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1 Introduction

We consider the old problem of proving that a computer program meets some
specification. By proving, we mean machine checked proof in some formal logic.
The programming language we choose to work with is a call by value functional
language, essentially the functional core of Standard ML (SML). In future work
we hope to add exceptions, then references and I/O to the language.

The full SML language has a formal definition in terms of a big-step op-
erational semantics [MTHM97]. While such a definition may support formal
reasoning about meta-theoretical properties of the language, it is too low-level
for convenient reasoning about programs [Sym94,GV94]. Our approach stands in
an alternative tradition of high-level, axiomatic program logics [GMW79,Pau87],
and allows programmers to reason relatively directly at a level they are familiar
with. In these respects, our work has roots in the logic of the LAMBDA 3.2
theorem prover and the ideas of Fourman and Phoa [PF92].

In contrast to some approaches, where the programming language is embed-
ded in a first order logic [Tho95,HT95,5t403], we have chosen to use higher order
logic (HOL) as a meta language in order to have a rich set-theoretic language
for writing program specifications. For example, we will discuss a program for
sorting lists. The specification involves mathematical definitions of being an or-
dered list and being a permutation of another list, which are expressed in HOL
using inductively defined relations.

A key feature of our approach is that the meaning of the logic can be ex-
plained in terms of purely operational concepts, such as syntactic definability
and observational equivalence. Thus the logic will be intelligible to SML pro-
grammers. On the other hand, the soundness of our logic with respect to this
interpretation can be justified by a denotational semantics; indeed, in designing
our logic we have relied on well-understood denotational models for guidance.

It is clear that non-trivial proofs about programs require powerful proof au-
tomation facilities combined with flexible user interaction. The Isabelle/HOL
system [NPWO02] provides a ready made proof environment with these features.
Using a higher order abstract syntax (HOAS) presentation in Isabelle/HOL,
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we have done pragmatic experiments without developing syntactical and logi-
cal foundations from scratch. However, we have not found it possible to give a
completely faithful encoding of our logic in Isabelle/HOL (see sections 2.1 and
3.3), so our work should be regarded as an experimental prototype rather than
a finished tool for reasoning about programs. We have in mind an approach that
would fix these problems (section 3.3), but building a system that implements
this approach is left as a possibility for future work.

The Isabelle/HOL/Isar source files of our work are available from URL
http://homepages.inf.ed.ac.uk/rap/mlIProglLog.tgz.

Related work In addition to related work mentioned above, our work is very
close in spirit to Extended ML [KST97,KS98]. That work takes specification and
reasoning about official SML programs much further than we do, including SML
program modules, and deep study of modularity for specifications. However, our
approach differs from that of Extended ML in its use of insights from denota-
tional semantics, which has enabled us to design a clean and soundly-based logic,
without the explosion in complexity that beset the Extended ML project.

A foundational development of domain theory, also in Isabelle/HOL, is de-
scribed in [MNvQS99]. This work is not an operational program logic, but pro-
vides a HOL type of continuous functions, and the tools to reason about them. It
also goes further in uniform definition of datatypes than we have yet. However,
the need to reason foundationally limits its pragmatic convenience. Furthermore,
we believe our presentation, based on a logically fully abstract model (section
3.2), can be soundly extended to prove more observational equivalences than the
system of [MNv0OS99).

An embedding of the Ocaml language into Nuprl Type theory is reported in
[Kre04]. Since Nuprl is extensional, fixpoints can be directly represented using
the Y combinator. However, these fixpoints can only be typed in a total setting,
so this approach cannot reason about non-terminating functions, but only about
functions total on a specified domain. E.g. our proof (section 5.1) that removing
all zeros from a stream of naturals returns a stream without any zeros cannot
be developed in the Nuprl approach.

Structure of the paper. In section 2 we present the syntax of the core pro-
gramming language, and axioms of our logic for this core. In section 3 we explain
the operational interpretation we have in mind for the logic, and outline the deno-
tational semantics that underpins and justifies it. In section 4 we add datatypes
for natural numbers and polymorphic lists to our language, and describe some
case studies in reasoning about programs on these datatypes. In fact, reasoning
about programs on these well-founded datatypes is not so different from reaso-
niong in logics of total functions, like HOL iteself. Thus in section 5 we consider
the recursive datatype of streams, and set a problem for ourselves that cannot be
treated in a coinductive system of total functions. Indeed, we need one more gen-
eral axiom to reason about recursive datatypes. The example of streams points
the way towards a uniform treatment of all positive recursive datatypes.



