
Optimisation of Partitioned Temporal Joins

Thomas F. Zurek

Doctor of Philosophy
University of Edinburgh

1997

To Isabel, my wife.

Abstract

Joins are the most expensive and performance-critical operations in relational
database systems. In this thesis, we investigate processing techniques for joins
that are based on a temporal intersection condition. Intuitively, such joins are
used whenever one wants to match data from two or more relations that is
valid at the same time.

This work is divided into two parts. First, we analyse techniques that have
been proposed for equi-joins. Some of them have already been adapted for
temporal join processing by other authors. However, hash-based and parallel
techniques – which are usually the most efficient ones in the context of equi-
joins – have only found little attraction and leave several temporal-specific
issues unresolved. Hash-based and parallel techniques are based on expli-
cit symmetric partitioning. In the case of an equi-join condition, partitioning
can guarantee that the relations are split into disjoint fragments; in the case of
a temporal intersection condition, partitioning usually results in non-disjoint

fragments with a large number of tuples being replicated between fragments.
This causes a considerable overhead for partitioned temporal join processing.
This problem is an instance of the ‘min-max dilemma’: minimising the number
of replicated tuples means minimising the number of fragments, thus minim-
ising the degree of parallelism – however, increasing the number of fragments
and therefore the degree of parallelism also increases the number of tuple rep-
lications. We analyse this problem and show that there is an algorithm of poly-
nomial time complexity that computes an optimal solution for the interval par-
titioning problem (IP). This result concludes the analytical part.

In the second, the synthetical part of this work, we focus on the conclusions
that can be drawn from the results of the first part. We propose and develop
an optimisation process that

• analyses the temporal relations that participate in a temporal join,

• proposes several possible partitions for these relations,

• analyses these partitions and predicts their performance implications on
the basis of a parameterised cost model, and

• chooses the cheapest partition to process the temporal join.

We also show how this process can be efficiently implemented by using a new
index structure, called the IP-table.

The thesis is concluded by a thorough experimental evaluation of the op-
timisation process and a chapter that shows the suitability of IP-tables in a
wider context of temporal query optimisation, namely using them to estimate
selectivities of temporal join conditions.

Acknowledgements

After over 1000 days of PhD research, around 500 pages of thesis, paper and
report writing, I can finally add the final and the most enjoyable part: it is these
lines in which I can thank the many people that have enabled me to produce
this work by providing the fruitful environment that I have had in the last three
years.

First of all, I have to thank Isabel, my wife, for her endless patience and
support and for cheering me up when things did not run as smoothly as my
cabeza cuadrada would have wished. Furthermore I would like thank my par-
ents and my sister, not only for their financial support during these years but
also for confiding in me and my abilities, especially at times when I was not so
sure about them. Then, there are the many friends that I have met during that
time and who have made this period so pleasant, fruitful and so rich in experi-
ence. To mention a few: Cristina Boeres (my second sister) and Vinod Rebello,
Ana Goldenberg and Luis Araujo (“love is beautiful”), Beate and Thomas Kley-
mann (“squash is beautiful”), Olga Savasta and Victor Varela (“los padrinos”),
Nils Knafla and Frank Yang (my officemates), Martin Reddy, Rob Payne, Mar-
cus Marr, Mike Galloway, Alistair Ewing and so many more who would de-
serve to be mentioned. You all contributed in one or the other way, through
technical discussions, sharing experience or ‘simply’ by your company and
your friendship. To that list I would like to add Ulf Schwitzke, my best man in
many ways.

My special thanks go to Peter Thanisch who not only contributed so many
things in the numerous discussions that we had about this work but who also
convinced me to start with the PhD in the first place. Supervising a PhD stu-
dent is not always an easy and pleasant job and there are thousands of other
things that one has to pursue. Although things not always went as Peter or I
would have wished, I always knew that he tried his best. I also enjoyed playing
in the many football matches.

Thanks to all of you!

Declaration

I declare that this doctoral thesis was composed by myself and that the work
contained therein is my own, except where explicitly stated otherwise in the
text. The following articles were published during my period of research. Cer-
tain material and concepts from these publications will necessarily be presen-
ted within the body of this work.

1. Zurek, T. (1996). Parallel Temporal Nested-Loop Joins. Technical Report
ECS-CSG-20-96, Dept. of Computer Science, Edinburgh University.

2. Norman, M., Zurek, T., and Thanisch, P. (1996). Much Ado about Shared-
Nothing. SIGMOD Record, Vol. 25, No. 3, pages 16–21.

3. Zurek, T. (1997). Parallel Temporal Joins. In “Datenbanksysteme in Büro,
Technik und Wissenschaft” (BTW), German Database Conference, Ulm,
Germany, pages 269–278. Springer Verlag.

4. Zurek, T. (1997). Optimal Interval Partitioning for Temporal Databases. In
Proc. of the 3rd BIWIT Workshop, Biarritz, France, pages 140–147. IEEE
Computer Society Press.

5. Zurek, T. (1997). Optimisation of Partitioned Temporal Joins. In Proc. of
the 15th BNCOD Conference, London, UK, LNCS 1271, pages 101–115.
Springer Verlag.

6. Zurek, T. (1997). Parallel Processing of Temporal Joins. To appear in ‘Inform-
atica’, ISSN 0350-5596.

(Thomas Zurek)

Table of Contents

Chapter 1 Introduction 1
1.1 Motivation . 1
1.2 Research Goal . 4
1.3 Synopsis . 7

Chapter 2 Temporal Databases 10

2.1 Introduction . 10
2.2 Basic Concepts and Notations . 15
2.3 Temporal and Conventional Databases 19
2.4 Temporal Databases and Data Warehousing 21

Chapter 3 Join Processing 24
3.1 Definition of the Join . 24
3.2 Role of the Join Operation . 27

3.2.1 The Significance of the Join in Relation Query Processing 27
3.2.2 Join Performance Issues 31

3.3 Types of Joins . 32
3.4 Sequential Join Algorithms . 34

3.4.1 Brute Force Nested-Loops Joins 34
3.4.2 Sort-Merge Joins . 37
3.4.3 Hash Joins . 40
3.4.4 Data-Structure-Assisted Joins 45

3.5 Parallel Joins . 47
3.5.1 Fragment-And-Replicate Technique 47
3.5.2 Symmetric Partitioning Technique 47

3.6 Classification of Join Algorithms 53

Chapter 4 Temporal Join Processing 56

4.1 Definition and Types of Temporal Joins 57
4.2 Significance of Temporal Joins . 60

i

4.3 Non-Explicit-Partitioning Techniques 61
4.3.1 Overview . 61
4.3.2 Nested-Loop Temporal Joins 62
4.3.3 Sort-Merge Joins . 63
4.3.4 Data-Structure-Assisted Joins 67

4.4 Explicit-Partitioning Join Algorithms 69
4.4.1 Overview . 69
4.4.2 Simple Temporal Hash Join 71
4.4.3 Improved Temporal Hash Join 74
4.4.4 Partitioned Temporal Join for Sequential Processing . . . 76
4.4.5 Spatially Partitioned Temporal Join 78

4.5 A Short Summary . 85
4.6 Temporal-Specific Join Optimisation Issues 87

Chapter 5 The Interval Partitioning Problem 89

5.1 Introduction . 89
5.2 Preliminaries . 91
5.3 Problem Definition . 95
5.4 Search Space . 97
5.5 Optimal Partitioning . 101

5.5.1 Algorithm for Optimal Partitioning 102
5.5.2 Example . 103
5.5.3 Correctness . 104

5.6 Alternative: Reducing IP to a Graph-Theoretic Problem 106
5.6.1 Sequential Graph Partitioning 107
5.6.2 Reducing IP to SGP . 107
5.6.3 Example . 109
5.6.4 Correctness . 111
5.6.5 Optimal Solution for SGP 113
5.6.6 Example . 114
5.6.7 Run-Time Complexity Analysis 116

Chapter 6 Optimisation of Partitioned Temporal Joins 119

6.1 Optimisation Process . 119
6.2 Integration into a Query Optimiser 124

Chapter 7 IP-Tables 127

7.1 Motivation . 128

ii

7.2 Definition . 129
7.3 Size Considerations . 130

7.3.1 The Size of an IP-Table . 131
7.3.2 Realistic Examples . 133
7.3.3 Condensation of IP-Tables 135
7.3.4 Endpoint IP-Tables . 140

7.4 Maintaining IP-Tables . 144
7.4.1 Maintaining Complete IP-Tables 145
7.4.2 Maintaining Condensed IP-Tables 146
7.4.3 Maintaining Endpoint IP-Tables 148

7.5 Merging IP-Tables . 153
7.5.1 Merging Complete IP-Tables 154
7.5.2 Merging Incomplete IP-Tables 155
7.5.3 Merging Complete and Incomplete IP-Tables 158

7.6 Histograms and IP-Tables . 161

Chapter 8 Performance Model 166
8.1 Outline . 166
8.2 The Architectural Model . 169

8.2.1 Introduction . 169
8.2.2 Summary of the Architectural Discussion 171
8.2.3 A Hybrid Architecture . 176

8.3 Temporal Join Processing Model 179
8.3.1 Preliminaries . 179
8.3.2 Temporal Join Processing 185
8.3.3 Stage 1: Repartitioning . 185
8.3.4 Stage 2: Joining . 188

8.4 Cost Model . 192
8.4.1 The Basic Issues . 192
8.4.2 Stage 1: Repartitioning . 193
8.4.3 Stage 2: Joining . 198

8.5 Evaluation of Characteristics . 204
8.5.1 Uniform Workloads . 204
8.5.2 Experiments . 207
8.5.3 Conclusions . 208

iii

Chapter 9 Partitioning Strategies 216

9.1 Uniform Strategies . 217
9.1.1 Uniform Lifespan Partitioning 217
9.1.2 Uniform Range Partitioning 219
9.1.3 Uniform Startpoints’ Span Partitioning 221
9.1.4 Conclusions . 221

9.2 Underflow Strategies . 223
9.2.1 Basic Strategy . 224
9.2.2 Variations . 224

9.3 Minimum-Overlaps Strategies . 226
9.3.1 Basic Strategy . 226
9.3.2 Variations . 228

9.4 Black-Out Preprocessing Strategy 232

Chapter 10 Experimental Evaluation 238

10.1 The Test Data . 239
10.1.1 Introduction . 239
10.1.2 The Basic Data Set . 240

10.2 A General Comparison between the Strategies 246
10.3 Dependency on m . 256
10.4 Dependency on XR and XQ . 262
10.5 Dependency on τ . 270
10.6 Dependency on |R| and |Q| . 278
10.7 The Architectural Influence . 282
10.8 Influence of the Condensation Factor a 296
10.9 Impact of Black-Out Preprocessing 309
10.10Summary . 313

10.10.1 Experiments on the Parallel Architecture 313
10.10.2 Experiments on the Single-Processor Architecture 314

Chapter 11 Using IP-Tables for Selectivity Estimation 315
11.1 Introduction . 315
11.2 Temporal Join Conditions . 316

11.2.1 Elementary Conditions 317
11.2.2 Composite Conditions . 317

11.3 Size and Selectivity Calculations 320
11.3.1 Elementary Joins . 320
11.3.2 Composite Joins . 321

iv

11.3.3 Parallel and Other Partitioned Joins 324
11.4 Summary . 325

Chapter 12 Summary, Conclusions and Future Work 327

12.1 Summary . 327
12.2 Conclusions . 329
12.3 Future Work . 332

Appendix A Summary of the Cost Model 335

Appendix B Test Data Creation 341

B.1 Timestamps for R . 341
B.2 Timestamps for Q . 342

Appendix C Manipulation of Interval Lengths 344

Appendix D Profiles of the Rτ and Qτ 348

List of Figures 361

List of Tables 369

Bibliography 372

Index 385

v

Chapter 1

Introduction

1.1 Motivation

Recent years have seen an increasing number of technological and economical
developments that affect the way in which database systems are used. Data
warehousing, data mining, geographical and other information systems, e.g.
on the internet, have added new requirements with respect to data model-
ing and processing performance. As a consequence, many new complex data
types, such as spatial, temporal, audio and video data, have been introduced
into database management system software. This process has been suppor-
ted by technological progress, such as the advent of affordable, off-the-shelf
parallel hardware which has been widely driven by the high demands of com-
mercial database applications.

In this development, the relational data model plays a key role: on the one
hand, it can be relatively easily enhanced to provide the new data types and,
on the other hand, it provides a lot of opportunities to exploit new technology,
in particular parallelism. The key to the success of parallelism in database tech-
nology is that it is largely invisible to the end user and database applications
programmer. The team in the database management system vendor’s research
and development lab provides the basic, general-purpose techniques and the
local database administrator fine-tunes the systems, based on characteristics of
the local installation’s data. The key issue in the way temporal data is intro-
duced is that this present arrangement of hiding parallelism is continued.

In this thesis, we want to contribute to building the connection between
new data types and new technology. We will look at the possibility of how
time interval data can be joined in parallel by partitioning the time interval
data over several processing nodes. Data partitioning is a key issue in parallel
database systems. I/O parallelism, for example, is based on physically parti-

1

tioning data over a large number of disks. This overcomes the ever increasing
gap between CPU speed and I/O bandwidth1. On the processing side, data
partitioning provides the opportunity to magnify the raw computing power
of individual commodity processors by partitioning a workload into several
portions which can be processed concurrently.

However, data partitioning is not only beneficial for parallel but for sequen-
tial join processing. In many situations, it also reduces the amount of proces-
sing that is necessary to complete the task. In the case of join processing, for
example, we can separate tuples that cannot possibly join by partitioning the
data over the join attribute values2. Therefore, data partitioning provides ad-
vantages in a parallel and a sequential environment. We pay attention to this
fact by looking at partitioned temporal join processing, thus considering data par-
titioning in a wider context although parallelism will be the main focus.

Furthermore, we stress that our work is not restricted to time intervals but
applies to interval data in general. However, interval data is mainly used in
the context of temporal database applications and we can derive many require-
ments and constraints by looking at temporal scenarios. Therefore, we will
focus on time intervals.

Before digging deeper into partitioned temporal join processing we want to
illustrate some of the temporal- and interval-specific problems by an example.

An Example

For this purpose, the two simple temporal relations of figure 1.1 are used: one
holds cities and periods during which the play ‘Hamlet’ is performed in the
respective city, the other does the same for the play ‘Faust’. For simplicity, we
use integers to denote dates.
If we want to find the cities in which both plays are performed then we can do
this by computing the join

Hamlet onC Faust

with the join condition

C ≡ Hamlet.City = Faust.City

This is called an equi-join because C is based on the equality predicate. To com-
pute this join in parallel we can partition the two tables by using the values

1While CPU clock speeds double every 18 month on average (i.e. a 60% increase per year),
the bandwidth of single-disk I/O devices increases by around 10% every year [Gray, 1995].

2For a detailed discussion, we refer the reader to chapter 3 where several partitioning meth-
ods, such as sorting and hashing, are described and analysed.

2

Relation Hamlet
City Start End
Berlin 3 8
Dublin 2 10
London 4 9
Madrid 1 8
Oslo 6 10
Vienna 1 10

Relation Faust
City Start End
Bern 1 4
London 1 4
Munich 7 9
Oslo 2 5
Paris 1 3
Rome 7 10

Figure 1.1: An example of two temporal relations.

of the city attributes. Figure 1.2 shows an example for partitioning the tables
into three fragments respectively and thus into three smaller and independ-
ent joins. We note that the partitioning process produced disjoint fragments
respectively. Each of the three joins can be processed on different nodes – re-
ferred to as (N1), (N2) and (N3) – in parallel.

If we want to find those periods during which both plays are performed,
irrespective of the location of the performances, then we need a temporal inter-
section join between the two relations. The join condition is

C ≡ TIMESTAMP(Hamlet) intersects TIMESTAMP(Faust)

in this case. Similarly to the equi-join above, the temporal join can be processed
in parallel. This time, however, the tables have to be partitioned over the in-
terval timestamps. Figure 1.3 shows an example of partitioning the tables into
three fragments respectively. We note that the fragments are not disjoint in this
case and tuples are replicated. This causes an overhead not only because of
the effort spent on the replication itself but also because of the additional work
imposed on the joining of the fragments.

The problem of intervals overlapping partition breakpoints not only makes
it difficult to choose appropriate breakpoints but also makes it delicate to de-
termine the number of breakpoints: in order to reduce the number of overlaps
one has to reduce the number of breakpoints but in order to increase the num-
ber of partial joins – e.g. in order to increase the degree of parallelism – one has
to increase the number of breakpoints. Thus there are two contrary effects as-
sociated with interval partitioning; note that the first one does not exist in the
case of an equi-join. This indicates that it is not straightforward to find the op-
timal trade-off partition between minimal overlaps and maximal parallelism.
Apart from that, one has to expect further cost constraint given by the actual

3

hardware platform and the join algorithm.

1.2 Research Goal

In this thesis, we investigate and elaborate mechanisms to optimise partitioned
temporal join processing. To that end, we have to consider the problem of
tuple replication and investigate how near-optimal partitions can be derived.
As optimal partitions might only be found by an exhaustive or at least a very
expensive search, we therefore have to investigate whether this is really the
case, and thus to analyse the complexity of the problem. Once this has been
established, we have to look for heuristics for efficiently finding near-optimal
partitions for temporal join processing.

In this thesis, we focus on the intersection of intervals as the principal
temporal join condition (see previous example). Many other temporal join
conditions, such as an interval being contained in an other interval, are spe-
cialisations of this intersection condition. These specialisations allow several
performance enhancing optimisation, e.g. the restriction of tuple replication
to a certain subset of the participating relations [Leung and Muntz, 1992].
However, many of them still suffer from the same problems as the more gen-
eral intersection join. In most cases, such as the various types of overlap joins,
the contain join and the during join, for example, tuple replication cannot
totally be abandoned despite being restricted to only one of the participating
relations. Partitioned processing of theses joins can therefore still benefit from
the optimisations that we propose. In order to provide a clear distinction bet-
ween the optimisations that can be based on the more specialised join condi-
tion and the optimisations that are applicable to all intersection joins we focus
on the intersection join condition and regard our work as complementary to
that by Leung and Muntz.

In this thesis, we consider join predicates that involve the intervals associ-
ated with the tuples. There might be other, non-interval attributes involved.
However, we want to investigate the possibilities arising from partitioning
over the interval attributes and therefore concentrate on them, thereby ignor-
ing the parts of the join predicate that are not relevant for partitioning. This
also helps to distinguish between optimisation and partitioning methods that
are available for predicates over atomic attributes – such methods have already
been the focus of a large numbers of papers – and those involving interval at-
tributes – these are investigated in the context of this thesis as they have not

4

found any attention yet. In the future, one will need to investigate the tradeoff
between these two sets of techniques in order to provide a query optimiser
with a guideline of how to choose the most appropriate and efficient tech-
nique. However, developing such a guideline here in the context of interval
partitioning, however, would go beyond the scope of a single thesis.

5

Hamlet1 onC Faust1

Hamlet Faust
Berlin 3 8 Bern 1 4
Dublin 2 10 London 1 4
London 4 9

(N1) City starting with A – L

Hamlet2 onC Faust2

Hamlet Faust
Madrid 1 8 Munich 7 9
Oslo 6 10 Oslo 2 5

(N2) City starting with M – O

Hamlet3 onC Faust3

Hamlet Faust
Vienna 1 10 Paris 1 3

Rome 7 10

(N3) City starting with P – Z

Figure 1.2: Example of processing an equi-join in parallel.

Hamlet1 onC Faust1

Hamlet Faust
Berlin 3 8 Bern 1 4
Dublin 2 10 London 1 4
Madrid 1 8 Oslo 2 5
Vienna 1 10 Paris 1 3

(N1) Timestamp interval intersect-
ing with [1,3]

Hamlet2 onC Faust2

Hamlet Faust
Berlin 3 8 Bern 1 4
Dublin 2 10 London 1 4
London 4 9 Oslo 2 5
Madrid 1 8
Vienna 1 10

(N2) Timestamp interval intersect-
ing with [4,5]

Hamlet3 onC Faust3

Hamlet Faust
Berlin 3 8 Munich 7 9
Dublin 2 10 Rome 7 10
London 4 9
Madrid 1 8
Oslo 6 10
Vienna 1 10

(N3) Timestamp interval intersect-
ing with [6,10]

Figure 1.3: Example of processing a temporal join in parallel

6

1.3 Synopsis

This thesis comprises eleven chapters apart from this introduction. They can
be divided into two major parts:

• the analytical part in chapters 2 to 6, in which we motivate the research
problem, review the literature and establish the relevance of this research.
The results of this analysis lead to the creation of an optimisation process
which is the starting point of

• the synthetical part in chapters 7 to 11, in which the optimisation process
is elaborated and evaluated.

We now give an overview over these two parts.

Analytical Part

In chapter 2, we give an introduction to the area of temporal databases. To
this end, we explain basic concepts and notations that will be used throughout
this thesis. Temporal databases are contrasted with conventional databases in
order to elaborate the temporal-specific research issues. One of these is lack
of efficiency of performance-critical temporal operators, such as the temporal
join. The latter will be the focus of this work. Finally, we look at the relevance
of temporal databases in the commercial world.

In chapter 3, the huge variety of general join techniques is described. The
join operation has been intensively analysed by a large number of research-
ers. However, most of the algorithms that have been proposed are tuned to
perform well with equi-joins, as empirical research suggests that equality con-
ditions appear in over 90% of joins in conventional database processing. Usu-
ally, temporal join conditions are based on nonequi-join conditions. Therefore,
one needs to investigate how well equi-join techniques can cope with nonequi-
joins. This problem is the focus of chapter 4. Here, we review the literature and
describe the many adaptions that have been proposed for temporal join pro-
cessing. It emerges that parallel and hash join techniques – usually the most
efficient techniques – behave in a significantly different way when applied to
temporal joins. The basic problem is that most temporal join conditions re-
quire tuples to be replicated between relation fragments. This is not the case
for equi-join conditions. Tuple replications, however, cause an overhead in
join processing. It is a major task of this work to investigate and to tackle this
overhead.

7

To this end, we analyse the problem of partitioning a collection of inter-
vals in such a way that the resulting fragments have a limited size while the
number of necessary tuple replications is minimised. This is called the interval
partitioning (IP) problem. The analysis provides a variety of interesting results
that are used at various stages of this thesis.

The analytical part is concluded in chapter 6 which summarises the main
results. These lead to the creation of a process that optimises partitioned tem-
poral join processing by choosing the most appropriate partition for the data.
The structure of the remainder of the thesis is mainly based on the structure of
this process.

Synthetical Part

In chapter 7, we look at the first stage of the optimisation process, namely the
stage of data analysis. Along with the information that describe the charac-
teristics of the timestamp intervals, we propose to maintain a new metadata-
structure called the IP-table. We give a formal definition of an IP-table, compare
it to alternative approaches, such as using data samples, show how the size of
an IP-table can be decreased by condensing timepoints, provide algorithms for
the maintenance of IP-tables and finally describe how two or more IP-tables
can be merged. All these operations are required in the context of the optim-
isation process.

In chapter 8, we develop a detailed performance model for partitioned tem-
poral join processing. This is done in three stages: firstly, we discuss issues con-
cerning the underlying hardware architecture and create an architectural model;
secondly, we describe how a partitioned temporal join is processed on the ar-
chitectural model – this is referred to as the temporal join processing model; fi-
nally, we derive a detailed cost model for temporal join processing. The chapter
is concluded by a simple experimental evaluation that provides some insight
into the characteristics of the performance model. This information helps us to
identify certain performance-critical issues.

Chapter 9 discusses several families of partitioning strategies. Every stra-
tegy can provides a partition candidate for the optimisation process. Obvi-
ously, there is a huge variety of such strategies as each one has a certain optim-
isation goal as its target.

In chapter 10, we conduct a thorough experimental evaluation of the tech-
niques and methods that have been developed in preceding chapters. This
gives some insight into the characteristics of the partitioning strategies and

8

their performance impact.
In chapter 11, we show that IP-tables can be used not only for partitioning

purposes, but also to estimate the selectivity of temporal joins. In conventional
database management systems, selectivity estimation is an important tool for
a query optimiser to distribute the load and balance query processing.

Finally, the thesis is concluded in chapter 12 which summarises the work
and its major contributions and holds an outlook to future work.

9

Chapter 2

Temporal Databases

Time is an important entity in everyday life. Everyone of us has to check cal-
endars, diaries, timetables etc. on a daily routine. Therefore it is not surpris-
ing that temporal information has also made its way into many information
management systems. A recent reminder of this fact are the many discussions
around the implication of what is called the “date crisis”, the “year-2000-bug”
or the “millenium timebomb”, as in [Glass, 1997], [Clark, 1997], [Uhlig, 1997]
and many more.

In this chapter, we focus on time data stored in databases. It is intended
to serve as a general introduction to the research area of temporal databases.
Furthermore, it will introduce some basic concepts that are used throughout
the remainder of this thesis.

2.1 Introduction

Temporal Databases

Temporal databases store temporal data, i.e. data that is time-dependent (time-
varying). Typical temporal database scenarios and applications are the follow-
ing:

• Economical data is frequently time-dependent: share prices, exchange
rates, interest rates, company profits etc. vary over time. This means that
we need to store not only the respective value but also an associated date
or a time period for which the value is valid. Typical queries, for example,
are

– Give me last month’s history of the Dollar - Pound Sterling exchange
rate.

– Give me the share prices of the NYSE on October 17, 1996.

10

More sophisticated analysis might want to correlate interest rates and
exchange rate or share prices trends. This means that an interest rate
value has to be related to an exchange rate value using the date or period
for which the values are valid: they have to be valid during the same
period of time in this example.

• Many companies offer products whose prices vary over time. Daytime
telephone calls, for example, are usually more expensive than evening or
weekend calls. Travel agents, airlines or ferry companies distinguish bet-
ween high and low seasons. Sports centres offer squash or tennis courts
at cheaper rate during the day. Hence, prices are time-dependent in these
examples. They are typically summarised in tables with prices associated
with a time period. In terms of a relational temporal data model this is a
temporal relation.

• Our all-day-life is very often influenced by timetables for buses, trains,
flights, university lectures, laboratory access and even cinema, theatre
or TV programmes. As one consequence, many people plan their daily
activities by using diaries which itself is a kind of timetable. And again:
timetables or diaries can be regarded as temporal relations in terms of a
relational temporal data model.

• Medical diagnosis often draws conclusions from a patient’s history, i.e.
from the evolution of his/her illness. The latter is described by a series
of values, such as the body temperature, cholesterol concentration in the
blood, blood pressure etc. As in the first example, each of these values is
only valid during a certain period of time (e.g. a certain day). Typically a
doctor would retrieve a patient’s values’ history, analyse trends and base
his diagnosis on his observations.
Similar examples can be found in many areas that rely on the observation
of evolutionary processes, such as environmental studies, economics and
many natural sciences.

Temporal Database Management Systems

Temporal database management systems (TDBMS) support the maintenance and
manipulation of temporal data in many possible ways. Temporal support can
affect many but not necessarily all of the following issues:

1. It can provide an entire temporal data model which consists of a temporal

11

data definition language (DDL) and a temporal data manipulation lan-
guage (DML). This means that temporal objects can be defined via the
DDL and can be created, updated, deleted and retrieved via the DML.

2. User-defined time is already an integral part of the relational data model
(time is considered as a domain such as integers or strings). Thus there
might be a temporal query language that simply offers a set of temporal
operators and predicates to enhance the search facilities.

3. Finally, there are various performance related issues such as temporal stor-
age structures or the implementation of temporal operators.

We note that 1. and 2. are alternatives that actually depend on the degree of
temporal support that one wants to achieve: 1. implies a temporal query lan-
guage whereas 2. only enhances the very basic temporal facilities given by con-
ventional data models. Any of these two cases will require to be supported by
a proper implementation as pointed out in 3.

Temporal-Specific Support

Points 1. and 2. above expose a very variable degree of possible temporal sup-
port that can be provided by a database management system (DBMS). Fur-
thermore, we note that a temporal database does not require a TDBMS at all.
Temporal databases have existed for many years using conventional1 DBMS.

These facts are in the centre of a controversy between researchers who sup-
port the wide integration of temporal specific features into conventional DBMS
and their critics. Davies et al., for example, argue that it is not necessary to
provide specific support for temporal data processing but that there are cer-
tain general, non-temporal-specific features that have to be incorporated into
relational query languages, such as recursion. The latter would not only sup-
port temporal features, such as coalescing (see below), but would prove to be
useful for many non-temporal situations too [Davies et al., 1995].

One issue of concern is related to the following fact that traditional query
languages do not support the many constructs that natural language provides
when referring to time or temporal relationships. This not only decreases the
user-friendliness of the query language but imposes considerable problems on
the query optimiser. Let us look at the following example: Take the sentence
“Jack studied at university at the same time as Mark.” Using the intervals

1By the term conventional DBMS we refer to DBMS which do not provide specific support
for temporal data processing.

12

[js, je] and [ms,me] for representing the respective study start and end dates
for Jack and Mark, we can describe the ‘same time as’ relationship by the ex-
pression

je ≥ ms ∧ me ≥ js (2.1)

which pays attention to the fact that ‘same time as’ does not necessarily mean
that Jack and Mark started and finished at the same time but that Jack and
Mark were both at university during a certain period of time. Furthermore, it
relies on the additional constraints js ≤ je and ms ≤ me. Alternatively, one
could say

(ms ≤ js ∧ js ≤ me)

∨ (ms ≤ je ∧ je ≤ me)

∨ (js ≤ ms ∧ ms ≤ je)
∨ (js ≤ me ∧ me ≤ je) (2.2)

It should be obvious that neither (2.1) nor (2.2) are straightforward expressions.
Things become worse when we consider the fact that most SQL queries are
generated automatically by query tools nowadays. Such tools create queries
that express the desired query somehow but not necessarily efficiently as this
task is left to a query optimiser. Query optimisation, however, is in general
a hard problem [Ryan and Smith, 1995]. Although expressions such as (2.2)
can theoretically be reduced to (2.1) or to another, less complex expression, it
is difficult for an optimiser to recognise and optimise this in practice within
a reasonable time frame. In general, if a query tool produces an awful query
then there is not much that the optimiser can do about it.

For temporal queries, a possible solution to this problem is to provide tem-
poral operators and predicates that are close to the natural way of expressing
the respective relationship. In the case of (2.1) and (2.2) this could be a predic-
ate called ‘intersects’ which would enable us to say

[js, je] intersects [ms,me] (2.3)

Expressions, such as this one, not only make the queries less complex and
therefore user-friendly but also opens the opportunity to optimise queries se-
mantically:
Conventional DBMSs are tuned to perform well on many standard operations.
As seen above, temporal queries are more likely to involve complex constructs
like (2.1) or (2.2), e.g. as a join condition. Optimisation techniques can cope

13

with these to a certain extent but they are likely to result in a poor perform-
ance. If temporal specific constructs are provided by the (declarative) query
language then more efficient, temporal specific query evaluation strategies can
be applied: imagine a query containing (2.3) as a sub-expression. If an optim-
iser does not know that js, je and ms,me are the respective start- and endpoints
of some timestamp intervals then it does not know about many implicit and
and possibly helpful constraints either. Examples for such constraints are:

• A startpoint of a timestamp cannot lie beyond the endpoint, i.e.

js ≤ je and ms ≤ me

• Transaction time2 is restricted to the past and the present. Therefore
transaction time timestamps are bound by the current time which is usu-
ally referred to as ‘now’. If [js, je] and [ms,me] are such timestamps then
we know that

js, je,ms,me ≤ now

Such implicit conditions can be possibly exploited to increase the performance
of query evaluation. To that end, the optimiser must know about the semantics
– in this case: temporal semantics – of the data.

Among all the arguments for and against temporal-specific support, per-
formance and efficiency of temporal query processing are the least controver-
sial. Many authors have recognised that conventional techniques, such as in-
dex structures or join algorithms, are tuned for performing well in standard
situations, i.e. atomic data types, equality conditions, etc. These are not ne-
cessarily suited to temporal query processing where problems like non-atomic
data, temporal predicates, granularity, schema versioning, multiple calendars
etc. occur.

In this thesis, we will deal with joins that are based on temporal join con-
ditions, i.e. expressions similar to (2.1) or (2.3). We will show that providing
specific techniques for temporal join evaluation is much more efficient than
using conventional mechanisms.

Research on Temporal Databases

In the 1980s, observations, like the ones described above, triggered a large
number of research efforts on the development of temporal database systems.

2See section 2.3 for a description of this concept.

14

Most researchers concentrated on extending the relational model with tem-
poral features. Some selected examples are HQuel [Tansel, 1986], TQuel [Snod-
grass, 1987], the temporal features of Postgres [Stonebraker, 1987], [Stoneb-
raker et al., 1990], DM/T [Jensen et al., 1991], TempSQL [Gadia, 1992] or IXSQL
[Lorentzos and Mitsopoulos, 1997]. An impression and overview of temporal
database research can be obtained from the temporal database bibliographies
that have been published regularly in the SIGMOD Record. The latest two
were presented in 1993 [Kline, 1993] and 1996 [Tsotras and Kumar, 1996].

Many research efforts were brought together when a group of researchers
discussed a temporal query language, called TSQL2 [Snodgrass et al., 1994],
[Snodgrass, 1995], which was based on the SQL92 standard [ISO92, 1992]. The
TSQL2 design process tried to integrate many of the features that had been
proposed previously. Temporal database researchers met at two workshops,
[Pissinou et al., 1994] and [Clifford and Tuzhilin, 1995], and published a book
on temporal databases [Tansel et al., 1993]. Since then, temporal databases
have become a major topic of interest in almost every database conference.

Currently, the ANSI and ISO committees that are creating the new SQL3
standard are considering a temporal extension of SQL3 which is referred to as
SQL/Temporal [Darwen, 1997], [Snodgrass, 1996].

