
refinement calculus

notes

Peter G. Hancock

1 Oct 2003

Contents

1 syntax 1

2 predicates and families 2

3 grammar 3

4 types and definitions 4
4.1 State transformers . 4
4.2 Category of relations and simulations 5

4.2.1 ObjRel . 5
4.2.2 MorphRel . 10

4.3 Category of predicate transformers and simulations 12
4.3.1 ObjPT . 12
4.3.2 MorphPT . 16

5 laws 17

1 syntax

The usual setting for Back and von Wright’s refinement calculus is higher order
classical logic, with quantification over predicate variables, and a complement
operator. Here instead we define certain of these constructions in predicative
type theory in which quantification over predicates is not allowed in proposi-
tions.

The basic judgements in which we are interested are (primarily) U ⊆ V and
(secondarily, the dual judgement) U G V which says that U and V are com-
patible. It is necessary to have a separate judgement form such as U G V in
the absence of the complement operator. Here U and V are predicate expres-
sions that may contain variables of various sorts: states, state-predicates, and
relations. The variables are implicitly universally quantified. If the predicate
expressions depend on a single predicate variable X, we have a (pointwise) rela-
tion between predicate transformers. If the predicate expressions depend on a
state variable s, we have the inclusion relation between relations. In combina-
tion with predicate transformers Φ and iterated form, the basic relations give

1

rise to relations of interest in client-server programming such as the following

U CΦ V = U ⊆ Φ∗(V)
U nΦ V = U G Φ∞(V)

As for predicativity, all reasoning should be essentially ‘point-free’, or alge-
braic. That is to say, proofs should be algebraic manipulations in which free
subset variables never officially appear.

In the general case we may have beside predicates also relations with various
arities, and beside unary transformers of unary predicates also transformers with
arity of the form 〈n1, .., nk〉 → n

Two base types (for the two kinds of variables): S (states – s, s′, s1, . . .))
and P (predicates – P). We have one binary relation s ε P , meaning that state
s satisfies predicate P . This gives rise to 3 kinds of statement:

s ε U
s ε Q(s′) Q a relation
s ε F (U) F a predicate transformer

The following higher types:

f, g, . . . : S → S state transformer f = g
R,Q, . . . : S → P state relations R ⊆ Q
F,G, . . . : P → P predicate transformers F v G

The first kind of comparison is equality between state expressions that may have
free state-variables. Might want apartness.

The second kind of comparison is equivalence and implication between state-
ments that may have free state-variables. Might want overlap.

The third kind of comparison is equivalence and implication between state-
ments that have free occurences of both state-variables and predicate-variables.
Again, might want overlap.

2 predicates and families

Predicates over a set form a distributive lattice: closed under sup (empty, binary,
set-indexed) and inf (empty, binary, set-indexed). By distributivity I mean that
binary sups distribute over binary infs and vice-versa. We also have implication,
forms of relative complement etc. Binary infs distribute over arbitrary sups. We
also have singleton predicates.

Families on the other-hand are merely a sup-lattice with singletons. .
An obscure point to be explained: the link between families and predicates

(or transition structures and relations) involves not just equality (which gets us
one way), but also existential quantification over states, which gets us a family
from a predicate, in which the function is first projection. There is a question
of size here: S may be ‘large’ compared to the universe of sets we are working
in.

2

3 grammar

states s, s′ :::= f(s)

state transformers f, g :::= id | f · g

families α, β :::= { s } | ti αi | φ(s)

predicates U, V :::= α |
⋃
i Ui |

⋂
i Ui | Φ(U) | R(s)

transition structures φ, ψ :::= graph f
| U ⇀ φ
| ti φi
| φ ; ψ | id
| φ∗ | φ+ | φ?

relations Q,R :::= φ
| U ⇀ Q
|

⋃
iQi |

⋂
iQi

| R ; Q | id | Q/R
| φ ; Q | Q/φ
| Φ ·Q
| Q∗ | Q+ | Q?