2 The core language

2.1 Syntax of the programming language

See figure 1. There is a typeclass, SML, to contain programming language types,
and a subclass, SMLeq, for SML equality types. Types in other typeclasses re-
tain their purely logical meaning in HOL. Variables in typeclass SML range over
syntactic programs.

We use a higher order syntax embedding of the programming language into
Isabelle/HOL: an ML function type constructor, => (which applies only to SML
types, and will be axiomatized as strict), is distinguished from the logical HOL
function type, => (which applies to all HOL types, and is non-strict, even on SML
types). As usual, there are constants

lam :: "(’a => ’b) => ’a->’b" (binder "fn " 30)
APP :: "[’a->’b,’a] => ’b" (infix1l "$" 55)

relating object and meta function types. In these declarations, ’a and ’b are
inferred to be in typeclass SML, and $ is infix application for SML functions.
Isabelle binder syntax allows to write fn x. F x for lam F, where F has HOL
functional type. We have polymorphic constants Fix (a fixpoint operator) and
bot (a non-terminating program), which are definable in official SML.

UNIT, BOOL, ** (product) and ++ (sum) types are given atomically, with their
constructors (e.g. tt and £f) and destructors (e.g. BCASE). From the declared
type of BCASE you can see that it is non-strict in its branches, which is correct
for an SML case statement.

Using Isabelle syntax translations, we can improve our syntax somewhat (see
bottom of figure 1), but Isabelle parsing is so complex that we prefer not to steer
too close to the wind with overloading and syntax translations.

Isabelle/HOL typechecking over typeclass SML serves to typecheck programs.
This is very convenient for both developing and using our tool, but not quite
faithful to the SML definition, as HOL polymorphism is not the same as SML
polymorphism. For example, ML let polymorphism is not captured in our encod-
ing. Different representations are possible, with explicit typing judgements, that
would overcome this problem, but these are significantly more complicated.

2.2 Logic for the core programming language

HOL equality over types in the SML typeclass represents observational equiva-
lence in the SML semantics, i.e. indistinguishability in any context. Equal pro-
grams may be intensionally different. For example, a naive Fibonacci program is
equal to an efficient one, although they have different complexities. This is part
of our approach: prove contextual properties of a simple, but inefficient program,
prove that an efficient program is equal to the simple one, and conclude that the
efficient program has the same contextual properties.

In figure 2 we define a judgement of definedness (i.e. termination), dfd, and
syntax udfd for its negation. The defined constant mlIter will be explained
below.



4

classes
SML < type

SMLeq < SML

defaultsort SML

typedecl UNIT
typedecl BOOL
typedecl (’a,’b) "->"
typedecl (’a,’b) "++"
typedecl (’a,’b) "Hx"

arities

UNIT :: SMLeq
BOOL :: SMLeq

-—{* a class of programming language types *}

-—{* a subclass for equality types *}
(infixr 80) --{* functions *}
(infixr 85) --{* sums *}

(infixr 90) --{* products *}

"->" :: (SML,SML)SML

"+4" :: (SML,SML)SML

"++" :: (SMLeq,SMLeq)SMLeq

"xk" :: (SML,SML)SML

"x%" :: (SMLeq,SMLeq)SMLeq
consts -—{* bottom, unit and bool *}

bot  :: "’a::SML" --{* polymorphic bottom *}

UN :: UNIT M<>")

tt :: BOOL

ff :: BOOL

EQ :: "(’a::SMLeq) -> ’a -> BOOL"

BCASE :: "[’a,’a] => (BOOL ->’a)" -—{* non-strict *}
consts --{* product: one constructor *}

PAIR :: "’a -> ’b -> ’a *x ’b"

PCASE :: "(’a -> ’b -> ’c) => (’a **x ’b -> ’c)" --{* non-strict *}
consts —--{* sum: two constructors *}

inl ||)a _> ,a ++ )b"

inr o "Db -> ’a ++ ’b"

SumCASE :: "[’a->’c, ’b->’c] => (’a ++ ’b -> ’c)" --{* non-strict *}
consts --{* functions and recursion *}

lam :: "(’a => ’b) => ’a->’b" (binder "fn " 30)