2.2 Basic Concepts and Notations

We now want to define some basic concepts and technical terms that are used
in the context of relational temporal databases. We thereby restrict ourselves to
the concepts that are relevant for the remainder of this thesis. We adopt the
definitions that have been published by the group of researchers during the
process of designing TSQL2, e.g. in [Jensen et al., 1994a]. This, however, does not

imply that any of the work that is presented here and in the remainder of this thesis

is specific to TSQL2. We use these definitions because they can be regarded as
being well established among the temporal database research community for
the following reasons:

• A large number of researchers were involved in the discussions and did
agree upon these terms.

• Many definitions evolved from unifying previously suggested concepts.
See [Jensen et al., 1992], [Jensen et al., 1994a], [Jensen et al., 1994b] or
[Jensen et al., 1994c], for example. A summary, including many parts of
these texts, can be found in [Snodgrass, 1995].

15

As motivated in the introduction, temporal databases store time-dependent
data. In the context of the relational data model this means that temporal data
objects – these can be either tuples or single attribute values – have an associ-
ated timestamp which is a time value, such as a date or a time interval. The most
frequently suggested combination – and the one we adopt – is to have tem-
poral relations with timestamped tuples. The advantage of this choice is that
this goes well with conventional relational structures: a tuple-timestamp can
be regarded as ‘just another attribute’, at least in some aspects3. Temporal rela-
tions can even adopt first normal form (1NF) on which many commercial data-
base management systems rely. Alternative approaches, such as timestamping
attribute values as in Gadia’s Homogeneous Relational Model [Gadia, 1988], may
not be capable of directly using existing relational query evaluation techniques
or storage structures which depend on atomic attribute values. Consequently,
many new evaluation techniques would be required and would have to be im-
plemented, always bearing in mind that conventional query evaluation per-
formance should not be penalised in the redesigning process. Given these
problems and the fact that radical changes in well established implementations
are highly unlikely, it is more realistic to discard such non-1NF approaches.

Figure 2.1 shows a temporal relation Staff that is supposed to hold mem-
bers of a university department, the numbers of their respective offices4 and a
timestamp that indicates the time period in which they worked in the depart-
ment. A special identifier ‘now’ is used to denote the current moment. The
treatment of ‘now’ is a separate research topic, see e.g. [Clifford et al., 1997].
For our purposes, we imagine that ‘now’ is replaced by the current date when-
ever an operation looks at the data.

Name Office Start Date End Date
Alex A 1 Apr 92 31 Dec 95
Elisabeth B 1 Jan 92 now
Frank A 1 Jan 93 30 Apr 96
Henry C 10 Jun 90 31 Dec 95
Mary B 15 Aug 94 now
Vicky D 10 Jun 90 now

Figure 2.1: Example of a temporal relation Staff .

3There are critics who argue that time is just another attribute in all respects. The reader
might look at [Davies et al., 1995].

4For simplicity, we assume that these are the current offices for persons who are still work-
ing in the department and the last occupied offices for persons who have already left.

16

chronons

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11

the interval [4,7]

time domain

time points / instants

Figure 2.2: Relationship between time domain, timepoints, chronons and in-
tervals.

In general, timestamps of a temporal relation are defined over a certain time
domain which is often represented as a time line. Elements of the time domain
are timepoints or instants. Although time itself is generally perceived to be con-
tinuous, most temporal data models that have been proposed are based on a
discrete model of time. Such models use a non-decomposable time interval,
called a chronon, as a basic unit of minimal duration. Starting with an initial
time point, following timepoints appear at the distance of a chronon from its
predecessor. An interval is the time between two timepoints, a start- and an
endpoint. Alternatively, it can be interpreted as a contiguous set of chronons.

Figure 2.2 illustrates the relationship between the time domain, timepoints,
chronons and intervals. It uses integers to refer to time. This not only sim-
plifies the notation but also avoids the problem of incorporating into our ex-
amples the granularity of the time line, i.e. the duration of a chronon: a second,
a minute, a day etc. This depends on the actual application. As an example,
see figure 2.3 which shows the relation Staff using an integer time repres-
entation, assuming that now is at timepoint 10. Below we will describe further
details of the choices we make.

Name Office Start Date End Date
Alex A 3 8
Elisabeth B 2 10
Frank A 4 9
Henry C 1 8
Mary B 6 10
Vicky D 1 10

Figure 2.3: Temporal relation Staff using an integer time representation.

As already mentioned, we adopt a discrete time domain. This choice does
not affect the concepts that are developed and discussed in this thesis but sim-
plifies many notations and discussions. Apart from that, one can find several

17

practical arguments for the preference of a discrete over a continuous model
[Jensen et al., 1994b]: firstly, clocks usually show time in terms of chronons –
usually seconds or minutes. Secondly, time references in natural language are
normally compatible with the discrete model. Thirdly, the concepts of chronon
and interval allow us to naturally model events that are not instantaneous but
have a duration. Finally, any implementation of a temporal data model must
necessarily have some discrete encoding for time.

As indicated above, a timestamp can be a date, an event or an interval. We
adopt the most frequent choice and use interval timestamps. Intervals have
proved to be the most versatile representation of time: intervals and relation-
ships between intervals can adequately express almost any time reference in
natural language. For that reason, they have been used not only in many
temporal database applications but also for many techniques in natural lan-
guage processing [Allen, 1983]. We usually represent intervals by referring to
their start- and endpoint. In the special case that those points are identical
the interval has a duration of 0 chronons and therefore depicts a time instant
(timepoint). Otherwise the interval has a duration greater than 0 and refers to
a contiguous time period5.

In notational terms, we denote an interval by squared brackets surrounding
the respective start- and endpoint:

[ts, te] = {x : ts ≤ x ≤ te} (2.4)

or in terms of chronons and if the chronon between timepoints t and t + 1 is
referred to by t̂:

[ts, te] = {x̂ : t̂s ≤ x̂ < t̂e} = {t̂s, t̂s + 1, . . . , t̂e − 1}

See figure 2.2 for an example of an interval [4, 7]. We will mainly use the nota-
tion used in (2.4).

[ts, te] is also called a closed interval. Sometimes it is convenient to exclude
the start or the endpoint or both. Such intervals are said to be left-open, right-

open or open, respectively, and are denoted by

(ts, te] = {x : ts < x ≤ te} (2.5)

[ts, te) = {x : ts ≤ x < te}
(ts, te) = {x : ts < x < te}

5For our purposes, the definitions of a period and an interval are identical. TSQL2, for ex-
ample, uses the term period to refer to our notion of interval because the term interval has
already been used in SQL92 for a different concept.

18

As stated above, we will use integers to represent the time domain. The size
of a chronon is one unit, the distance between an integer t and its successor
t+ 1. The predecessor of t is referred to as t − 1. These notations simplify the
definitions in (2.5) to

(ts, te] = [ts + 1, te]

[ts, te) = [ts, te − 1]

(ts, te) = [ts + 1, te − 1]

We will mainly use the [ts, te] type and use the others whenever it helps to
simplify the notation.

For our purposes, we assume that each tuple r of a temporal relation R has
at least one interval timestamp. If there is more than one timestamp per tuple
then one of them is regarded as the designated one, e.g. the one that is used in
a join condition or the one that is used for partitioning the data; the others are
treated as conventional attributes.

In summary: each r ∈ R has an interval timestamp. The startpoint of the
timestamp is referred to as r.ts and the endpoint as r.te, i.e. the timestamp is the
interval [r.ts, r.te]. Further notations will be introduced in the stages in which
they are required.

2.3 Temporal and Conventional Databases

As outlined in the previous two sections, a temporal database can be regarded
as an enhancement of a conventional database: it ‘only’ sets the data into a con-
text of time, i.e. it adds a time dimension. In a relational database environment,
a relation can be considered as a table with rows representing individual tuples
and columns holding the respective attribute values. Over time, such a table is
updated, i.e. new rows are inserted, some rows are deleted and some attribute
values might be modified. This means that the data in the table changes over
time. If a copy of the table was taken each time before it is updated and if the
date of the copy was added to all rows we could actually follow the evolu-
tion of the table. And in fact, this is what many users require: just recall the
share-prices-example in section 2.1. In contrast, in many databases, one would
only keep the current copy of a table or – as it is frequently called – the current
snapshot. They are therefore referred to as snapshot databases.

Brooks was the first person to elaborate this comparison by regarding the
series of snapshots / table copies as a time cube [Brooks, 1956]: a snapshot is

19

time

a snapshot

Figure 2.4: A temporal relation as a time cube with a snapshot being a time
slice.

then a time slice of such a cube. See figure 2.4. In terms of this analogy, a con-
ventional database always holds one slice whereas a temporal database holds
the entire cube. Without going into implementational details, one can imagine
that – whenever an update occurs – a conventional database physically updates,
i.e. throws old values away and stores the new ones, whereas a temporal data-
base is updated logically, i.e. it marks the old and new values with timestamps
that indicate to which snapshot the actually belong: the current or a previous,
historic one. This is also called the concept of physical vs. logical deletion.

What we have described so far is a time dimension that represented the
time dimension from the DBMS’s point of view, i.e. the time when (update)
transactions in the database take place. This type of time is therefore called
transaction time. A transaction timestamp indicates the time when the associ-
ated tuple is current in the database. Naturally, the most recent value of trans-
action time is always the current moment, e.g. represented as now in figure 2.1.
In terms of the time cube, this means that the current snapshot is the front one
if time runs from the background to the foreground as in figure 2.4.

There is, however, a second notion of time which is called valid time. Where-
as transaction time is restricted to the present and the past, valid time extends
to the future as well. Imagine a hotel reservation system that stores room book-
ings in a table. For the staff that run the hotel, it is not really important to know
when a room was booked, i.e. when the booking transaction took place (trans-
action time), but for which time a room is booked (valid time) which naturally
must cover the future. Additionally, past bookings might be stored as well, as
the management might want to analyse this information in order to analyse
customer characteristics.

In the case of valid time the current snapshot – if it is supposed to be the

20

snapshot giving, for example, the current hotel room allocation – might be a
slice in the time cube such as the one shown in figure 2.4. As valid time extends
to the future it is not necessarily the front one, however.

Whereas a snapshot relation can be considered as a slice of a transaction
time cube, a similar connection cannot be drawn for a valid time cube. The
contents of a valid time relation that is currently held in the database cannot be
regarded as slice. It might be the entire data represented by the cube or parts
of it. Remember the example of the hotel reservation system: it suggests that
many conventional databases would store a significant amount of the data rep-
resented by the valid time cube. This means that the latter are actually valid
time databases which treat valid time just as any other attribute. This under-
lines again that temporal DBMSs emphasise and efficiently support the time
dimension(s) but do not extend the expressive power of conventional data-
bases. This is the fact on which many critics build their argument. There is,
however, no doubt about the existence and widespread usage of and demand
for temporal databases.

2.4 Temporal Databases and Data Warehousing

Temporal databases and data warehousing are two separate areas which are
strongly related: data warehouses are the commercial products that require
temporal database technology. Naturally, most other database products are
amenable to temporal database technology, too. Regarding the market per-
spectives, however, one has to assume that it will be mainly data warehouses
that adopt the techniques that have been and that will be developed by tem-
poral database researchers. In this section, we want to elaborate the connection
between data warehousing and temporal databases in some more detail.

A data warehouse (DW) integrates information from many, possibly hetero-
geneous, databases into a physically separated database and makes this in-
formation available to analysis [Inmon, 1996]. Figure 2.5 illustrates this con-
cept. The purpose of the analysis might be, for example, to provide the man-
agement of a company with information on trends and facts that are required
for taking strategic decisions.

Trend analysis can go along many dimensions, the most important of which
is time. It is used to detect certain characteristics in the evolution of data, e.g.
over time or over various geographic regions or over product lines. In the case
of temporal evolution, this means that a data warehouse is very often required

21

Monitor Monitor Monitor Monitor

Information Sources (e.g. various departmental databases)

Integrator

Data Warehouse

Decision Support
Application

Decision Support
Application

Decision Support
Application

Figure 2.5: The concept of a data warehouse.

not only to hold a reformatted subset of current operational data, e.g. sales
figures, but also a history of this data. This is nothing other than a historical

database, a special case of a temporal database [Sarda, 1993]. For that reason,
Inmon says that a “salient characteristic of the data warehouse is that it is time
variant”. Furthermore he comments:

• Data warehouses are required to hold data of the last 5 to 10 years where-
as operational databases6 require a 60 to 90 days time horizon.

• “Operational databases contain current value data – data whose accur-
acy is valid as of the moment of access. As such, current value data can
be updated. Data Warehouse data is nothing more than a sophisticated
series of snapshots7, taken at one moment in time.” This comment corres-
ponds widely with the concepts of the time cube and physical vs. logical
deletion that were introduced in section 2.3.

6An operational database manages the data that is required for day-to-day operations of a
company, such as reservation systems in the case of a travel company. This stands in contrast
to data warehouses whose purpose is to provide information to support decision-taking in the
management of a company, such as customer behaviour and market trends.

7We note that this is a gross over-simplification. The data warehouse, for example, must
also take into account changes in the schemata and in the semantics of the data over time.

22

• “The key structure of operational data may or may not contain some ele-
ment of time [. . .] The key structure of the data warehouse always con-
tains some element of time.”

These comments imply that data warehousing is a discipline that adopts tem-
poral database concepts among many others. And in fact, many references to
temporal database functionality can be found by data warehouse vendors:

• Many data warehouse vendors claim that their products are capable of
processing historical data / information. Examples of such vendors are Red-
Brick [Red Brick Systems, 1995a], Informix [Informix Inc., 1995], Prism
Solutions [Prism Solutions Inc., 1996], Oracle [Oracle Corp., 1996].

• Researchers from SAP claim that data warehouses must have the ability
to meaningfully link and cross-reference data “applying time-related cri-

teria”. Furthermore they state that one salient feature of DW data man-
agement is the “time-variant data organization” [Heinrich and Hofmann,
1996].

• Red Brick Systems call their product RedBrick Warehouse VPT, in which
‘T’ stands for the fact that it provides “time-based data management” [Red
Brick Systems, 1995c].

Data warehousing is widely regarded as a discipline which has been taken over
by industry. And actually until recently, there were only very few academic re-
search groups looking at data warehouses. Many critics call it a buzz word that
has been bent by many marketing departments in order to position products
in a market with a thriving prospect [International Data Corporation (IDC),
1996]. Across the board it is probably fair to say that the term data warehouse is
stamped by industry nowadays. In contrast to that, there are temporal databases

as one of many (academic) disciplines that have an impact on data warehouse
products. Hence, whenever we speak about the practical or commercial ap-
plication of temporal database technology we have to keep data warehousing
applications in mind.

23

Chapter 3

Join Processing

In this chapter, we introduce the basic ideas that stand behind join processing
in conventional relational database systems. Understanding the principles,
techniques and experiences of traditional join processing is a precondition for
understanding (a) the different efficiency considerations that are imposed by
temporal joins, and (b) the decisions that we take when designing efficient
temporal join techniques in the oncoming chapters.

Section 3.1 formally defines the join operation. In section 3.2, the role of the
join operation in the relational data model is elaborated. This should make the
reader aware of the significance and the importance of the join and efficient
join processing. In section 3.3, we introduce some types of joins. Traditionally,
both the vendors and the research community have mainly focused on one
type of join, namely the equi-join, because it is by far the most frequent one in
typical database installations. Nevertheless, it is stressed that there is a rising
need for specific types of joins, such as temporal or spatial joins. Section 3.4
presents a wide range of sequential join algorithms. Although the emphasis
is put on equi-joins we also discuss issues regarding nonequi-joins. Similarly,
section 3.5 presents techniques for processing joins in parallel. Finally, a classi-
fication schema for join algorithms is given in section 3.6.

3.1 Definition of the Join

The join operation, denoted by on, combines two relations R and Q to form a
new relation S. If the attributes ofR are referred to as A1, A2, . . . , Am and those
of Q as B1, B2, . . . , Bn then S has the m + n attributes A1, . . . , Am, B1, . . . Bn.
Tuples s of S are formed by concatenating a tuple r ∈ R with a tuple q ∈ Q,
denoted as s = r ◦ q. Usually there is a join condition C that has to be fulfilled
by the tuples r and q that are concatenated to form an s. In total, the notation

24

for the join looks like this:
S = R onC Q

The most frequently used condition is that an r has to hold the same value
in a certain attribute, say Ai, as a q in an attribute, say Bj, if they are to be
concatenated to form an s. This join condition is denoted as R.Ai = Q.Bj, and
R.Ai and Q.Bj are said to be the join attributes.

Put differently: the join R onC Q is a subset of the cartesian product R × Q1.
The cartesian product ofR andQ concatenates each tuple ofRwith every tuple
ofQ. This results in a new relation R×Q with |R| · |Q| tuples, with |R| and |Q|
being the cardinalities of R and Q respectively. The result of the join R onC Q
can then be retrieved from R ×Q by selection over the join condition C . Thus

R onC Q = σC(R ×Q) (3.1)

As an example for a join, consider the two relations Staff and Student of
figure 3.1. Imagine that these relations respectively hold members of staff and
students of a certain university department. Staff members are described by
their name, office, start and end dates of the period they worked in the depart-
ment. Similarly, students have a name, a workroom that is assigned to them, a
start and an end date. For simplicity, we assume that names are unique.

Name Office Start End
Alex A 3 8
Elisabeth B 2 10
Frank A 4 9
Henry C 1 8
Mary B 6 10
Vicky D 1 10

(a) Staff

Name Workroom Start End
Charles X 1 4
Frank Y 1 4
Karen Y 7 9
Mary Y 2 5
Olga Z 1 3
Steve Z 7 10

(b) Student

Figure 3.1: Example relations holding staff members and students.

A typical query would be to find staff-student pairs who started in the depart-
ment at the same time. These can be found by a join

Staff onC Student

1In strict terms this is not true because the cartesian product results in tuple pairs (r, q)
whereas the join creates tuples that origin in concatenations r ◦ q of tuples. This formality,
however, is usually ignored by many authors. For our purposes, it can be ignored too.

25

using the join condition

C ≡ Staff.Start = Student.Start

Figure 3.2 shows the result.

Name Office Start End Name Workroom Start End
Elisabeth B 2 10 Mary Y 2 5
Henry C 1 8 Charles X 1 4
Henry C 1 8 Frank Y 1 4
Henry C 1 8 Olga Z 1 3
Vicky D 1 10 Charles X 1 4
Vicky D 1 10 Frank Y 1 4
Vicky D 1 10 Olga Z 1 3

Figure 3.2: Result of the join Staff onC Student .

26

3.2 Role of the Join Operation

The join operation is one of the most investigated research issues in the con-
text of the relational data model. For over two decades, numerous papers have
been published on join-related topics. Alone the overview paper by Mishra
and Eich [Mishra and Eich, 1992] refers to 198 join-related publications and
there is a huge number of papers that were not mentioned and that have been
published since. Join processing has been studied from many different points
of view, such as query optimisation, I/O optimisation, buffer usage optimisa-
tion, hardware support, parallel processing or physical database design. There
are two major reasons why the join has attracted that much attention:

• it is frequently used, and

• it is one of the most costly and most data-intensive relational operations.

Both aspects are discussed in the following two subsections.

3.2.1 The Significance of the Join in Relation Query Proces-
sing

For understanding the significance of the join for relational query processing
we want to see why and where the necessity of a join arises. Amongst many
reasons, it is already the database design process which creates an oncoming
demand for joins within relational queries. Let us go one step back from the
staff-student scenario as it was described in section 3.1: imagine that someone
designs a database for this department. An initial step would be to create a
conceptual schema in some semantic data model, e.g. the entity-relationship
(ER) model [Chen, 1976]. A conceptual schema is then mapped into a logical
schema using one of various logical data models, such as the network, the re-
lational or the object-oriented model2. We want to look at one aspect of this
mapping in more detail in order to identify one reason for which the join op-
eration is so important in relational query processing.

Figure 3.3 shows part of the departmental scenario in entity-relationship
notation [Korth and Silberschatz, 1991]. There are two entity sets, namely
Staff and Student , which are related via two relationships, namely tea-

ches and supervises . It is intended to describe a department that has a
number of staff and a number of students. Staff members teach students in

2See [CODASYL, 1971], [Codd, 1970] and [Cattell, 1996] for details of these models.

27

various courses and also supervise students in certain research projects. For
simplicity, courses and projects are omitted.

Staff Student

teaches

supervises

Figure 3.3: An example of a conceptual database design in entity-relationship
notation.

This conceptual schema can now be translated into a logical schema. De-
pending on the logical data model that we choose, we will get different results.
For our purpose, we want to look at the way in which the relationships bet-
ween entities are translated, such as the teaches relationship between Staff

and Student .
In the relational model, tuples within a relation are identified by a unique

attribute value or a unique combination of the latter. This is a called a key. The
Nameattributes in Staff and Student are examples for keys as we assumed
names to be unique. Keys are a kind of logical reference as opposed to a phys-

ical reference, such as a memory address. In our example, one can map the
teaches relationship set of figure 3.3, the conceptual schema, into a relation
Teaches in the relational schema. The relation Teaches holds tuples which
consist of two parts: a key that refers to a tuple in the Staff relation and a key
referring to a tuple in the Student relation. See figure 3.4. If a tuple’s key is
used within another relation for such purposes then the corresponding attrib-
ute in the other relation is called a foreign key. Thus a link between tuples of
two different relations is established in a rather abstract way: it can be deduced
from the condition ‘key = foreign key’.

One might argue that the conceptual separation of relations does not have
to translate to the physical level, i.e. data could be physically linked although
being conceptually separated. This, however, is only sometimes the case. Rela-
tions are usually normalised because this facilitates updates and helps to main-
tain a consistent database.

Whereas relational database systems are based on such logical links, sys-
tems that are based on the network, such as ADABAS [Tsichritzis and Lo-

28

Teacher Student
Alex Charles
Alex Frank
Alex Mary
Elisabeth Charles
Elisabeth Karen
· · · · · ·

Figure 3.4: Relation Teaches .

chovsky, 1977], or some systems with an object-oriented data model, such as
ObjectStore [Lamb et al., 1991], would create physical links between the entities:
they would, for example, use pointers to link a staff member with a student if
there exists a ‘teaches’ relationship between them.

The operation that creates physical links between logically linked tuples of
two (or more) relations is the join. The most frequent usage – as motivated
in the previous paragraphs – is to materialise ‘key = foreign key’ relationships.
These arise from mapping ER-like relationship sets, such as teaches in fig-
ure 3.3, to relations in a relational database. Estimates are that around 90% of
join conditions are such ‘key = foreign key’ conditions [Valduriez, 1987].

As an example, consider the two ‘key = foreign key’ relationships between the
relations of figures 3.1 and 3.4, namely Staff.Name = Teaches.Teacher

between the Staff and Teaches relations and Student.Name = Teach-

es.Student between the Student and Teaches relations. If, for example,
we were searching for the workrooms of Alex’s students we would need to
materialise the ‘key = foreign key’ link between the Student and the Teaches

relations. This can be done by joining the two relations, using Student.Name

= Teaches.Student as the join condition (see figure 3.5 (a)), followed by a
selection of Alex’s students and a projection on the workroom attribute (see
figure 3.5 (b)).

The join operation, however, is not restricted to ‘key = foreign key’ but has
many other applications. As an example of a non-‘key = foreign key’-link, we
might want to find staff members who share an office in our scenario. To that
end, the relation Staff can be joined with itself using Staff A.Office =

Staff B.Office as the join condition. Another example would be to look
for students who became a staff member by joining the Staff and Student

relations via the Staff.Name = Student.Name condition3.
Up to here, all examples of joins used equality as the predicate in the join

3Please remember that, in the scenario, names are assumed to be unique for simplicity.

29

Name Workroom Start End Teacher Student
Charles X 1 4 Alex Charles
Frank Y 1 4 Alex Frank
Mary Y 2 5 Alex Mary
Charles X 1 4 Elisabeth Charles
Karen Y 7 9 Elisabeth Karen
· · · · · · · · · · · · · · · · · ·

(a) Result of the join Student onC Teaches with C ≡
Student.Name = Teaches.Student .

Workroom
X
Y

(b) Final result of πworkroom (σTeacher=‘Alex’ (Student onC Teaches)).

Figure 3.5: Example of a ‘key = foreign key’ join.

condition. Such joins are called equi-joins. An, admittedly artificial, example of
a nonequi-join is to find staff-student pairs in which the staff member worked in
the department before the respective student entered. Such pairs can be found
by joining Staff and Student using Staff.End < Student.Start as
the condition. This is actually an example of a temporal join as the join condition
is based on a temporal relationship between the timestamps of two temporal
relations. More precisely, it is a before join because ‘before’ is the temporal re-
lationship. Join types, such as equi- and nonequi-joins, are discussed in some
more detail in section 3.3 and, for the temporal case, in chapter 4.

In summary, we have seen that the join operation is used to materialise the
various logical links that exist between data of two or more relations. When-
ever a query needs to relate data of two or more relations a join operation is
required. This situation appears frequently because of the many ‘key = for-

eign key’ relationships that are introduced in the database design process, e.g.
when translating relationship sets of a entity-relationship model into relations
of the relational data model or through normalisation of relations. Further-
more, there are many more logical links of various types that might be materi-
alised by a join operation.

30

3.2.2 Join Performance Issues

The join operation is closely related to the cartesian product as we have seen
in (3.1). This means that, initially, each tuple of the cartesian product must
be considered for the join result. The size of the cartesian product |R| · |Q|,
however, is huge in comparison with the sizes of the participating relations,
|R| and |Q|, with the latter already being large in many cases. This can involve
a huge number of disk accesses to retrieve tuples of R and Q which implies a
very poor performance.

The enormous amount of data and data movement and very poor perform-
ances for naive approaches have triggered a lot of research efforts aiming for
improvement. The latter are summarised in the remainder of this chapter.

31

3.3 Types of Joins

The join condition plays a very important role in join processing. Certain types
of conditions allow certain processing and optimisation techniques. For that
purpose, it has proved to be very useful to classify joins depending on the
respective join condition. This section summarises the most prominent types in
traditional relational queries. Please note that these categories are not disjoint
but emphasise certain features of the join condition, such as the data types of
the join attributes or the predicates that are involved.

Theta-Joins: Many join conditions are based on the pattern

R.A θ Q.B (3.2)

where θ is one of the following predicates/operators: =, 6=, <, >, ≤ or ≥.
Joins with such a condition are called theta-joins. Naturally R.A and Q.B

must be attributes that are comparable by these θ operators; it would not
make sense to have strings inR.A and integers in Q.B and compare them
by ≤. More generally, theta-conditions consist of various simple ones of
the form described in (3.2) which are connected by logical operator, such
as AND and OR.

Equi-Joins: An equi-join has a join condition that is based on the equality pre-
dicate =. It therefore is a special case of a theta-join. The majority of join
conditions are believed to be based on an equality predicate, such as in
‘key = foreign key’ conditions. Consequently, most join algorithms have
been optimised for equi-conditions. See section 3.4 for details.

Nonequi-Joins: Theta-joins which are not equi-joins are called nonequi-joins

[Mishra and Eich, 1992]. Nonequi-joins have attracted less research ef-
forts than equi-joins due to their rare usage. However, new data types,
such as timestamps, intervals, rectangles, polygons etc., have become
more interesting with the growing requirements and ambitions of data
modeling. In the context of relational query processing this means that
there are many possible new join conditions that describe relationships
between objects of one of these data types. These relationships very of-
ten can be described in the form of a nonequi-join condition. This has
triggered some interest in new types of data-type-specific joins, such as
those described in the following two paragraphs. Most of them can be
considered as traditional nonequi-joins.

32

Temporal Joins: This class of joins involves temporal data types, such as time
intervals or dates. The interval type is predominant in most temporal
data models. Therefore, temporal join conditions essentially describe re-
lationships between intervals. In the context of time representation in
natural language processing, Allen identified 13 possible relationships
between two intervals [Allen, 1983]. Each of them implies its own sub-
type of temporal join. As an example, you might refer to the before join

presented in section 3.2.1. Temporal joins are discussed in detail in the
next chapter.

Spatial Joins: Spatial data types, such as rectangles or polygons, are used in
geographic information systems (GIS). Imagine two spatial relations, one
holding areas (polygons) with nuclear plants and the other one storing
areas with high cancer rates. If we wanted to investigate possible spatial
connections between nuclear plants and cancer rates we would need to
join these two relations using ‘intersection of areas’ as the (spatial) join
condition. Spatial joins are more dynamic than temporal joins in the
sense that many geometric data types have to be catered for rather than
one or two. On one hand, this makes them more general but, on the other
hand, allows hardly any data-type-specific optimisation. For further de-
tails on spatial joins the reader might refer to [Günther, 1993], [Lo and
Ravishankar, 1996] or [Patel and DeWitt, 1996], for example.

33

3.4 Sequential Join Algorithms

As previously stated, a lot of effort has been spent on finding efficient ways of
joining two or more relations. As a result, many different join algorithms have
evolved, many of them being variations of others. Essentially, there are four
basic techniques:

• brute force nested-loops,

• sort-merge,

• hash,

• data-structure-assisted (index-based).

In the following subsections, we look at these techniques for performing the
join

R onC Q

The purpose is to give sufficient details to understand the implications for
temporal joins. A more detailed summary of join algorithms can be found
in [Mishra and Eich, 1992].

Finally, in section 3.6, two features are presented that allow us to classify
the various algorithms, namely:

• the way in which data is partitioned into data fragments, and

• the degree of overlap of fragments during the joining phase.

These characteristics will allow us to analyse the algorithms with respect to
their suitability for temporal join processing.

3.4.1 Brute Force Nested-Loops Joins

This is the simplest join technique. It is based on equation (3.1). One of the
relations being joined, say R, is designated as the outer relation, and the other
one, Q, as the inner relation. From the correctness point of view, it does not
matter which of the two participating relations is the outer and which is the
inner relation.

For each tuple r of the outer relation, all tuples q of the inner relation are
read and compared with the tuple from the outer relation. Whenever the join
condition C is satisfied, the two tuples are concatenated to form a tuple r ◦ q
which is placed in an output relation.

34

In other words: each tuple of the cartesian product R × Q is tested on the
join condition C . If it satisfies C then it is included into the join result. Fig-
ure 3.6 summarises the algorithm. Figure 3.7 gives a visual example of how
the algorithm finds the join result: tuples of R are scattered along the hori-
zontal axis; the respective value of the join attribute is put below each of the
resulting columns. Similarly, the tuples ofQ are put along the vertical axis. The
resulting grid represents every possible comparison between tuples ofR andQ
and as such the search space of the join, i.e. the cartesian product R×Q. Com-
parisons that satisfy the join condition, i.e. tuple combinations that contribute
to the join result, are shown in dark grey whereas unsuccessful comparisons
are put in light grey. The figure shows that the brute force nested-loops join
performs an exhaustive search over the cartesian product.

for each tuple r ∈ R do
for each tuple q ∈ Q do

if r and q satisfy C then
put r ◦ q in the output relation

fi
od

od

Figure 3.6: Brute force nested-loops join.

The brute force nested-loops join is frequently referred to simply as a nested-
loop join. C.J. Date, however, pointed out that this is misleading as all the other
join techniques also use nested loops in one or the other way [Date, 1995]. For
simplicity and because of the fact, that it has become a commonly accepted
expression, we will stick to calling it ‘nested-loop join’ in the remainder of the
thesis.

In practice, the nested-loop join is implemented as a nested-block join [El-
Masri and Navathe, 1994]: instead of retrieving one tuple each time, an entire
block of tuples is read from disk and cached in main memory. This is more
efficient because, this way, several random accesses are replaced by sequential
tuple accesses which are faster. A further performance improving measure is
to use the relation with the lower cardinality as the outer relation in order to
reduce the I/O costs which are given by the formula

pR + pR · pQ (3.3)

where pR stands for the size of the outer relationR (in pages) and pQ for the size

35

1 1 1 2 3 5 7 7 8 8 9 9 9 10 EOR

EOR

1

3

3

3

3

4

5

6

8

9

9

9

10

tuples of R

tuples of Q

join attribute values

join results (i.e. successful tuple comparisons)

mis−hits (i.e. unsuccessful tuple comparisons)

Figure 3.7: Search strategy of the brute force nested-loops join.

36

of the inner relation Q (in pages). (3.3) is minimised if and pR ≤ pQ [El-Masri
and Navathe, 1994].

Furthermore, we can switch the direction in which the inner relation is read
each time. This has the advantage that the last block read by the previous inner
loop is the first block of the oncoming inner loop. It still is in a memory buffer
and therefore does not need to be read from disk. This method is called rocking
and was proposed by [Kim, 1980]. Naturally, every method that accelerates
disk access to tuples, such as using an index, helps to improve the performance
of the algorithm.

The problem of the nested-loop join lies in the exhaustive matching. When-
ever the join condition C causes only a small fraction of the cartesian product
to be part of the join result the nested-loop technique performs a large quantity
of unsuccessful comparisons (see if-statement in figure 3.6). Such a situation
is characterised by a low join selectivity [Piatetsky-Shapiro and Connell, 1984]
which is defined as

join selectivity =
size of the join result

size of the cartesian product
=
|R onC Q|
|R| · |Q| (3.4)

Whereas high selectivities suggest that the effort of comparing every tuple of
one relation with every tuple in the other is justified, it is the opposite for low
selectivities. We use this observation as a motivation for looking at alternative
techniques in the following sections.

3.4.2 Sort-Merge Joins

As we have seen from the discussion of the nested-loop join, an exhaustive
comparison might not be very efficient in many situations. One possibility to
avoid this is the following:

1. Both relations are sorted on the join attributes.

2. Then, both relations are scanned in the order of the join attributes. Tuples
that satisfy the join condition are merged to form the result relation.