| Q∼

interaction structures Φ,Ψ :::= | 〈φ〉 | [φ]
| ti Φi | ui Φi
| Φ ; Ψ | id
| assign f
| Φ∗ | Φ+ | Φ?

| Φ∞
| Φ⊥

predicate transformers F,G :::= Φ
| 〈R〉 | [R]
| ti Fi | ui Fi
| F ; G | id
| assign f
| F ∗ | F+ | F ?

| F∞

3

4 types and definitions

4.1 State transformers

1. composition of state transformers
f : A→ B g : B → C

g · f : A→ C

(f.g)(s) ∆= f(g(s)).

2. identity of state transformers: id : A→ A

id(a) ∆= a.

3. base state transformers

Often, the state space is a product S =
∏
v:V Sv, where V is a set of

variable-names (with decidable equality) and Sv is a factor of the state
space corresponding to variable v: the type of v. Then a state is a function
which assigns to a variable-name v a value of the type Sv appropriate to
v. This can also be thought of as a record.

If e is an expression built up from variable-names using function constants,
we define by recursion on its build up the value |e|s of e in the start state
s – in the obvious way (see below). We then define an update function
v := e on state records:

(v := e) : S → S

(v := e)(s) ∆= (λ v′ : V) if v′ = v then |e|s else s(v)

Thus an assignment statement can be interpreted as a state transformer.

We may obviously extend the definition to simultaneous assignment, where
we have a finite vector ~v of (distinct) variables, and a vector ~e of expres-
sions of the same length.

Example : x, y := y, x – atomically swap contents of variables x and y.

Tangentially, if we are interested in (statically) typed variables, then one
can represent the type system in the form of an interaction structure – a
set of sorts or types, and for each sort σ a family of families of sorts:

{ {σ[c/r] | r : R(σ, c) } | c : C(σ) }

Here C describes the constructors that can be used to form an expression
of sort σ, and for each such constructor c an element r of R(σ, c) selects
the location of an immediate subexpression. The sort of the subexpression
must equal σ[c/r].

An expression of sort σ is now a well-founded structure, in which there are
‘exit points’ named after state variables. (If there are none, the expression
is closed.)

We can define the value of an expression under an assignment of appro-
priately typed values to variable names, by wellfounded recursion on the
structure of those proofs.

4

4.2 Category of relations and simulations

By passing from predicates to relations, and from families to transition struc-
tures (allowing a state-parameter), we add to the lattice operations a ‘sequenc-
ing’ monoid with unit the graph of the identity function.

Survey: Closure properties. Other notes.

• graphs of functions are transition structures.

• transition structures are closed under restriction by predicates (guarding).

• transition structures are closed under sup.

• transition structures are closed under composition, eq etc.

• Each transition structure determines two relation transformers (φ ;) and
(/φ). The definition of these does not use equality. These are closely
related to the predicate transformers 〈φ〉 and [φ].

• in the homogeneous case, we have the usual closure operators (reflexive,
transitive, etc).

• transition functions are not closed under converse, nor intersection, nor
division. (That is, without specific use of the equality relation.)

Transition structures are ‘regular’ – form a sup-lattice (with set-indexed
sups), and have an iteration star operation. (We get back the infs with interac-
tion structures, and two notions of iteration.)

Transition structures form a Kleene (regular) algebra in the following sense.
It has an associative and commutative binary sup ∪ with unit 0 (the empty
transition structure); associative binary sequencing with unit id, distributing
over sup. 0 is absorbing. An iteration operator star, satisfying φ∗ is a solution
of the equations id ∪ (φ ; x) ⊆ x and id ∪ (x ; φ) ⊆ x; and if φ ; x ⊆ x or
x ; φ ⊆ x, then φ∗ ; x ⊆ x or x ; φ∗ ⊆ x respectively. Transition structures
also include ‘tests’ somewhat in Kozen’s sense, except that they needn’t form a
Boolean algebra (but a Heyting algebra).