APP :: "[’a->’b,’a] => ’b" (infix1 "$" 55)

Fix :: "((Pa->’b) -> ’a->’b) -> ’a->’b"
syntax --{* some syntactic sugar *}

IF :: "[BOOL, ’a, ’al] => ’a"

“[,]" :: "’a => b => ’a ** ’b" (infixr 30)

"[=]" :: "[(’a::SMLeq), ’al] => BOOL" (infixl 34)
translations

"IF b x y" == "(BCASE x y) $ b" --{# x and y are non-strict *}

"x[,]Jy" == "PAIR $ x $ y" -—{* pairing strict in both args *}

"x[=]y" == "EQ $ x $ y" -—{* EQ strict in both args *}

Fig. 1. Language



constdefs ——{* definedness defined in terms of bot *}
dfd :: "’a => bool"
"dfd x == x "= bot"

translations
"udfd x" == "~ dfd x"

-—{* we will use HOL naturals to talk about least fixed point *}

consts ——{* usual iteration on HOL naturals *}
iter :: "nat => (Ca::type) => (’a => ’a) => ’a"

constdefs —-—{* special iterator for use in Fix_min axiom *}
mlIter :: "nat => (’a->’b) => ((’a->’b) -> ’a->’b) => ’a ->’b"

"mlIter n b F == iter n b (J)h. fn x. F$ h $ x)"

Fig. 2. Logical preliminaries

Axioms for the core are given in figure 3. (One more general axiom will
be introduced in section 5.1.) Application is strict (see axiom beta_rule); any
expression lam F is defined. There is an extensionality rule, fn_ext, for SML
functions. Eta follows from extensionality.

Unlike [St#03], we do not use a notion of walue in formulating our axioms,
but the notion, dfd, of definedness, since observational equivalence (equality in
the logic) preserves definedness, but not “valueness”.

UNIT, BOOL, ** and ++ types are treated as if inductively defined. Their con-
structors and destructors are dfd, and their computation rules are axiomatized
(e.g. if_true and if_false). As mentioned, the CASE constants are non-strict
in their branches: when applied to a value, only the chosen branch is evaluated.
Each of the type (constructors) UNIT, BOOL, ** and ++ also have an induction
principle.

Least fizpoint axiom We want an axiom to say that Fix is the least fizpoint
operator. First, assuming F is defined, from axiom Fix_rule we have

Fix $ F=fnx. F$ (Fix $ F) $ x.
Informally, Fix $ F should be the “limit” of approximations

ho = L
hpy1 = fTnx. F $ h, $ x

Rewriting this using iter, the iteration constant over HOL naturals (figure 2),
we have
h, = itern L (Jh. fn x. F $ h $ x).

Abstracting this equation by n, F, and L', we get the definition of m1Iter in
figure 2.

! For technical reasons it is convenient to parameterise mlIter by the base case.



axioms
--{* application *}
bot_ap[simp]: '"udfd f ==> udfd (f $ x)"
ap_bot[simp]: "udfd x ==> udfd (f $ x)" —-—{* strict *}

--{* function types *}

beta_rule[simp]l: "dfd x ==> (lam F) $ x = F x"* --{* call-by-value *}
fn_ext: "[| dfd f; dfd g; !!x. dfd x ==> (£f$x) = (g$x) [] ==> £ = g"
fn_dfd[simp]: "dfd (lam F)"

--{* least fixpoints *}
Fix_rule: "Fix = (fn F x. F $ (Fix $ F) $ x)"
Fix_min: "[| dfd F; dfd (C (Fix $ F)) |] ==
EX k. dfd (C (mlIter k bot F))"

--{* UNIT type *}
unit_Induct : "[] P <>; dfd x |] ==> P x"
unit_dfd [simp]: "dfd <>"

-—{* BOOL type *}
dfd_BCASE[simp]: "dfd (BCASE f g)"

boolInduct: "[l P tt; P £ff; dfd x |] ==> P x"
if_true [simp]: "IF tt x y = x"

if_false [simp]l: "IF ff x y = y"

eq_dfd [simp]: "[| dfd x; dfd y |] ==> dfd (x [=] y)"
eq_reflection: "(x [=] y) =tt) = (dfdx & x=y)"

