
Refinement Calculus
(and Martin-Löf type theory)

Peter Hancock

peter@premise.demon.co.uk

http://www.dcs.ed.ac.uk/~pgh

March 2002

Summary

Some (unexpected) connections between the
refinement calculus (Back, Morris, Morgan,
von-Wright, ...) and Petersson-Synek trees in
Martin-Löf type theory.

Suggests a normal form for specifications of
certain kinds of interactive program (angelic
“user-side” programs and demonic
“system-side” programs), expressible with
dependent types. A proof that a specification
is satisfiable is in principle executable as a
program of the appropriate kind.

Many questions raised. I’d like your opinion.

Collaborators
Anton Setzer (Swansea)
– input-output monads and coalgebras
Pierre Hyvernat (Lyons/Chalmers)
– implementation
My own interest
– specifications using dependent types.

1

How to deal with interaction

(action/reaction)
in type theory?

What kind of proof is it that

• runs an internet server to book

plane-flights and hotel rooms?

• prevents the brakes on a bus from locking

in a skid?

• flies a cruise missile?

What proposition does it prove, and how is

this connected with a specification of the

desired behaviour?

2

Context: strength of a
programming logic

batch Input
f−→ Output

Input/output is available in its entirity
when execution starts/terminates.

Strength: the set of batch programs that
can be proved to terminate.
(Termination strength, provably total
recursive functions)

transaction Input is consumed and output is
produced piece by piece. Eventual
termination.

Strength: the set of transaction programs
that can be proved to terminate (i.e. with
output available in its entirity) given a
sufficiently long sequence of inputs.
(Continuity, well-foundedness,)

3

A model of imperative
interfaces

Two levels of choice:

angel, client demon, server

stimulus, response
command, response
action, reaction
move, counter-move
call, return
C, R

S : set, (States)

C(x) : set (x ∈ S), (Angel)

R(x, y) : set (x ∈ S, y ∈ C(x)), (Demon)

n(x, y, z) : S (x ∈ S, y ∈ C(x), z ∈ R(x, y)) (next)

For each s ∈ S a family of families of
outcomes:

{ {n(s, c, r) | r ∈ R(s, c) } | c ∈ C(s) }

4

Interaction structure

Φ : S → F(F(S′))

s ∈ S a state (position)
c ∈ C(s) an input (action) in state s ∈ S
r ∈ R(s,c) an output (reaction)

in response to c ∈ C(s)
s[c / r] : S′ the new state after interaction c/r.
= n(s,c,r) notation

Interaction system

(S : set,Φ : S → F(F(S)), s0 ∈ S)

5

Notions of powerset

subset S notation

P(S) = setS P = { s ∈ S |P(s) }
F(S) = (∃T : set)ST 〈T, s〉 = { s(t) | t ∈ T }

Predicates to families:

‘Σ-types’ and (first) projection.

P 7→ {π0(z) | z ∈ (∃ s ∈ S)P (s) }

Families to predicates: singleton predicates∗

{ s } = { s′ ∈ S | s′ =S s }.

{ s(t) | t ∈ T } 7→ { s′ ∈ S | s′ =S s(t) }

(∗: Singleton predicates are evil.)

6

The programmer’s
firmament

Function

A → B
Relation

A → P(B)
Transition Structure

A → F(B)

Predicate Transformer

A → P(P(B))
∼= P(B) → P(A)
(flip)

Interaction Structure

A → F(F(B))

7

Interaction structures as
predicate transformers

Given Φ : S → F(F(S′)),
define Φ◦ : P(S′) → P(S).

Φ◦(X) = { s ∈ S | (∃ c ∈ CΦ(s))
(∀ r ∈ RΦ(s, c))

X(nΦ(s, c, r)) }

“DNF” (Disjunctive Normal Form).

Aside : conjunctive normal form doesn’t work.

8

The refinement calculus

• predicate transformers (business end):

Φ,Ψ ::= • abort, magic,
Φ t Ψ, Φ uΨ,
tiΦi, uiΦi,
〈φ〉, [φ]

• skip, (Φ ; Ψ)
Φ v Ψ = ∀X.Φ(X) ⊆ Ψ(X)

• relations: R ::= . . . φ ::= . . .

• predicates: P, Q ::= . . .

• state transformers: f, g ::= . . .

• ergonomics.

9

Semantic hijack
e.g. sequential composition

CΦ;Ψ(s)
= (∃ c ∈ CΦ(s))(∀ r ∈ RΦ(s, c))CΨ(nΦ(s, c, r))
= Φ◦(CΨ, s)

RΦ;Ψ(s, 〈c, f〉)
= (∃ r ∈ RΦ(s, c))RΨ(nΦ(s, c, r), f(r))

nΦ;Ψ(s, 〈c, f〉, 〈r, r′〉)
= nΨ(nΦ(s, c, r), f(r), r′)

Have to check (Φ;Ψ)◦ = Φ◦ · Ψ◦.
Proof: axiom of choice, amalgamation of

same-sex quantifiers.

10

Two forms of recursion

Φ∗ = µΨ. skip t (Φ ; Ψ)
Φ∞ = νΨ. skip u (Φ ; Ψ)

Φ∗: inductively defined (Petersson and
Synek). We have to terminate eventually, but
we can choose when. Formally a closure
operator.

Φ∞: coinductively defined. They can choose
to terminate at any point, or not at all.
Formally an interior operator.

Y = Φ∞(X) is the weakest invariant of Φ
(i.e. post fixed point, satisfying Y ⊆ Φ(Y))
that implies X.

Y = Φ∗(X) is also an invariant (Lambek). It
is the strongest invariant of Φ that is implied
by X holding eventually.

Φ∼ = Φ with the angel and the demon
swapped.

11

What theorem is proved by
a c/r-program?

(First approximation.)

a client (terminating) A ⊆ Φ∗(B)
Requires A initially, guarantees B finally

(provided there is a ‘finally’).

a server (perpetual) A

‘overlaps’

↓
)(Ψ∞(B)

Guarantees A initially, and B perpetually.

where Ψ = Φ∼. Problem: relate state in B to

state in A.

12

More grit

Given

A : P(S)
B : ∀s ∈ S. A(s) → P(S)

initial condition, termination/invariant

condition

(∀ s ∈ S, p ∈ A(s))Φ∗(B(s, p), s)
(∃ s ∈ S, p ∈ A(s))Ψ∞(B(s, p), s)

13

Inconclusion

I freely admit I don’t (continuously) find
these suggestions very convincing.

Some directions:

• Case studies.

• Thorough study of refinement calculus.
(Different sub-species of predicate
transformer:
conjunctive, continuous, . . . commuting
with intersections/unions of various kinds)

• Relate to work linear-time temporal logic.
(eg. Lamport’s TLA.)

• Relate to work in formal topology.
(Sambin, Mulvey etc.)

Work on type theory: coinduction
(in ‘intensional’ type theory).

14