4.2.1 Relations and transition structures

1. st ’s as rel ’s
f : A→ B

graph f : A→ PB

b ε (graph f)a ∆= b = f(a) (1)

2. st ’s as ts’s
f : A→ B

graph f : A→ FB

T (a) ∆= N1 ; s[] ∆= f(s) (2)

5

3. predicates as rel ’s
U : PA

testU : A→ PA

b ε (testU)a ∆= a ε U ∧ b = a (3)

4. predicates as ts’s
U : PA

testU : A→ FA

T
∆= U ; s[] ∆= s (4)

5. domain restriction of rel ’s
Q : A→ PB U : PA

U ⇀ Q : A→ PB

b ε (U ⇀ Q)a ∆= a ε U ∧ b ε Q(a) (5)

Note: some redundancy. U ⇀ R = testU ; R.

6. domain restriction of ts’s
φ : A→ FB U : PA

U ⇀ φ : A→ FB

T
∆= U ∩ Tφ ; s[〈 , t〉] ∆= s[t]φ (6)

7. mapping rel ’s by a st
R : A→ PB f : C → B

P(f) ·R : A→ PC

c ε (Pf ·R)a ∆= f(c) ε R(a) (7)

8. mapping ts’s by a st
φ : A→ FB f : B → C

F(f) · φ : A→ FC

T (a) ∆= Tφ(a) ; a[t] ∆= f(a[t]φ) (8)

Note: redundant. Ff · φ = φ ; graph f .

9. union, and intersection of rel ’s

Qi : A→ PB

(∪iQi), (∩iQi) : A→ PB

(∩iQi)(a)
∆= ∩i(Qi(a)) (9)

(∪iQi)(a)
∆= ∪i(Qi(a)) (10)

Note, no counterpart to intersection on ts’s.

6

10. union of ts’s
φi : A→ FB

(tiφi) : A→ FB

T (a) ∆=
∑
i

Tφi
(a) ; a[〈i, t〉] ∆= a[t]i (11)

Note, no counterpart of intersection.

11. argument swapping

Q : A→ PB

Q∼ : B → PA

a ε Q∼(b) ∆= b ε Q(a) (12)

Notes

• no counterpart operation on ts’s

• prime example of a relation transformer. Contravariant functor on
the category of sets and relations. An involution. Called converse,
inverse, reverse, interchange, twist, flip, swap, and so on.

• determines a notion of (∼)-duality for relation transformers. The
(∼)-dual of a relation transformer Φ is (∼) ·Φ · (∼). For example, the
division (Q\) is (∼)-dual to (/(Q∼)).

7

12. rel ’s closed under sequential composition

R : A→ PB Q : B → PC

(R ; Q) : A→ PC

c ε (R ; Q)(a) ∆= R(a) G Q∼(c) (13)

13. identity rel : id = graph id : A→ PA

a ε id(a′) ∆= a = a′ (14)

14. ts’s closed under sequential composition

φ : A→ FB ψ : B → FC

(φ ; ψ) : A→ FC

T (a) ∆=
∑

t1:Tφ(a)

Tψ(a[t1]φ) ; a[〈t1, t2〉]
∆= (a[t1]φ)[t2]ψ (15)

15. identity ts: id = graph id : A→ FA

T () ∆= N1 ; a[] ∆= a (16)

8

16. closures of rel ’s
R : A→ PA

R?, R+, R∗ : A→ PA

R∗
∆= ∩{T : A→ PA | (id ∪ (R ; T)) ⊆ T } (17)
= ∪{ (R ;)nid |n = 0, 1, . . . }

R? ∆= R ∪ id, R+ ∆= R ; R∗.

17. closures of ts’s
φ : A→ FA

φ∗, φ?, φ+ : A→ FA

φ∗:

T
∆= (µ X : A→ Set)

(∀ a : A)
{nil }

∪{ cons(t0, t′) | t0 : Tφ(a), t′ : X(a[t0]φ) }
⊆ X(a)

(18)

a[nil] ∆= a

a[cons(t0, t′)]
∆= (a[t0]φ)[t′]

φ? ∆= φ t id, φ+ ∆= φ ; φ∗.