--{* product types *}
dfd_PCASE[simp]: "dfd (PCASE f)"
pair_induct: "[|!!x y. [|dfd x; dfd y |1==> P(x[,]y); dfd z |]==> P z"
pair_dfd[simp]l: "[| dfd x; dfd y |] ==> dfd (x[,Iy"
split[simp]: "PCASE ¢ $ (x[,]y) =c $x § y"

—--{* sum types *}
dfd_SumCASE[simp]: "dfd (SumCASE f g)"
dfd_inl[simp]: "dfd inl"
dfd_inr[simp] : "dfd inr"
SumCASE_inl[simp]: "SumCASE f g $ (inl $ x) = £ § x"
SumCASE_inr[simp]: "SumCASE f g $ (inr $ y) =g $ y"
Sum_induct: "[] !t!'x. dfd x ==> P (inl $ x);

ly. dfd y ==> P (inr $ y); dfd z |] ==> P z"

Fig. 3. Core language axioms



To state that Fix $ F is the least fixpoint of F we say that if Fix $ F is de-
fined in any context C: : (’a=->’b)=>’c, then some finite unfolding, h,,, is already
defined in that context:

dfd (C (Fix $ F)) = dn. dfd (C h,).

Using m1Iter for h, in this equation, we get the axiom Fix_min of figure 3.
The notion of a function being total in one argument is defined:

totl :: "(P’a -> ’b) => bool"
"totl f == ALL x. dfd x --> dfd (f $ x)"

This is used in examples below.

2.3 Observational order

We define observational order, observational equivalence (syntax x <o= y and
x =o= y resp.) and observational limit.

obsLeq :: "’a => ’a => bool" (infixl "<o=" 18)
"a <o= b == ALL (C::’a => UNIT). dfd (C a) --> dfd (C b)"
obsEq :: "’a => ’a => bool" (infixl "=o=" 18)
"a =o=b == (a <o=b) & (b <o= a)"

obsLim :: "’a => (mat => ’a) => bool"

"obsLim y x ==

ALL (C::’a => UNIT). dfd (C y) = (EX (m::nat). dfd (C (x n)))"

<o= is in fact a partial order, preserved by every context. bot is the <o=-least
element of every SML type. It is worth noting that the following are equivalent

—a =0=b>

— ALL (C::’a => UNIT). Ca=Cb

— ALL (C::’a => UNIT). dfd (C a) = dfd (C b)
EX x. obsLim a x & obsLim b x

The lemma we need for later proofs is:
Fix_lim_iter: "dfd F ==> obsLim (Fix $ F) (¥n. mlIter n bot F)"

saying that Fix $ F is the observational limit of finite iterations of F.

3 Interpretations of our logic

We outline two kinds of semantic interpretations for our logic: one in terms of
purely operational concepts, and one in terms of a denotational model for the
programming language. The former is what we expect the programmer to have
in mind, while the latter is used to justify the soundness of our logic, and also
to inspire the design of the logic in the first place. The agreement between these
two interpretations is a property known as logical full abstraction [LP97].

The language presented in section 2 is intended to provide an extensible core
for more realistic programming languages, so we formulate our interpretations
in a general setting. To begin with, let us merely assume that we have



— A programming language £ consisting of types of typeclass SML, and of terms
of such types, extending the language defined by figure 1.

— An intended operational semantics for £. It suffices to give a relation M |} v
between closed monomorphic terms M of £ and certain “observable values”
v, whose precise nature we need not specify.?

— A logical language K (L), whose formulae are constructed from terms of £
by means of the usual logical operators =, /\, \/, =, ALL, EX.

In the logic presented in Section 2, there are many formulae not in K (L), since
for instance we may mix types of £ with HOL types such as nat. However, in
order to give the idea behind the operational interpretation, it is simplest to
concentrate on K (L).

3.1 Operational interpretation

We now give a simple way of reading formulae of K (L) in terms of operational
concepts, by defining what it means for a formula to be operationally true. For
closed monomorphic formulae P (i.e. those containing no free term or type vari-
ables), operational truth is defined by structural induction:

— A formula M=N is operationally true if M and N are observationally equiv-
alent: i.e., for all contexts C(—) of £ and all observable values v we have

C(M) v iff C(N) o 1)

The programming intuition is that M may be replaced by N in any larger
program without affecting the result.?