This technique is called a sort-merge join.
The concrete sort-merge join algorithm depends on the actual join condi-

tion, in the case of a theta-join, for example, on the θ operator. Furthermore,
it will depend on whether join attributes are keys or not. Let us consider the
case of an equi-join R onC Q with C ≡ R.A = Q.B with A and B being the

37

/* Stage 1: Sorting */
sort R on R.A
sort Q on Q.B

/* Stage 2: Merging */
r = first tuple in R
q = first tuple in Q

while r 6= EOR and q 6= EOR do
if r.A > q.B then

q = next tuple in Q after q
else
if r.A < q.B then

r = next tuple in R after r
else

put r ◦ q in the output relation

/* output further tuples that match with r */
q′ = next tuple in Q after q
while q′ 6= EOR and r.A = q′.B do

put r ◦ q′ in the output relation
q′ = next tuple in Q after q′

od

/* output further tuples that match with q */
r′ = next tuple in R after r
while r′ 6= EOR and r′.A = q.B do

put r′ ◦ q in the output relation
r′ = next tuple in R after r′

od

r = next tuple in R after r
q = next tuple in Q after q

fi
od

Remark: EOR denotes an ‘end-of-relation’ mark that is returned by either the ‘first tuple in’
or the ‘next tuple in’ operation if it fails to retrieve a tuple because the end of the respective
relation has been reached.

Figure 3.8: Sort-merge join algorithm for equi-joins.

38

integer-valued attributes. The algorithm can then look as shown in figure 3.8.
It can be simplified if A or B is a key.

The advantage of the sort-merge equi-join is that each relation, if sorted, is
scanned only once, thus we have |R| + |Q| tuple accesses on disk compared
to |R| · |Q| for the nested-loop join. Furthermore, the number of unnecessary
comparisons is relatively low in any situation. This is very beneficial in the
case of a low join selectivity in which many unnecessary comparisons occur
when checking all tuples of the cartesian product. This becomes obvious from
figure 3.9 which uses the same scenario as figure 3.7 but marks the tuple com-
parisons performed by the sort-merge equi-join algorithm of figure 3.8. There
is only a very small number of mis-hits. The trick behind this strategy is the
following: in figure 3.9, the tuples are sorted on the join attribute which implies
that the successful comparisons are to be found roughly around the diagonal
of the grid (in the case of an equi-join). The sort-merge strategy follows the
path along this diagonal and corrects the direction whenever it encounters a
mis-hit.

1 1 1 2 3 5 7 7 8 8 9 9 9 10 EOR

EOR

1

3

3

3

3

4

5

6

8

9

9

9

10

tuples of R

tuples of Q

join attribute values

Figure 3.9: Search strategy of a sort-merge equi-join.

The problem of the sort-merge join lies in the requirement that relations
have to be sorted on the join attributes prior to the merging stage. In gen-
eral, this has proved to be the determining component of the execution time

39

[Mishra and Eich, 1992]. If a join needs to be performed frequently for differ-
ent queries, then the database administrator can choose to sort the table on the
join attribute. Many relations, for example, are sorted on their respective key
attribute(s). Thus the sorting stage can be omitted for such a relation if the key
attribute(s) is also the join attribute(s).

The sort-merge join is fairly robust and is the best choice in many cases,
especially when no indices exist over the join attributes [Blasgen and Eswaran,
1977], [Su, 1988].

3.4.3 Hash Joins

The performance gain achieved by the sort-merge join is based on the facts that
during the sorting stage

(1) tuples with the same join attribute value are grouped, and

(2) tuples with similar4 join attribute values are also nearby.

For an equi-join the sort-merge algorithm only exploits (1). This suggests that
sorting the relations is actually too much; methods that create a situation as
described by (1) are sufficient.

Hashing the relations is such a method. It creates a set of hash buckets with
each bucket being associated either with one join attribute value or a range
or set of such values. A hash function h that takes a join attribute value as an
argument then assigns a tuple to a bucket. Consider, for example, the following
join that was discussed in section 3.2:

Staff onC Student

with C ≡ Staff.Name = Student.Name

We can hash the relation Staff on the join attribute Nameusing a hash func-
tion that assigns the tuples to three buckets. Each bucket is supposed to hold
tuples5 according to the letter with which the Namevalue starts. See figure 3.10
for the result. Next, we can subsequently read tuples from Student . Using
the same hash function, we can find out in which bucket those tuples of Staff

are to be found that can match with the respective tuple of Student . Put the

4The notion of ‘similar’ depends on the data type; for numeric values this might be a low
difference in values whereas for strings it can be same prefixes etc.

5or references to tuples to reduce the amount of memory required.

40

other way: all the tuples in the other buckets can be discarded; the actual join
for a particular tuple can be concentrated on the tuples in a certain bucket.
This algorithm is called the simple hash join [DeWitt and Gerber, 1985]. It is
summarised in figure 3.11 for the case of an equi-join.

Staff
Alex A 3 8
Elisabeth B 2 10
Frank A 4 9

Bucket 1 for A – F

Staff
Henry C 1 8
Mary B 6 10

Bucket 2 for G – M

Staff
Vicky D 1 10

Bucket 3 for N – Z

Figure 3.10: Example for hashing the relation Staff into buckets.

/* Hash relation R */
for each tuple r ∈ R do

put r in bucket no. h(r.A)
od

/* Probe relation Q */
for each tuple q ∈ Q do

for each tuple r in bucket no. h(q.A) do
if r.A = q.B then

put r ◦ q in the output relation
fi

od
od

Figure 3.11: Simple hash join.

The search strategy for a simple hash join depends on the respective hash
function that is employed. Figures 3.12 and 3.13 show two examples for the
scenario that we have already used for analysing the nested-loop and sort-
merge algorithms. In this case, the hash function divides the join attributes’
domain into several ranges. In figure 3.12, for example, five ranges are created,
each one associated with a bucket. The hash join algorithm then searches the
‘rectangles’ that arise from corresponding buckets. This causes only a small
number of mis-hits if the partitioning is not complete (figure 3.12) and none if
it is (figure 3.13).

41

1 1 1 2 3 5 7 7 8 8 9 9 9 10 EOR

EOR

1

3

3

3

3

4

5

6

8

9

9

9

10

bucket border (hash function: h(x) = ceil(x/2))

tuples of R

tuples of Q

join attribute values

Figure 3.12: Search strategy of a simple hash equi-join.

1 1 1 2 3 5 7 7 8 8 9 9 9 10 EOR

EOR

1

3

3

3

3

4

5

6

8

9

9

9

10

bucket border (hash function: h(x) = x)

tuples of R

tuples of Q

join attribute values

Figure 3.13: Search strategy of a simple hash equi-join with complete partition-
ing.

42

Hash joins have several advantages. If the hash table, i.e. the set of all hash
buckets, fits entirely into main memory, the hash join has to scan each relation
only once. For that reason, it is usually the smaller of the two relations that is
hashed in the beginning [Bratbergsengen, 1984]. The performance of the hash
join depends on the quality of the hash function and its implications, such as
the number of buckets or the value ranges that are assigned to the buckets. If
there are only a few ranges then there might be a large number of unnecessary
comparisons because each bucket has to hold a large number of tuples. Fur-
thermore, data skew [Walton et al., 1991], i.e. non-uniformly distributed data,
and an inadequate choice of value ranges can cause certain buckets to hold a
large number of values whereas others might be empty. This can also lead to a
large number of unnecessary comparisons.

A variation of the simple hash equi-join, as illustrated in figure 3.11, is the
Grace hash equi-join which was proposed in [Kitsuregawa et al., 1984]. It pre-
cedes the simple hash join by an additional partitioning stage: first, relations R
andQ are hashed into bucketsR1, . . . , Rm and Q1, . . . Qm using a hash function
h1. This creates a situation in which tuples of a bucket Rk can only join with
tuples inQk. Thus the joinR onC Q is divided into or partial joinsR1 onC Q1, . . . ,
Rm onC Qm which are performed by a simple hash join each. See figure 3.14.
Obviously, the Grace hash join method can be generalised allowing sort-merge
or nested-loop techniques for processing the partial joins Rk onC Qk. Further-
more, the computation of the partial joins can be concurrent. These aspects
will be discussed in section 3.5.

A further improvement of the Grace hash join was proposed in [DeWitt and
Gerber, 1985] and [Shapiro, 1986]: instead of flushing tuples of R1 to disk they
are kept in memory and joined with tuples that are found to fall into Q1 during
the hashing stage. Thus the joining stage only deals with the joins R2 onC Q2,
. . . , Rm onC Qm.

In general, hash-based joins have been found to be some of the most effi-
cient join techniques [Gerber, 1986]. Problems arise in situations with heavily
skewed data or for nonequi-joins. Hashing is not only useful to reduce the
number of unnecessary comparisons but also allows the decomposition of one
big join operation into several smaller and independent ones. This is especially
important for the parallelisation of joins which is to be discussed in section 3.5.

In many situation, hashing has proved to be more efficient than sorting.
The latter observation has motivated G. Graefe to publish a paper with the title
Sort-Merge-Join: An Idea Whose Time Has(h) Passed? [Graefe, 1994] in which he

43

/* Hash relation R */
for each tuple r ∈ R do

put r in bucket (output buffer) k = h1(r.A)
od
flush output buffers 1, . . . ,m to disk

/* Hash relation Q */
for each tuple q ∈ Q do

put q in bucket (output buffer) k = h1(q.B)
od
flush output buffers 1, . . . ,m to disk

/* Simple hash join for Rk onC Qk */
for k = 1 to m do

for each tuple r ∈ Rk do
put r in bucket no. h2(r.A)

od
for each tuple q ∈ Qk do

for each tuple r in bucket no. h2(q.B) do
if r.A = q.B then

put r ◦ q in the output relation
fi

od
od

od

Figure 3.14: Grace hash join.

44

analyses the duality of sort- and hash-based query processing. He concludes
that the sort-merge approach (for equi-joins) is almost obsolete with very few
exceptions.

3.4.4 Data-Structure-Assisted Joins

The class of data-structure-assisted joins makes use of special data structures
which can be regarded as some kind of index. Many such data structures have
been proposed, such as join indexes [Valduriez, 1987], Bc-trees [Goyal et al.,
1988], T-trees [Lehman and Carey, 1986], kd-trees [Kitsuregawa et al., 1989]
and domain vectors [Perrizo et al., 1991] or bitmap indices [O’Neil and Graefe,
1995]. We will shortly describe the first one. A more detailed summary of data-
structure-assisted join can be found in section 3 of [Mishra and Eich, 1992].

A join index is a binary relation with two foreign key attributes6. A tuple
in the join index describes a pair of tuples that participate in the join result
by referring to the tuples in the input relation through the respective foreign
key attribute value. Alternatively, foreign key values can be replaced through
physical addresses or any other logical value – a surrogate – that uniquely iden-
tifies a tuple in an input relation. Figure 3.15 shows the (equi-)join algorithm
based on a join index. Similarly to the preceding sections, figure 3.16 shows
the search strategy employed by the algorithm. There are no mis-hits because
the join is virtually precomputed.

Once created, a join index has to be maintained which might cause a con-
siderable overhead: each time the input relations are updated the referential
integrity has to be checked in order to keep the join index consistent. With
a growing join selectivity the size of the join index approaches that of the
cartesian product. This expense must be justified by frequent joins of the rela-
tions involved.

6or, more generally, two foreign key attribute sets, as a key can consist of more than one
attribute.

45

/* There is a join index X for R and Q */
/* and the join condition R.A = Q.B */

for each tuple x in the join index X do
get r ∈ R such that r.A = x.A
get q ∈ Q such that q.B = x.B
put r ◦ q in the output relation

od

Figure 3.15: Join algorithm based on a join index.

1 1 1 2 3 5 7 7 8 8 9 9 9 10 EOR

EOR

1

3

3

3

3

4

5

6

8

9

9

9

10

tuples of R

tuples of Q

join attribute values

Figure 3.16: Search strategy of the join-index based algorithm.

46

3.5 Parallel Joins

Section 3.2.2 showed that the join operation is very performance-critical be-
cause of the large amounts of data that are involved. Section 3.4 then described
several ways in which the join can be implemented efficiently on a sequential
machine. An additional possibility is to parallelise the join. [Graefe, 1993]
identified two alternative techniques:

• fragment-and-replicate,

• symmetric partitioning.

Many of the techniques found in commercial DBMS products fall into these
two categories.

3.5.1 Fragment-And-Replicate Technique

The fragment-and-replicate (f-a-r) strategy partitions only one relation and rep-
licates the other for joining it with each fragment:

R onC Q = R1 onC Q ∪ · · · ∪ Rm onC Q (3.5)

This method is particularly useful ifR is huge andQ is small. This is a situation
that occurs in what is frequently referred to as a star-join [Red Brick Systems,
1995b]. An advantage is that there are no constraints on the Rk. Any partition
of R into subsets R1, . . . , Rm will suit, especially a partition of R that might
reside on the disks in the case of a parallel I/O system. This also means that this
technique need not be affected by data skew. For this reason, load balancing is
fairly easy to achieve.

The major drawback, however, is that Q is required to be small in order to
keep replication costs marginal. If this is not the case then shipping Q over the
interconnect of the parallel hardware can become the major bottleneck.

Depending on the join algorithm that is employed for processing the partial
joins Rk onC Q we get various search patterns. Figures 3.17 and 3.18 show the
ones that arise when using a nested-loop and a sort-merge join respectively.

3.5.2 Symmetric Partitioning Technique

A more general, but also more delicate parallel joining technique is based on
symmetric partitioning where all participating relations are partitioned. We have

47

1 1 1 2 3 5 7 7 8 8 9 9 9 10 EOR

EOR

1

3

3

3

3

4

5

6

8

9

9

9

10

bucket border (hash function: h(x) = ceil(x/3))

tuples of R

tuples of Q

join attribute values

Figure 3.17: Search strategy of the fragment-and-replicate technique with the
partial joins performed as nested-loops.

encountered this method already in the discussion of the Grace hash join (fig-
ure 3.14). Symmetric partitioning splits one ‘big’ join into several smaller and
independent ones:

R onC Q = R1 onC Q1 ∪ · · · ∪ Rm onC Qm (3.6)

where the Rk and Qk are referred to as fragments of the relations R and Q,
respectively.

The partial joins Rk onC Qk are independent from each other and can there-
fore be processed concurrently, i.e. in parallel. This parallelisation technique
can be applied to each join algorithm that was presented in section 3.4. The
Grace hash join in figure 3.14, for example, can be considered as a parallel
hash join if the ‘for k = 1 to m do’ loop is parallelised, i.e. if its body is ex-
ecuted concurrently.

Figure 3.19 shows the structure of this family of parallel joins. It is divided
into three stages:

1. In a partitioning stage the two input relations R and Q are partitioned
into fragments R1, . . . , Rm and Q1, . . . , Qm respectively such that tuples

48

1 1 1 2 3 5 7 7 8 8 9 9 9 10 EOR

EOR

1

3

3

3

3

4

5

6

8

9

9

9

10

bucket border (hash function: h(x) = ceil(x/3))

tuples of R

tuples of Q

join attribute values

Figure 3.18: Search strategy of the fragment-and-replicate technique with the
partial joins performed as sort-merge.

49

in any Rk can only join with tuples in Qk. This secures the independence
of the partial joins.

2. In a joining stage the partial joins Rk onC Qk are executed in parallel (for
k = 1, . . . ,m) which creates m local, partial results.

3. Finally, in a merging stage the partial results are merged (i.e. collected)
to form the global join result.

Let us look at the search strategy of this family of parallel joins by using the
same scenario as for the algorithms presented in section 3.4. The partitioning
stage results in the same effect as encountered by the partitioning performed in
the sequential hash joins. Therefore, figures 3.12 and 3.13 equally represent the
search strategy of a parallel nested-loop join. Nevertheless, we add a further
example in figure 3.20 because it makes certain issues more obvious: in this
example, the join R onC Q is divided into four partial joins, each of which is
processed by the nested-loop algorithm. This means that an exhaustive search
is performed over four partial cartesian products Rk × Qk for k = 1, 2, 3, 4. In
terms of our graphic representation, this means that the four grey rectangular
areas in figure 3.20 are processed.

R Q

Input Data

Data Fragments

Local Results

Global Result

Partitioning Stage

Joining Stage

Merging Stage

Figure 3.19: The structure of a parallel join based on symmetric partitioning.

50

1 1 1 2 3 5 7 7 8 8 9 9 9 10 EOR

EOR

1

3

3

3

3

4

5

6

8

9

9

9

10

bucket border (hash function: h(x) = ceil(x/3))

tuples of R

tuples of Q

join attribute values

Figure 3.20: Search strategy of the symmetric partitioning technique with the
partial joins performed as nested-loops.

The parallelisation, motivated by (3.6), works very well for equi-joins be-
cause it is easy to create disjoint fragmentsR1, . . . , Rm (Q1, . . . , Qm respectively)
which allow the partial joins to be independent. Unfortunately, many nonequi-
joins and – as we will see in chapter 4 – many types of temporal joins cannot be
divided into disjoint fragments and maintain the independence of the partial
joins at the same time. One has then to decide whether to sacrifice either the
disjointness or the independence with the first one being the preferable option
in most cases.

The selectivities of the partial joins are much higher than for the original
join because the partitioning concentrated tuples with similar values in associ-
ated fragments Rk and Qk. This is an important point in the sense that the
selectivity is an important issue for the choice of the most appropriate (se-
quential) join algorithm for computing the partial joins Rk onC Qk. In a set
of experiments that we conducted on partitioned temporal joins, for example,
we observed average selectivities of 80% for the partial joins of a join R onC Q.
Such high figures make the nested-loop algorithm the favourable option for
processing the partial joins because there will not be a large number of unne-
cessary tuple comparisons and, at the same time, avoids any overhead caused

51

by sorting or hashing the data.
There are other ways of parallelising a join operation which differ from the

ones presented in this section. The ones we presented are, however, the most
common ones. One variation, for example, is to interleave the partitioning and
joining stages similar to the case of sequential join algorithms. Further vari-
ations arise from different characteristics of the underlying parallel hardware
architecture. Some parallel machines, for example, have specifically optim-
ised communication facilities, such as broadcasts. This leads to specific cost
models for this particular machine which might favour certain join strategies
which are discarded when employing more general cost models. The inter-
ested reader might look at the papers that describe parallel join algorithms in
detail, such as [Kitsuregawa et al., 1983], [DeWitt and Gerber, 1985], [Gerber,
1986], [Wang and Luk, 1988], [Schneider and DeWitt, 1989], [Kitsuregawa and
Ogawa, 1990], [Wolf et al., 1990], [Keller and Roy, 1991] or [Wolf et al., 1993].

52

3.6 Classification of Join Algorithms

In order to classify the join algorithms that were presented in sections 3.4
and 3.5 we want to focus on the two main tasks that are performed by each
join algorithm:

• the data is partitioned into fragments,

• the tuples of the fragments are matched.

The purpose of the partitioning stage is to reduce the number of pairs of tuples
to be examined in the matching stage. The brute force nested-loop join of sec-
tion 3.4.1 has no partitioning stage and therefore needs to test any possible
tuple pair. This is the worst-case scenario. On the other hand, for example,
there is the hash join which uses hashing as a way of partitioning the data be-
fore entering the matching stage. Similarly, the sort-merge join uses sorting
as a way of partitioning. The type of partitioning employed is one important
characteristic that distinguishes the join algorithms. Mishra and Eich identi-
fied four types of partitioning employed by join algorithms [Mishra and Eich,
1992]:

No Partitioning: The input relations are not partitioned at all. They must be
exhaustively compared in order to find the tuple pairs that participate in
the join.

Implicit Partitioning: Although the join algorithm does not have a specific
step for performing the partitioning, it does do some dividing or ordering
of the data in order to reduce the number of tuples to be compared in the
match stage.

Explicit Partitioning: The algorithm contains an explicit partitioning stage as
part of its execution.

Precomputed Partitioning: Partitioning is not performed as part of the actual
join algorithm. These techniques assume that some partitioning exists.

In addition to the type of partitioning, another important characteristic is the
mapping between the fragments of the input relations. Let us assume the case
of an equi-join R onC Q with C ≡ R.A = Q.B. Suppose that R and Q are
divided into their basic fragmentsṘ1, . . . , Ṙm and Q̇1, . . . , Q̇m respectively with

53

m being the number of different values that actually occur in the attributesR.A
and Q.B. If we use the notation of relational algebra7 this means that

m = |πA(R) ∪ πB(Q)|

Imagine that the values in R.A andQ.B are x1, . . . , xm. A basic fragment Ṙk then
holds those tuples of R that hold xk as the value in attribute A, i.e.

Ṙk = σA=xk(R)

The Q̇k are defined accordingly. As an example for basic fragments you might
look at figure 3.13 where complete partitioning created the basic fragments.

During the matching stage, each join algorithm overlaps a basic fragment,
say Ṙk, with one or more basic fragments of Q. The following degrees of over-
lap can be identified; please note that the definitions differ slightly from those
presented in [Mishra and Eich, 1992] which is not clear enough in several as-
pects:

Complete Overlap: In this case, a basic fragment Ṙk meets all basic fragments
of Q. This happens in the brute force nested-loops join (figure 3.6) or the
nested-loop join in conjunction with the fragment-replicate-technique for
parallelising a join (figure 3.17).

Minimum Overlap: Tuples of Ṙk meet all tuples of Q̇k plus one tuple of Q̇k−1

and one of Q̇k+1. This kind of overlap is used in the sort-merge equi-join
(figure 3.8).

No Overlap: Tuples of Ṙk only meet the tuples of Q̇k, e.g. in the completely
partitioned hash join example of figure 3.13.

Disjoint Overlap: This occurs when the definition of the ‘no-overlap-degree’
is extended to disjoint fragments, with a fragment being the union of basic
fragments. This means that tuples of a fragment, say Ṙk1 ∪ Ṙk2 ∪ · · · ∪
Ṙki with {k1, k2, . . . , ki} ⊂ {1, . . . ,m}, meet tuples of the corresponding
fragment of Q, i.e. Q̇k1 ∪ Q̇k2 ∪ · · · ∪ Q̇ki . This situation occurs in hash
equi-joins (figures 3.12, 3.13 and 3.20).

Variable Overlap: Tuples of Ṙk meet tuples of Q̇k and a varying number of
‘neighbour fragments’, i.e. Q̇l(k), . . . , Q̇k−1, Q̇k+1, . . . , Q̇r(k) with 1 ≤ l(k) <
k < r(k) ≤ m. We note that the values of l(k) and r(k) depend on k.

7See [Korth and Silberschatz, 1991] or [Lockemann et al., 1993] for example.

54

Algorithm Type of Partitioning Degree of Overlap
nested-loop none complete
sort-merge equi-join implicit minimum
sort-merge nonequi-joins implicit minimum / variable
hash equi-join explicit disjoint / no
join index precomputed no
parallel equi-join explicit (symmetric) disjoint / no
parallel equi-join explicit (f-a-r) & no complete
parallel equi-join explicit (f-a-r) & implicit variable

Table 3.1: Join algorithms, their type of partitioning and the degree of overlap.

Variable overlaps occur in many index-based join algorithms, some sort-
merge nonequi-joins and sort-merge equi-joins in conjunction with the
fragment-and-replicate strategy (see figure 3.18).

Table 3.1 summarises the relationships between join techniques, types of par-
titioning and degrees of overlap. There exists a certain duality between parti-
tioning and overlap: no partitioning, for example, imposes a complete overlap
in the matching stage. Explicit partitioning usually leads to a disjoint overlap
and, in the extreme case, to no overlap. Figure 3.21 shows the categorisation
of join algorithms that arises from that. We will use it in the following chapter
when we discuss the implications given by temporal join conditions.

Join Algorithms

No Partitioning

complete overlap
(nested−loop)

Implicit
Partitioning

minimum
overlap
(sort−merge−
equi−join)

variable
overlap
(sort−merge−
nonequi−join)

Precomputed
Partitioning

no overlap
(join index)

variable
overlap
(kd−tree)

Explicit
Partitioning

Symmetric
Partitioning

no or disjoint
overlap
(hash join,
parallel nested−
loop join)

Fragment−and−
Replicate
complete overlap
(f−a−r with nested−
loops)

variable overlap
(f−a−r with sort−
merge)

Figure 3.21: Join algorithm categorisation.

55

Chapter 4

Temporal Join Processing

In the previous chapter, join processing has been discussed in a very general
context although there was an emphasis on equi-joins as the most frequently
used join type. In this chapter, we want to focus on temporal joins.

Temporal joins have an impact on many of the aspects that were discussed
in chapter 3. Consequently, many of the techniques that were designed and
used for processing equi-joins are not directly applicable to temporal joins if
a reasonable performance is required. In this chapter, we point to the differ-
ences, present adaptations for sequential temporal join processing that were
presented in the literature, and propose improvements.

The issues discussed in this chapter are similar to those of chapter 3: Sec-
tion 4.1 defines the temporal join operation and introduces a classification
scheme for temporal join conditions. Here, the temporal intersection join is
identified as a supertype of most other temporal joins. In section 4.2, we
discuss the significance of the temporal join operation. Sections 4.3 and 4.4
present temporal join processing techniques. The discussion is divided into
non-explicit partitioning (section 4.3) and explicit partitioning techniques (sec-
tion 4.4). The first set of algorithms are straightforward adaptions of the cor-
responding equi-join techniques Here, modifications are only minor. Explicit
partitioning algorithms, however, require certain parts of the relations to be
replicated. This introduces an overhead in various ways. In section 4.4, we
present techniques which reduce the overhead. Some of these have been pro-
posed in the literature, some of them are new. In section 4.5, we conduct a
simple comparison of temporal join algorithms. This allows us to summarise
the most important features. Finally, in section 4.6, we focus on optimisation
problems that are specific to temporal join processing.

56

4.1 Definition and Types of Temporal Joins

A join condition is said to be temporal if it enforces a certain relationship bet-
ween the timestamps of the participating tuples. Hence, temporal joins combine
two (or more) temporal relations using a temporal join condition. In terms of
interval timestamps, this means that the intervals are related to each other. In
chapter 2, we have already seen a typical example of such a temporal join con-
dition, namely the intersection of two intervals as described by equation (2.3).

There are many possible relationships between two intervals: one inter-
val can lie completely before the other, both intervals can start and/or end at
the same time, they can overlap each other etc. Temporal joins can be classi-
fied according to the type of relationship on which its join condition is based.
Table 4.1 shows a set of join conditions. We treat them as elementary for the
following three reasons:

• they translate into simple expressions that describe the relationships bet-
ween intervals’ start- and endpoints,

• they, nevertheless, have reasonable semantics, that can be related to nat-
ural language expressions of everyday use,

• they can be used to compose more complex types, such as those in tab-
le 4.2.

An alternative set of elementary interval relationships was presented in [Allen,
1983] for the purpose of natural language processing. It leads, however, to
more complex expressions between the start- and endpoints of the intervals
that are involved. This makes it more difficult to decompose complex temporal
join conditions into elementary ones. For that reason we prefer to use the set
presented in table 4.1.

The literature has mainly concentrated on the intersection of intervals in the
join predicate join. The reason behind this is that it requires the timestamps of
the participating tuples to share at least one chronon. This is a minimum con-
straint that can be found in most other temporal join conditions (see tables 4.1
and 4.2).

Leung and Muntz referred to this minimum constraint as the ‘TSJ1 query
property’ [Leung and Muntz, 1992]. Thus intersection join queries are identical
with the TSJ1 queries discussed by Leung and Muntz. They show what optim-
isations (with respect to reducing tuple replication in the case of partitioning

57

Relationship Join Name & Symbol Condition Informal Description

start start join:
sta
on r.ts = q.ts same timestamp start-

points

finish finish join:
fin
on r.te = q.te same timestamp end-

points

meet meet join:
mt
on r.te = q.ts timestamp of r ends

where timestamp of q
starts, i.e. they meet.

before before join:
bef
on r.te < q.ts timestamp of r comes

before q’s timestamp

left-overlap left-overlap join:
lo
on r.ts > q.ts ∧ r.ts < q.te startpoint of r’s time-

stamp lies within q’s ti-
mestamp

right-overlap right-overlap join:
ro
on r.te > q.ts ∧ r.te < q.te endpoint of r’s time-

stamp lies within q’s ti-
mestamp

Additional constraints are: r.ts ≤ r.te ∧ q.ts ≤ q.te

Table 4.1: Elementary temporal joins and respective conditions for joining
tuples r ∈ R with q ∈ Q.

over the interval timestamps) can be drawn from specialising the general in-
tersection condition to, for example, a contain or during condition. In these
cases, tuple replication can be restricted to some of the participating relations,
e.g. to R in a contain join R

con
on Q. However, replication is necessary for at least

one of the participating relations in most temporal join conditions if the join
is to be processed by partitioning over the interval timestamp attribute 1. To
summarise: whereas Leung and Muntz identify the situations in which tuple
replication can be restricted, we will concentrate on how the impact of replic-
ation can be reduced when replication is necessary. The latter applies to a wide
set of intersection based join conditions. Therefore we will focus on the tem-
poral intersection join as the most general of these joins2. However, we stress

1Exceptions are those temporal join conditions that involve an equality relationship bet-
ween interval start- and endpoints, such as the start or meet joins in table 4.1. These can be
processed by one of the conventional equi-join techniques.

2Alternative names for the temporal intersection join are T-join [Segev, 1993] and time-join
[Rana and Fotouhi, 1993]. Segev’s TE-join includes, apart from the intersection condition, an
equi-join condition, as does the valid-time natural join [Clifford and Croker, 1987], [Soo et al.,
1994], the natural time-join [Clifford and Croker, 1987] and the time-intersection equi-join [Segev,
1993].

58

Join Name Composition Informal Description

equal join R
=
on Q = R

sta
on Q ∩ R

fin
on Q same timestamps

after join R
aft
on Q = Q

bef
on R timestamp of r ∈ R is required

to lie entirely after the time-
stamp of a q ∈ Q

overlap join R
olp
on Q = R

lo
on Q ∪ R

ro
on Q timestamps overlap but do not

start or finish at the same point

contain join R
con
on Q = (R

lo
on Q ∩ R

ro
on Q) ∪ timestamp of an r ∈ R

(R
sta
on Q ∩ R

ro
on Q) ∪ contains the entire

(R
lo
on Q ∩ R

fin
on Q) timestamp of a q ∈ Q

during join R
dur
on Q = Q

con
on R timestamp of an r ∈ R is re-

quired to lie entirely within the
timestamp of a q ∈ Q

intersection join R
int
on Q = R

lo
on Q ∪ R

ro
on Q ∪ timestamps intersect

R
sta
on Q ∪ R

fin
on Q ∪

R
mt
on Q ∪ Q

mt
on R

Table 4.2: Examples of temporal join types that can be derived from the ele-
mentary ones.

again that replication is not only relevant for the pure intersection join but it is
equally important for many other temporal joins, such as the during, contain,
left-overlap, right-overlap and overlap joins. The results that are obtained for
the case of the intersection join are therefore easily transferable to these joins.

Usually the tuples that satisfy the join condition are concatenated. In the
case of temporal joins this concatenation is not trivial as the value of the ti-
mestamp for the resulting tuple has to be defined. This definition depends on
the type of the temporal join; assuming temporal intersection the resulting ti-
mestamp is defined to be the intersection of the individual timestamps of the
participating tuples. For example in the case of the two tuples r and q the
resulting timestamp is

[max{r.ts, q.ts},min{r.te, q.te}] (4.1)

59

4.2 Significance of Temporal Joins

Temporal joins occur in queries that have to relate data from at least two re-
lations in a temporal context. The most frequent temporal context is probably
‘same time’, such as facts that are required to be valid at the same time. Trans-
lated into relationships between interval timestamps this frequently means

• that the intervals have to be the same (equality condition), e.g. the period
of a car rental and the period of the corresponding insurance policy,

• that one interval should lie within the other (during condition), e.g. the
period of a car rental falling entirely in a low-season-pricing period,

• that the intervals have to share at least one chronon (intersection condi-
tion), e.g. the period of a car rental intersecting with a period of new fuel
prices.

Trend analysis is an area in which simultaneity is an important aspect: if a
trend – described by one set of data – is allegedly caused by a certain time-
varying process – described by a second set of data – then this data can very
often be related only by their date of occurrence or validity. In terms of the re-
lational data model this means nothing but performing a temporal intersection
join on the two data sets.

Imagine, for example, a manager who analyses the summer sales figures
and tries to find out why sales went up this year. He might want to relate
the sales with the hotter weather, the general rise in wages, the favourable ex-
change rate, the floatation of several building societies (and its implication that
there is more money in consumers’ pockets) or other facts that can influence
customer behaviour. Assume that such data is kept in various relations. One
of the few possibilities to associate the data from the various sources is to relate
them temporally, using a ‘same time’ context. In terms of query processing this
translates into executing temporal joins.

In fact, many analysis attempts that seek to confirm causality between two
or more trends or effects have to start by relating the underlying data in terms
of their temporal context. This only reflects the way in which we analyse many
things ourselves: whenever we investigate the cause of a certain effect we try
to figure out what other effects / events happened at the same time3, possibly

3Actually this is only a special situation for the case that the cause is immediately followed
by the effect. There are many examples for which the effect is delayed for a certain constant
period. Such constant delays are not a problem and can be incorporated in the join condition
without changing any of the issues that have been elaborated for the ‘same time’ notion.

60

at the same place.
For that reason, relating data temporally is a feature which is supported by

many decision support tools. Such tools are usually part of a decision support
systems (DSS) which itself is frequently built on top of a data warehouse (see
figure 2.5). In other words: decision support tools are liable to create com-
plex queries involving temporal joins. These queries have to be efficiently sup-
ported by the underlying database technology. This is one aspect of the rela-
tionship between temporal databases and data warehouses which we already
elaborated in section 2.4.