9

18. rel ’s closed under post-division

Q : A→ PB R : C → PB

(Q/R) : A→ PC

c ε (Q/R)(a) ∆= R(c) ⊆ Q(a) (19)

19. pre-composition of ts’s to rel ’s

φ : A→ FB Q : B → PC

(φ ; Q) : A→ PC

c ε (φ ; Q)(a) ∆= φ(a) G Q∼(c) (20)

(φ ; Q)(a) = ∪{Q(a[t]φ) | t : Tφ(a) }
Note that this lets us lift a ts φ to the rel (φ ; id).

20. post-division of rel ’s by ts’s

Q : A→ PB ψ : C → FB

(Q/ψ) : A→ PC

c ε (Q/ψ)(a) ∆= ψ(c) ⊆ Q(a) (21)

Note that this gives us a ‘reciprocal’ lift of ts φ to rel (id/φ). The reciprocal
of a relation is completely different from its converse. For what relations
are the converse and reciprocal the same?

21. pt ’s as operations on rel ’s
Φ : PA→ PB Q : C → PA

(Φ ·Q) : C → PB

b ε (Φ ·R)(c) ∆= b ε Φ(R(c)) (22)

4.2.2 Morphisms between relations and transition structures

Consider the Kleisli category for the monadic functor F . The arrows in this
category (diagrams of shape A→ FB, which we picture as vertical arrows) are
called transition structures. A morphism between two such arrows φ : A→ FB
and ψ : C → FD is a pair of horizontal relations Q1 : A→ PC and Q2 : B → PD
which form a “sub-commuting” square:

Q1
∼ ; φ ⊆ ψ;Q2

∼

10

This is equivalent to
Q1

∼ ⊆ (ψ;Q2
∼)/φ

or even
Q1 ⊆ (∼) · (/φ) · (ψ;) · (∼) Q2

= (∼) · ([φ]·) · ((∼) · (〈ψ〉·) · (∼)) · (∼) Q2

= (∼) · ([φ]·) · (∼) · (〈ψ〉·) Q2

One composes morphisms between arrows “horizontally”, as relations. (Pairs of
relations are compared pointwise, for inclusion and equality.)

If instead of arrows we restrict ourselves to cycles (i.e. homogeneous tran-
sition structures, i.e. endomorphisms in the Kleisli category, the appropriate
notion of morphism is a simulation.

11

4.3 Category of predicate transformers and simulations

Mumble mumble.

4.3.1 Predicate transformers (and interaction structures)

1. Relational update, lifting rel ’s to pt ’s.

R : A→ PB

〈R〉, [R] : PB → PA

a ε 〈R〉(U) ∆= R(a) G U (23)

a ε [R](U) ∆= R(a) ⊆ U (24)

2. angelic and demonic lifting of a ts to an is

φ : A→ FB

〈φ〉, [φ] : A→ F(FB)

angel 〈φ〉

C
∆= Tφ (25)

R(,) ∆= N1

a[t/] ∆= a[t]φ

demon [φ]

C() ∆= N1 (26)

R(a,) ∆= Tφ(a)

a[/t] ∆= a[t]φ

3. is’s as pt ’s
Φ : A→ F(FB)

Φ : PB → PA

a ε Φ(U) ∆= (∃ c : CΦ(a)) { a[c/r]Φ | r : RΦ(a, c) } ⊆ U (27)

Note: Φ : A→ F(FB) can always be written 〈φ〉 ; [ψ] for certain φ : A→
A′, ψ : A′ → FB, as follows. Write Φpre,Φpost for φ,ψ .