— A formula P/\Q is operationally true if both P and @ are operationally
true; similarly for \/ and ~. Thus, the propositional connectives have their
familiar classical reading.

— A formula ALL(z: : t) . P is operationally true if, for all closed terms M : :t of
L, the formula P[M /z] is operationally true. Similarly for EX. The important
point is that variables range over syntactically definable programs, rather
than elements of some independent mathematical structure.

If two terms are observationally equivalent, they will satisfy exactly the same
predicates; i.e. substitutivity of equality is sound for this interpretation. Thus,
the above is the usual classical interpretation of first order logic (with a separate
ground sort for each type), where a type t is interpreted as the set of closed
monomorphic terms of type ¢ modulo observational equivalence.

We now extend our interpretation to open and polymorphic formulae:

2 Typically the observable values would be printable values of ground types such as
integers and booleans, plus a dummy value used to indicate termination for programs
of higher type.

3 For how this relates to the formal definition of observational equivalence given in
section 2, see section 5.1 below.



— An open monomorphic formula P (with free variables z1,...,z,) is opera-
tionally true if all of its closed instances P[Mi/z1,..., M,/x,] are opera-
tionally true, where the M; are closed terms of appropriate types.

— A polymorphic formula P (with type variables a4, ..., ay,) is operationally
true if all its monomorphic instances P[t1/a1,- . ., tm/am] are operationally
true, where the t; are monomorphic types of L.

Is it convincing, on purely operational grounds, that the axioms of figure 3
are operationally true? In principle this might depend on the language £, but
in fact most of our axioms have been formulated to be true for a wide range of
languages, even including non-functional fragments of SML.

Glossing over details, the only axioms that raise interesting questions are
fn_ext and Fix_min. The axiom fn_ext (function extensionality) is the only
one of our axioms that is specific to functional languages, and corresponds to
what is known as the context lemma: if two programs are applicatively equivalent
then they are observationally equivalent. The idea behind axiom Fix_min is that
any “experiment” C which yields a value when performed on a term Fix $ F
can only unroll the recursion operator a finite number of times, so that the same
experiment must succeed when performed on mlIter k bot F for some k.

Fix_min plays more or less the same role as the familiar Scott induction
principle in program logics such as LCF [Sco93]. We prefer the Fix_min axiom
partly because it avoids the reference to inclusive predicates, and partly because
it is not dependent on an order relation C in the style of domain theory. If we
introduced such a relation as primitive, we would be obliged to axiomatize it,
which is problematic since the appropriate order relation may vary from one
language £ to another.?

3.2 Denotational interpretation

Whilst our axioms can (with hindsight) be justified on purely operational grounds,
it is better to achieve this by showing that they hold in some denotational model
which agrees with our operational one in a suitable sense. The use of a denota-
tional semantics has several advantages. Firstly, our understanding of the model
can be used to suggest what the axioms ought to be in the first place. Secondly,
the verifications that the axioms hold in the model tend to involve more abstract
reasoning than the corresponding operational verifications, and to be more eas-
ily transferable from one language to another. Thirdly, a denotational semantics
can be used to show soundness (and hence consistency) for the whole logic, not
just the fragment K (£), whereas it is unclear how the operational interpretation
could be extended to cover types such as UNIT->nat.

Without going into technical details, the model we have in mind is a presheaf
category [C°P, Set], where C is some denotational model of £. Types of our logic
will be interpreted by objects X in the presheaf category, and closed terms by

* There are even “functional” languages for which the order relation is not defined
extensionally, see e.g. [Lon99].
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morphisms 1 — X. We then interpret our logic in the ordinary classical way
over the homsets Hom(1, X).

The category [C°P, Set] has two important full subcategories, corresponding
to Set and to C itself. We use objects of Set to interpret pure HOL types such as
nat or nat->nat, and objects of C to interpret SML types. Thus, [C°P, Set] offers
a model in which the ordinary mathematical universe of sets lives side-by-side
with the computational universe of SML types and programs.

Moreover, we can choose the category C to be a model of £ that is both
fully abstract (observationally equivalent programs have the same denotation)
and wuniversal (every element of the relevant object is the denotation of some
program). From these facts it is not hard to see that, when restricted to K (L),
our interpretation agrees precisely with the operational one given earlier. This
goodness-of-fit property is known as logical full abstraction.