4.3 Non-Explicit-Partitioning Techniques

4.3.1 Overview

In this section, many of the issues and results that have been discussed in the
previous chapters and sections are brought together. We will look at temporal
join algorithms that are not based on explicit partitioning, i.e. algorithms that
do not contain an explicit partitioning stage as an integral part. This group
of algorithms comprises nested-loop joins (with no partitioning stage), sort-
merge joins (with an implicit partitioning stage) and index joins (using pre-
computed partitioning). Figure 4.1 illustrates these three techniques within
the hierarchy of section 3.6. In chapter 3, we discussed these techniques in the
light of processing equi-joins. In this section, we look at them for processing
temporal joins.

As we can expect from the issues presented in section 3.4, it is only the
sort-merge approach that needs some minor modifications. The general idea,
however, remains unchanged. Nested-loops and join indices do not require
any change. Nevertheless, temporal join conditions imply increased join se-
lection ratios in general. This means that join results are larger in compar-
ison to equi-joins between equally sized relations. Or put differently: a bigger
share of the cartesian product participates in the temporal join result. This,
however, might influence the choice of algorithm as we have already indicated
in chapter 3.

In the following discussions, we will concentrate on the temporal intersec-
tion join whenever the type of the temporal join is relevant. As we mentioned
in section 4.1, the intersection join can be considered as a supertype of most
temporal joins. Algorithms for the more specialised temporal joins can be de-
rived from the intersection join algorithms.

61

Join Algorithms

No Partitioning Implicit
Partitioning

Precomputed
Partitioning

Explicit
Partitioning

Symmetric
Partitioning

Fragment−and−
Replicate

Figure 4.1: Non-explicit partitioning joins.

4.3.2 Nested-Loop Temporal Joins

The basic nested-loop join, as outlined in figure 3.6, does not need to be adap-
ted for processing temporal join conditions. It checks every tuple pair of the
cartesian product anyway. Figure 4.2 shows an example of a temporal inter-
section join between two relations which are equal in size to the ones used in
the example in chapter 3. The figure indicates that more tuple comparisons are
successful than in the case of a nested-loop equi-join with equally sized rela-
tions. The nature of temporal join condition means that temporal joins (and
especially temporal intersection joins) may frequently produce much higher
join selectivities than comparable equi-joins. This means that an exhaustive
search performed by a nested-loop join algorithm is possibly not as adverse as
in the case of an equi-join.

The selectivities resulting from the temporal join condition considered here
are more likely to lead to situations in which even small inputs can produce
huge results. Such huge results are impractical to handle in both cases, as an
end result but also as an intermediate result. An optimiser will therefore try
to avoid to compute such gigantic joins either by warning the user about a
possible huge end result (the user can then change or dismiss the query) or by
rearranging the sequence in which the query operations are processed (such
that a huge intermediate join result can be by-passed).

It is almost impossible to say what typical temporal join selectivities are.
This is (a) due to the variety of temporal join conditions (see tables 4.1 and 4.2,
for example) and (b) due to the great variety in the statistical characteristics

62

of temporal applications4 which makes it already impossible to determine a
typical selectivity for a pure intersection condition. The latter, for example,
would depend on the typical interval length (which can vary widely between
different applications), whether interval startpoints are spread uniformly over
the lifespan (e.g. phone calls over a day) or whether they come in clusters (e.g.
hourly measurements of certain parameters) and also the granularity of the
time dimension.

1 1 1 2 3 7 8 8 9 9 9

3

3

3

3

4

5

6

8

9

9

9

10

tuples of R

tuples of Q

3 4 6 4 5
5
10

7
9 13 9 11 12 14 14

10
15

1 3

4

5

6

8

5

8

10

10

12

15

15

12

st et

et
st

join results (i.e. successful tuple comparisons)

mis−hits (i.e. unsuccessful tuple comparisons)

timestamp intervals

Figure 4.2: Search strategy for a nested-loop temporal intersection join.

4.3.3 Sort-Merge Joins

The actual shape of the sort-merge join algorithm depends on the underlying
join condition. In section 3.4.2, we outline the sort-merge join algorithm for an
equi-join condition. For a temporal join condition, such as temporal intersec-
tion, the general structure remains the same: a sorting stage is followed by a

4See discussion in section 10.1 on this issue.

63

merging stage. The merging stage, however, needs to be modified.
Most of the algorithms that have been proposed for temporal join proces-

sing employ a sort-merge strategy. Examples can be found in [Gunadhi and
Segev, 1990], [Leung and Muntz, 1990], [Gunadhi and Segev, 1991], [Rana and
Fotouhi, 1993] and [Segev, 1993]. Many authors consider their algorithms as re-
finements of the nested-loop approach that take advantage of the fact that one
or all relations are sorted in ascending or descending order. This means that
they merely discuss the merging stage of the sort-merge approach and assume
that the required sort order is either enforced by a preceding sorting stage or
already exists. The merging stage, however, can be regarded as nested loops in
which the inner loop takes advantage of information that was obtained during
previous loops.

Assuming the relations to be sorted can be reasonable, especially in the case
of transaction time relations. Here, tuple timestamps are created according to
the time of the update (i.e. the transaction time). If these tuples are appended
to the end of the relation we get a natural sort order of the tuples. This is
sometimes called the append-only characteristic of transaction time relations.

Figure 4.3 shows a sort-merge algorithm for a temporal intersection join.
Originally, it was discussed as Algorithm 2 in [Rana and Fotouhi, 1993] which is
similar to algorithm TJ-1 in [Gunadhi and Segev, 1991]. The two if-statements
in the inner loop check the two situations in which no intersection occurs:

• Situation 1: r’s timestamp lies before q’s timestamp, i.e. r.te < q.ts, and

• Situation 2: r’s timestamp lies after q’s timestamp, i.e. r.ts > q.te.

In the first situation, the inner loop (which scans relation Q) has to be left in
order to proceed with R in the outer loop. In the second situation, we have to
proceed withQ. If all previous checks in the inner loop have been unsuccessful,
i.e. if flag = false, then the ‘start tuple marker’ qstart can be increased, too. If none
of the two situation occurs then the timestamps intersect and the concatenation
of the two tuples can be placed in the result. The specific characteristic of the
concatenation are described by (4.1).

Figure 4.4 shows the search strategy of this algorithm. The outer loop
moves along the horizontal axis whereas the inner loop scans vertically, along
the column designated by the outer loop. Information obtained from previous
loop runs provide a hint as to the best entry point in the column, i.e. several
tuples at the beginning (coming from the bottom) might be omitted.

64

/* Stage 1: Sorting */
sort R on R.ts as primary key and R.te as secondary key
sort Q on Q.ts as primary key and Q.te as secondary key

/* Stage 2: Merging */
r = first tuple in R
qstart = first tuple in Q

while r 6= EOR and qstart 6= EOR do
q = qstart

flag = false

while q 6= EOR do
if r.te < q.ts then

leave inner loop
fi
if r.ts > q.te then
q = next tuple in Q after q
if not flag then
qstart = q

fi
else

put r ◦ q in the output relation
flag = true
q = next tuple in Q after q

fi
od

r = next tuple in R after r
od

Remark: EOR denotes an ‘end-of-relation’ mark that is returned by either the ‘first tuple in’
or the ‘next tuple in’ operation if it fails to retrieve a tuple because the end of the respective
relation has been reached.

Figure 4.3: Sort-merge temporal intersection join algorithm.

65

1 1 1 2 3 7 8 8 9 9 9

3

3

3

3

4

5

6

8

9

9

9

10

tuples of R

tuples of Q

3 4 6 4 5
5
10

7
9 13 9 11 12 14 14

10
15

1 3

4

5

6

8

5

8

10

10

12

15

15

12

st et

et
st

join results (i.e. successful tuple comparisons)

mis−hits (i.e. unsuccessful tuple comparisons)

timestamp intervals

Figure 4.4: Search strategy of the sort-merge temporal intersection join of fig-
ure 4.3.

66

4.3.4 Data-Structure-Assisted Joins

The join techniques that are assisted by data structures, such as index trees or
bitmap indices, might require modification in order to process interval data.
B-trees [Bayer, 1972], for example, are designed for indexing atomic data on
which a total order is defined. The total order is essential for this indexing
method and most other conventional ones, too. However, there is no total or-
dering among interval data which would enable us to find separating values
x such that an interval is either less than or equal to x or greater than x. Un-
fortunately, one can always find a third type of interval which just overlaps
the breakpoint x and is neither less-equal nor greater than x. This makes it
impossible in the general case to find a partition (of the time line) that satis-
fies certain optimality constraints. A lot of index methods, however, rely on
such optimal partitions. Consider, for example, the process of balancing a B-
tree which effectively means adjusting the original partition (of the indexing
attribute’s domain) in order to achieve a better balance of the tree.

Elmasri et al. proposed an indexing method, called the time index, which can
be used for join processing purposes [Elmasri et al., 1993]. In general, various
indexing methods have been proposed for interval timestamps. Further ex-
amples can be found in [Kolovson, 1993] and [Gunadhi and Segev, 1993]. They
all can be used with the general join algorithm in figure 4.5.

Similarly, the join index based algorithm presented in figure 3.15 works
unmodified given that the underlying join index is built upon the temporal
intersection condition.

In both cases, the search strategy should be the same and avoid any unsuc-
cessful tuples comparisons and unnecessary retrievals. Figure 4.6 visualises
the search strategy for the example that has been employed throughout this
chapter.

67

/* there is an index I of Q over the timestamp attribute */

for each tuple r in R do

Use I to identify those q ∈ Q whose timestamp intersects
with the one of r
put the references ~q to these q in set X

for each ~q in X do
q = tuple in Q which is referred to by ~q
put r ◦ q into the join result.

od

od

Figure 4.5: Join algorithm using an index.

1 1 1 2 3 7 8 8 9 9 9

3

3

3

3

4

5

6

8

9

9

9

10

tuples of R

tuples of Q

3 4 6 4 5
5
10

7
9 13 9 11 12 14 14

10
15

1 3

4

5

6

8

5

8

10

10

12

15

15

12

st et

et
st

join results (i.e. successful tuple comparisons)

mis−hits (i.e. unsuccessful tuple comparisons)

timestamp intervals

Figure 4.6: Search strategy of an index based temporal intersection join.

68

4.4 Explicit-Partitioning Join Algorithms

4.4.1 Overview

In this section, we consider join techniques that include an explicit partitioning
stage as an integral part of the join algorithm. They are shown in grey boxes
in figure 4.7. In the case of the equi-join these techniques have proved to be
very efficient and very versatile, especially allowing the parallelisation of the
join operation. We might expect them to be similarly successful in the case of
temporal joins.

Join Algorithms

No Partitioning Implicit
Partitioning

Precomputed
Partitioning

Explicit
Partitioning

Symmetric
Partitioning

Fragment−and−
Replicate

Figure 4.7: Explicit partitioning joins.

We will merely concentrate on the symmetric partitioning approach, i.e.
both participating relations are partitioned; the fragment-and-replicate stra-
tegy that was presented in section 3.5.1 is not affected by the actual join condi-
tion and therefore works in the same way for temporal joins as it does for any
other type of join.

The basic temporal join strategy employing symmetric partitioning is built
upon equation (3.6). It will be discussed in section 4.4.2. This will reveal the
problem that the fragmentsRk (k = 1, . . . ,m) cannot be disjoint because of the
temporal intersection condition. This leads to certain negative implications:

(a) Replication Overhead: During the partitioning process, a lot of tuples
have to be (logically) replicated to be placed into several fragments. Plea-
se note that this logical replication does not necessarily translate into a
physical replication: when working on a shared-memory machine tuple
fragments might be represented as an index, i.e. a set of pointers that

69

refer to the actual locations in memory or on disk where the tuples are
stored. In this case, the logical replication causes an additional effort
when building these indices. When working on a shared-nothing archi-
tecture, however, logical replication is likely to be translated into a phys-
ical replication. In both cases, logical replication causes an overhead.

(b) Processing Overhead: Because of tuple replication, the individual frag-
ments become larger. Hence, processing the partial joins Rk onC Qk re-
quires more effort. This causes a processing overhead.

(c) Duplicates Overhead: Tuple replication can also produce duplicates in
the result which either cause a further overhead in subsequent stages of
a query evaluation or which have to be removed which itself is a poten-
tially expensive process.

We will present algorithms that partially tackle these effects:

• In section 4.4.2, a straightforward temporal adaption of the simple hash
join is given. It suffers from all three overheads.

• In section 4.4.3, a join strategy is derived that reduces the processing over-
head (b) and avoids the duplicates overhead (c). Effect (a), however, can-
not be avoided when the partial joins have to be kept independent from
each other for processing them in parallel. This strategy was originally
proposed in [Zurek, 1996].

• In section 4.4.4, we present a strategy that was originally used in [Soo
et al., 1994]. By sequentially processing the partial joins and keeping
certain tuples in memory between each partial join evaluation one can
avoid the replication overhead (a). Unfortunately, this method sacrifices
the independence of the partial joins which therefore cannot be processed
concurrently anymore.

• In section 4.4.5, a rather different approach is presented which is based
on spatial partitions. It was proposed in [Lu et al., 1994] and maps in-
tervals to points in a two dimensional space. This space is divided into
disjoint parts which results in disjoint relation fragments. In this way, the
replication and duplicates overheads, (a) and (c), are avoided. However,
join processing requires a variable overlap of the fragments which either
restricts the concurrency of the partial joins or requires fragments to be
replicated, which means that the processing overhead (b) remains and a

70

replication overhead might have to be re-introduced for parallelisation
purposes.

As mentioned above, we will concentrate on the temporal intersection join.
Many of its subtypes allow optimisations such as restricting the replication of
tuples to one relation. During or contain joins are examples for that. Leung
and Muntz defined an assymmetry property in order to identify join conditions
which lead into such situations [Leung and Muntz, 1992]. Here, however, we
assume the situation of the intersection join in which both (or, more generally,
all) participating relations require replication.

4.4.2 Simple Temporal Hash Join

The symmetric partitioning approach, as outlined by equation (3.6)

R onC Q = R1 onC Q1 ∪ · · · ∪ Rm onC Qm

can be adapted for processing temporal intersection joins. We assume that the
partial joins are to be kept independent thus allowing concurrent processing.
Then, the fragments cannot be created by hashing the tuples over their interval
timestamps: assume that there was a hash function h such that intersecting
intervals are assigned to the same fragment number. Assume also that there
are at least two different fragments per relation to be created. Let [xs, xe] and
[ys, ye] be two non-intersecting intervals, i.e. xs ≤ xe < ys ≤ ye, which are
assigned to two different fragments i and j by h, i.e.

h(xs, xe) = i 6= j = h(ys, ye)

Now consider the interval [xe, ys] which should fall into fragment i because it
intersects with [xs, xe] and also into fragment j because it intersects with [ys, ye].
Thus h would have to assign two different values, i and j, for [xe, ys] which
contradicts its notion of being a function.

Nevertheless, we can employ range partitioning as a variation of hash parti-
tioning. Here, tuples are partitioned over their interval timestamp in the fol-
lowing way: the time line is divided intom disjoint ranges which are numbered
according to their order on the time line. If a relation, sayR, is partitioned then
a tuple r ∈ R is put into Rk if its timestamp interval intersects with the k-th
range. We note that a tuple can be put into several fragments because its time-
stamp interval might intersect with more than one time range.

71

In general, it is impossible to create disjoint fragments for interval data
if a temporal relation R has a long ‘chain’ of intervals, i.e. [r1.ts, r1.te], . . . ,
[rn.ts, rn.te] such that subsequent intervals intersect, i.e.

[ri.ts, ri.te] ∩ [ri+1.ts, ri+1.te] 6= ∅

Then it is impossible to put these intervals into different fragments without
assigning at least one of them to two different fragments: if [r1.ts, r1.te] goes
to fragment k then [r2.ts, r2.te] has to go to fragment k, too, because it inter-
sects with [r1.ts, r1.te]. The same applies to [r3.ts, r3.te] because it intersects with
[r2.ts, r2.te], and so forth. However, our intention is to partition the data in or-
der to reduce the processing effort and to improve resource utilisation (disk
I/O, main memory). It is therefore out of the question to put all the n intervals
into the same fragment if n is very large; in general, it is likely that n is close
or equal to |R|. In this case, the ‘chain’ has to be broken into two or more parts
which forces one or more intervals to be put into more than one fragment.

If tuple replication is tolerated as a necessary evil, one can apply the sym-
metric partitioning technique as described in section 3.5.2. Figure 4.8 shows the
search strategy of the technique when the partial joins are processed as nested-
loops. It also shows two major problems related to the processing overhead
and the duplicates overhead:

• Tuple replication causes repetitions of possible tuple comparisons. The
net effect of this is the same as if the search space is increased. The frag-
ments themselves are larger. In figure 4.8, 132 tuple comparisons are per-
formed. When comparing this number with the 182 of the nested-loop
join (figure 4.2) we recognise that the partitioning effort is not as success-
ful as one might have hoped.

• Some of the successful tuple comparisons are duplicated too. These cause
duplicate tuples in the join result. In figure 4.8, these comparisons are
marked in black. They occur, say, in the k-th partial join Rk onC Qk, and
are actually unnecessary because they are also performed by another par-
tial join Ri onC Qi with i < k. In many situations, duplicates have to be
removed from the join result by expensive operations. This increases the
overall overhead furthermore.

In the following section, we will tackle these problems by refining the simple
approach presented here.

72

1 1 1 2 3 7 8 8 9 9 9

3

3

3

3

4

5

6

8

9

9

9

10

3 4 6 4 5
5
10

7
9 13 9 11 12 14 14

10
15

1 3

4

5

6

8

5

8

10

10

12

15

15

12

st et

et
st3

5
1
6

75
10

7
9 13

3

3

3

4

5

6

8

5

5

6

8

10

3 8

fragment 3 of Q

fragment 2 of Q

fragment 1 of Q

fragment 1 of R fragment 2 of R fragment 3 of R
[5−7] [8−15]

[5−7]

[8−15]

These are the ranges of the time domain that were used for creating the fragments.

join results (i.e. successful tuple comparisons)

join duplicates (i.e. successful but duplicated comparisons)

mis−hits (i.e. unsuccessful tuple comparisons)

timestamp intervals

[1−4]

[1−4]

Figure 4.8: Search strategy for the simple partitioned temporal join (partial
joins as nested-loops).

73

4.4.3 Improved Temporal Hash Join

Above, we identified successful but replicated tuple comparisons as a major
problem of the simple approach. A first measure could be to extend the tuple
comparisons by checking if the respective comparison occurs somewhere else.
This avoids duplicates in the result but does not avoid the actual unneces-
sary tuple comparisons. Thus, it still produces a processing overhead. Con-
sequently, replicated tuple comparisons should be avoided all together.

For that purpose, we observe the following: consider two tuples r ∈ R and
q ∈ Q with respective timestamps [r.ts, r.te] and [q.ts, q.te]. Assume that the
timestamps intersect and therefore that r and q are compared with each other
at some stage of the computation. If r.ts falls in the i-th and q.ts in the j-th
range of the time domain then they are compared in the partial joinRmax{i,j} onC

Qmax{i,j} for the first time. Possibly, they are compared again in subsequent
partial joins.

In order to avoid this, a fragment, say Rk, can be divided into two disjoint
subfragments,R′k andR′′k. R′k holds the tuples whose timestamp startpoint falls
into the k-th range – these are called the primary tuples – and R′′k holds tuples
that are already in some fragmentRj with j < k – these are called the replicated

tuples, i.e.

R′k = {r ∈ Rk : r.ts falls into the k-th time range}
R′′k = {r ∈ Rk : r.ts does not fall into the k-th time range}

A partial join then looks like this

Rk onC Qk = (R′k ∪R′′k) onC (Q′k ∪Q′′k)
= R′k onC Q

′
k ∪ R′k onC Q

′′
k ∪ R′′k onC Q

′
k ∪ R′′k onC Q

′′
k (4.2)

However, the join R′′k onC Q′′k comprises exactly those unnecessary tuple com-
parisons that we have identified above; figure 4.9 illustrates this for the partial
join R3 onC Q3 of the example of figure 4.8. Processing can therefore be restric-
ted to the first three joins in (4.2). We note that this restriction applies only
when the entire join R onC Q is computed; for getting the result of Rk onC Qk

we still require R′′k onC Q′′k because

R′k onC Q
′
k ∪ R′k onC Q

′′
k ∪ R′′k onC Q

′
k (Rk onC Qk

if R′′k 6= ∅ and Q′′k 6= ∅. We note that R′′k
int
on Q′′k = R′′k ontrue Q′′k due to the

definition of R′′k and Q′′k. In total, R onC Q can be decomposed as shown in
figure 4.10. This leads to the search strategy shown in figure 4.11.

74

8

9

9

9

10

10

12

15

15

12

st et

5

6

8

10

3 8

8 8 9 9 9
9 11 12 14 14

10
15 et

st75
10

7
9 13

R’
3

R’’
3

Q’’
3

Q’3

Q’’
3

R’’
3

Q’3R’’
3 Q’3R’

3

Q’’
3

R’
3

Figure 4.9: Illustration of equation (4.2) forR3 onC Q3 in figure 4.8.

R onC Q

↓
R1 onC Q1 ∪ · · · ∪ Rk onC Qk ∪ · · · ∪ Rm onC Qm

↓
R′1 onC Q′1 ∪ R′1 onC Q′′1 ∪ R′′1 onC Q′1

∪ · · · ∪
R′k onC Q′k ∪ R′k onC Q′′k ∪ R′′k onC Q′k

∪ · · · ∪
R′m onC Q′m ∪ R′m onC Q′′m ∪ R′′m onC Q′m

Figure 4.10: Improved partitioning for computing a temporal intersection join.

75

A second optimisation is based on the following observation: if the remain-
ing three joins in (4.2) are processed sequentially in one of the orders

1. R′k on Q′′k , R
′
k on Q′k , R

′′
k on Q′k or

2. R′′k on Q′k , R
′
k on Q′k , R

′
k on Q′′k

and R′k and Q′k fit, respectively, into the local main memory of the processing
node, then we can avoid unnecessary accesses to secondary storage. We can,
however, enforce this situation because the sizes of the R′k and Q′k are much
easier to predict and to control than those of the R′′k and Q′′k (and consequently
those of Rk and Qk): each tuple of R and Q appears exactly in one R′k and Q′k
but might appear in several R′′k or Q′′k, respectively. The assignment of a tuple
to a certain R′k (Q′k resp.) only depends on the value of the startpoint of the
timestamp. This, however, is nothing else than partitioning atomic values as in
the case of an equi-join. In the simplest case, the number of fragmentsm can be
chosen high enough to fit theR′k andQ′k into main memory. More sophisticated
techniques might be necessary if the startpoint values are heavily skewed, see
e.g. [Hua and Lee, 1991] or [DeWitt et al., 1992].

4.4.4 Partitioned Temporal Join for Sequential Processing

The separation of primary and replicated tuples within an Rk can be exploited
for sequential processing too. Soo et al. proposed the following strategy in [Soo
et al., 1994]:

• The partial joins R1 onC Q1, . . . , Rm onC Qm are processed either from ‘left
to right’ (i.e. 1 to m) or ‘right to left’ (i.e. m to 1).

• Assuming that the partial joins are processed in the order from 1 tom, we
can avoid the replication of tuples which, for example, takes place within
a partitioning stage that precedes that joining stage. This can be done in
the following way: after a partial join Rk onC Qk has been processed the
tuples R′′k+1 ⊆ Rk and Q′′k+1 ⊆ Qk are kept in a cache memory. Thus,
only R′k+1 and Q′k+1 need to be accessed on disk.

Figure 4.12 summarises this strategy. Again, if the partial joins are evaluated
by nested loops we get a search strategy as in figure 4.8. Please note that the
difference lies in the fact that, here, partial joins are not independent from each
other and require sequential processing in order to save disk access costs. Soo
et al.’s technique can also be improved by decomposing the partial joins as

76

1 1 1 2 3 7 8 8 9 9 9

3

3

3

3

4

5

6

8

9

9

9

10

3 4 6 4 5
5
10

7
9 13 9 11 12 14 14

10
15

1 3

4

5

6

8

5

8

10

10

12

15

15

12

st et

et
st3

5
1
6

75
10

7
9 13

3

3

3

4

5

6

8

5

5

6

8

10

3 8

fragment 3 of Q

fragment 2 of Q

fragment 1 of Q

fragment 1 of R fragment 2 of R fragment 3 of R
[5−7] [8−15]

[5−7]

[8−15]

These are the ranges of the time domain that were used for creating the fragments.

join results (i.e. successful tuple comparisons)

mis−hits (i.e. unsuccessful tuple comparisons)

timestamp intervals

[1−4]

[1−4]

Figure 4.11: Search strategy for the improved partitioned temporal join.

77

described in section 4.4.3. The resulting search strategy then corresponds to
figure 4.11.

Process R1 onC Q1

↓ keep tuples R′′2 ⊆ R1 and Q′′2 ⊆ Q1 in cache

Process R2 onC Q2

↓ keep tuples R′′3 ⊆ R2 and Q′′3 ⊆ Q2 in cache

· · ·

↓ keep tuples R′′m ⊆ Rm−1 andQ′′m ⊆ Qm−1 in cache

Process Rm onC Qm

Figure 4.12: Sequential processing of a partitioned temporal intersection join.

4.4.5 Spatially Partitioned Temporal Join

In this section, we describe a partition scheme which was proposed by [Lu
et al., 1994]. It creates disjoint fragments for both relations. Hence, it is a sym-
metric partitioning approach. On the other side however, a fragment of one
relation needs to be joined not only with one fragment of the other but – de-
pending on its index number – with a set of fragments. Thus, if this method
is to be parallelised, fragments need to be replicated in order to achieve in-
dependent partial joins. From this point of view, one could also speak of a
fragment-and-replicate approach.

Lu et al. use a spatial rendition which was described in [Hinrichs and Niev-
ergelt, 1983]. An interval [ts, te] is mapped to a point in a two-dimensional grid.
Its coordinates, x and y, are calculated by the equations:

x = ts

y = te − ts

This means

• that an interval starting at time t has its corresponding grid point on the
line x = t,

78

• that an interval ending at time t has its corresponding grid point on the
line x+ y = t, and

• that an interval [ts, te] will intersect all intervals with grid points in the
region bounded by the five lines x = 0, y = 0, x = te, x + y = ts, x+ y =
tmax with tmax being the maximum of the endpoints of all intervals.

The spatial rendition is then divided into m strips: assume that tmin is the mini-
mum of the startpoints of all intervals. Then the time domain between tmin and
tmax is divided into m ranges [t0, t1], (t1, t2], (t2, t3], . . . , (tm−1, tm] with t0 = tmin

and tm = tmax. This creates m strips with the k-th strip being bounded by the
lines x = 0, y = 0, x + y = tk−1 and x + y = tk. Finally, each strip is divided
by lines x = t1, x = t2, . . . , x = tm−1. This creates m·(m+1)

2 fragmentation areas.
Figure 4.13 shows the result of this process for m = 4 and the example that has
been used throughout this chapter. The figure also demonstrates the way in
which the resulting fragments are numbered.

For processing the join R onC Q, a fragment Rk of R has to be joined with a
certain set of fragments ofQ. The members of this set are determined by k. The
latter describes the position of the corresponding fragmentation area on the
grid. This position indicates certain characteristics: for example, fragments5

that are positioned in the upper part of the grid hold tuples whose interval
timestamp is quite long. These tuples are likely to join with many others. In
contrast, short-lived tuples are situated in the lower part of the grid. These are
likely to join with only a few tuples. Intuitively, this means that fragments in
the upper part need to be joined with more fragments than those located in the
lower part of the grid. For the situation in figure 4.13 the necessary combin-
ation of fragments is shown in figure 4.14(a). For a more formal description
of how to calculate these combinations see [Lu et al., 1994]. The example of
figure 4.13, however, has several empty fragments which reduces its matrix of
necessary joins to the one shown in figure 4.14(b).

Figure 4.15 shows the resulting search strategy. It is quite efficient in avoid-
ing unnecessary comparisons in this case. This, however, is partially due to
the fact that the example has only a few long-lived tuples which causes frag-
ments R6, Q6, R7, Q7, Q9, R10, Q10 to be empty. These are all fragments which
are usually involved in many partial joins (see figure 4.14(a)). This reduces

5In this section, we use the term fragment for both, the actual subset of tuples and the frag-
mentation area of the two dimensional grid that determines which tuples become members of
that subset. This is intended to simplify the description and to help the reader rather than to
disturb him/her.

79

the number of necessary partial joins significantly (see figure 4.14(b)). Further-
more we note that tuples from one relation may be loaded sequentially but
tuples from the second relation might require several accesses.

Alternatively, the partial joins can be processed in parallel. This, however,
requires tuples of one relation to be replicated. Assume that this relation is Q.
Consider now the example that we have used throughout the chapter. Regard-
ing the matrix in figure 4.14(b) we note that R5 and R9 are to be joined with
the same set of fragments of Q, namely Q2, Q3, Q4, Q5, Q8. Thus we can pack
R5 and R9 together into one ‘super-fragment’ which is to be joined with those
fragments of Q. This avoids the need to provide both R5 and R9 with a copy
each of those fragments, thus reducing tuple replication. Similarly, R4 and R8

can be packed together. Even R1 and R3 can form a super-fragment as R1 has
to join with a subset of R3’s Q-fragments. This groups the partial joins of fig-
ure 4.14(b) into three6 ‘super-partial joins’. This is illustrated in figure 4.16.

A major problem arises in the case that three or more relations participate
in the join. Then, the structures depicted as matrices in figure 4.14 would have
to be cubic or of higher order. This means that a huge number of fragment
combinations have to be joined in order to compute the global result. For m =
4, for example, there are 70 partial joins for a global two-way join (see matrix
in figure 4.14(a)). For m = 4 and a three-way join, however, there are already
528 partial joins to be computed.

The approach taken by Lu et al. is similar to many that have been used in
the area of spatial join processing. Many spatial join algorithms are based on
transforming an approximation of a spatial object into another domain, and
performing filtering (e.g. in the form of partitioning) in the new domain [Patel
and DeWitt, 1996]. Examples for such algorithms can be found in [Orenstein,
1986], [Orenstein and Manola, 1988] or [Becker et al., 1993].

6This allows the comparison of the resulting situation with those that are illustrated in
figures 4.8 and 4.11.

80

1

5

10

1 5 10 15

15

interval
length

startpoint

10

41 2

3 5

6

7

8

9

timestamp from R

timestamp from Q

Remark:
A timestamp that lies on a vertical line belongs to the left fragment.
A timestamp that lies on a diagonal line belongs to the lower fragment.

Figure 4.13: Spatial rendition and numbering of fragments for the example.

81

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

R1 • • • •
R2 • • • • • •
R3 • • • • • • •
R4 • • • • • •
R5 • • • • • • • •
R6 • • • • • • • • •
R7 • • • •
R8 • • • • • • •
R9 • • • • • • • • •
R10 • • • • • • • • • •

(a) In general, for cases with m = 4.

Q1 Q2 Q3 Q4 Q5 Q8

R1 • •
R3 • • • •
R4 • • •
R5 • • • • •
R8 • • •
R9 • • • • •

(b) For the example of figure 4.15.

Figure 4.14: Partial joins that are to be computed for processing the spatially
partitioned join.

82

1 1 1 2 3 7 8 8 9 9 9

3

3

3

3

4

5

6

8

9

9

9

10

tuples of R

tuples of Q

3 4 6 4 5
5
10

7
9 13 9 11 12 14 14

10
15

1 3

4

5

6

8

5

8

10

10

12

15

15

12

st et

et
st

join results (i.e. successful tuple comparisons)

mis−hits (i.e. unsuccessful tuple comparisons)

1 1 3 1 3 5 5 9 5 5 4 8 8 8

1

1

3

3

3

3

2

5

4

4

8

8

4

fragment no.

fragment no.

timestamp intervals

Figure 4.15: Search strategy for the spatially partitioned temporal join being
processed sequentially. Partial joins are processed as nested loops.

83

1 1 12 3 78 8 9 9 9

tuples of R

tuples of Q

3 4 64 5
5
10

7
9 139 11 12 14 14

10
15

1 1 31 3 5 5 95 5 4 8 8 8

st etfragment no.

et
st

fragment no.

3

1 3

4

1

1

5 82

3

3

3

4

5

6

8

5

3

3

3

3

6 105

5 82

3

3

3

4

5

6

8

5

3

3

3

3

8

9

10

12

4

4

10 124

6 105

9

9

15

15

8

8

8

9

10

12

4

4

10 124

6 105

9

9

15

15

8

8

timestamp intervals

Figure 4.16: Search strategy for the spatially partitioned temporal join being
processed in parallel. Partial joins are processed as nested loops.

84

4.5 A Short Summary

Having discussed several temporal join algorithms and techniques in the last
two sections, we want to compare them in order to summarise their charac-
teristics. We confirm our conclusions by reviewing the situations that were
illustrated in figures 4.2, 4.4, 4.6, 4.8, 4.11, 4.15 and 4.16. Certainly, this con-
siders only one specific example and therefore does not represent a thorough
analysis. Nevertheless, it will give some insights into the characteristics of the
algorithms.

First, we look at the sequential techniques. One significant performance
characteristic then is the total number of tuple comparisons that are performed
by the matching stage of the respective algorithm in order to get the result
tuples. The nested-loop join is still the worst because it performs an exhaust-
ive search. The difference to other methods is not that big as in the case of a
comparable equi-join due to the higher selectivity factor of the temporal inter-
section in comparison to the equality predicate. The join index is still the clear
winner as the join is virtually precomputed; the algorithm only composes the
result. This leads to a minimal number of tuple comparisons7. Although the
example suggests the sort-merge, the improved range partitioning and the spa-
tial partitioning technique to be at equal levels, there is a significant difference
which lies in the partitioning method by which they achieve their performance:

• If the relations are not sorted then the sort-merge might require a possibly
expensive sorting stage prior to the matching stage.