A′ = {pending(a, c) | a : A, c : CΦ(a) }
φ(a) = {pending(a, c) | c : CΦ(a) }

ψ(pending(a, c)) = { a[c/r]Φ | r : RΦ(a, c) }

12

4. infima, suprema of pt ’s
Fi : PA→ PB

(uiFi), (tiFi) : PA→ PB

(uiFi)(U) ∆= ∩i(Fi(U)) (28)

(tiFi)(U) ∆= ∪i(Fi(U)) (29)

5. infima, suprema of is’s
Φi : A→ F(FB)

(uiΦi), (tiΦi) : A→ F(FB)

angelic t:

C
∆= ∪iCi (30)

R(s, 〈i, c〉) ∆= Ri(s, c)

s[〈i, c〉/r] ∆= s[c/r]i

demonic u:

C
∆= ∩iCi (31)

R(s, f) ∆= (∃ i) Ri(s, f(i))

s[f/〈i, r〉] ∆= s[f(i)/r]i

6. sequential composition of pt ’s

F : PA→ PB G : PB → PC

(F ; G) : PA→ PC

(F ; G)(U) ∆= F (G(U)) (32)

7. sequential composition of is’s

Φ : A→ F(FB) Ψ : B → F(FC)

(Φ ; Ψ) : A→ F(FC)

C
∆= Φ(CΨ) (33)
= { a : A | (∃ c : CΦ(s))(∀ r : RΦ(a, c)) CΨ(a[c/r]Φ) }

R(a, 〈c, f〉) ∆= (∃ r : RΦ(a, c)) RΨ(a[c/r]Φ, f(r))

a[〈c, f〉/〈r0, r′〉]
∆= (s[c/r0]Φ)[f(r0)/r′]Ψ

13

8. identity pt : id = 〈id〉 = [id] : PA→ PA

b ε id(U) ∆= b ε U (34)

9. identity is: id = 〈id〉 = [id] : A→ F(FA)

C() ∆= N1 (35)

R(,) ∆= N1

a[/] ∆= a

10. dual of an is

Φ : A→ F(FB)

Φ⊥ : A→ F(FB)

C(a) ∆= (∀ c : CΦ(a))RΦ(a, c) (36)

R(a,) ∆= CΦ(a)

a[f/c] ∆= a[c/f(c)]Φ

Note: this doesn’t have very good properties constructively. One can
however calculate duals formally, by changing suprema to infima, angels
by demons, etc..

14

11. closures of pt’s:

F : PA→ PA

F ?, F+, F ∗, F∞ : PA→ PA

F ∗
∆= ∩{T : PA→ PA | (id ∪ (F ; T)) ⊆ T } (37)
= U 7→ { a : A | (∀ V : PA) ((U ∪ F (V)) ⊆ V) → V (a) }
= ∪α(F ;)α(id)

F∞
∆= ∪{T : PA→ PA |T ⊆ (id ∩ (F⊥ ; T)) } (38)
= U 7→ { a : A | (∃ V : PA) V ⊆ (U ∩ (F⊥(V)) ∧ V (a) }
= ∩n{Fn |F0 = id;Fn+1 = Fn ∩ (F⊥ ; Fn) }

12. closures of is’s
Φ : A→ F(FA)

Φ∗,Φ?,Φ+,Φ∞ : A→ F(FA)

Φ∗

C
∆= (µ X : A→ Set)

(∀ a : A)
{ exit }

∪{ call(c, f) | c : CΦ(a), f : (∀ r : R(a, c)) X(a[c/r]Φ) }
⊆ X(a)

(39)

R(a, exit) ∆= {nil }
R(a, call(c, f)) ∆= { cons(r0, r′) | r0 : RΦ(a, c), r′ : R(a[c/r0], f(r0)) }

a[exit/nil] ∆= a

a[call(c, f)/cons(r0, r′)]
∆= (a[c/r0]Φ)[f(r0)/r′]

Φ? ∆= Φ t id, Φ+ ∆= Φ ; Φ∗.