In future work we will extend our logic to deal with some non-functional
fragments of SML including exceptions, references and I/O. An overview of the
denotational ideas underpinning our approach is given in [Lon03].

3.3 A serious problem

An attempt to give a denotational semantics in this way for the whole of our
logic, as currently formalized, shows up a significant problem. In Isabelle/HOL
the definite description operator (written THE) is available for all types. Consider
the following “program”:

UNIT_swap :: "UNIT -> UNIT"
"UNIT_swap == fn x. (THE y. “y=x)"

This claims to be a function that swaps bot and <>. Such a function cannot
be definable in SML (with it, one could solve the halting problem), violating
our operational requirement that terms of an SML type are SML definable. In
fact, one can derive a contradiction using the axiom Fix_rule, since UNIT _swap
clearly does not have a fixed point.

The definite description operator is pragmatically essential in pure HOL, and
useful in specifications of programs, but its use must be controlled, as the above
example shows. Our proposed solution involves introducing a typeclass mathtype
for “pure mathematical types”, a subclass of type, analogous to SML. We then
insist that free variables in the body of a definite description are restricted to be
of class mathtype. Unfortunately, this proposal can not be implemented without
significant re-engineering of Isabelle/HOL, or building our own system from
scratch.

4 Inductive datatypes

In section 5 we indicate, using the example of streams, how all positive recursive
datatypes can be uniformly constructed from the types of their constructors. In
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typedecl NAT
arities  NAT :: SMLeq

consts -—{* datatype of natural numbers *}

ZZ :: NAT

SS :: "NAT -> NAT"

NCASE :: "’a => (NAT -> ’a) => (NAT -> ’a)" --{* case is non-strict *}
axioms --{* nat as a datatype *}

ZZ_dfd [simp]: "dfd ZzZ"

SS_totl [simp]: "totl SS"

dfd_NCASE [simp]: "dfd (NCASE f g)"
nat_Induct:
"[| P ZZ; !'y. [| dfd y; Py [] ==> P (SS § y); dfd x |] ==> P x"
NCASE_ZZ [simp]: "NCASE ZZ x y = x"
NCASE_SS [simp]: "NCASE (SS $ n) xy = (y $ n)"

Fig. 4. A datatype of natural numbers

this section we simply axiomatize inductively defined (well founded) datatypes
NAT and LIST as examples, to show we can reason about them straightforwardly.

Modulo a good deal of detailed work, reasoning about total programs over
well founded datatypes is not so different than reasoning about systems of total
functions, such as type theory or HOL itself. For example, uniform iteration and
recursion functions are defined (primitive recursion over NAT, fold over LIST,
...), and their properties proved. These can be used to define other programs
whose totality (on defined inputs) follows easily.

4.1 Natural numbers

The formalization of NAT is shown in figure 4. There are constants for the con-
structors ZZ and SS, and for the eliminator NCASE. These are axiomatized to be
dfd and tot1. There are axioms for the computation of NCASE. Only the induc-
tion axiom, nat_Induct, while natural, needs serious semantic justification.

By primitive recursion over HOL natural numbers (nat) there is an injection
from nat onto the defined NATs. By this means we can convert many properties
of NAT into properties of nat, which may be automatically proved by Isabelle’s
tactics.

By HOL inductive definition we define order relations on NAT, e.g. the less-
than relation (syntax x[<]y).

inductive NATLT intros
NATLT_Z: "dfd x ==> ZZ [<] SS $ x"
NATLT_S: "m [<] n ==>SS $ m [<] SS $ n"

For specification, this relation is more convenient than the BOOLean valued pro-
gram that computes less-than. Complete induction can be derived, and from
this a least number principle and well founded induction for NAT-valued mea-
sures. As an example, we have defined a naive Fibonacci program, and a fast
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Fibonacci program, and proved they are equal. The naive Fibonacci program is
easily seen to satisfy the Fibonacci recursion equations, hence so does the fast
Fibonacci program. Moreover, every program satisfying the Fibonacci recursion
equations is equal to the the naive Fibonacci program.