• Range partitioning needs to replicate tuples and imposes therefore an
additional overhead apart from the partitioning effort itself. When pro-
cessed sequentially, the physical replication of tuples can be replaced by
a logical one which might still cause replicated tuple comparisons.

• The spatial partitioning approach does not require replication. However,
it creates fragments that have to be joined not only with one but several
fragments from other relations that participate in the join. This problem
is very severe if there are more than two relations involved.

Hence, the relatively low number of tuple comparisons in the matching stages
of these algorithms are achieved by moving processing effort to a partitioning
stage that precedes the matching. The partitioning differs widely and has its
drawbacks:

7or tuple accesses in this particular case.

85

• sorting – if necessary – is generally more expensive than range or spatial
partitioning,

• range partitioning needs to replicate tuples and imposes an overhead on
the matching stage,

• spatial partitioning requires the matching stage to perform a large number
of partial joins with tuples of one relation being accessed more than once.

Now, we turn to the parallel techniques. Although the fragment-and-replicate
method performs equally with the others in terms of maximum tuple compar-
isons per partial join, there is the replication effort that is significantly higher
in comparison to the other techniques. The partial joins of the fragment-and-
replicate joins are better balanced than those based on symmetric partitioning.
This is no coincidence as there are no constraints on partitioning. Therefore, it
is easy to balance the fragments. The spatially partitioned join performs relat-
ively well for the example. But remember that the example was particularly
nice (see matrix in figure 4.14(b)). And again, in the case of three or more re-
lations participating in the join, there might be a huge number of fragment
combinations that have to be joined in order to compute the global result. This
makes it also much more difficult to combine several partial joins to a kind of
‘super-partial join’, as in figure 4.16 where two of the original partial joins were
respectively combined.

The extent of the replication overhead of the fragment-and-replicate ap-
proach and the problems of spatially partitioned n-way joins for n ≥ 3 makes
the range partitioning approach a possible compromise. In fact, one can expect
its performance to be among the best. Furthermore it is fairly robust, e.g. it
can be easily adapted to process n-way joins for n ≥ 3. Finally, it is a straight-
forward adaption of the equi-join range (hash) partitioning method. Therefore
many equi-join optimisation techniques can be applied, too. However, tuple
replication has to be of concern, as a poor choice of ranges can increase the
replication rate. Optimisation issues for range partitioned temporal joins are
discussed in the following section.

86

4.6 Temporal-Specific Join Optimisation Issues

The discussions of temporal join techniques in sections 4.3 and 4.4 have shown
that many performance related issues are not specific to temporal joins but
similar to the case of the equi-join which is well investigated. Hence, many
well-known optimisation techniques can be applied when processing temporal
joins.

However, the necessary replication of tuples in the case of range parti-
tioned joins is a problem which is specific to temporal joins. As outlined in
section 4.4.1, it produces overheads of various types. Therefore, controlling the

extent of replication has to be a major task of the optimisation process for these joins.

There are two problems that have to be solved:

1. The choice of the ranges, i.e. the partition points on the time line, is a very
delicate one. Consider, for example, figure 4.17 which shows the scen-
ario for our join example when an alternative set of partitioning ranges
is used: more tuples have to be replicated, there are more mis-hits and
the load balance is slightly worse in comparison to the situation in fig-
ure 4.11.
The main part of this thesis will look at this problem. In chapter 5 we
analyse the problem of finding partitioning ranges that minimise the total
number of replicated tuples while preserving a certain maximum num-
ber of intervals per fragment. Afterwards, in chapters 6–10, the prob-
lem is tackled from a practical point of view: we develop and describe
an optimisation process for choosing a ‘good’ partition for processing a
temporal join and show how this process can be efficiently implemented.

2. Query optimisers usually estimate the sizes of join results. This inform-
ation is used for taking optimisation decisions and sometimes also to
provide the user with an estimate of the result size. This might help
him/her to check if his/her query delivers the desired result. If the op-
timiser’s estimate predicts a result size of 1 million rows, for example,
while the user expects only a handful then there is a good reason for the
user to assume that the query might have to be rewritten.
The estimation of final and intermediate join results is already a challen-
ging task because of the nonequi-character of temporal join conditions. It
becomes even more difficult when tuples are replicated: the sizes of the
join fragments and the partial join results cannot be computed by incor-
porating ‘static’ facts – i.e. facts that are known in advance from metadata

87

information such as relation size, number of different attribute values,
distribution of these values (e.g. in form of histograms) etc. – but also on
query evaluation parameters such as the replication of tuples imposed by
the partition ranges.
In chapter 11 we will show a method to estimate temporal join selectivit-
ies. It is based on the same concepts as the optimisation of the partition-
ing process that was motivated in 1.

1 1 1 2 7 8 9 9 9

3

3

3

3

4

5

8

9

9

9

10

3 4 6 4
5
10

7
9 13 11 12 14 14

10
15

1 3

4

5

6

8

5

8

10

10

12

15

15

12

st et

et
st3

5
1
6

75
10 13

3

3

6

8

6 10

These are the ranges of the time domain that were used for creating the fragments.

join results (i.e. successful tuple comparisons)

mis−hits (i.e. unsuccessful tuple comparisons)

timestamp intervals

5
10

fragment 1 of R
[1−5]

fragment 2 of R
[6−9]

8 8 9 9 9
9 11 12 14 14

fragment 3 of R
[10−15]

6

8 10

9

9

9

12

15

15

5 8

fragment 3 of Q
[10−15]

fragment 2 of Q
[6−9]

fragment 1 of Q
[1−5]

Figure 4.17: Search strategy for the improved (range) partitioned temporal join
with different partitioning ranges (compare with figure 4.11).

88

Chapter 5

The Interval Partitioning Problem

5.1 Introduction

In this chapter, we analyse the problem of replication when partitioning a col-
lection of intervals. As we have seen in section 4.4, this problem is relevant for
the temporal join algorithms that are based on explicit partitioning of the data
over the timestamp attribute.

The replication1 of tuples can have an impact on the performance of the
join algorithms in a variety of ways. The exact consequences for the join costs,
however, can only be determined by considering characteristics that are algo-
rithm- or hardware-specific:

• Sequential join algorithms are affected differently than parallel ones.

• Similarly, it will always be a matter of the underlying hardware, e.g. in
the case of a parallel join:

– Is it a shared-memory architecture that might not require the tuples
to be replicated physically but only logically or is it a shared-nothing
machine which will need the tuples to be physically replicated?

– Are there any specific hardware components that improve certain
communication patterns (e.g. fast broadcasts) that will be particu-
larly useful for the respective algorithm?

This means that a partition that minimises the costs for one particular join al-
gorithm running on one particular hardware might not do so well when ap-
plied to a different algorithm, possibly running on a different hardware. In

1Please remember that by this we mean a logical replication which might, but does not
necessarily translate into a physical replication. Soo et al.’s join algorithm, for example, does
not physically replicate tuples although several tuples are logically replicated because they are
present in more than one fragment of the relation (see section 4.4.4).

89

this chapter, we want to avoid such situations and therefore we adopt a more
general view. A partition is to be considered as optimal if it keeps fragments’
sizes below a maximum value, while minimising the number of intervals that
overlap the breakpoints. This does not necessarily minimise the join proces-
sing costs. Nevertheless, it will be beneficial for every algorithm running on any

piece of homogeneous2 hardware to have such an optimal partition.
The problem of finding such optimal partitions for interval data is called

the interval partitioning problem (IP). This is a rather tricky problem as it not
only requires to choose appropriate breakpoints but also makes it delicate to
determine the number of breakpoints. In fact, we have encountered a dilemma:
in order to reduce the number of overlapping intervals one has to reduce the
number of breakpoints but in order to increase the number m of partial joins
in (3.6) – e.g. for increasing the degree of parallelism – one has to increase the
number of breakpoints. Thus there are two contrary effects associated with
interval partitioning; note that the first one does not exist in the case of an
equi-join. This is a manifestation of the min-max dilemma [Zhou, 1993]. We
therefore need an additional input parameter. A useful constraint is to form
fragments with less than a certain number of intervals. Such a number, for
example, could be implied by the amount of memory or the disk space that is
available.

In this chapter, we will formally investigate the complexity of IP, i.e. we
will check whether a solution for IP can be found in polynomial time and –
if so – we would like to have an algorithm that can compute this solution.
The remainder of this chapter is structured like this: Section 5.2 introduces the
notation that we are going to use throughout the chapter and the remaining
parts of the thesis. In section 5.3, IP is defined formally. Section 5.4 looks at
the search space of the problem. The main result will be that optimal par-
titions can be found within the set of interval endpoints. In section 5.5, we
describe the algorithm IP-opt that computes solutions for IP in polynomial
time. Finally, section 5.6 shows an alternative approach by relating IP to a
graph-theoretic problem, namely the problem of sequential graph partitioning
(SGP). This leads to a similar result as manifested by IP-opt . However, the
connection between IP and graph partitioning (GP) might prove to be quite
fruitful as the many complexity and algorithmic results about GP might be
applied to variations of IP.

2A heterogeneous cluster of processors, e.g. a network of workstations, will require a spe-
cific load balancing approach that creates higher loads for more powerful nodes and smaller
loads for less powerful ones.

90

5.2 Preliminaries

Before formally investigating the complexity of the interval partitioning prob-
lem, we introduce the notation that is used in the remainder of the chapter.

• In this chapter, we adopt a general view of the interval partitioning prob-
lem. Therefore we partition collections of intervals rather than temporal
relations. Later, in the context of temporal join processing, we regard a
temporal relation as a collection of intervals by neglecting all attribute
values other than the interval data.

To simplify the overall notation, we will use letters R and Q or expres-
sions like R ∪ Q to refer to collections of intervals, having in mind that
these originate in temporal relations R, Q orR∪Q. Although being form-
ally incorrect we think that this improves the readability and avoids con-
fusing the reader. Similarly, we will use r and q to refer to tuples and

intervals depending on the actual context.

Formally, a collection of intervals is denoted by

〈r1, . . . , rn〉

The difference between a set and a collection is that an element can ap-
pear multiply in a collection but only once in a set. The cardinality is
defined accordingly. In summary, this means that if 〈r1, . . . , rn〉 is the col-
lection of intervals resulting from a temporal relation R then

|〈r1, . . . , rn〉| = n = |R|

• Intervals are defined over a certain domain. For our purposes, we can as-
sume the set of integers to be the domain with the symbolic infimum and
supremum values −∞ and +∞. We assume that there is a total ordering
defined on the domain. As outlined in chapter 2, the set of integers is
a reasonable representation of time for our purposes. If t is a timepoint
then we refer to its predecessor by t− 1 and to its successor by t+ 1.

• Intervals have the notations that have been introduced in section 2.2; the
two that are relevant here are [ts, te] and (ts, te] in which ts and te are
timepoints/instants. In that sense, the intervals comprise all instances
between and including the start- and endpoints in the case of [ts, te] and
all instances between the start- and endpoints, excluding the start- but
including the endpoint in case of (ts, te]:

91

[ts, te] = {x : ts ≤ x ≤ te}

(ts, te] = {x : ts < x ≤ te}

Please see section 2.2 for a more detailed discussion of this notation. We
use the first type in the collection(s) of intervals that are to be partitioned
and the second type for the partitioning ranges (see below).

• The range T (R) of a collection R of intervals is the part of the domain
covered by the intervals in R; it is formally defined as

T (R) =
⋃

[ts,te]∈R

[ts, te]

= {t : t is contained in some r ∈ R}

We will refer to the minimum of T (R) as tmin and to the maximum as
tmax. The collection to which tmin and tmax refer will always be obvious
from the context.

• The span L(R) of a collection R of intervals is defined by

L(R) = [tmin, tmax]

The span may contain parts of the domain that are not covered by any
interval and are therefore not included in the range T (R).

• The sets of interval startpoints, S(R), and endpoints, E(R), are defined
by

S(R) = {ts : ∃te ∈ T (R) such that [ts, te] ∈ R}
E(R) = {te : ∃ts ∈ T (R) such that [ts, te] ∈ R}

• A partition P is an ordered3 set

{p1, . . . , pm−1}

of breakpoints that divide the span and range into m segments or partition

ranges (pk−1, pk] for k = 1, . . . ,m with p0 and pm being defined appropri-
ately: suitable values, for example, are

tmin − 1 or −∞
3As a slight abuse of set theory, we require some sets to be ordered. This is for naming

purposes only and simplifies the notation in general. Therefore we refrain from introducing
separate brackets and operator symbols to distinguish between conventional and ordered sets
as this would probably confuse the reader more than our slightly abusive notation.

92

for p0 and
tmax or +∞

for pm. We do not consider p0 and pm to be part of a partition P for two
reasons: (a) they can be the same for all possible partitions and (b) they
do not actually influence the performance characteristics of P as we will
see later. The difficult choice is to determine the p1, . . . , pm−1 and this is
our main concern.

• In order to calculate the impacts of a partition, we use the following func-
tions which are assumed to be defined on the entire set of integers al-
though non-zero values only occur for t ∈ L(R):

sR(t) = number of intervals in R that start at point t = |〈r ∈ R : r.ts = t〉|
eR(t) = number of intervals in R that end at point t = |〈r ∈ R : r.te = t〉|
iR(t) = number of intervals in R that include point t = |〈r ∈ R : r.ts ≤ t ≤ r.te〉|
oR(t) = number of intervals in R that overlap point t = |〈r ∈ R : r.ts ≤ t < r.te〉|

(i.e. they include t but do not end at t)

The functions sR, eR, iR, oR will prove to be quite useful for demonstrating a
variety of properties. Actually, each of them can be expressed by using two of
the others. Their relationships can be derived from the three basic properties
that are obvious from the definition of sR, eR, iR and oR:

oR(t) = iR(t)− eR(t) (5.1)

iR(t) = sR(t) + oR(t− 1) (5.2)

and

sR(t) = eR(t) = iR(t) = oR(t) = 0 for t < tmin and t > tmax (5.3)

Equation (5.1) reflects the fact that the intervals that overlap t are those that
include t apart from those that end at t. Equation (5.2) considers that intervals
that include tmust either start at t – these are counted by sR(t) – or have started
at t−1 or before without ending at t−1 – these are counted by oR(t−1). Finally,
(5.3) is rather trivial as it indicates that nothing goes on outside the range T (R).

If at least two of the functions sR, eR, iR, oR are known then we can compute
the missing ones by using equations (5.1), (5.2) and (5.3). Figure 5.1 shows the
equations that can be derived. The case of having the values sR(t) and eR(t) –
this corresponds to figure 5.1(a) – is a little bit tricky because the equations are
recursive: Replacing iR(t) in (5.1) by using (5.2) delivers

oR(t) = oR(t− 1) + sR(t)− eR(t) (5.4)

93

which works out to be

oR(tmin) = sR(tmin)− eR(tmin) (5.5)

as we can derive oR(tmin − 1) = 0 from (5.3). Using (5.5) as a starting point,
subsequent values can be calculated by applying (5.2) or (5.4) respectively.

The remaining equations shown in figure 5.1 result from algebraic trans-
formations and combinations of equations (5.1) and (5.2).

Known Values: sR(t), eR(t) for all t

oR(tmin) = sR(tmin)− eR(tmin)
oR(t) = oR(t − 1) + sR(t)− eR(t)
iR(t) = sR(t) + oR(t − 1)

(a)

Known Values: sR(t), oR(t) for all t

eR(t) = sR(t) + oR(t − 1)− oR(t)
iR(t) = sR(t) + oR(t − 1)

(b)

Known Values: sR(t), iR(t) for all t

eR(t) = sR(t) + iR(t) − iR(t + 1)
oR(t) = iR(t + 1)− sR(t+ 1)

(c)

Known Values: eR(t), oR(t) for all t

sR(t) = oR(t)− oR(t − 1) + eR(t)
iR(t) = oR(t) + eR(t)

(d)

Known Values: eR(t), iR(t) for all t

sR(t) = iR(t)− iR(t− 1) + eR(t− 1)
oR(t) = iR(t)− eR(t)

(e)

Known Values: oR(t), iR(t) for all t

sR(t) = iR(t) − oR(t− 1)
eR(t) = iR(t) − oR(t)

(f)

Figure 5.1: Relationships between sR, eR, oR and iR.

94

5.3 Problem Definition

We can now formally define the interval partitioning (IP) problem. An instance
of IP consists of a collection R of intervals and a limit X for the maximum
number of intervals allowed in a partition fragment. The reason why we have
to allow collections rather than sets is the following: In a temporal relation,
for example, two tuples may be distinct yet but can have the same timestamp
interval. In the partitioning process it might be necessary to count every tuple
but actually neglect all attribute values apart from the timestamp. Intervals
that originate from one or more temporal relations can therefore appear more
than once and it is important to know how many times.

Figure 5.2 shows an example of such a situation using a simple, uniform
partition of the time domain. There are twenty intervals – represented as bold
bars – and a uniform partition of the time line that goes from 0 to 20. The break-
points – 5, 10 and 15 in this case – are shown by vertical lines. The breakpoints
themselves belong to the respective left fragment4. The figure then gives the
resulting loads of the fragments in circles which add up to a total of 39. This
means that the partitioning process caused 19 overlaps, i.e. 19 times intervals
cross breakpoint lines.

0 5 10 15 20

8
7 3 9 sum = 19

10 1110

Uniform Partition

overlaps:

time line

Figure 5.2: A collection of intervals that has been uniformly partitioned.

The goal is now to find an integer m and a partition P = {p1, . . . , pm−1} of the
span L(R). m can hold any suitable value. The intervals of R are partitioned
such that r ∈ R is put into a fragment Rk if and only if r intersects with the

4Therefore, an interval falls into both, the left and the right fragment if it starts at the break-
point.

95

partition range (pk−1, pk] that corresponds to Rk (k = 1, . . . ,m). There are two
constraints for an optimal P :

1. The total numbers of intervals that overlap the partition points p1, . . . ,
pm−1 is minimal.

2. No Rk can hold more than X intervals (k = 1, . . . ,m).

The definition is summarised in figure 5.3.

Definition: Interval Partitioning – IP

Instance: ip(R,X)

• A collection R of intervals 〈r1, . . . , rN 〉,

• a positive numberX.

Question:
Is there a partition P = {p1, . . . , pm−1} of R with pk−1 < pk for k =
2, 3, . . . ,m− 1 that minimises ∑

p∈P
oR(p) (5.6)

such that

|Rk| ≤ X (5.7)

for all k = 1, . . . ,m where

Rk = 〈r ∈ R : [r.ts, r.te] ∩ (pk−1, pk] 6= ∅〉 ?

Figure 5.3: Definition of IP

Please note the following: the number of intervals within a fragmentRk can
be calculated from the value of the functions sR and oR. Intervals that intersect
with the partition range (pk−1, pk] either

• start within the partition range, i.e. pk−1 < r.ts ≤ pk; the number of inter-
vals with this property is

pk∑
t=pk−1+1

sR(t)

• or they have started at pk−1 or before and overlap pk−1; the number of
intervals that have this property is

oR(pk−1)

96

Consequently, the number of intervals falling into Rk is the sum of these two
figures. This is summarised in the following

Lemma 1 Given a collection R of intervals and a partition P = {p1, . . . , pm−1} is

given by the number of intervals falling into a fragment Rk = 〈r ∈ R : [r.ts, r.te] ∩
(pi−1, pi] 6= ∅〉 by the equation

|Rk| = oR(pk−1) +
pk∑

t=pk−1+1

sR(t) (5.8)

Proof:

See explanation above. �

5.4 Search Space

Looking at the scenario in figure 5.2, we can see that one major problem of the
uniform partition is that its breakpoints go through the interior part of a large
number of intervals. In fact, there is no breakpoint which coincides with an
interval start- or endpoint. Intuitively, we can move the breakpoints slightly
to the left or right to the next point on which one or more ‘broken’ intervals
begin or end. This measure possibly reduces but at least does not increase
the number of overlaps. This observation suggests that an optimal partition
should have its breakpoints within S(R)∪E(R). The remainder of this section
shows that this is in fact true. We will even show that optimal partitions can
be found within E(R).

Assume that there is an optimal partition P = {p1, . . . , pm−1} for some
instance ip(R,X) of IP. Furthermore assume that P has a breakpoint pk that is
not an endpoint of some interval in R, i.e. pk 6∈ E(R). We will show that P can
be converted into a partition that has only breakpoints within E(R) and is still
optimal in the sense of IP. To that end, breakpoints such as pk can be moved to
the nearest endpoint to the left. See figure 5.4 for an example that shows the
benefit of this measure. First, we show that such an endpoint always exists.

Lemma 2 Let ip(R,X) be an instance of IP and P = {p1, . . . , pm−1} with pk−1 < pk

for k = 2, 3, . . . ,m− 1 an optimal partition according to IP. Then there is always an

e ∈ E(R) such that

tmin ≤ e ≤ p1

97

Proof:

We prove the lemma by contradiction.
Assume that there is an optimal partition P such that there is no e ∈ E(R) with
tmin ≤ e ≤ p1, i.e. no interval ends within the first partition range and thus
also intersects with the second one. This means that every interval in the first
fragmentR1 – and there must be some because P ⊆ T (R) – must also be in the
second fragmentR2, i.e.

R1 ⊆ R2 with R1 6= ∅ (∗)

This means also that
oR(p1) > 0 (∗∗)

Now, consider the partition P′ = {p2, . . . , pm−1}. It creates the fragments

R1 ∪R2
(∗)
= R2

R3

R4

. . .

Rm

with |Rk| ≤ X for all k = 2, . . . ,m. Thus P ′ satisfies constraint (5.7) of IP.
Furthermore we have∑

p′∈P ′
oR(p′) =

m−1∑
k=2

oR(pk)
(∗∗)
<

m−1∑
k=1

oR(pk) =
∑
p∈P

oR(p)

Thus P is not optimal in the sense of IP. This contradicts the initial assumption
and therefore the lemma holds. �

Now, we will refer to the nearest endpoint to the left of any point t by left(t). It
is defined as

left(t) = max{e ∈ E(R) ∪ {tmin} : e ≤ t}

Because of lemma 2 this is reduced to

left(p) = max{e ∈ E(R) : e ≤ p} (5.9)

if p is a breakpoint of an optimal partition.
The next lemma will show how an optimal partition P ⊆ T (R) can be sub-

sequently converted into a partition P̄ which is (a) optimal for the same in-
stance of IP and (b) consists only of breakpoints that are endpoints of intervals
of R. The lemma assumes that the leftmost breakpoint pk ∈ P which is not an
endpoint is converted first.

98

0 20

overlaps:

time line

3 9 11

5 610 11
5 3 5 sum = 13

Figure 5.4: Moving breakpoints to the nearest endpoints to the left in case of
the example of figure 5.2.

Lemma 3 If there is an instance ip(R,X) of IP and a partition

P = {p1, . . . , pk−1, pk, pk+1, . . . , pm−1} ⊆ T (R)

with pk−1 < pk for all k = 2, . . . ,m− 1 that satisfies the constraints (5.6) and (5.7) of
IP then the partition

P̄ = {p1, . . . , pk−1, left(pk), pk+1, . . . , pm−1}

for any pk ∈ P with {p1, . . . , pk−1} ⊆ E(R) also satisfies these constraints.

Proof:

If pk ∈ E(R) then
pk = left(pk)

according to (5.9). Thus P̄ = P and the lemma holds.

In the following we assume that pk 6∈ E(R) and therefore that pk > left(pk).
Because of {p1, . . . , pk−1} ⊆ E(R) we also know that pk−1 ≤ left(pk).

From pk 6∈ E(R) and the definition (5.9) of left we can conclude that

eR(t) = 0 for all left(pk) < t ≤ pk (∗)

From (5.1) and (5.2) we get

oR(t− 1) = oR(t)− sR(t) + eR(t)

for all t in the domain. But for the t with left(pk) < t ≤ pk this works out to be

oR(t− 1) = oR(t)− sR(t) (∗∗)

99

because of (∗). But (∗∗) implies that

oR(left(pk)) = oR(left(pk) + 1)− sR(left(pk) + 1)

= oR(left(pk) + 2)− sR(left(pk) + 1)− sR(left(pk) + 2)

= · · ·

= oR(left(pk) + ∆p)−
∆p∑
j=1

sR(left(pk) + j)

with left(pk) < left(pk) + ∆p ≤ pk. In particular, i.e. for left(pk) + ∆p = pk, this
means that

oR(left(pk)) = oR(pk)−
pk∑

t=left(pk)+1

sR(t) (∗∗∗)

and we can conclude that

oR(left(pk)) ≤ oR(pk)

But this means that ∑
p̄∈P̄

oR(p̄) ≤
∑
p∈P

oR(p)

i.e. that P̄ satisfies constraint (5.6)5.
Now we look at constraint (5.7). Let us refer to the fragments created by P

as R1, . . . , Rm and to those created by P̄ as R̄1, . . . , R̄m. Trivially, it is

R̄j = Rj

for all j = 1, . . . , k − 1, k + 2, . . . ,m− 1 and therefore also

|R̄j | = |Rj| ≤ X

for those j as P satisfies (5.7). Thus we need to look at the sizes of the frag-
ments R̄k and R̄k+1. These can be derived from the sizes of Rk and Rk+1 in the
following way using the lemma 1:

|Rk| = oR(pk−1) +
pk∑

t=pk−1+1

sR(t)

= oR(pk−1) +
left(pk)∑

t=pk−1+1

sR(t) +
pk∑

t=left(pk)+1

sR(t)

≥ oR(pk−1) +
left(pk)∑

t=pk−1+1

sR(t)

= |R̄k|
5Later, after having proved that P̄ also satisfies the second constraint of IP, we can conclude

that the two sums are equal; otherwise P would not be a minimising partition as required by
the lemma.

100

Thus it is |R̄k| ≤ |Rk| ≤ X. Again, we can conclude later that |R̄k| = |Rk|
because otherwise P would not be a minimising partition. Now, we look at
the (k + 1)-th fragments:

|Rk+1| = oR(pk) +
pk+1∑
t=pk+1

sR(t)

(∗∗∗)
= oR(left(pk)) +

pk∑
t=left(pk)+1

sR(t) +
pk+1∑
t=pk+1

sR(t)

= oR(left(pk)) +
pk+1∑

t=left(pk)+1

sR(t)

= |R̄k+1|

Thus it is |R̄k+1| = |Rk+1| ≤ X. Therefore P̄ also satisfies constraint (5.7). �

Lemma 3 can now be used to subsequently convert an optimal partition P

that has breakpoints that are no interval endpoints into one that is at least as
good and that has only breakpoints within E(R). Knowing this, the search
for partitions that satisfy the IP-constraints can be restricted to a search within
E(R). This is expressed in the following

Theorem 1 If there is an instance ip(R,X) of IP and a partition P ⊆ T (R) that
satisfies the constraints of IP then there is also a partition P̄ ⊆ E(R) that satisfies

these constraints.

Proof:

Apply the transformation discussed in lemma 3 subsequently to P until there
are no more breakpoints that are not members ofE(R). The result is a partition
P̄ ⊆ E(R). �

The significance of this theorem is that we can now restrict the search for an
optimal partition to the set of interval endpoints which is finite:

|E(R)| ≤ |R|

This also relates the complexity of the problem to the number of intervals and
not to the length of the span.

5.5 Optimal Partitioning

In this section, we will give an algorithm that computes an optimal partition
for an instance of IP if such a partition exists. We recall that no optimal par-

101

tition exists in the case that there is no partition that satisfies constraint (5.7)
of IP. Section 5.5.1 describes the algorithm IP-opt . Section 5.5.2 shows how
IP-opt works for the example of figures 5.2 and 5.4. Finally, in section 5.5.3,
we prove that IP-opt is correct.

5.5.1 Algorithm for Optimal Partitioning

A dynamic programming approach can be used for computing an optimal
solution for IP if there is such. An optimal partition can be found amongst
the set of endpoints as we have seen from theorem 1 in the previous section.
We will refer to the elements in the set of endpoints as q1, . . . , qn with qi < qi+1

for all i = 1, . . . , n− 1.
We first describe the algorithm IP-opt informally. It starts with q1 and

goes through to qn. For each qi it will hold the necessary information for an
optimal partition for the span ending at qi, i.e. for the segment [tmin, qi], with
all intervals in R intersecting with the partial span being considered. The al-
gorithm computes two items of information for each qi:

• c(qi) = the cumulative total number of overlaps for the selected optimal
partition up to qi,

• pred (qi) = qj if qj is the previous breakpoint that led to this minimum.

A dummy point q0 with q0 < q1 is used to provide a value for pred (q1). This is
not actually necessary but improves the readability of the algorithm and later
the correctness proof. The expression load (qj, qi) with qj < qi gives the number
of intervals of R that fall into a fragment with partition range (qj, qi], i.e.

load (qj, qi) = |〈r ∈ R : [r.ts, r.te] ∩ (qj, qi] 6= ∅〉|

= oR(qj) +
qi∑

t=qj+1

sR(t) see lemma 1 (5.10)

Finally, the optimal partition – if there is one – is given by the sequence

pred (qn), pred (pred (qn)), . . .

which ends when it produces q0 as a breakpoint.
There is no optimal partition if – for any qi – there is no qj with j < i

such that the number of intervals intersecting with the segment (qj, qi], i.e.
load (qj, qi), is less than the maximum load of X intervals. The loads involving

102

the dummy point are defined as

load (q0, q1) = 0

load (q0, qi) = load (q1, qi) for i = 2, . . . , n

The algorithm then looks as shown in figure 5.5.

Algorithm IP-opt

• c(q0) = 0

• for i = 1 to n do

◦ J = {j : 0 ≤ j < i ∧ load (qj, qi) ≤ X}
◦ if J = ∅ then

output “No optimal partition.” ; stop.

◦ c(qi) = min
j∈J
{oR(qj) + c(qj)}

Let pred (qi) = qj for the minimising qj.
If there is more than one qualifying qj then choose the smal-
lest.

/* output of breakpoints in descending order */

• p = qn

• while p ≥ q1 do

◦ p = pred (p)

◦ output p

Figure 5.5: The algorithm IP-opt for computing an optimal partition for an
instance of IP.

The run time complexity is O(n2) as the min-function is O(n). Computing
the values for the load -function isO(n2) and can be done beforehand. Similarly,
computing the values for oR is O(n).

5.5.2 Example

Table 5.1 shows the values within IP-opt for the example shown in figures 5.2
and 5.4. The set of endpoints comprises the values found in the second column
of the table; it is assumed that q0 = −1. The table is calculated by IP-opt

starting at the top with q1 = 3 and proceeding to q10 = 20. The third column
contains the value of pred (qi) that leads to the minimum partition costs c(qi)

103

that are shown in the fourth column. An optimal partition for the instance of
IP can be derived from the table by the sequence

pred (20) = 17, pred 2(20) = 9, pred 3(20) = 6

We note that c(20) corresponds to the minimum number of overlaps for this in-
stance of IP. The optimal partition derived from the table is shown in figure 5.6.

i qi pred (qi) c(qi)
1 3 -1 0
2 6 -1 0
3 8 -1 0
4 9 6 2
5 11 6 2
6 16 9 5
7 17 9 5
8 18 17 9
9 19 17 9

10 20 17 9

Table 5.1: Values within IP-opt for the example in figures 5.2 and 5.4.

0 206 17

Optimal Partition

8 105

2 4 sum = 9

time line

overlaps:
6

3

9

Figure 5.6: Optimal partition for the intervals of figures 5.2 and 5.4.

5.5.3 Correctness

In this section, we show that IP-opt is correct by proving the following

Theorem 2 The algorithm IP-opt delivers an optimal partition for an instance of

IP if there is a partition that satisfies (5.7).

104

Proof:

The proof is by induction over the loop variable i for which

c(qi) =
|Pi|∑
k=1

oR(pred k(qi)) (5.11)

is the invariant of the for-loop in IP-opt where

pred k(qi) = pred (pred (. . .pred︸ ︷︷ ︸
k

(qi) . . .))

and

Pi = { pred k(qi) : k ≥ 1 ∧ pred k(qi) ≥ q1}

Using the facts

• that c(qi) is always forced to be minimal through the min function

• and that Pi is the optimal partition for the segment [tmin, qi]

we can conclude that c(qn) is the number of overlaps in an optimal partition as
specified by IP and that an optimal partition is given by Pn.

If there is no partition that satisfies constraint (5.7) then there must be some
qi such that load (qj, qi) > X for all j < i. This causes the set J to be empty and
thus the algorithm to report this fact and then to stop. In the remainder of the
proof we assume that there is an optimal partition and consequently that J is
non-empty for all i = 1, . . . , n.

Base case: i = 1
The algorithm provides

J = {0} ⇒ c(q1) = min{0} = 0 (∗)

with pred (q1) = q0. ThusP1 = ∅which causes the sum in (5.11) to evaluate
to 0 which matches with (∗). Thus the assumption holds.

Hypothesis: Assume that (5.11) holds for all i ≤ x (∗∗).

Inductive Step: i = x+ 1
Let qj = pred (qi) = pred (qx+1) be the minimising point with j < i = x+ 1

105

as guaranteed by the algorithm. Then

c(qx+1) = oR(qj) + c(qj)

(∗∗)
= oR(qj) +

|Pj |∑
k=1

oR(pred k(qj))

= oR(pred (qx+1)) +
|Pj |+1∑
k=2

oR(pred k(qx+1))

=
|Px+1|∑
k=1

oR(pred k(qx+1))

Therefore (5.11) holds for i = x+ 1.