Φ∞

C
∆= (ν X : A→ Set)

(∀ a : A)
X(a) ⊆ { srv(f, g) | f : (∀ c : CΦ(a))RΦ(a, c),

g : (∀ c : CΦ(a))X(a[c/f(c)]Φ) }

(40)

R(a, srv(f, g)) ∆= {nil }
∪{ cons(c0, c′) | c0 : CΦ(a), c′ : R(a[c0/f(c0)], g(c0)) }

a[srv(f, g)/nil] ∆= a

a[srv(f, g)/cons(c0, c′)]
∆= (a[c0/f(c0)]Φ)[g(c0)/c′]

15

13. functional assignment as a pt
f : A→ B

assign f : PB → PA

s ε (assign f)(P) ∆= f(s) ε P

Note: assign f = (·f) = f−1 = Pf .

Note: assign f ; assign g = assign g · f .

Redundant.
assign f = 〈graph f〉 = [graph f]

14. functional assignment as an is
f : A→ B

assign f : A→ F(FB)

C() ∆= N1

R(,) ∆= N1

a[/] ∆= f(a)

4.3.2 Morphisms between predicate transformers

In analogy with transition structures, we could define a morphism between
interaction structures to be a pair of predicate transformers that satisfy the
appropriate sub-commutativity property. However, in this case we insist that
the predicate transformer is angelic, that is commutes with all disjunctions, that
is is determined by its value at singletons, that is is an angelic relational update.

Give definition.
Give it for interaction structures. Note really between an is and a pt.

16

5 laws

Laws for (inferring inclusion and equality between) relations.

1. Predicate transformers determine relation transformers. However, the ef-
fect of certain predicate transformers can sometimes be expressed merely
from sequential composition, and division. The following are equations
between relation transformers.

(Q ;) = (∼) · (〈Q〉·) · (∼)
(; Q) = (〈Q∼〉·)

(/Q) = ([Q]·)
(\Q) = (∼) · ([Q∼]·) · (∼)

(41)

To a certain extent, we are interested in representing relations with transi-
tion structures – we may represent a relation as a transition structure, or
as the converse of a transition structure, or as the reciprocal of a transition
structure (and so on and on).

2. I might have introduced binary operators for relative complement and
implication. Then the adjunctions for relations are:

(R1 ; R2) ⊆ Q ⇐⇒ R1 ⊆ (Q/R2) (42)
(R1 −R2) ⊆ Q ⇐⇒ R1 ⊆ (R2 ∪Q) (43)
(R1 ∩R2) ⊆ Q ⇐⇒ R1 ⊆ (R2 ⇒ Q) (44)

Some laws (need to check):

Q− (R1 ∪R2) = (Q−R1) ∩ (Q−R2) = ((Q−R1)−R2) (45)
Q− (R1 ∩R2) ⊇ (Q−R1) ∪ (Q−R2) (46)

(R1 ∪R2) ⇒ Q = (R1 ⇒ Q) ∩ (R2 ⇒ Q) (47)
(R1 ∩R2) ⇒ Q = R1 ⇒ (R2 ⇒ Q) (48)

Non-binary sups and infs?

3. laws for sups and infs.

(∪Ri) ⊆ Q⇐⇒ (∀ i) Ri ⊆ Q (49)
Q ⊆ (∩Ri) ⇐⇒ (∀ i) Q ⊆ Ri (50)

For relations, sequential composition commutes with union (on both sides).

4. The laws for relational converse ∼. This commutes with infima and
suprema (and closures), is monotone, and

Q∼∼ = Q (51)
(graph f)∼ ; (graph f) ⊆ id; id ⊆ (graph f) ; (graph f)∼(52)
id∼ = id (53)
(Q ; R)∼ = R∼ ; Q∼ (54)

17

5. What are right laws for domain restriction?

testU = U ⇀ id (55)
U ⇀ R = testU ; R (56)
testU ; testV = test (U ∩ V) (57)
R1 ⊆ R2 ⇒ (U ⇀ R1) ⊆ (U ⇀ R2) (58)
U ⊆ V ⇒ (U ⇀ R) ⊆ (V ⇀ R) (59)

6. Dedekind’s law (modular law). This is what governs sequential composi-
tion, converse and intersection.

(Q ; R) ∩ S ⊆ Q ; (R ∩ (Q∼ ; S)) (60)

This law is used to prove that if Q is a partial function (‘deterministic’
relations) then Q ; (R1 ∩R2) = (Q ; R1) ∩ (Q ; R2). In other words (Q ;)
is conjunctive (it is always disjunctive).