4.2 Lists

Polymorphic LIST is axiomatised analagously with NAT. We use infix [::] for
CONS; the list eliminator is LCASE. Basic functions like map, append, flatten
and reverse are easily defined from the uniform fold operator. Their correctness
follows from showing they have the expected recursion equations, usually by a
few steps of computation. Many basic properties follow by easy induction: map
distributes over composition, append is associative, reverse is involutive, .... We
give an efficient reverse program, and show it is equal to naive reverse.

After defining a length function, we derive a length induction principle for
lists from the wellfounded measure induction over NAT (section 4.1). With this we
prove a more challenging example: theorem 16 from Paulson’s textbook [Pau91]

aop $ y $ (foldleft $ aop $ e $ xs) = foldleft $ aop $ y $ xs

where aop is associative and e, a right identity of aop, is dfd.

Sorting The examples mentioned above are trivial in one sense: correctness is
expressed in terms of some recursion equations. Our stated reason for axioma-
tising ML in HOL, instead of FOL, is to have a richer language for program
specifications. The specification for sorting involves abstract properties ordered
and permutation. For example, permutation (syntax xs ~ ys) is given as a HOL
inductive definition:

consts perm :: "(’a LIST * ’a LIST) set"
inductive perm intros
perm_trn: "[| xs " ys; ys " zs |] ==> xs ~ zs"

perm_NIL: "NIL ~ NIL"
perm_CONS: "[| dfd x; xs ~ ys |] ==> x[::]xs ~ x[::]ys"
perm_hd:"[|dfd x; dfd y; dfd zs |]==> x[::]y[::]1zs ~ y[::1x[::]zs"

We give a program for insertion sort (figure 5), and prove it is correct. The
sort program itself is a polymorphic function taking in a BOOLean valued order
function, le, and a list, and returning a sorted list. We use an Isabelle locale
to specify the properties the order function must have, and prove in that locale
that isort returns an ordered permutation of the input list. Thus for any in-
stantiation of that locale (e.g. with the order function LE over NAT) isort is a
correct sort program.

5 Recursive datatypes: streams

The examples in preceding sections, over inductive datatypes, could be carried
out in logics of total functions. In this section we address an example that cannot
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insrt :: "(’a -> ’a -> BOOL) -> ’a -> ’a LIST -> ’a LIST"
"insrt == fn le x. Fix $§ (fn f. LCASE (unl x)
(fn y ys. IF (e $ x $ y)
(x[::1(yL[::1ys))
(yL::1(£ $ ysHN"
isort :: "(’a -> ’a -> BOOL) -> ’a LIST -> ’a LIST"
"isort == fn le. Fix §
(fn f xs. LCASE NIL (fn y ys. insrt $ le $ y $ (f $ ys)) $ xs)"

Fig. 5. Insertion sort program

pre_rmZZs :: "(NAT SEQ -> NAT SEQ) -> NAT SEQ -> NAT SEQ"
"pre_rmZZs == fn F. SCASE (fn p.
IF (Fst$p [=] Z2)
(F $ (Snd$p $ <>))
(Fst$pl:::1(fn z. F $ (Snd$p $ <>))))"
rmZZs :: "NAT SEQ -> NAT SEQ"
"rmZZs == Fix $ pre_rmZZs"

Fig. 6. A function to remove all zeros from a NAT SEQ.

be treated in logics of totality. Consider the type of polymorphic streams (SEQ
for sequence), that would be defined in SML by:

datatype ’a SEQ = SCONS of ’a * (unit -> ’a SEQ)

We represent this datatype using the well known characterization that
(’a SEQ, SCONS) is the initial algebra of the functor ST X = ’a ** (UNIT->X).
As an example over SEQ, consider the function, rmZZs, that recurses through a
NAT SEQ removing all the zeros (figure 6). A datatype analogous to SEQ is defin-
able using coinduction in HOL, Coq, and Nuprl, but the function rmZZs could
only be definable in a complex way, with a restricted domain.