�

5.6 Alternative: Reducing IP to a Graph-Theoretic
Problem

The instances of the interval partitioning problem can be reduced to instances
of a similar graph-theoretic problem, namely the problem of sequential graph
partitioning (SGP). SGP was tackled at the beginning of the 1970s when people
where looking for optimal code segmentations and paginations. A polynomial-
time algorithm that computes optimal solutions for SGP was presented in [Ker-
nighan, 1971]. For the purpose of interval partitioning we have to use a minor
variation of SGP which does not change its complexity.

Being able to map instances of IP to instances of graph partitioning (GP)
has another advantage: GP and its variations are well investigated and there
is a variety of algorithmic and complexity results available. GP has proven to
be very sensitive, even to minor changes in the problem constraints. Arbit-
rary GP, for example, is NP-complete [Hyafil and Rivest, 1973] whereas SGP
is polynomial. Variations of IP probably behave similarly. Reducing them to a
GP problem will enable us to benefit from a huge collection of algorithms and
complexity results that have already been obtained.

The remainder of this section is structured like this: Section 5.6.1 introduces
SGP in the form in which it is required for solving IP. Then, in section 5.6.2, we
show how instances of IP can be reduced to instances of SGP. This step is essen-
tial as it opens the way towards finding optimal solutions for IP. Section 5.6.3

106

gives an example by reducing the example of figures 5.2, 5.4 and 5.6 to an in-
stance of SGP. Section 5.6.4 formally proves that the reduction that we derived
is correct. In section 5.6.5 the algorithm SGP-opt is presented which com-
putes optimal partitions for instances of SGP. Section 5.6.6 gives an example
that shows how SGP-opt works. Finally, we derive the runtime complexity of
SGP-opt in section 5.6.7.

5.6.1 Sequential Graph Partitioning

An instance of the sequential graph partitioning (SGP) problem consists of a
graph G = (V,A) and a non-negative integer X that is used as the limit for
each partition fragment. There is a total ordering ≺ defined on the vertex set
V = {v1, . . . , vN} such that vi ≺ vj for i < j. A weight w(v) is assigned to each
vertex v ∈ V and a length l(vi, vj) to each edge (vi, vj) ∈ A . The goal is to par-
tition V into subsets V1, . . . , Vm with each Vk holding only consecutive vertices
– thus the name sequential graph partitioning in contrast to traditional graph
partitioning which is NP-complete [Hyafil and Rivest, 1973]. The optimality
constraints are that partitioning

• minimises the sum of the lengths of the edges that start and end in dif-
ferent partition fragments and

• leaves the ‘weight’ of each fragment Vk less than or equal to X.

The ‘weight’ of a fragment Vk is usually the sum of the weights w(v) for the v ∈
Vk. For our purpose, however, we have to add the lengths of incoming edges to
this weight. This is a minor change to the problem tackled in [Kernighan, 1971]
and does not change the complexity of the problem. Figure 5.7 summarises the
definition of the SGP problem.

In section 5.6.3, we will give an example of SGP, actually the instance of
SGP that results from reducing the IP example of figures 5.2, 5.4 and 5.6 to an
SGP problem.

5.6.2 Reducing IP to SGP

Reducing instances of IP to instances of SGP is based on the following obser-
vations:

1. Theorem 1 showed that an optimal partition for an instance of IP can
be found within the set E(R) of interval endpoints. Therefore we can

107

Definition: Sequential Graph Partitioning – SGP

Instance: sgp(G,X)

• An undirected graph G = (V,A) with a total ordering ≺ de-
fined on the vertex set

V = {v1, . . . , vN}

such that vi ≺ vj for all i < j. A ⊆ V × V is the set of edges.
For convenience we assume an additional dummy vertex v0
and that i < j for all (vi, vj) ∈ A.

• A function w : V → {0, 1, 2, . . . } assigning a weight w(v) to
each vertex v ∈ V ,

• a function l : A → {0, 1, 2, . . . } assigning a length l(vi, vj) to
each edge (vi, vj) ∈ A and

• a positive number X.

Question:
Is there a partition of V into subsets V1, . . . , Vm of consecutive ver-
tices, i.e.

Vk = {v(p̃k−1+1), . . . , vp̃k}
imposed by a set P of partition vertices {vp̃1, . . . , vp̃m−1} and p̃0 =
0, p̃m = N which minimises ∑

a∈A′
l(a) (5.12)

such that ∑
v∈Vk

w(v) +
∑
a∈Ak

l(a) ≤ X (5.13)

for k = 1, . . . ,m ?
The sets A1, . . . , Am are defined as

Ak = {(u, v) ∈ A : u ∈ Vj ∧ v ∈ Vk ∧ j < k}

for k = 1, . . . ,m. A′ is the union of these

A′ = {(u, v) ∈ A : u ∈ Vi ∧ v ∈ Vj ∧ i 6= j}

Figure 5.7: Definition of SGP

108

certainly find an optimal partition to be found within the set S(R)∪E(R)
of interval start- and endpoints6.

2. IP wants to minimise the total number of intervals crossing the partition
breakpoints pk (k = 1, . . . ,m− 1).

3. Lemma 1 says that the number of intervals in a fragmentRk is the number
of intervals that have their startpoint in the partition range (pk−1, pk] plus
the number of intervals that overlap the left border pk−1.

From the first observation we can conclude that we need only the start- and
endpoints from a collection R of intervals. We choose the (ordered) set of start-
and endpoints as the (ordered) vertex set V of a graph G = (V,A). There
are edges only between adjacent vertices. The length of an edge is the num-
ber of intervals that include the corresponding points. The optimal solution
for SGP will try to minimise the sum of edge lengths that are cut by partition
boundaries. This translates into minimising the number of intervals that over-
lap partition boundaries. This is exactly what is intended by IP (see second
observation).

Finally, we assign each vertex v the number of intervals that start at the
point that corresponds to v as its weight. The sum of vertex weights in a frag-
ment Vk for SGP is then equivalent to the number of intervals starting at the
points that correspond to the vertices in Vk. According to the third observa-
tion we need to add the number of intervals that overlap the left border. This
number is matched by the lengths of the edge that enters Vk from Vk−1. Fig-
ure 5.8 summarises a reduction M of an instance ip(R,X) of IP to an instance
sgp(G,X) of SGP.

5.6.3 Example

We now show how the instance of IP that was presented in figures 5.2, 5.4 and
5.6 is reduced to an instance of SGP.

We have already noted that not every point of the time range {1, 2, . . . , 20}
is a start- or an endpoint for some interval. The graph comprises only 15
timepoints / vertices. By carefully looking at figure 5.2 we can see that there
are three intervals starting at timepoint 0, two at point 2, etc. which gives
the respective vertex weights w(0) = 3, w(2) = 2, By definition, there
are only edges with relevant lengths between adjacent vertices. We therefore

6The reason for including S(R) is convenience. In principle, the reduction that is presented
later in this section can be modified to concentrate on the endpoints setE(R) only.

109

Definition: M : ip(R,X)→ sgp(G,X)

• X remains unchanged for sgp(G,X).

• The graph G = (V,A) is derived in the following way:

V = S(R) ∪ E(R) = {v1, . . . , vN}

with vi < vi+1 for i = 1, . . . , N − 1 and

A = {(vi, vi+1) : there is an r ∈ R including vi and vi+1}

• Define the the vertex weights:

w(vi) = number of intervals starting at vi

• Define the the edge weights:

l(vi, vj) = number of intervals including vi and vj

for j = i+ 1; for convenience we define l(vi, vj) = 0 for j 6= i+ 1.

Figure 5.8: The reduction of an instance of IP to one of SGP.

110

have to look at adjacent timepoints and count the number of intervals that
include these points: there are three intervals including points 0 and 2, five
intervals including points 2 and 3, etc. which gives the respective edge lengths
l(0, 2) = 3, l(2, 3) = 5, Figure 5.9 shows the resulting graph.

20191817161412

11986432

3 2 1 2 0 1 2 3

2 2 0 0 2 0 0

3 5 5 7 2 3

5

7 9 5 4 5 4

30

Figure 5.9: Result of reducing the collection of intervals of figures 5.2, 5.4
and 5.6 to a graph.

5.6.4 Correctness

We now prove formally that the reduction that has been presented in the pre-
vious section delivers an optimal solution for IP.

Theorem 3 Using the reduction M described in figure 5.8, each partition P for an

instance

sgp(G,X) = M(ip(R,X))

of SGP that satisfies the constraints of SGP satisfies also the constraints of the IP
problem for the instance ip(R,X) of IP.

Proof:

The optimal partition P of sgp(G,X) = M(ip(R,X)) being also an optimal
partition for ip(R,X) means that

pk = vp̃k (5.14)

for k = 1, . . . ,m− 1. We show that the constraints imposed by IP and SGP are
equivalent, i.e. that (5.12) and (5.13) holds for sgp(G,X) exactly when (5.6) and
(5.7) holds for ip(R,X). For this purpose we prove the following relationships:∑

p∈P
oR(p) =

∑
a∈A′

l(a) (5.15)

|Rk| =
∑
v∈Vk

w(v) +
∑
a∈Ak

l(a) for k = 1, . . . ,m (5.16)

111

Proof of (5.15)

As a first step we look at how oR(p) translates into an expression based on
the lengths of edges in the graph. Let next(p) be the closest start- or endpoint
bigger than p. We construct:

oR(p) = |〈r ∈ R : r.ts ≤ p < r.te〉|
= number of intervals that include p but do not end at p

= number of intervals that include p and p + 1

= number of intervals that include p and next(p)

= l(vp̃, next(vp̃))

This means that ∑
p∈P

oR(p) =
∑
p∈P

l(vp̃, next(vp̃)) (∗)

We now have to prove that for each p ∈ P there is a (vp̃, next(vp̃)) ∈ A′ and vice
versa, i.e.

p ∈ P ↔ (vp̃, next(vp̃)) ∈ A′ (∗∗)

But (∗∗) follows from

A′ = {(u, v) ∈ A : u ∈ Vi ∧ v ∈ Vj ∧ i 6= j}
= {(vp̃, vp̃+1) : vp̃ ∈ P}
= {(vp̃, next(vp̃)) : vp̃ ∈ P}
= {(vp̃, next(vp̃)) : p ∈ P}

From (∗) and (∗∗) follows that (5.15) holds. �

Proof of (5.16)

This proof is based on the third observation made earlier, i.e. lemma 1 with
(5.8). It said that the number of intervals in a fragment Rk is (a) the number
of intervals having the startpoint in (pk−1, pk] plus (b) the number of intervals
that overlap the left border pk−1. By the definition of w(v) it is obvious that (a)
corresponds to ∑

v∈Vk

w(v) (∗)

We now look at the equivalence of (b) to the second sum in (5.13). To this
end, we can show that each Ak consists only of one element; remember the

112

definition of a pk in (5.14):

Ak = {(u, v) ∈ A : u ∈ Vj ∧ v ∈ Vk ∧ j < k}
= {(vp̃k , vp̃k+1)}

which means that∑
a∈Ak

l(a) = l(vp̃k, vp̃k+1)

= number of intervals including vp̃k (last vertex in Vk)

and vp̃k+1 (first vertex in Vk+1)

= number of intervals that overlap pk (∗∗)

(5.16) therefore follows from (∗) and (∗∗).
�

5.6.5 Optimal Solution for SGP

In this section, we present an algorithm that gives an optimal solution for SGP
and – because of the reduction M presented in the previous section – also to IP.
The only change to Kernighan’s algorithm has to reflect the slightly different
calculation of a fragment’s weight.

The approach taken by the algorithm SGP-opt is similar to the one taken
for IP-opt . It is based on dynamic programming: the graph is scanned, be-
ginning with v1 and proceeding one vertex in each step. In step i, i.e. having
reached vertex vi, the algorithm knows an optimal partition for each of the
subgraphs containing v1, . . . , vi−1 respectively. It then seeks the vertex vj prior
to vi that minimises the partial costs c(vi) for if the graph ended at vi and the
previous breakpoint had been vj. The minimising vj is stored as pred (vi). Fi-
nally, when reaching vn, the optimal partition for the entire graph can be found
in {pred (vn), pred (pred (vn)), . . . }.

The following data structures and functions are used by the algorithm in
addition to the ones already introduced in the context of SGP:

• For convenience, the algorithm assumes a dummy vertex v0 with w(v0) =
0.

• The sum of edge lengths that are cut by a partition vertex vk are stored in

overlaps (vk) =
∑
i≤k<j

l(vi, vj) =
k∑
i=0

n∑
j=k+1

l(vi, vj)

113

for k = 0, . . . , n. Please note that

overlaps (v0) = overlaps (vn) = 0

and that
n∑
i=0

overlaps (vi) =
∑

(vi,vj)∈A′
l(vi, vj)

• The weight of a vertex fragment {vx+1, . . . , vy} is stored in

load (vx, vy) =
y∑

i=x+1

w(vi) +
∑

i≤x<j≤y
l(vi, vj)

=
y∑

i=x+1

w(vi) +
x∑
i=0

y∑
j=x+1

l(vi, vj)

for 0 ≤ x < y ≤ n, i.e. the sum of weights of vertices vx+1, . . . , vy plus
the sum of lengths of edges starting at or before vx and ending in some
vertex vx+1, . . . , vy.

• c(vi) = minimal partial costs for a partition up to vertex vi.

• pred (vi) = number of vertex preceding vi that leads to (minimal) partition
costs c(vi).

The algorithm is shown in figure 5.10. It adopts a similar structure to the one
used for IP-opt in figure 5.5. This is intended to emphasise the similarities
between IP and SGP. For a proof of correctness the reader might refer to [Ker-
nighan, 1971].

5.6.6 Example

We want to see how SGP-opt works for the graph of figure 5.9 and X = 10.
Figure 5.11 shows the matrix for the values of load (vi, vj). This matrix can
be pre-computed in O(n2) steps. It shows the loads of all possible fragments.
Because ofX = 10 we can discard all fragments with a load greater thanX, e.g.
a fragment {v2, v3, . . . , v7} is not possible because load (v1, v7) = 11 > X. For
graphs resulting from an IP instance, the matrix shows if there exists a partition
that satisfies the constraint |Vk| ≤ X at all: the diagonal shows the loads for the
fragments consisting only of one vertex (i.e. one time point). If there was a
load greater than X in the diagonal then this would mean that there would be
a timepoint that would be included in more than X intervals. Therefore this
point could never be part of any partition range because it would cause the

114

Algorithm SGP-opt

• c(v0) = 0

• for i = 1 to n do

◦ J = {j : 0 ≤ j < i ∧ load (vj, vi) ≤ X}
◦ if J = ∅ then

output “No optimal partition.” ; stop.

◦ c(vi) = min
j∈J
{overlaps (vj) + c(vj)}

Let pred (vi) = vj for the minimising vj.
If there is more than one qualifying vj then choose the smal-
lest.

/* output of breakpoints in descending order */

• p = vn

• while p ≥ v1 do

◦ p = pred (p)

◦ output p

Figure 5.10: The algorithm SGP-opt for computing an optimal partition for an
instance of SGP.

115

3 5 6 8 8 9 11 14 16 18 18 18 20 20 20
5 6 8 8 9 11 14 16 18 18 18 20 20 20

6 8 8 9 11 14 16 18 18 18 20 20 20
7 7 8 10 13 15 17 17 17 19 19 19

7 8 10 13 15 17 17 17 19 19 19
3 5 8 10 12 12 12 14 14 14

5 8 10 12 12 12 14 14 14
6 8 10 10 10 12 12 12

7 9 9 9 11 11 11
9 9 9 11 11 11

9 9 11 11 11
5 7 7 7

6 6 6
5 5

4

Rows: i = 0, . . . , 14
Columns: j = 1, . . . , 15

Figure 5.11: Values for load (vi, vj) for the graph of figure 5.9.

corresponding fragment to exceed the maximum load X. Thus there would
be no partition that satisfied the maximum load constraint. The matrix shows
that such situations arise for X < 9.

Table 5.2 shows the values calculated by SGP-opt . It is similar to table 5.1.
It is longer because the graph of figure 5.9 contains not only the endpoints
E(R) but also the startpoints S(R). Nevertheless, it delivers the same result as
in section 5.5.2.

5.6.7 Run-Time Complexity Analysis

In this section, we analyse the run-time complexity for SGP-opt . As we can
see from the example in section 5.6.3, the reduction of instances of IP produces
a certain type of graph that has only edges between adjacent vertices. We de-
note such graphs as IP-graphs. Actually, this property can be exploited nicely
to reduce the run time complexity of SGP-opt as we will see by proving the
following

Theorem 4 The run-time complexity of SGP-opt is O(n3) in the general case and
O(n2) for IP-graphs as imposed by the interval partitioning (IP) problem if n is the

116

i vi J overlaps (vi) pred (vi) c(vi)
1 1 {0} 3 v0 = −1 0
2 2 {0, 1} 5 v0 = −1 0
3 3 {0, 1, 2} 5 v0 = −1 0
4 4 {0, 1, 2, 3} 7 v0 = −1 0
5 6 {0, 1, 2, 3, 4} 2 v0 = −1 0
6 8 {0, 1, 2, 3, 4, 5} 3 v0 = −1 0
7 9 {3, 4, 5, 6} 3 v5 = 6 2
8 11 {5, 6, 7} 5 v5 = 6 2
9 12 {5, 6, 7, 8} 7 v5 = 6 2
10 14 {7, 8, 9} 9 v7 = 9 5
11 16 {7, 8, 9, 10} 5 v7 = 9 5
12 17 {7, 8, 9, 10, 11} 4 v7 = 9 5
13 18 {11, 12} 5 v12 = 17 9
14 19 {11, 12, 13} 4 v12 = 17 9
15 20 {11, 12, 13, 14} 0 v12 = 17 9

Optimal partition P = {v5, v7, v12} = {6, 9, 17}

Table 5.2: Values computed for the graph of figure 5.9 by SGP-opt when X =
10.

number of vertices in the graph.

Proof

Assume a graph G = (V,A) and let n = |V |. The run-time complexity of
SGP-opt is determined by the following steps:

• computing overlaps (vx) for x = 1, . . . , n,

• computing load (vx, vy) for x, y = 1, . . . , n,

• stage 1 of the algorithm (initialisation),

• stage 2 (for-loop),

• stage 3 (output)

The complexities of stages 1, 2, 3 do not differ for IP-graphs and the general
cases: stage 1 is O(1), stage 2 is O(n2) because the min function is O(n) and
stage 3 is O(n).

The generation of overlaps (vx) and load (vx, vy) depend on the type of the
graph:

117

General case: The general definitions of overlaps (vx) and load (vx, vy) are as
follows:

overlaps (vx) =
∑
i≤x<j

l(vi, vj)

which can be done by scanning the setA of edges and adding the lengths if the
indices i, j satisfy i ≤ x < j. Thus computing overlaps (vx) is O(|A|) and doing
it for x = 1, . . . , n is O(n · |A|) which is at most O(n3) as |A| ≤ n2.

load (vx, vy) =
y∑

i=x+1

w(vi) +
x∑
i=0

y∑
j=x+1

l(vi, vj)

This allows us to derive a recursive equation

load (vx, vy+1) = load (vx, vy) + w(vy+1) +
x∑
i=0

l(vi, vy+1)

which can obviously be computed in O(n) and so it takes O(n3) time to do it
for all n2 − n

2 pairs of x, y with x < y.
Thus the general case produces partial complexities O(n · |A|), O(n3), O(1),

O(n2), O(n) which evolves to O(n3) in total.

IP-graphs: The IP-graph property of l(vi, vj) = 0 for all j 6= i + 1 allows to
compute

overlaps (vx) = l(vx, vx+1)

in O(1) and in O(n) for all x, and

load (vx, vy+1) = load (vx, vy) + w(vy+1)

in O(1) and in O(n2) for all x, y.
Thus the general case produces partial complexitiesO(n),O(n2),O(1), O(n2),

O(n) which evolves to O(n2) in total.
�

118

Chapter 6

Optimisation of Partitioned
Temporal Joins

6.1 Optimisation Process

In this chapter, we build a bridge between

(a) the analytical part of this thesis which is formed by chapters 2 to 5 and
which introduces, motivates, defines and analyses the problem of pro-
cessing partitioned temporal joins and

(b) the synthetical part which is formed by the following chapters and which
is oriented towards a practically applicable and efficient solution for par-
titioned temporal join processing.

To that end, this chapter summarises the main results of the analysis of part (a)
and uses these to design an approach to optimising temporal joins that is based
on explicit partitioning. The elaboration of this approach will be presented in
the following chapters.

First, we want to focus on the main conclusions that we can draw from
what has been discussed so far. In chapter 2, the importance and significance
of temporal databases for many applications has been motivated. One obstacle
to the incorporation of temporal features into commercial products is the poor
performance of operations involving temporal data. One performance critical
operator is the temporal join. In chapter 3, we looked at algorithms that are
traditionally used for the joins involving an equality join condition. This is the
most frequent situation in conventional join processing and most algorithmic
techniques have been tuned to perform well in these cases. In this context,
explicit partitioning of the data has frequently proved to give the best per-
formance results. In chapter 4, we analysed if and how the techniques that are

119

used for processing equi-joins can be applied to processing temporal joins. In
most cases, this transfer was straightforward. However, techniques that are
based on explicit partitioning prove to be tricky: although they can still be ex-
pected to be amongst the most efficient, they impose a significant overhead as
tuples have to be replicated between the relation fragments. The rate of tuple
replication depends (i) on the characteristics of the temporal data and (ii) on
the choice of the partition that is used for creating the fragments. While we
cannot do anything about (i) we have seen that the choice (ii) of an appropri-
ate partition is a delicate one. In chapter 5, we looked at this choice in more
detail and analysed the complexity of the problem of finding an optimal par-
tition. Optimal means that the partition should minimise the total number of
tuple replications while creating fragments that do not exceed a certain max-
imum size. It was shown that this problem has a polynomial solution: there
is an algorithm IP-opt with a run-time complexity of O(N2) where N is the
number of different start- and endpoints occurring in the relation(s) that are
to be partitioned. In practical terms, IP-opt is likely to be too inefficient as
N is probably huge. From this evolves the need to have heuristic partitioning
strategies which are more efficient with respect to the expense of creating only
semi-optimal, rather than optimal, partitions.

Such heuristic partitioning strategies form part of a wider optimisation ap-
proach. The idea is that a query optimiser can choose the cheapest partition
among those produced by various partitioning strategies. In order to determ-
ine which partition is the cheapest, we require a cost model of the respective
temporal join processing technique. This cost model has to consider

• characteristics of the temporal data (such as values sR(t) or oR(t) as used
in chapter 5),

• system parameters (such as the number of processing nodes, amount of
free memory, current interconnect bandwidth etc.),

• and the respective partition1 of the time domain.

Figure 6.1 summarises the approach that we propose. It shows the dataflow in
the optimisation process for a partitioned temporal join between two temporal
relations R and Q2. Data is represented as rectangles, computation as ovals.

1In the sense as it was defined in chapter 5.
2This does not imply a restriction to 2-way temporal joins. The techniques that we propose

in this thesis can also be applied to n-way joins with n ≥ 3.

120

The entire process consists of four stages corresponding to the four grey boxes
in figure 6.1:

1. Firstly, the temporal relations have to be analysed to acquire some in-
formation about the structure and characteristics of the temporal data. In
its simplest form, this information can be represented by the temporal
relations themselves.

This is not very practical. Alternatively, a data sample can be drawn from
the relations. This sample must be big enough to properly represent the
characteristics of the data from which it was drawn. The necessary size of
a data sample can be determined by the Kolmogorov test statistic [Con-
over, 1980]. We will return to this issue later. A data sampling approach
has been used in the context of band-joins in [DeWitt et al., 1991] and for
temporal joins in [Soo et al., 1994].

A further possibility is to get some meta-information on the data which
might be stored in the database catalog. We follow this approach and
define IP-tables for this purpose. Chapter 7 discusses them in more detail.

2. Based on the information acquired in stage 1 and the systems parameters
several strategies can be applied to find suitable partitions for the tem-
poral data. Figure 6.1 assumes that there are three strategies to choose
from; in practice there will be more. In chapter 9, we will design and
propose several such heuristic partitioning strategies.

3. Using the partitions and information on the temporal data, performance-
determining parameters, such as the loads of the fragments Rk and Qk,
can be approximated (e.g. when using data samples) or exactly calcu-
lated (e.g. when using complete information on sR(t), sQ(t), oR(t) and
oQ(t)). These parameters are then fed into a cost model which derives the
processing costs of the partitioned temporal join based on the respective
partition and the current system parameters.

A crucial part in this stage is the performance model for the respective
partitioned temporal join processing technique. In reality, there will be a
lot of such techniques and, consequently, the same number of cost mod-
els. Frequently, these techniques will be adapted to a target (sequential
or parallel) hardware platform. Consequently, there is no single and gen-
erally usable cost model for partitioned temporal join processing but sev-
eral. In chapter 8, we will model the performance of a sequential and a

121

parallel technique and try to be as general as possible with respect to as-
sumptions about the underlying hardware. These two cost models will
also be used for evaluation purposes in chapter 10.

4. Finally, an optimisation decision can be taken and the cheapest partition
is chosen.

When looking at the dataflow in figure 6.1 we note that the optimisation pro-
cess itself is highly parallel: each partitioning strategy initiates an independent
thread. Only the final stage is the point of synchronisation when the results of
each thread are analysed and the optimisation decision is taken.

In the following chapters, we will use the following simplified version of
figure 6.1 to guide you through the optimisation approach by highlighting the
stage that is respectively dealt with.

Synthesis of Partitions

Analysis of Partitions

Optimising Decision

Data Analysis
System

Synthesis of Partitions

Analysis of Partitions

Optimising Decision

Data Analysis
System

Synthesis of Partitions

Analysis of Partitions

Optimising Decision

Data Analysis
System

122

Strategy 1 Strategy 2 Strategy 3

Partition 1 Partition 2 Partition 3

Performance Analysis

Performance
Parameters 1

Performance
Parameters 2

Performance
Parameters 3

Cost Model

Costs 1 Costs 2 Costs 3

Decision

Synthesis of
Partitions

Analysis of
Partitions

System Parameters

Optimising
Decision

Temporal
Relation R

Information about
Temporal Relations

Analysis

Preferred Partition

Data Analysis

Temporal
Relation Q

Figure 6.1: Structure of the optimisation process.

123

6.2 Integration into a Query Optimiser

Let us now consider the question where the optimisation process, as presented
in the previous section, would be integrated into a query optimiser. To that
end, we have to look at the tasks that are performed by a query optimiser.
As a starting point we have to imagine that a query has been translated into
an algebraic expression which itself corresponds to a operation tree or query
tree. This query tree describes the order in which the individual operations are
processed and on which inputs. See figure 6.2 for an example of such a tree. A
query optimiser then tries to transform an initial query tree into an equivalent
one, i.e. one that yields the same result, but one that implies less costs. There
are various possibilities at various levels to do this. Essentially, there are three
stages of optimisation [Graefe, 1993]:

1. Semantic query optimisation

At this stage, an optimiser derives, for example, implied predicates using
transitivity and other algebraic properties or integrity constraint. From
selection conditions, such as r.A = q.Aandq.A = s.A, it can, for example,
derive that r.A = s.A which could possibly help to simplify the original
algebraic expression and therefore also the corresponding tree. Another
example of semantic query optimisation is to use the implicit fact that an
interval’s startpoint ts cannot lie beyond its endpoint te, i.e. t.s ≤ t.e, for
simplifying an algebraic expression.

2. Logical query optimisation
At the logical level, the optimiser considers transformations of the query
expressions to other, equivalent expressions. The join operation, for ex-
ample, is commutative and associative [Ryan and Smith, 1995]. Therefore
it is

(R onC Q) onC S = (R onC S) onC Q (6.1)

Logical query optimisation also considers statistical profiles of the rela-
tion, selectivities of selection conditions and estimates sizes of intermedi-
ate results from that. In general, it is beneficial to avoid huge intermedi-
ate results. This is an important criterion, for example, in order to decide
whether the left or the right expression in (6.1) imposes less costs.

3. Physical query optimisation

Finally, at the physical level, an optimiser maps a query tree to the op-
timal (or at least a near optimal) combination of execution algorithms.

124

Typically, there is a variety of algorithms for each operation on offer. In
order to select the most appropriate algorithm, an optimiser considers
whether it can use indices, exploit sort-orders, optimise resource alloca-
tion etc. In chapters 3 and 4, we have already noted that the selectivity
factor is an important characteristic for deciding on the most appropriate
join algorithm. At this stage, the optimiser also employs cost models and
performs cost calculations.

We note that these stages might interfere with each other. At the physical level,
for example, an optimiser might note that the usage of an index could be ex-
ploited if one of the equivalent query expressions was used that have been
discarded by the logical optimisation. Thus the physical optimiser might ‘ask’
to reconsider the expressions in the light of this new information. In fact, the
three stages mentioned above have become cumbersome in many modern re-
lational systems.

We now want to look at the integration of the optimisation process of fig-
ure 6.1 into an optimiser as it has been described above. From the discussion
it becomes obvious that it can form an integral part of the physical optimisa-
tion level. The optimisation that we propose can answer two questions in that
context:

• Should a temporal join (as it appears in some query) be processed by
partitioning over the interval timestamps? Does it achieve less costs than
a sort-merge or any other join technique? This could be answered by
comparing the cost predictions for partitioned join processing with those
of the other techniques. This would require cost models for these other
techniques that are based on the same assumptions as those made in
chapter 8. It is not our intention to provide these additional cost mod-
els in this thesis. But we nevertheless do want to point to this possibility
which could be elaborated in future research.

• If the temporal join is to be processed by partitioning over the interval
attribute, our optimisation also provides a decision on a suitable, near-
optimal partition.

In that sense, our optimisation can form part of the physical optimisation level
as it was outlined above. It not only forms part of the optimiser’s process of
selecting the most appropriate temporal join algorithm but provides also an
important input when a partitioning approach has been selected.

125

π

σ σ

R Q S

Figure 6.2: A query tree for the relational expression πA(σB(R)) onC σD(Q) onE
S. The leaves consist of input, internal nodes hold operators.

126

Chapter 7

IP-Tables

Synthesis of Partitions

Analysis of Partitions

Optimising Decision

Data Analysis
System

In this chapter, we look at stage 1 of the optimisa-
tion process as it has been outlined in the previous
chapter: the stage of data analysis.

In general, there are two possibilities for repres-
enting the characteristics of the temporal data:

• empirically, e.g. by a data sample, or

• analytically, e.g. by functions sR, eR, iR, oR, etc.

We opt for the analytical approach because it avoids
the fact that implicit information has to be made ex-
plicit at one point, thus imposing additional compu-
tational effort on later stages of the optimisation process. If the information
about the temporal data is to be held explicitly then it has to be computed be-
fore it is actually required. Computing figures, such as the sR(t), eR(t), . . . ,
from the temporal relation R at optimisation time would be very inefficient.
This means that we need a data structure that can store this information effi-
ciently in some convenient place within the database environment, e.g. in the
database catalog.

In the following sections, we will motivate and define a data structure that
serves for this purpose (sections 7.1 and 7.2). It is called an IP-table with IP
referring to interval partitioning. Then we address the question of the size of
IP-tables and how it can be reduced if this becomes necessary. This results
in two new types of IP-tables (section 7.3). IP-tables, once they are created,
can be updated whenever new tuples are inserted into or removed from the
corresponding temporal relation. This avoids the necessity to recompute IP-
tables after such updates. Section 7.4 looks at this issue. Finally, we present
a way in which IP-tables of individual temporal relations can be merged to

127

derive an IP-table that characterises the collection of intervals that arises from
the union of the participating relations (section 7.5). IP-tables can be regarded
as a form of histogram for interval data. In section 7.6, we will look at this
relationship and try to identify similarities.

7.1 Motivation

Before defining IP-tables in section 7.2 we want to make three observations
which serve as a motivation:

• The most important parameters for the cost model of a partitioned join
are the cardinalities |Rk| and |Qk| of the fragments Rk and Qk (for k =
1, . . . ,m). Imagine now a temporal relation R and a partition P with the
breakpoints {p1, . . . , pm−1}. Then the number |Rk| of tuples in a fragment
Rk can be determined by (i) the number of tuples that overlap from pre-
ceding fragments Rj (j < k) plus (ii) the tuples that start in the partition
range (pk−1, pk] = [pk−1 + 1, pk] that corresponds to Rk. Obviously (i) cor-
responds to the number of intervals which contain the first point in the
partition range but start before, i.e. the number oR(pk−1), whereas (ii) can
be determined by summing up the values s(pk−1 + 1), . . . , s(pk). Thus

|Rk| = oR(pk−1) +
pk∑

t=pk−1+1

sR(t) (7.1)

Several other performance influencing parameters can be calculated in a
similar way such as the

total number of overlapping intervals =
m−1∑
k=1

oR(pk)

or the

average interval length =
1
|R| ·

max T (R)∑
t=min T (R)

iR(t)

=
1
|R| ·

max T (R)∑
t=min T (R)

sR(t) + oR(t− 1)

• We need to know only the values of two functions out of sR, eR, iR, oR for a
temporal relationR. The values of the unknown functions can be derived
by using equations (5.1), (5.2) and (5.3) or their derivatives in figure 5.1.
For the following, we choose sR and oR to be stored explicitly whereas eR
and iR are derived when necessary.

128

• For our purposes, we require only the values sR(t) and oR(t) for those t
at which at least one interval starts or ends: for all other timepoints, t, it
is sR(t) = 0 and oR(t) = oR(t′) with t′ being the next start- or endpoint
(of some interval) before t. This corresponds to the observation made in
theorem 1 in section 5.4 and allows us to concentrate on the start- and
endpoints1 of the intervals rather than the entire time span.