7. Intersection of relations.

testU ∩ testV = testU ∩ V (61)
(Q1 ∩Q2) ∩Q3 = Q1 ∩ (Q2 ∩Q3) (62)

Q ∩ void = void (63)
Q ∩ chaos = Q (64)
Q1 ∩Q2 = Q2 ∩Q1 (65)
Q ∩Q = Q (66)

Q ∩ (Q ∪R) = Q (67)
Q ∩ (∪iRi) = ∪i(Q ∩Ri) (68)
Q ∩ (∩iRi) = ∩i(Q ∩Ri) (69)

Q ∩ (R1 ; R2) ⊆ R1 ; (R2 ∩ (R1
∼ ; Q)) (70)

Q ∩R∼ = (Q∼ ∩R)∼ (71)

8. Union of relations.

testU ∪ testV = testU ∪ V (72)
(Q1 ∪Q2) ∪Q3 = Q1 ∪ (Q2 ∪Q3) (73)

Q ∪ void = Q (74)
Q ∪ chaos = chaos (75)
Q1 ∩Q2 = Q2 ∩Q1 (76)
Q ∪Q = Q (77)

Q ∪ (Q ∩R) = Q (78)
Q ∪ (∪iRi) = ∪i(Q ∪Ri) (79)
Q ∪ (∩iRi) ⊆ ∩i(Q ∪Ri) (80)

Q ∪ (R1 ∩R2) = (Q ∪R1) ∩ (Q ∪R2) (81)
Q ∪ (R1 ; R2) . . . (82)

18

9. Sequential composition of relations.

(Q1 ; Q2) ; Q3 = Q1 ; (Q2 ; Q3) (83)
id ; Q = Q (84)
Q ; id = Q (85)

Q ; (∩iRi) ⊆ ∩i(Q ; Ri) (86)
(∩iQi) ; R ⊆ ∩i(Qi ; R) (87)
Q ; (∪iRi) = ∪i(Q ; Ri) (88)
(∪iQi) ; R = ∪i(Qi ; R) (89)
Q ; void = void (90)
void ; Q = void (91)

testU ; testV = test (U ∩ V) (92)
id = test chaos (93)

graph f ; graph g = graph (g · f) (94)
id = graph id (95)

Laws for (inferring inclusion and equality between) predicate transformers.

1. For predicate transformers, sequential composition commutes with sups
and infs in its left-hand argument.(Unlike the case of relations, where we
don’t commute with inf’s, but commute with sups on both sides.)

(F1 ; F2) ; F3 = F1 ; (F2 ; F3) (96)
id ; F = F

F ; id = F

(∪iFi) ; G = ∪i(Fi ; G)
(∩iFi) ; G = ∩i(Fi ; G)
F ; (∪iGi) ⊇ ∪i(F ; Gi)
F ; (∩iGi) ⊆ ∩i(F ; Gi)

The last 2 semi-equations are just by monotonicity.

They can be strengthened to equality for certain F .

〈φ〉 ; (∪iGi) = ∪i(〈φ〉 ; Gi)
[φ] ; (∩iGi) = ∩i([φ] ; Gi)

2. Special cases of sequential composition. Should be associative with unit
id.

〈Q〉 ; 〈R〉 = 〈Q ; R〉 (97)
[Q] ; [R] = [Q ; R]

id = assign id
assign f = 〈graph f〉 = [graph f]

3. Are these true?

F ; 〈Q〉 = 〈F ·Q〉 (98)
F ; [Q] = [F ·Q] (99)

19

An interaction structure is something of the form 〈φ〉 ; [ψ].

20