Streams are formalised (figure 7) with two constants and three axioms. The
constructor, SCONS (infix [:::]) is dfd and totl. The other constant, Psi,
canonically completes the initial algebra property. This is expressed by axiom
seq_init, which states that if g: : ST(*b)->’bis dfd, then Psi $ gis the unique
dfd function £ making the diagram commute:

SCONS
’a *x (UNIT->’a SEQR) = ST(’a SEQ) ———— ’a SEQ
PCASE (fn h t. h [,] f oo t) = ST(f) f =Psi(g)
’a **x (UNIT->’b) = ST(’b) g4> ’b

From this we define the categorical destructor
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typedecl ’a SEQ
arities SEQ :: (SML)SML --{* no SMLeq arity *}

——{* covariant functor characterises ’a Seq" *}

types (’a, ’b) ST = "’a ** (UNIT -> ’b)" --{* object part of functor *}
constdefs --{* arrow part of functor *}
ST :: "(P’c—>’d) -> (’a,’c)ST -> (’a,’d)ST"
"ST == fn f. PCASE (fn (a::’a) (h::UNIT->’c). (a [,] (f oo h)))"
consts --{* sequences (lazy lists) *}
SCONS :: "(’a,’a SEQ)ST -> ’a SEQ" --{* constructor *}
Psi :: "((’a,’b)ST -> ’b) -> ’a SEQ -> ’b"
constdefs —-{# the initial algebra property #*}
SEQ_Init_sq :: "((’a,’b)ST -> ’b) => (’a SEQ -> ’b) => bool"

"SEQ_Init_sq g f == (dfd f) & ((f oo SCONS) = (g oo (ST $ £)))"
axioms --{* stream as a datatype *}

dfd_SCONS[simp]: "dfd SCONS"

tot1_SCONS[simp]: "totl SCONS"

seq_init: "dfd g ==> SEQ_Init_sq g £ = (f = Psi § g)"

Syntax note: oo is program composition, i.e. £ oo g = fn x. £ $ (g $ x).

Fig. 7. Streams as an initial algebra

SDESTR :: "’a SEQ -> (’a *x (UNIT->’a SEQ))"
"SDESTR == Psi $ (ST $ SCONS)"

and prove that SCONS and SDESTR are inverse isomorphisms. The SML case
eliminator for streams is defined, and its computation rule proved:
SCASE :: "(°b -> (UNIT -> ’b SEQ) -> ’a) => (’b SEQ -> ’a)"
"SCASE f == PCASE f oo SDESTR"
lemma SCASE_SCONS: "SCASE y $ (al:::]as) =y $ a $ as"

Examples Now we can define many standard functions on streams, and prove
their usual properties: head and tail (shd, stl), nth element from a stream
(snth), take or drop n elements from the front of a stream (sTAKE, sdrop). For
example:

sdrop $ n $ (stl $ xs $ <>) = stl $ (sdrop $ n $ xs) $ <>

snth $ n $ s = shd $§ (sdrop $ n $ s)
Interesting from a semantic viewpoint, we show that every stream is the obser-
vational limit of its initial segments

lemma s_lim_sTAKEs: "obsLim s (%n. sTAKE n $ s)"
However, we do not yet seem able to prove stream extensionality
(ALL n. snth $ n $ s =snth $n$t) ==>s=t

which is operationally true. Stream extensionality is equivalent to a characteri-
zation proposed in [Pit94]. Finally, we cannot prove that (ST, SDESTR) is a final
coalgebra. Thus, another axiom seems needed.
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5.1 Another general axiom

Our final general axiom reflects that x =o= y means x and y are indistinguishable
in any context.

axioms obs_eq: "x =o=y ==>x = y"

This can be seen as saying that Leibniz equality (e.g. observational equivalence)
implies extensional equality. By a fact from section 2.3, this is equivalent to
uniqueness of observational limits

obsLim a x ==> obsLim b x ==> a = b

From this second formulation it is clear that stream extensionality follows from
s_lim_sTAKEs. Furthermore, from stream extensionality we conjecture we can
prove that that (ST, SDESTR) is a final coalgebra.

Using stream extensionality, we have proved that the program rmZZs returns
a sequence with no zeros!

6 Conclusion

Reasoning about programs is hard. Our high level, operationally inspired logic
doesn’t remove the need to reason about the details of a program. However
Isabelle’s automation proved very useful for routine details, such as the frequent
need for case distinction between dfd and udfd arguments in our CBV language.
There is plenty of scope for special purpose tactics to address other routine tasks.
We found the use of HOL, with its inductive definition of properties, to be much
better than first order (i.e. equational) specification, and were also able to convert
some questions about SML datatypes into questions about HOL types that are
easily solved in Isabelle/HOL.
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