7.2 Definition

An IP-table for one or more temporal relations stores information about the
temporal structure of the time intervals appearing in these relations. An IP-
table is specific to those temporal relations. Figure 7.1 shows the definition of
an IP-table for a temporal relation R; the definition for two or more relations
works accordingly.

Definition: (complete) IP-table

The IP-table forR, I(R), consists of three columns, each withN entries.
N is the number of distinct start- and endpoints used in intervals of R:

• The first column contains the values

V (R) = S(R) ∪ E(R) = {t1, . . . , tN}

such thata tj−1 < tj for j = 2, . . . , N .

• The second column holds the values sR(tj) for j = 1, . . . , N .

• The third column holds the values oR(tj) for j = 1, . . . , N .

aPlease remember the comment made in the footnote on page 92 with respect to
the notation for conventional and ordered sets.

Figure 7.1: Definition of an IP-table.

We note that an IP-table can be considered as a relation itself. Thus IP-tables
which represent a form of metadata are represented in the same logical data
model as the data itself. This means that metadata can be accessed in the same
way as the data. Many other forms of metadata can also be represented as

1As you might remember, theorem 1 says that an optimal partition can be found within the
setE(R) of endpoints of intervals in R. To simplify the definition of an IP-table we concentrate
on S(R) ∪ E(R) at the moment and show a reduction of an IP-table to values t ∈ E(R) in
section 7.3.4.

129

relations [Date, 1995]. It is a nice side-effect that IP-tables stand in harmony
with this generally welcomed feature of relational databases.

In section 7.3, we show how N can be reduced if the IP-table becomes too
big. This leads to two variations of the IP-table definition. We will then refer
to the original version – as defined in figure 7.1 – as a complete IP-table.

As mentioned above, we could alternatively use any pair of the values
sR(tj), eR(tj), iR(tj), oR(tj) for an IP-table. The missing ones can then be de-
rived by using the equations of figure 5.1. Please note the following: because
of the third observation made in section 7.1 it is

oR(tj − 1) = oR(tj − 2) = · · · = oR(tj−1)

for j = 2, . . . , N . Consequently, equation (5.2) can be applied as

iR(tj) = sR(tj) + oR(tj−1) (7.2)

to the elements tj ∈ V (R) for j = 2, . . . , N . This fact also translates into similar
changes for the equations of figure 5.1 that were derived from (5.2).

Figure 7.2 shows the example for timestamp intervals of a temporal relation
R that has already been used in chapter 5. Intervals are represented as bold
bars connecting their start- and endpoint respectively. Figure 7.3 shows the
corresponding IP-table I(R) for R (in bold typeface) plus the derivable values
eR(tj) and iR(tj) for demonstration purposes.

0 5 10 15 20
time line

Figure 7.2: An example scenario for timestamp intervals of a temporal relation
R.

7.3 Size Considerations

In section 7.2, we assumed that the number N of entries in the IP-table equals
the number of distinct interval start- and endpoints, i.e. N = |V (R)| = |S(R) ∪

130

j tj sR(tj) oR(tj) eR(tj) iR(tj)
1 0 3 3 0 3
2 2 2 5 0 5
3 3 1 5 1 6
4 4 2 7 0 7
5 6 0 2 5 7
6 8 1 3 0 3
7 9 2 3 2 5
8 11 3 5 1 6
9 12 2 7 0 7

10 14 2 9 0 9
11 16 0 5 4 9
12 17 0 4 1 5
13 18 2 5 1 6
14 19 0 4 1 5
15 20 0 0 4 4

Figure 7.3: The IP-table I(R) (in bold typeface) for the intervals in figure 7.2
plus the derivable values eR(tj) and iR(tj).

E(R)|. Critics might argue that – in the worst case – a temporal relation with,
for example, one million tuples has a huge IP-table with two million entries
and that this might cause the IP-table to be too big to be handled efficiently. In
the following, we want to address these concerns and look at sizes of IP-tables
in comparison to data samples (section 7.3.1), IP-table sizes for real world tem-
poral relations (section 7.3.2) and two ways for reducing the size of an IP-table
in case that it becomes too big (sections 7.3.3 and 7.3.4).

7.3.1 The Size of an IP-Table

In this section, we look at the realistic size of an IP-table and how it compares
to sizes of data samples that are used in a typical data sampling approach. The
ratio of the sizes of an IP-table I(R) and its corresponding temporal relation R
can be calculated by

size of I(R)
size of R

=
|V (R)| · entrysize
|R| · tuplesize

=
|S(R) ∪ E(R)| · entrysize

|R| · tuplesize (7.3)

with entrysize being the size of an entry in the IP-table and tuplesize referring to
the size of a tuple of R.

The ratio (7.3) has to be compared to ratios achieved when sampling data.

131

To that end, we want to look at one such example, i.e. the approach taken in
[Soo et al., 1994]. It uses the Kolmogorov test statistic [Conover, 1980] which is
frequently employed in data sampling approaches for query optimisation, e.g.
in [DeWitt et al., 1991]. The Kolmogorov test is non-parametric which means
that it does not make any assumptions about the underlying distributions of
the tuples. Soo et al. conclude that one has to draw a sample whose size is
determined by

sample size in pages =
(

1.63 · relation size in pages
errorsize

)2

(7.4)

with errorsize being the number of buffer pages that are provided for keeping
an overflow of tuples in the buffer. This overflow can be caused by the er-
ror difference between the data characteristics of the sample and that of the
entire data. Therefore one has to provide a certain buffer space to cope with
such an overflow situation. Soo et al. optimise errorsize in order to minimise
the accumulated costs of sampling and joining the two relations. However, the
algorithm determinePartIntervals provided for that in [Soo et al., 1994] is erro-
neous as it always reaches the extreme case of drawing the entire relation as a
sample. For that reason and in order to get an idea of an actual sample size,
we assume the ratio

relation size in pages
errorsize

to have a fixed value, for example

• 10:1, which leads to a data sample size of 266 pages according to (7.4), i.e.
3.2% of the original relation which they assume to have 8192 pages, or

• 20:1, which leads to a data sample size of 1063 pages, i.e. 13% of the ori-
ginal relation, or

• 30:1, which leads to a data sample size of 2392 pages, i.e. 29% of the ori-
ginal relation.

Let us now see how these numbers compare to the ratios for IP-tables accord-
ing to (7.3). Firstly, we determine the size of an IP-table entry, entrysize. Such
an entry consists of

• a timepoint tj, which might be represented as 6 bytes2, and

• the two integers, sR(tj) and oR(tj), which are usually3 represented as
4 bytes each.

2e.g. one byte per day, month, year, hour, minute, second.
3Considering the majority of compilers.

132

In total, these are 14 bytes. The tuplesize can vary widely, depending on the
underlying application. Typically, we can assume a tuplesize to lie in the range
between 100 and 1000 bytes.

The ratio |V (R)| : |R| shows how many new elements are contributed to
V (R) on average by a tuple r’s interval. A ratio of 0.5 indicates that two inter-
vals contribute one new timepoint to V (R), in the case of 1.0 it is one interval
adding one timepoint on average and the worst case is 2.0 with each interval
introducing two new timepoints (its start- and endpoint) to the plot. There-
fore |V (R)| : |R| is an indicator for observing whether there are many tuples
in R that share interval start- and endpoints – in this case the ratio is low – or
whether most intervals have start- and endpoints that do not appear in other
intervals within R – in this case the ratio is high, reaching 2.0 in the worst case
when each interval has a start- and an endpoint that does not appear either
as a start- or an endpoint in any other interval. Some applications will im-
pose a low ratio, e.g. in the case of a temporal relation holding air pollution
figures that are obtained through periodic measurements. Here, many inter-
vals share the timepoints of the measurements as their start- or endpoints. In
other situations, such as a temporal relation storing start- and endtimes of tele-
phone calls or computer accesses, we can expect the start- and endpoints of
tuple intervals to be arbitrarily distributed over the timeline, therefore pos-
sibly causing a higher ratio than in periodic or other regular applications. In
section 7.3.2, examples of various real-world temporal relations are analysed
and the respective values of the |V (R)| : |R| ratio are given.

Table 7.1 shows typical values for (7.3) depending on the tuplesize and the
ratio |V (R)| : |R|. For most combinations we get values that are at least as
good as those achieved by data samples. But recall that an IP-table provides
precise information whereas the data sample approach achieves these figures
only at the expense of introducing error margins which vary immensely with
the sample size.

7.3.2 Realistic Examples

In order to discover realistic values for the |V (R)| : |R| ratio, we analysed four
real-world temporal relations:

1. We retrieved accesses to a supercomputer at the Edinburgh Parallel Com-
puting Centre (EPCC). Such login information can be found on the fron-
tends which are machines running the UNIX operating system. On these
frontend machines, the last command provides access information. Its

133

tuplesize |V (R)| : |R|
in bytes 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

100 3.5% 7.0% 10.5% 14.0% 17.5% 21.0% 24.5% 28.0%
200 1.8% 3.5% 5.3% 7.0% 8.8% 10.5% 12.3% 14.0%
300 1.2% 2.3% 3.5% 4.7% 5.8% 7.0% 8.2% 9.3%
400 0.9% 1.8% 2.6% 3.5% 4.4% 5.3% 6.1% 7.0%
500 0.7% 1.4% 2.1% 2.8% 3.5% 4.2% 4.9% 5.6%
600 0.6% 1.2% 1.8% 2.3% 2.9% 3.5% 4.1% 4.7%
700 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0%
800 0.4% 0.9% 1.3% 1.8% 2.2% 2.6% 3.1% 3.5%
900 0.4% 0.8% 1.2% 1.6% 1.9% 2.3% 2.7% 3.1%

1000 0.4% 0.7% 1.1% 1.4% 1.8% 2.1% 2.5% 2.8%

Table 7.1: IP-table sizes as percentages of the original relation.

output typically looks as shown in figure 7.4.
In this example, the main access times are during office hours but pos-
sibly also during the weekend or late at night. The dataset comprises
125185 tuples. We refer to it as EPCC.

2. Similarly, we looked at a cluster of departmental workstations, mainly
used by staff during office hours. The set comprises 27206 tuples. It is
referred to as DEPT.

3. Next, the logins of a workstation cluster in a student computer laborat-
ory was analysed. Here, the access characteristic is different and mainly
influenced by the students’ timetables: as an example, one can recognise
an accumulation of accesses at times when lectures have just finished.
The set comprises 27431 tuples and is referred to as STUD.

4. Finally, we analysed the flight schedule to and from Frankfurt Airport.
This example differs from the others as departure and arrival times fol-
low certain rules. For example, scheduled times use five-minutes-steps,
i.e. there is no departure or arrival time such as 15:03 but times like 15:00,
15:05, 15:10, 15:15 etc. In the case of the computer cluster accesses, times
were arbitrary. Here, it is a man-made schedule rather than a random
process that generates the temporal data in this case. Figure 7.5 shows an
extract of the schedule. For the measurements, the times were converted
to Central European Time (CET). The dataset comprises 1995 tuples and
is referred to as FRANKFURT.

134

In the first three cases, there are various possibilities to interpret a timestamp:
it can be considered as a daily timestamp (ignoring weekday and date informa-
tion if this is irrelevant); it can also be a timestamp inside a week-long lifespan,
thus ignoring the date; we can ignore the month, thus considering the time-
stamp to define a point with a month-long timestamp. There are more possib-
ilities. We mapped the access data into these three lifespans (day, week, month)
with the respective lengths 1440, 10080, 44640 (minutes), thus producing three
different temporal relations out of each dataset. The fourth set, FRANKFURT,
imposed a day-long lifespan of length 1440. In total, we had ten temporal re-
lations for each of which we computed the two values |V (R)| and |V (R)| : |R|.
The results are shown in table 7.2. The figures prove that for these real-world
examples one can expect the corresponding IP-table to be of a reasonable size.
The ratios |V (R)| : |R| are far away from the worst case scenario and suggest
that IP-table sizes can be expected to correspond to the situations described by
the left part of table 7.1.

yuh ftp alab-16.ed.ac.u Sun Oct 27 12:03 - 12:03 (00:00)
root ttyp3 yanis.epcc.ed.a Sun Oct 27 11:45 - 11:46 (00:00)
yuh ftp house.ed.ac.uk Sun Oct 27 11:36 - 11:36 (00:00)
yuh ttyp2 alab-16.ed.ac.u Sun Oct 27 11:32 - 17:05 (05:33)
zxa ttyp0 bottle.ph.ed.ac Sun Oct 27 10:42 - 16:07 (05:24)
onb01 ttyp0 aborg.dcs.st-an Sun Oct 27 08:03 - 08:05 (00:01)
onb01 ttyp0 aborg.dcs.st-an Sun Oct 27 07:52 - 07:56 (00:03)
yuh ftp house.ed.ac.uk Sat Oct 26 18:47 - 18:48 (00:00)
smith ttyp1 lilly.glg.ed.ac Sat Oct 26 18:46 - 11:46 (17:59)
smith ttyp1 lilly.glg.ed.ac Sat Oct 26 17:20 - 18:45 (01:24)

Figure 7.4: A typical example of login information.

Day-Lifepan Week-Lifespan Month-Lifespan
DatasetR |R| |V (R)| |V (R)| : |R| |V (R)| |V (R)| : |R| |V (R)| |V (R)| : |R|

EPCC 125185 1411 0.01 8286 0.07 29525 0.24
DEPT 27206 1408 0.05 8036 0.30 23877 0.88
STUD 27431 1360 0.05 7228 0.26 21379 0.78

FRANKFURT 1995 288 0.14

Table 7.2: Characteristics of some real-world temporal relations.

7.3.3 Condensation of IP-Tables

We now present one possibility to reduce the size of an IP-table. The idea is
to collapse a certain number of IP-table entries, say a, into one. We call this a

135

FRA ACE HF7667 10:05 14:00
FRA ACE DE7966 11:10 14:30
FRA ACE DE2662 12:25 15:55
FRA ACE DE2662 13:50 17:10
FRA ACE DE7512 14:00 17:15
FRA ADB LH3806 10:25 14:35
FRA ADB TK0904 19:45 23:55
FRA ADB AEF8852 21:50 01:50
FRA ADD ET0751 00:25 09:50
FRA ADD LH0590 09:50 20:10
FRA ADD LH0590 10:20 20:55
FRA ADD LH0592 10:30 21:15
FRA ADD ET0715 21:45 08:05

Figure 7.5: An extract of a flight schedule of Frankfurt Airport.

condensation of an IP-table by a and refer to it as I′(R, a) if the original IP-table
is I(R). The parameter a is called the condensation factor. Condensation means
that N ′ new timepoints t′1, . . . , t′N ′ are created with

N ′ =
⌈
N

a

⌉
(7.5)

For simplicity we assume N′ = N/a for a moment. Later we will come back to
the situation when this constraint does not hold. The timepoints {t1, t2, . . . , ta}
form a new timepoint t′1, the timepoints {ta+1, ta+2, . . . , t2a} form t′2 etc. In gen-
eral, the timepoints {t(j−1)·a+1, . . . , tj·a} form a new timepoint t′j which gets the
value of tj·a:

t′j = tj·a (7.6)

with j = 1, . . . , N ′. This set of new timepoints is referred to as V ′(R, a). See fig-
ure 7.6 for a condensation by a = 2 for the example of figure 7.2. The definition
of the t′j implies that

oR(t′j) = oR(tj·a)

This conserves the notion of an overlap: if an interval ends at one of the points
within {t(j−1)·a+1, . . . , tj·a} then it logically ends now at t′j because of the col-
lapse. Therefore it cannot overlap t′j.

The collapse of {t(j−1)·a+1, . . . , tj·a} also implies that – logically – all intervals
that started at one of these points are now considered to start at t′j. We use a
new function s′R which describes this fact:

s′R(t′j) =
j·a∑

l=(j−1)a+1

sR(tl) (7.7)

136

0 20

time line

5 10 15

t’
1

t’
2

t’
3

t’
4

t’5 t’
6

t’
7

t’8

Figure 7.6: Condensation of timepoints with a = 2 for the example of figure 7.2.

for all j = 1, . . . , N ′ and for all other values t 6∈ V ′(R, a) it is

s′R(t) = 0

Using s′R instead of sR in the formula (7.1) still delivers a correct result: if
I ′(R, a) is used for partitioning rather than I(R) then the resulting partition
P = {p1, . . . , pm−1} is a subset of V ′(R, a). We prove this in the following.

Theorem 5 Let P = {p1, . . . , pm−1} ⊆ V ′(R, a) ⊆ V (R) be a partition for R with

pk−1 < pk for k = 2, . . . ,m − 1, and let p0 = tmin − 1 and pm = t′N ′ . Then the

following holds

pk∑
t=pk−1+1

sR(t) =
pk∑

t=pk−1+1

s′R(t) (7.8)

for all k = 1, . . . ,m.

Proof:

For a k ∈ {1, . . . ,m} let pk−1 = t′x and pk = t′y with x, y ∈ {1, . . . , N ′}. For
convenience, we define t′0 = p0 = tmin − 1. Then it is

pk∑
t=pk−1+1

sR(t) =
t′y∑

t=t′x+1

sR(t)

=
ty·a∑

t=tx·a+1

sR(t)

137

=
tx·a+1−1∑
t=tx·a+1

sR(t)︸ ︷︷ ︸
= 0

+
ty·a∑

t=tx·a+1

sR(t) (sR(t) = 0 for t 6∈ V (R))

=
y·a∑

l=x·a+1

sR(tl)

=
(x+1)·a∑
l=x·a+1

sR(tl)︸ ︷︷ ︸
s′R(t′x+1)

+
(x+2)·a∑

l=(x+1)·a+1

sR(tl)︸ ︷︷ ︸
s′R(t′x+2)

+ · · · +
y·a∑

l=(y−1)·a+1

sR(tl)︸ ︷︷ ︸
s′R(t′y)

=
y∑

j=x+1

s′R(t′j)

=
t′y∑

t=t′x+1

s′
R
(t)

=
t′x+1−1∑
t=t′x+1

s′R(t)︸ ︷︷ ︸
= 0

+
t′y∑

t=t′x+1

s′R(t) (s′R(t) = 0 for t 6∈ V ′(R, a))

=
t′y∑

t=t′x+1

s′
R
(t)

=
pk∑

t=pk−1+1

s′R(t)

�

Now we can show the following

Corollary 1 Let P = {p1, . . . , pm−1} ⊆ V ′(R) ⊆ V (R) be a partition for R with
pk−1 < pk for k = 2, . . . ,m − 1, and let p0 = tmin − 1 and pm = t′N ′ . Then the

following holds

oR(pk−1) +
pk∑

t=pk−1+1

sR(t) = oR(pk−1) +
pk∑

t=pk−1+1

s′
R
(t) (7.9)

for all k = 1, . . . ,m.

Proof:

Trivial because of theorem 5. �

138

In the case that N ′ 6= (N/a) all definitions remain the same as shown above for
j = 1, . . . , (N ′ − 1). For j = N ′ we define

t′N ′ = tN

oR(t′N ′) = oR(tN) = 0

s′
R
(t′N ′) =

N∑
l=(N ′−1)a+1

sR(tl)

for the same reasons as above. However, it pays attention to the fact that t′N ′
does not comprise the same number a of the original timepoints but only (N

mod a). The proof of theorem 5 is not changed by this situation. Therefore
theorem 5 and corollary 1 hold for this case too.

The condensation process divides the size of the IP-table by a. As a con-
sequence, the information in the IP-table becomes coarser and less precise.
This might decrease the quality of the resulting partitions but, for example,
can make the process of deriving the partition more efficient. Just consider the
optimal partitioning algorithm IP-opt whose runtime is a function of N . In
chapter 10, we will perform experiments with different values of a and look at
the impact it has on the quality of the partitions that are derived.

Figure 7.7 shows the condensed IP-table I′(R, 2) for the example of fig-
ure 7.2. The notion of condensation can be applied to create a function e′

R

with e′R(t′j) providing the number of intervals that ended within the condensed
timepoint’s range, i.e. within (t′j−1, t

′
j]. Similarly, we can define a function i′R

with i′R(t′j) providing the number of intervals that intersect with the range of
t′j, i.e. (t′j−1, t

′
j]. Then the formulas (5.1), (5.2) and (5.3) can be used by replacing

sR, eR and iR through s′R, e′R and i′R respectively. This is straightforward for the
same reasons that applied in the case of sR, eR and iR (see section 5.2), just that
condensed timepoints are used. Please note that condensation assumes that

oR(t′j − 1) = oR(t′j − 2) = · · · = oR(t′j−1)

for j = 2, . . . , N ′. This is another expression of the fact that condensation makes
the ‘resolution’4 of the timeline coarser. In summary, the formulas of figure 5.1
apply too as they were derived from (5.1), (5.2) and (5.3). This can be verified
for the example of figure 7.7.

4By analogy with the sense in which this term is used for images.

139

j t′j s′R(t′j) oR(t′j) e′R(t′j) i′R(t′j)
1 2 5 5 0 5
2 4 3 7 1 8
3 8 1 3 5 8
4 11 5 5 3 8
5 14 4 9 0 9
6 17 0 4 5 9
7 19 2 4 2 6
8 20 0 0 4 4

Figure 7.7: The IP-table I ′(R, 2) (in bold typeface) for the intervals in figure 7.2
plus the values e′

R
(t′j) and i′

R
(t′j).

7.3.4 Endpoint IP-Tables

When looking for an optimal partition in chapter 5, we found out that an op-
timal partition can always be found within the setE(R) of interval endpoints of
a temporal relation R (theorem 1). The proof for this was essentially based on
lemma 3. It showed the benefits of using interval endpoints as breakpoints of a
partition because this can possibly reduce the number of overlapping intervals.
This advantage does not only apply when we look for an optimal partition but
shows that interval endpoints are probably good choices for breakpoints of a
partition in any case: choosing the breakpoints from the intervals’ endpoints
should reduce the number of overlapping intervals. Therefore we can reduce
an IP-table I(R) to entries concerning endpoints and call this an endpoint IP-
table I ′′(R).

Creating an endpoint IP-table is similar to condensing an IP-table as de-
scribed in the previous section. The only difference is that we collapse those
of the original timepoints tj ∈ V (R) that are in between two tleft , tright ∈ E(R)
with tleft < tj ≤ tright into tright . See figure 7.8 for an example of this process.
Formally, the creation of an endpoint IP-table can be described like this:

• Let
V ′′(R) = E(R) = {t′′1, . . . , t′′N ′′} ⊆ V (R)

with t′′j < t′′j+1 for j = 2, . . . , N ′′.
We note that it is always tN ∈ E(R). As a consequence we get tN = t′′N ′′ .

• Let f be the function that maps the index j of a t′′j ∈ V ′′(R) to the index
h for a th ∈ V (R) such that t′′j = th = tf(j), i.e. f(j) = h. To simplify
following formulas, we define f(0) = 0.

140

0 20

time line

5 10 15

1
t’’

2
t’’

3
t’’

4
t’’ 5t’’ 6

t’’
7

t’’ 8t’’ t’’
9

Figure 7.8: Collapsing timepoints into interval endpoints for the example of
figure 7.2.

We collapse the original timepoints {tf(j−1)+1, . . . , tf(j)} into the new timepoint
t′′j for j = 1, . . . , N ′′. As in section 7.3.3, this implies

oR(t′′j) = oR(tf(j))

for all j = 1, . . . , N ′′.

It also implies that – logically – all intervals that start at one of the original
timepoints {tf(j−1)+1, . . . , tf(j)} are now considered to start at t′′j . To reflect this
fact, we define a new function s′′R with values

s′′
R
(t′′j) =

f(j)∑
l=f(j−1)+1

sR(tl) (7.10)

for j = 1, . . . , N ′′ and for all other values t 6∈ V ′′(R) it is

s′′R(t) = 0

We still get a correct result when Using s′′
R

instead of sR in the formula (7.1).
This is due to the fact that if I′′(R) is used for partitioning rather than I(R) then
the resulting partition P = {p1, . . . , pm−1} is a subset of V ′′(R), thus pk ∈ V ′′(R)
for all k = 1, . . . ,m− 1. We formally prove this in the following

Theorem 6 Let P = {p1, . . . , pm−1} ⊆ V ′′(R) ⊆ V (R) be a partition for R with

pk−1 < pk for k = 2, . . . ,m − 1, and let p0 = tmin − 1 and pm = t′′N ′′ . Then the

following holds
pk∑

t=pk−1+1

sR(t) =
pk∑

t=pk−1+1

s′′
R
(t) (7.11)

for all k = 1, . . . ,m.

141

Proof:

For a k ∈ {1, . . . ,m} let pk−1 = t′′x and pk = t′′y with x, y ∈ {1, . . . , N ′′}. We define
t′′0 = p0 = tmin − 1. Then it is

pk∑
t=pk−1+1

sR(t) =
t′′y∑

t=t′′x+1

sR(t)

=
tf(y)∑

t=tf(x)+1

sR(t)

=
tf(x)+1−1∑
t=tf(x)+1

sR(t)

︸ ︷︷ ︸
= 0

+
tf(y)∑

t=tf(x)+1

sR(t) (sR(t) = 0 for t 6∈ V (R))

=
f(y)∑

h=f(x)+1

sR(th)

=
f(x+1)∑
h=f(x)+1

sR(th)︸ ︷︷ ︸
s′′R(t′′x+1)

+
f(x+2)∑

h=f(x+1)+1

sR(th)︸ ︷︷ ︸
s′′R(t′′x+2)

+ · · · +
f(y)∑

h=f(y−1)+1

sR(th)︸ ︷︷ ︸
s′′R(t′′y)

=
y∑

j=x+1

s′′R(t′′j)

=
t′′y∑

t=t′′x+1

s′′R(t)

=
t′′x+1−1∑
t=t′′x+1

s′′R(t)︸ ︷︷ ︸
= 0

+
t′′y∑

t=t′′x+1

s′′R(t) (s′′R(t) = 0 for t 6∈ V ′′(R))

=
t′′y∑

t=t′′x+1

s′′R(t)

=
pk∑

t=pk−1+1

s′′
R
(t)

�

Now we can show the following

Corollary 2 Let P = {p1, . . . , pm−1} ⊆ V ′′(R) ⊆ V (R) be a partition for R with

pk−1 < pk for k = 2, . . . ,m− 1 and let p0 = t′′1− 1 and pm = t′′N ′′ . Then the following

142

holds

oR(pk−1) +
pk∑

t=pk−1+1

sR(t) = oR(pk−1) +
pk∑

t=pk−1+1

s′′R(t) (7.12)

for all k = 1, . . . ,m.

Proof:

Trivial because of theorem 6. �

Figure 7.9 shows the endpoint IP-table I′′(R) for the example of figure 7.2. In
contrast to condensed IP-tables, we do not require the definition of additional
functions to make the formulas (5.1), (5.2) and (5.3) work when using s′′R rather
than sR. The reason behind this is that exactly eR(t′′j) intervals end within the
range of t′′j : by definition of an endpoint IP-table there can be no interval end-
ing at a timepoint between t′′j−1 and t′′j . Therefore the accumulated number of
intervals ending within the range of t′′j is eR(t′′j). For the same reason, iR(t′′j) can
be computed by the number of overlaps occurring at t′′j−1 plus the number of
intervals starting within (t′′j−1, t

′′
j]. Thus (5.2) applies when replacing sR by s′′

R
.

Please note that – as in the case of condensed IP-tables – it is

oR(t′′j − 1) = oR(t′′j − 2) = · · · = oR(t′′j−1)

for j = 2, . . . , N ′′. (5.1) is not affected as it does not involve sR.

j t′′j s′′R(t′′j) oR(t′′j) eR(t′′j) iR(t′′j)
1 3 6 5 1 6
2 6 2 2 5 7
3 9 3 3 2 5
4 11 3 5 1 6
5 16 4 5 4 9
6 17 0 4 1 5
7 18 2 5 1 6
8 19 0 4 1 5
9 20 0 0 4 4

Figure 7.9: The IP-table I ′′(R) (in bold typeface) for the intervals in figure 7.2
plus the values eR(t′′j) and iR(t′′j).

We created the respective endpoint IP-table for the dataset examples that have
been described in section 7.3.2. Table 7.3 shows the figures. Having more dis-
tributed temporal data, i.e. a longer underlying lifespan of the temporal rela-
tion (with a constant number of tuples), causes a greater difference between

143

the sizes of the endpoint IP-table and a complete IP-table. This means that
more space can be saved in these cases. An obvious example can be seen by
comparing the figures in the Month-Lifespan columns of tables 7.2 and 7.3.

Day-Lifepan Week-Lifespan Month-Lifespan
DatasetR Size |R| |V ′′(R)| |V ′′(R)| : |R| |V ′′(R)| |V ′′(R)| : |R| |V ′′(R)| |V ′′(R)| : |R|

EPCC 125185 1306 0.01 7804 0.06 26370 0.21
DEPT 27206 1313 0.05 7010 0.26 16754 0.62
STUD 27431 1218 0.04 6363 0.23 15731 0.57

FRANKFURT 1995 210 0.11

Table 7.3: Endpoint IP-table characteristics of some real-world temporal rela-
tions.

7.4 Maintaining IP-Tables

The general idea is that there are IP-tables for individual temporal relations
stored in the database catalog. Obviously, one wants to avoid that an IP-table
I(R) (or I ′(R, a) or I ′′(R)) is recomputed each time when a temporal relation R
is changed through an update. Essentially, one could take two approaches:

• One can argue that a few new, changed or deleted tuples/intervals within
a temporal relation do not translate into severe changes within an IP-
table. Consequently, such changes will not have a great impact on the
quality of the partitions that are created from the information stored in
the IP-table. Only after a certain period, i.e. after a major number of up-
dates have been performed, one should recompute the IP-table. In other
words: an IP-table is not updated; only when its information is likely to
differ too much from the actual state of the corresponding temporal rela-
tion then it is entirely recomputed.
Obviously, this option is only convenient for situations in which newly
inserted data has timestamps that are well distributed over the timeline.
In the case of transaction time applications, for example, new data has ti-
mestamps beyond the end of the current lifespan. In terms of an IP-table
this means that there is one or more ‘hot spots’ at which values would
change. Thus the information provided by an IP-table would soon be
obsolete for partitioning purposes if it was not updated.

• A second possibility is to maintain an IP-table. This means that the in-
formation within the IP-table is updated each time the corresponding

144

temporal relation is updated. In this section, we describe the actions
that have to be performed on an IP-table when a new tuple is inserted
into and when a tuple is removed from the corresponding temporal rela-
tion. These actions slightly differ, depending on the type of IP-table that
is used: section 7.4.1 describes those for complete IP-tables, section 7.4.2
the ones for condensed IP-tables and section 7.4.3 those for endpoint IP-
tables.

7.4.1 Maintaining Complete IP-Tables

An existing IP-table I(R) has to be modified whenever a tuple r is inserted into
or deleted from the temporal relation R. If a tuple attribute value is changed
then this can be considered as the tuple being removed from R and then being
inserted as a new tuple with the changed attribute values. To that end, two
algorithms are required, one for each form of update.

Figure 7.10 shows the steps that have to be performed when a tuple r is
inserted into R. First, it has to be checked whether r’s interval start- and end-
points are already in the set V (R). If not then they are added to V (R) respect-
ively. Next, the indices js and je are set: js indicates the tjs ∈ V (R) that equals
r.ts, je does the same for r.te. Then the value s[js] – which stores the value of
sR(tjs) – has to be augmented by 1 as there is now one more interval in R that
starts at tjs = r.ts. Finally, the array o[j] – which stores the values oR(tj) – is
adapted within a for-loop: r overlaps all timepoints tj with js ≤ j < je.

We note that the array notation is used for convenience only. It does not
suggest that arrays are the best way to implement the following algorithms. In
fact, linked list will probably much more efficient in many respects.

In figure 7.11, we show the modifications that have to be performed when a
tuple r is removed fromR. As in the case of insertion, there are two major stages:
the modification of V (R) and the modification of the s[j] and o[j] values. This
time, it starts with the latter stage: after determining the indices js and je as
above, s[js] is reduced by 1 and so are all o[j] with js ≤ j < je. This might lead
to the situation that either r.ts = tjs or r.te = tje or both can be removed from
V (R) in the case that there are no more intervals in R that start or end at these
points. This can be checked by looking at the values of sR(tjs), sR(tje), eR(tjs),
eR(tje) of which the first two are explicitly stored as s[js] and s[je] whereas the
latter two can be computed according to the formula given in figure 5.1(b):

eR(t) = sR(t) + oR(t− 1) − oR(t)

145

which translates to

eR(tj) = sR(tj) + oR(tj−1)− oR(tj)

as oR(tj − 1) = oR(tj − 2) = · · · = oR(tj−1) for j = 2, . . . , N . If no other intervals
start or end at r.ts, i.e. sR(r.ts) = eR(r.ts) = 0 then it is removed from V (R).
Similarly, if no other intervals start or end at r.te, i.e. sR(r.te) = eR(r.te) = 0
then it is removed from V (R).

/* Adapt I(R) when a tuple r with [r.ts, r.te] is inserted into R */

/* V (R) = {t1, . . . , tN}with tj−1 < tj for j = 2, . . . , N */
/* values for sR(tj) are in s[j] with tj ∈ V (R) */
/* values for oR(tj) are in o[j] with tj ∈ V (R) */

if r.ts 6∈ V (R) then
V (R) = V (R) ∪ {r.ts}
initialise a value for r.ts in s[] with 0
initialise a value for r.ts in o[] with oR(max{x ∈ V (R) : x < r.ts})

fi
if r.te 6∈ V (R) then

V (R) = V (R) ∪ {r.te}
initialise a value for r.te in s[] with 0
initialise a value for r.te in o[] with oR(max{x ∈ V (R) : x < r.te})

fi

/* Determine the indices of r.ts and r.te within V (R) */
/* V (R) = {t1, . . . , tN}with tj−1 < tj for j = 2, . . . , N */
js = the j ∈ {1, . . . , N} such that r.ts = tj ∈ V (R)
je = the j ∈ {1, . . . , N} such that r.te = tj ∈ V (R)

/* Update s[] and o[] */

s[js] = s[js] + 1

for j = js to (je− 1) do
o[j] = o[j] + 1

od

Figure 7.10: The insertion algorithm for complete IP-tables.

