 then v::nil else 0::put(n-1,v,nil)
| put(n,v,w::l) = if n=0 then v::l else w::put(n-1,v,l)

fun retrieve(n,nil) = 0
| retrieve(n,v::l) = if n=0 then v else retrieve(n-1,l)

end

We can specify this just as if it were two independent functions Array.retrieve and Array.put
and a value Array.empty:

Forall (n,v,w,l) =>
Array.put(n,v,Array.put(n,w,l)) = Array.put(n,v,l)

Forall (n,m,v,w,l) =>
n<>m implies
Array.put(n,v,Array.put(m,w,l)) = Array.put(m,w,Array.put(n,v,l))

Forall n => Array.retrieve(n,Array.empty) = 0
Forall (n,v,l) => Array.retrieve(n,Array.put(n,v,l)) = v
Forall (n,m,v,l) =>

n<>m implies Array.retrieve(n,Array.put(m,v,l)) = Array.retrieve(n,l)

Recall that the signature associated with a structure plays the role of that structure’s
interface to the outside world. The signature of Array is:

signature ARRAY =
sig
type array
val empty : array
val put : int * int * array -> array
val retrieve : int * array -> int

end

This signature is sufficient for the purpose of compiling functions which refer to Array, but
otherwise it is not very informative. For example, it isn’t sufficient for proving program
correctness.

It’s natural to combine the information in the signature with the axioms specifying Array
to form a more complete interface:

signature ARRAY =
sig
type array
val empty : array
val put : int * int * array -> array

1



val retrieve : int * array -> int
axiom Forall (n,v,w,l) => put(n,v,put(n,w,l)) = put(n,v,l)
axiom Forall (n,m,v,w,l) =>

n<>m implies put(n,v,put(m,w,l)) = put(m,w,put(n,v,l))
axiom Forall n => retrieve(n,empty) = 0
axiom Forall (n,v,l) => retrieve(n,put(n,v,l)) = v
axiom Forall (n,m,v,l) =>

n<>m implies retrieve(n,put(m,v,l)) = retrieve(n,l)
end

We can ascribe this signature to Array, using the usual syntax:

structure Array :> ARRAY =
struct
type array = int list
. . .

end

Note the use of :> rather than : , so ARRAY is ascribed opaquely rather than transparently. In
EML, it is natural to use opaque signature ascription. This fits with the desire for reusability
and independent development of separate parts of a system.

Logical equality. But wait a minute: with opaque signature ascription, array doesn’t
admit equality and so the use of = in the axioms won’t typecheck!

We don’t know how arrays will be represented. In Array, we happen to have used
int list. But it could just as well have been implemented using a function type, e.g.
int->int.

On the other hand, recall that the main reason why ML doesn’t provide equality on all
types is that it is impossible to compute equality on functional types. This isn’t relevant in
a specification language like EML: we have already introduced non-computational constructs
like quantifiers, so there is no harm in allowing use of equality as well.

So, EML provides a logical equality == in addition to the computational equality = provided
by ML. When t=t′ has a defined boolean value (i.e. when t, t′ are of a type that admits
equality and when evaluation of t and t′ terminate without raising an exception) then t==t′

and t=t′ coincide. But t==t′ is defined for all types, with equality on functional types being
extensional equality. And if t and/or t′ fail to terminate or raise an exception, t==t′ holds iff
both fail to terminate or both raise the same exception. So it is extensional with respect to
non-termination and exceptions as well. But I’ve made the assumption that all functions are
total, so this case won’t ever arise here.

So, to get a correct EML specification we need to replace = by == in the axioms. Where
= is used on integers it doesn’t matter which one we use, but only because of the totality
assumption. A rule of thumb is to use == unless you want to emphasize something about
computational equality. We get:

signature ARRAY =
sig
type array
val empty : array
val put : int * int * array -> array
val retrieve : int * array -> int
axiom Forall (n,v,w,l) => put(n,v,put(n,w,l)) == put(n,v,l)
axiom Forall (n,m,v,w,l) =>

n<>m implies put(n,v,put(m,w,l)) == put(m,w,put(n,v,l))

2



axiom Forall n => retrieve(n,empty) == 0
axiom Forall (n,v,l) => retrieve(n,put(n,v,l)) == v
axiom Forall (n,m,v,l) =>

n<>m implies retrieve(n,put(m,v,l)) == retrieve(n,l)
end

Partial implementations. In EML, we can specify Array without providing an imple-
mentation. We just use a question mark in place of the structure body:

structure Array :> ARRAY = ?

Or we can provide a partial implementation by including some definitions but omitting others,
again using a question mark:

structure Array :> ARRAY =
struct
type array = int list
val empty = nil
fun put(n,v,nil) = if n=0 then v::nil else 0::put(n-1,v,nil)
| put(n,v,w::l) = if n=0 then v::l else w::put(n-1,v,l)

fun retrieve(n,nil) = 0
| retrieve(n,v::l) = ?

end

This might represent an intermediate stage of development, where we have decided how to
represent arrays and how to implement the empty array and the put function, but we haven’t
yet decided how to implement retrieve except that it should return 0 for the empty array.

Although we haven’t decided how to implement retrieve, we do know what properties
it is supposed to satisfy, namely the ones from ARRAY that mention it. We can add these to
the structure in place of the missing code:

structure Array :> ARRAY =
struct
type array = int list
val empty = nil
fun put(n,v,nil) = if n=0 then v::nil

else 0::put(n-1,v,nil)
| put(n,v,w::l) = if n=0 then v::l

else w::put(n-1,v,l)
fun retrieve(n,nil) = 0
| retrieve(n,v::l) = ?

axiom Forall (n,v,l) => retrieve(n,put(n,v,l)) == v
axiom Forall (n,m,v,l) =>

n<>m implies retrieve(n,put(m,v,l)) == retrieve(n,l)
end

In fact, the previous version (without the axioms) wouldn’t be correct in EML! The require-
ment is that all the possible ways of filling in the question marks in the body must satisfy
the axioms in the signature. Without axioms to constraint the implementation of retrieve,
there are some implementations that don’t behave properly.

Specifying substructures Signatures with axioms can have a hierarchical structure just
as ordinary signatures can.

For example, here is a specification of a structure containing functions for creating, up-
dating and displaying a histogram.

3



signature HISTOGRAM =
sig
structure A : ARRAY
type histogram
val create : histogram
val incrementcount : int * histogram -> histogram
val display : histogram -> A.array
local
val count : int * histogram -> int
axiom Forall n => count(n,create) == 0
axiom Forall (n,h) =>

count(n,incrementcount(n,h)) == 1 + count(n,h)
axiom Forall (n,m,h) =>

n<>m implies count(n,incrementcount(m,h)) == count(n,h)
in
axiom Forall (n,h) => A.retrieve(n,display h) == count(n,h)

end
end

structure Histogram :> HISTOGRAM = ?

This specification uses an auxiliary function (count) in order to specify display. (It’s possible
to specify it directly: exercise.) We don’t want this function to become part of the signature
because there may be implementations that don’t involve count.

This specification can be implemented by representing histograms as arrays and using the
identity function for display:

structure Histogram :> HISTOGRAM =
struct
structure A : ARRAY = Array
type histogram = A.array
val create = A.empty
fun incrementcount(n,h) = A.put(n, 1 + A.retrieve(n,h), h)
fun display h = h

end

The display function produces an array as result. If we want this to be the same kind of
arrays as used elsewhere in the system rather than allowing some other implementation of
arrays, we can specify this using a sharing constraint:

structure Histogram :> HISTOGRAM where type A.array = Array.array = ?

Equivalently, we can add the sharing constraint to HISTOGRAM by writing

structure A : ARRAY sharing type A.array = Array.array

4