7.4.2 Maintaining Condensed IP-Tables

The insertion and deletion algorithms described in section 7.4.1 have to be
modified in the case of a condensed IP-table I′(R, a). They have to incor-

146

/* Adapt I(R) when a tuple r with [r.ts, r.te] removed from R */

/* Determine the indices of r.ts and r.te within V (R) */
/* V (R) = {t1, . . . , tN} with tj−1 < tj for j = 2, . . . , N */
js = the j ∈ {1, . . . , N} such that r.ts = tj ∈ V (R)
je = the j ∈ {1, . . . , N} such that r.te = tj ∈ V (R)

/* values for sR(tj) are in s[j] for j = 1, . . . , N */
s[js] = s[js]− 1

/* values for oR(tj) are in o[j] for j = 1, . . . , N */
for j = js to (je − 1) do

o[j] = o[j]− 1
od

/* Remove r.ts if there are no other intervals starting or ending at r.ts */
/* e = number of intervals ending at r.ts */
/* Assume t0 = −∞ and s[0] = o[0] = 0. */
e = s[js] + o[js − 1]− o[js]
if s[js] = 0 and e = 0 then

V (R) = V (R)− {r.ts}
remove s[js] from s[]
remove o[js] from o[]

fi

/* Remove r.te if there are no other intervals starting or ending at r.te */
/* e = number of intervals ending at r.te */
e = s[je] + o[je − 1]− o[je]
if js 6= je and s[je] = 0 and e = 0 then

V (R) = V (R)− {r.te}
remove s[je] from s[]
remove o[je] from o[]

fi

Figure 7.11: The deletion algorithm for complete IP-tables.

147

porate the notion of timepoints having been collapsed into one timepoint, i.e.
that an interval [r.ts, r.te] might not have its start- and endpoints within the set
V ′(R, a). Therefore, we have to determine the timepoints t′js and t′je of V ′(R, a)
which represent r.ts and r.te respectively. In the case of r being inserted into
R, one has to include r.te if r’s timestamp falls partly or entirely beyond the
current value of t′N ′ . Such a situation is characterised by r.te > t′N ′. Similarly,
r.te can be removed on deletion of r if there are no more intervals ending at
t′N ′, i.e. if all intervals have ended before, at t′N ′−1. At the opposite end, we
can remove t′1 if there are no more intervals starting at t′1. Apart from these
modifications, the insertion and deletion algorithms remain the same. They
are shown in figures 7.12 and 7.13.

From these algorithms it is apparent that condensed IP-tables can not be
maintained without a loss of accuracy. Basically, once the condensation of
timepoints has been performed, one cannot control that a condensed timepoint
t′j still represents a original timepoints of V (R). After several insertions or dele-
tions this number might have changed. The only control that can be performed
is the one over t′1 and t′N ′ which can be removed in case that they become ob-
solete. Therefore one can expect that the quality of information provided by
a condensed IP-table decreases with an increasing amount of updates. This
suggests that condensed IP-table might need to be recomputed periodically, in
particular if insertions or deletions concentrate on specific parts of the timeline.

7.4.3 Maintaining Endpoint IP-Tables

Similar to the case of condensed IP-tables, the insertion and deletion algorithms
have to be changed when using endpoint IP-tables. However, it is possible to
accurately maintain the set V ′′(R) of timepoints within an IP-table.

Figure 7.14 shows the actions that have to be performed when a tuple r is
inserted into the temporal relation R. If r’s endpoint r.te is not contained in
V ′′(R) then it is added. Consequently, there is always a t′′je ∈ V ′′(R) such that
t′′je = r.te when it comes to the stage of modifying the s[j] and o[j] values. In
contrast to je, the index js is determined as in the case of a condensed IP-table
by looking for the nearest t′′js ∈ V ′′(R) such that r.ts ≤ t′′js . The modification of
the s[] and o[] arrays works as for complete and condensed IP-tables.

The deletion algorithm for endpoint IP-tables is straightforward. It is shown
in figure 7.15. It determines js and je as in the case of insertion, then modifies
the s[] and o[] arrays before finally checking whether the r.te = t′′je is the end-
point of an interval other than r. If it is not then it can be removed from the

148

/* Adapt I ′(R, a) when a tuple r with [r.ts, r.te] is inserted into R */

/* V ′(R, a) = {t′1, . . . , t′N ′}with t′j−1 < t′j for j = 2, . . . , N ′ */
/* values for s′R(t′j) are in s[j] with t′j ∈ V ′(R, a) */
/* values for oR(t′j) are in o[j] with t′j ∈ V ′(R, a) */
if r.te > t′N ′ then

V ′(R, a) = V ′(R, a)∪ {r.te}
initialise a value for r.te in s[] with 0
initialise a value for r.te in o[] with oR(max{x ∈ V ′(R, a) : x < r.te})

fi

/* Determine the indices of the condensed timepoints to */
/* which r.ts and r.te belong */
/* Assume a t′0 = −∞ */
js = the j ∈ {1, . . . , N ′} such that t′j−1 < r.ts ≤ t′j ∈ V ′(R, a)
je = the j ∈ {1, . . . , N ′} such that t′j−1 < r.te ≤ t′j ∈ V ′(R, a)

/* Update s[] and o[] */

s[js] = s[js] + 1

for j = js to (je − 1) do
o[j] = o[j] + 1

od

Figure 7.12: The insertion algorithm for condensed IP-tables.

149

/* Adapt I ′(R, a) when a tuple r with [r.ts, r.te] removed from R */

/* Determine the indices of the condensed timepoints to */
/* which r.ts and r.te belong */
/* Assume a t′0 = −∞ */
js = the j ∈ {1, . . . , N ′} such that t′j−1 < r.ts ≤ t′j ∈ V ′(R, a)
je = the j ∈ {1, . . . , N ′} such that t′j−1 < r.te ≤ t′j ∈ V ′(R, a)

/* values for s′R(t′j) are in s[j] for j = 1, . . . , N ′ */
s[js] = s[js]− 1

/* values for oR(t′j) are in o[j] for j = 1, . . . , N ′ */
for j = js to (je − 1) do

o[j] = o[j]− 1
od

/* Remove t′1 if there are no more intervals starting at t′1 */
if s[1] = 0 then

V ′(R, a) = V ′(R, a)− {t′1}
remove s[1] from s[]
remove o[1] from o[]

fi

/* Remove t′N ′ if there are no more intervals ending at t′N ′ */
/* e = number of intervals ending at t′N ′ */
e = s[N ′] + o[N ′ − 1]− o[N ′]
if e = 0 then

V (R) = V (R)− {t′N ′}
remove s[N ′] from s[]
remove o[N ′] from o[]

fi

Figure 7.13: The deletion algorithm for condensed IP-tables.

150

set V ′′(R). This removal is not trivial as the value of s[je] has to be incorpor-
ated into the one of the timepoint t′′je+1 which follows t′′je within the ordered set
V ′′(R).

/* Adapt I ′′(R) when a tuple r with [r.ts, r.te] is inserted into R */

/* V ′′(R) = {t′′1 , . . . , t′′N ′′}with t′′j−1 < t′′j for j = 2, . . . , N ′′ */
/* values for s′′R(t′′j) are in s[j] with t′′j ∈ V ′′(R) */
/* values for oR(t′′j) are in o[j] with t′′j ∈ V ′′(R) */
if r.te 6∈ V ′′(R) then

V ′′(R) = V ′′(R) ∪ {r.te}
initialise a value for r.te in s[] with 0
initialise a value for r.te in o[] with oR(max{x ∈ V ′′(R) : x < r.te})

fi

/* Determine the indices of the endpoints to which */
/* r.ts and r.te belong */
/* Assume a t′′0 = −∞ */
js = the j ∈ {1, . . . , N ′′} such that t′′j−1 < r.ts ≤ t′′j ∈ V ′′(R)
je = the j ∈ {1, . . . , N ′′} such that r.te = t′′j ∈ V ′′(R)

/* Update s[] and o[] */

s[js] = s[js] + 1

for j = js to (je − 1) do
o[j] = o[j] + 1

od

Figure 7.14: The insertion algorithm for endpoint IP-tables.

151

/* Adapt I ′′(R) when a tuple r with [r.ts, r.te] removed from R */

/* Determine the indices of the endpoints to which */
/* r.ts and r.te belong */
/* Assume a t′′0 = −∞ */
js = the j ∈ {1, . . . , N ′′} such that t′′j−1 < r.ts ≤ t′′j ∈ V ′′(R)
je = the j ∈ {1, . . . , N ′′} such that r.te = t′′j ∈ V ′′(R)

/* values for s′′R(t′′j) are in s[j] for j = 1, . . . , N ′′ */
s[js] = s[js]− 1

/* values for oR(t′′j) are in o[j] for j = 1, . . . , N ′′ */
for j = js to (je − 1) do

o[j] = o[j]− 1
od

/* Remove r.te if there are no more intervals ending at r.te */
/* e = number of intervals ending at r.te */
e = s[je] + o[je − 1]− o[je]
if e = 0 then

if je < N ′′ then
s[je + 1] = s[je + 1] + s[je]

fi
V (R) = V (R)− {r.te}
remove s[je] from s[]
remove o[je] from o[]

fi

Figure 7.15: The delete algorithm for endpoint IP-tables.

152

7.5 Merging IP-Tables

Two (or more) IP-tables of two (or more) temporal relations can be merged
into one IP-table that describes the timestamp characteristics of the union of
these relations. This is very useful as we can precompute the IP-tables for
individual relations and merge them when optimising a temporal join between
those relations. This is only relevant for join algorithms that require two or
more input relations to be partitioned along certain constraints. Partitioning
then needs information on all these relations, i.e. we need the IP-table of the
union of the relations. This leads to the layout of the data-analysis stage within
the optimisation process that is shown in figure 7.16.

However, merging is not only relevant in the context of optimisation al-
though the latter is the main purpose for which we will use it. It can also be
considered as a general technique for updating individual IP-tables: assume
a data warehouse that is updated over night by inserting a batch of new data
that has been accumulated during the day. One could then simply create a tem-
porary IP-table for this batch and merge it with the existing IP-table in order to
get an updated IP-table.

The different types of IP-tables require slightly different algorithms for mer-
ging them. Condensed and endpoint IP-tables can be treated equally due to
the analogy in collapsing timepoints. This led to analogous definitions of the
s′R and s′′R functions. To stress this analogy, we will refer to condensed and
endpoint IP-tables as incomplete IP-tables in the remainder of this section.

In the following, we give the algorithms for the case that two IP-tables are to
be merged. A three- or more-way merge can easily be derived from that, simil-
arly to the numerous algorithms that are based on merging several streams of
data, such as sort-merge joins (see chapters 3 and 4 for example) or the merge-
sort algorithm [Knuth, 1973]. For the two-way merge we have to consider three
cases:

• Two complete IP-tables are merged. This case is discussed in section 7.5.1.

• Two incomplete IP-tables are merged. This is discussed in section 7.5.2.

• A complete IP-table is merged with an incomplete IP-table. This case is
discussed in section 7.5.3.

153

AnalysisAnalysis

Merge

Temporal
Relation R

IP−table R

Performance Analysis

IP−table Q

Temporal
Relation Q

IP−table RQ

Partition Strategies

precomputed
and/or

maintained

Figure 7.16: Acquiring information about (temporal) characteristics of tem-
poral relations by using IP-tables

7.5.1 Merging Complete IP-Tables

The basic merging process is fairly straightforward: Imagine two complete IP-
tables I(R) and I(Q) of two relations R and Q participating in a temporal join
R on Q. They have timepoint sets V (R) and V (Q) and functions sR, oR and
sQ, oQ respectively. These two tables can be merged into one IP-table I(R ∪ Q)
with timepoint set

V (R ∪Q) = V (R) ∪ V (Q)

and functions sR∪Q, oR∪Q defined as

sR∪Q(t) = sR(t) + sQ(t) (7.13)

oR∪Q(t) = oR(t) + oQ(t) (7.14)

We note that the IP-table of R might not hold values for all t ∈ V (Q) and,
similarly, the IP-table of Q might not for all t ∈ V (R). This is not actually a
problem as the missing values can be derived by using the third observation
made in section 7.1: it is

sR(t) = 0 (7.15)

oR(t) = oR(min{x ∈ V (R) : x ≥ t}) (7.16)

for all t 6∈ V (R) and in particular for those t ∈ V (Q)− V (R) in the case that the
IP-tables are merged. The same applies vice versa when values for sQ and oQ

have to be derived.

154

The correctness of (7.13) is trivial: if sR(t) intervals in R start at time t and
sQ(t) intervals in Q start at t then there are sR(t) + sQ(t) intervals starting at t in
R ∪Q. Similarly for (7.14): if oR(t) intervals in R overlap timepoint t and oQ(t)
intervals in Q do the same then there are oR(t) + oQ(t) overlapping t in R ∪Q.

Figure 7.17 shows the algorithm that merges two complete IP-tables I(R)
and I(Q) into one IP-table I(R ∪ Q) that describes the characteristics of the
intervals in R ∪Q. The timepoint sets

V (R) = {x1, . . . , xA}
V (Q) = {y1, . . . , yB}

are merged into the set

V (R ∪Q) = V (R) ∪ V (Q) = {t1, . . . , tN}

The values sR∪Q(tj), sR(xl), sQ(yh) are stored in arrays sR∪Q[], sR[], sQ[] respect-
ively (j = 1, . . . , N ; l = 1, . . . , A; h = 1, . . . , B). Similarly, oR∪Q(tj), oR(xl),
oQ(yh) are respectively stored in the arrays oR∪Q[], oR[], oQ[]. The algorithm
mainly consists of a while-loop that merges the timepoints of V (R) and V (Q)
and calculates their values sR∪Q[j] and oR∪Q[j] according to (7.13) and (7.14).
This while-loop stops when all of the timepoints of at least one of these sets
has been merged into V (R ∪ Q). Then there might be timepoints that have
not been processed yet. This is done by one of the following two while-loops.
Finally, the cardinality N of V (R ∪Q) is set.

7.5.2 Merging Incomplete IP-Tables

Merging two incomplete IP-tables is similar to merging two complete IP-tables:
equations (7.14) and (7.16) still apply when using timepoint sets like V′(R, a),
V ′(Q, b), V ′′(R) or V ′′(Q). The difference lies in the different properties of func-
tions like sR and its respective counterparts s′R or s′′R5: equation (7.13) does not
provide the correct result when s-labelled functions are replaced by their s′-
labelled counterparts. Therefore we require another sensible way to calculate
the values of s′R∪Q.

Let us assume that V ′(R, a) = {x1, . . . , xA} with xl−1 < xl for l = 2, . . . , A,
and similarly that V ′(Q, b) = {y1, . . . , yB} with yh−1 < yh for h = 2, . . . , B.
The notion behind the definition of s′R(xl) was that there are s′R(xj) intervals

5In the remainder of this subsection we will only use the notation for condensed IP-tables.
This is for improving the readability of the text. Nevertheless, everything that applies to con-
densed IP-tables equally applies to endpoint IP-tables in this context.

155

/* Merge two complete IP-tables I(R) and I(Q) */
/* V (R) = {x1, . . . , xA}with xl−1 < xl for l = 2, . . . , A */
/* V (Q) = {y1, . . . , yB} with yh−1 < yh for h = 2, . . . , B */

V (R ∪Q) = ∅
l = 1 /* index of next element of V (R) to be merged */
h = 1 /* index of next element of V (Q) to be merged */
j = 1 /* index of next element of V (R ∪Q) to be created */

while l ≤ A and h ≤ B do /* merge tables */
oR∪Q[j] = oR[l] + oQ[h]
if xl = yh then
sR∪Q[j] = sR[l] + sQ[h]
V (R ∪Q = V (R ∪Q) ∪ {xl}
l = l+ 1
h = h+ 1

else if xl < yh then
sR∪Q[j] = sR[l]
V (R ∪Q = V (R ∪Q) ∪ {xl}
l = l+ 1

else /* xl > yh */
sR∪Q[j] = sQ[h]
V (R ∪Q = V (R ∪Q) ∪ {yh}
h = h+ 1

fi
j = j + 1

od

if h > B then
while l ≤ A do /* add rest of V (R) */

sR∪Q[j] = sR[l]
oR∪Q[j] = oR[l]
V (R ∪Q = V (R ∪Q) ∪ {xl}
l = l+ 1
j = j + 1

od
else

while h ≤ B do /* add rest of V (Q) */
sR∪Q[j] = sQ[h]
oR∪Q[j] = oQ[h]
V (R ∪Q = V (R ∪Q) ∪ {yh}
h = h+ 1
j = j + 1

od
fi

N = j − 1

Figure 7.17: The merge algorithm for two complete IP-tables.

156

starting within the time range (xl−1, xl]. If we make the assumption that these
intervals’ startpoints’ distribution is uniform then there are

1
xl − xl−1

· s′R(xl)

intervals in R starting at any point t ∈ (xl−1, xl]. Thus there are

z

xl − xl−1
· s′R(xl)

intervals starting in some range within (xl−1, xl] that comprises z timepoints.
In particular, this applies to a range (tj−1, tj] with xl−1 ≤ tj−1 < tj ≤ xl as
being used in the merging process with tj−1 and tj being elements of a merged
timepoint set V (R ∪Q): there are

tj − tj−1

xl − xl−1
· s′R(xl)

intervals starting in (tj−1, tj]. As the quotient might lead to a non-integer result
we have to round the result of (7.17) to get an integer:

round
(
tj − tj−1

xl − xl−1
· s′

R
(xl)
)

(7.17)

Similarly, we can derive values for the intervals in Q.
The significance of (7.17) is that it allows us to provide an approximation

for a s′R(tj) with s′R(tj) providing the number of intervals that have started since
tj−1 < tj. The novelty is that this is possible for any pair {tj−1, tj} ⊆ L(R ∪ Q)
with xl−1 ≤ tj−1 < tj ≤ xl for some l ∈ {1, . . . , A}. Consequently, we can
calculate a value s′

R∪Q(t) in the following way: we assume that the merging
process has reached a stage such

• that the elements

{x1, . . . , xl−1} ⊂ V ′(R, a)

{y1, . . . , yh−1} ⊂ V ′(Q, b)

have been processed for some l ∈ {1, . . . , A} and some h ∈ {1, . . . , B},

• that there are dummy values

t0 = x0 = y0 = min{x1, y1} − 1

• and that
V ′(R ∪Q) = {t1, . . . , tj−1}

for some j ≥ 1.

157

The merging process guarantees that

tj−1 = max{xl−1, yh−1}

and chooses

tj = min{xl, yh} (7.18)

Together with the implicit constraints that xl−1 < xl and that yh−1 < yh, this
implies

xl−1 ≤ tj−1 < tj ≤ xl

yh−1 ≤ tj−1 < tj ≤ yh

Consequently, expression (7.17) can be applied to both s′R(xl) and s′Q(yh) when
choosing tj according to (7.18). Thus it is

s′R∪Q(tj) = round
(
tj − tj−1

xl − xl−1
· s′R(xl)

)
+ (7.19)

round
(
tj − tj−1

yh − yh−1
· s′Q(yh)

)
The modified version of the merge algorithm is shown in figure 7.18. Its gen-
eral structure is the same as in the case of two complete IP-tables being merged.
However, it uses (7.19) rather than equation (7.13).

7.5.3 Merging Complete and Incomplete IP-Tables

There might be a situation that several types of IP-tables are used within a
temporal database. In this case, one can expect complete and incomplete IP-
tables to be merged at some stage. This cannot be done by using one of the
algorithms that have been discussed in sections 7.5.1 and 7.5.2 but by a hybrid
one that uses parts of both. Figure 7.19 shows the algorithm for the case that
a complete IP-table I(R) is merged with an incomplete IP-table I′(Q, b)6. The
result is necessarily an incomplete IP-table because the information of I′(Q, b)
is already incomplete. Therefore notations like s′

R∪Q, V ′(R∪Q) andN ′ are used
rather than sR∪Q, V (R ∪ Q) or N . The algorithm is structured similarly to the
ones in figures 7.17 and 7.18 and applies (7.17) only to I′(Q, b).

6As mentioned earlier, we use the notation for condensed IP-tables in this case although the
techniques apply to endpoint IP-tables too.

158

/* Merge two condensed (or endpoint) IP-tables I′(R, a) and I′(Q, b) */
/* V ′(R, a) = {x1, . . . , xA}with xl−1 < xl for l = 2, . . . , A */
/* V ′(Q, b) = {y1, . . . , yB} with yh−1 < yh for h = 2, . . . , B */

V ′(R ∪Q) = ∅
t0 = x0 = y0 = min{x1, y1} /* for convenience */
l = 1 /* index of next element of V ′(R, a) to be merged */
h = 1 /* index of next element of V ′(Q, b) to be merged */
j = 1 /* index of next element of V ′(R ∪Q) to be created */

while l ≤ A and h ≤ B do /* merge tables */
oR∪Q[j] = oR[l] + oQ[h]
if xl = yh then
s′R∪Q[j] = round((xl − tj−1)/(xl − xl−1) · s′R[l]) + round((xl − tj−1)/(yh − yh−1) · s′Q[h])
V ′(R ∪Q = V ′(R ∪Q) ∪ {xl}
l = l+ 1
h = h+ 1

else if xl < yh then
s′R∪Q[j] = round((xl − tj−1)/(xl − xl−1) · s′R[l]) + round((xl − tj−1)/(yh − yh−1) · s′Q[h])
V ′(R ∪Q = V ′(R ∪Q) ∪ {xl}
l = l+ 1

else /* xl > yh */
s′R∪Q[j] = round((yh − tj−1)/(xl − xl−1) · s′R[l]) + round((yh − tj−1)/(yh − yh−1) · s′Q[h])
V ′(R ∪Q = V ′(R ∪Q) ∪ {yh}
h = h+ 1

fi
j = j + 1

od

if h > B then
while l ≤ A do /* add rest of V ′(R, a) */

s′R∪Q[j] = s′R[l]
oR∪Q[j] = oR[l]
V ′(R ∪Q = V ′(R ∪Q) ∪ {xl}
l = l+ 1
j = j + 1

od
else

while h ≤ B do /* add rest of V ′(Q, b) */
s′R∪Q[j] = s′Q[h]
oR∪Q[j] = oQ[h]
V ′(R ∪Q = V ′(R ∪Q) ∪ {yh}
h = h+ 1
j = j + 1

od
fi

N ′ = j − 1

Figure 7.18: The merge algorithm for incomplete IP-tables.

159

/* Merge a complete IP-tables I(R) and a condensed one I′(Q, b) */
/* V (R) = {x1, . . . , xA}with xl−1 < xl for l = 2, . . . , A */
/* V ′(Q, b) = {y1, . . . , yB}with yh−1 < yh for h = 2, . . . , B */

V ′(R ∪Q) = ∅
t0 = y0 = min{x1, y1} /* for convenience */
l = 1 /* index of next element of V (R) to be merged */
h = 1 /* index of next element of V ′(Q, b) to be merged */
j = 1 /* index of next element of V ′(R ∪Q) to be created */

while l ≤ A and h ≤ B do /* merge tables */
oR∪Q[j] = oR[l] + oQ[h]
if xl = yh then
s′
R∪Q[j] = sR[l]) + round((xl − tj−1)/(yh − yh−1) · s′

Q
[h])

V ′(R ∪Q = V ′(R ∪Q) ∪ {xl}
l = l+ 1
h = h+ 1

else if xl < yh then
s′R∪Q[j] = sR[l]) + round((xl − tj−1)/(yh − yh−1) · s′Q[h])
V ′(R ∪Q = V ′(R ∪Q) ∪ {xl}
l = l+ 1

else /* xl > yh */
s′R∪Q[j] = round((yh − tj−1)/(yh − yh−1) · s′Q[h])
V ′(R ∪Q = V ′(R ∪Q) ∪ {yh}
h = h+ 1

fi
j = j + 1

od

if h > B then
while l ≤ A do /* add rest of V ′(R, a) */

s′R∪Q[j] = sR[l]
oR∪Q[j] = oR[l]
V ′(R ∪Q = V ′(R ∪Q) ∪ {xl}
l = l+ 1
j = j + 1

od
else

while h ≤ B do /* add rest of V ′(Q, b) */
s′R∪Q[j] = s′Q[h]
oR∪Q[j] = oQ[h]
V ′(R ∪Q = V ′(R ∪Q) ∪ {yh}
h = h+ 1
j = j + 1

od
fi

N ′ = j − 1

Figure 7.19: The algorithm for merging a complete and an incomplete IP-table.

160

7.6 Histograms and IP-Tables

Query optimisers in a DBMS employ statistical profiles of the data. Such stat-
istical profiles are complex objects that contain quantitative descriptors. One
form of descriptor is a histogram. They form part of the family of non-parametric
methods to estimate the frequency distribution of attribute values [Mannino
et al., 1988].

In order to elaborate similarities between IP-tables and histograms we want
to introduce types of histograms by an example. Let us consider the distribu-
tion of values of an attribute ‘age’ in figure 7.20: the first column contains the
attribute values, the second the frequency of that value as it appears in the
‘age’ attribute of some relation, and the third column contains the cumulative
of the frequencies. Instead of storing the entire and precise frequency distribu-
tion (as shown in columns 1 and 2 of figure 7.20) it is reasonable to store the
frequencies for ranges of values. The result of this process is called a histogram.
Essentially, there are three types of histograms that have been proposed in the
literature:

• Equal-width histograms

These histograms use equally sized value ranges, i.e. value buckets of
equal widths. Figure 7.21 shows an equal-width histogram for the ex-
ample of figure 7.20. It uses ranges that comprise five of the original
attribute values each.

• Equal-height histograms
These histograms use ranges such that each frequency is the same. In
the example of figure 7.20 there are 100 values. If we assume that we
want to create four buckets then each bucket should contain 25 values.
We can imagine that (theoretically) this is done by sorting the relation
over the age attribute. Then four buckets are created by putting the first
25 tuples into the first bucket, the next 25 into the second and so forth.
Thus the first bucket would have ages 20 to 28, the second would only
have ages of 28, the third ages between 29 and 34 and the final one ages
from 34 to 39 (see figure 7.22). For advantages of equal-height over equal-
width histograms please refer to [Piatetsky-Shapiro and Connell, 1984] or
[Mannino et al., 1988].

• Variable-width histograms
Several researchers suggested that widths are set so that the values within

161

each bucket are approximately uniformly distributed. This improves the
accuracy of the selectivity estimations. Figure 7.23 shows a variable-
width histogram for the example of figure 7.20.

Now we want to compare histograms and IP-table. To that end, we can con-
sider sR(t) as a frequency distribution of the startpoints of timestamp intervals
occuring in relation R. oR(t) can be regarded as an overlap frequency distribu-
tion. In that sense, a complete IP-table corresponds to two frequency distribu-
tions (that of sR(t) and that of oR(t)), similar to the one shown in figure 7.20 for
the atomic age attribute. The condensation process for IP-tables compares to
the creation of value ranges – these correspond to the collapsed timepoints –
of equal widths as the same number of timepoints are collapsed into one each
time. Accordingly, we sum up the frequencies sR(t) for the individual ranges.
However, we cannot treat the oR(t) values as frequencies in this case. As we
have seen in the discussion of condensation (section 7.3.3) we keep the oR(t)
value for the maximum t value of each range.

In summary this means that there are obvious similarities between IP-tables
and histograms. In fact, one can consider to apply some of the methods for
condensing or compressing frequency distributions into histograms to (com-
plete) IP-tables too. However, many of the compressing methods for histo-
grams were designed having the usage of histograms for selectivity estimation
in mind. The type of variable-width histogram that we described above is an
obvious example for that. However, the main purpose of IP-tables – at least
in the context of this work – is partitioning rather than selectivity estimation.
Therefore one needs to consider carefully whether the compressing methods
that are beneficial in the case of selectivity estimation are equally favourable in
the case of partitioning. A second important issue is that ranges (or buckets) for
histograms are created in order to compress one single frequency distribution.
In the case of IP-tables one has to consider two frequency distribution which
in itself have to be treated differently as outlined in the previous paragraph.

The relationship between IP-tables and histograms and the possible applic-
ation of histogram techniques is certainly an interesting topic for future re-
search. Analysing this relationship here would lead away from our main goal
which is to investigate the suitability of IP-tables for efficiently supporting the
optimisation of partitioned temporal join processing.

Recent years have seen an extension of histograms beyond atomic data
types. One example is this use of histograms in the context of processing mul-
timedia data, such as in [Gong et al., 1996] or [Ng and Tam, 1997]. Other devel-

162

Age Number Cumulative
20 2 2
21 3 5
22 5 10
23 8 18
24 2 20
25 0 20
26 0 20
27 0 20
28 30 50
29 2 52
30 8 60
31 5 65
32 5 70
33 0 70
34 10 80
35 14 94
36 2 96
37 2 98
38 1 99
39 1 100

Figure 7.20: An example of an attribute value frequency distribution.

opments focus on specific purposes for which histograms are used. This has
led to a variety of histogram types which goes beyond the three basic types
that we have outlined above. [Poosala et al., 1996] provide a taxonomy for
previously and recently proposed histograms. Furthermore there are papers
that look at several aspects of histogram processing, such as error propaga-
tion [Ioannidis and Christodoulakis, 1993] or histogram maintenance [Gibbons
et al., 1997]. As we already mentioned above, we can expect several results of
this research being valuable in the context of IP-tables too.

163

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Age

F
re

qu
en

cy

0

5

10

15

20

25

30

35

20-24 25-29 30-34 35-39

Figure 7.21: An equal-width histogram for the distribution of figure 7.20.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Age

F
re

qu
en

cy

0

5

10

15

20

25

20-28 28 29-34 34-39

Figure 7.22: An equal-height histogram for the distribution of figure 7.20.

164

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Age

F
re

qu
en

cy

0

5

10

15

20

25

30

20-24 25-27 28 29-32 33 34-35 36-39

Figure 7.23: A variable-width histogram for the distribution of figure 7.20.

165

Chapter 8

Performance Model

Synthesis of Partitions

Analysis of Partitions

Optimising Decision

Data Analysis
System

After having discussed the initial stage of the optim-
isation process in chapter 7, we now want to move
on to stage 3 in which the performance of a partition
is determined. The reason for skipping stage 2 at this
point is that we require a good and thorough under-
standing of the cost implications for designing parti-
tioning strategies that are to be employed in stage 2.
In order to create efficient partitions we need to know
what the expensive parts of partitioned temporal join
processing are and how these are influenced by the
choice of a partition.

The purpose of this chapter is to create a performance model for partitioned
temporal join processing. This model will not only enable us to design efficient
partitioning strategies but it is also an integral part of the optimisation process:
it is the optimiser’s principle tool for deciding on the quality of a particular
partition.

8.1 Outline

The task of creating an effective performance model is not straightforward be-
cause there are many factors that affect the costs of a temporal join. Amongst
these are, for example, characteristics of the hardware architecture, issues of
the (parallel) programming paradigm and the choice of the temporal join al-
gorithm. If too many of these issues are incorporated into the model then it
might be specific to one particular hardware architecture, one particular pro-
gramming paradigm and/or one particular temporal join algorithm. On the
other hand, if we omit or generalise too many of these issues then we prob-

166

ably miss out important factors that affect the join performance. This means
that there is not one, single performance model which can be considered as ap-
propriate but many. Our intention is to create one that seeks a good tradeoff
between covering as many situations (with respect to hardware and software
configurations) as possible while still being specific enough to achieve a reas-
onable performance prediction. In other words: it will necessarily be a com-
promise model. We divided the task of creating a performance model into
three subtasks (see also figure 8.1):

• In section 8.2, we consider the hardware issues that affect the perform-
ance. An architectural model is presented. It is parameterised by two
variables: depending on the values of these variables we get a single-
processor architecture, a parallel shared-everything (SMP) architecture,
a parallel shared-nothing architecture or a parallel hybrid, two-level ar-
chitecture that incorporates elements of the shared-everything and the
shared-nothing approaches. This covers a broad spectrum of possible ar-
chitectures and therefore supports our goal to be as general as possible.

• In section 8.3, we look at the software aspect, i.e. the temporal join al-
gorithm and how it works on the architectural model. In chapter 4,
we have presented a wide range of temporal join algorithms of which
only those are relevant that employ explicit and symmetric partition-
ing. Please recall that the performance of all the other temporal join al-
gorithms is not affected by the choice of a partition. This still leaves us
with a a variety of possible algorithms. We necessarily have to comprom-
ise here. However, this does not imply that we cannot create a model that
provides a realistic feedback on the performance impacts of partitioning:
we can pick an algorithm which represents a family of algorithms whose
performances are similarly affected by the choice of a partition.

• The cost model for partitioned temporal join processing is derived in sec-
tion 8.4. This model incorporates the assumptions and compromise de-
cisions that have been taken in sections 8.2 and 8.3.

The chapter is concluded in section 8.5 where we evaluate the performance
model on top of a uniform workload, i.e. we assume that the temporal inter-
vals are uniformly distributed and of a uniform length. In this case a uni-
form partition of the data is optimal. Therefore we can draw conclusions about
performance characteristics that are partition-independent. This will allow us

167

to draw a variety of partition-independent conclusions, in particular it will
prove that the assumptions that we had to make about the underlying pro-
gram paradigms only have minor impacts on the cost model.

This analytical way of modeling the performance has two major advantages
in comparison to alternative approaches for determining processing costs, such
as simulation or implementation on a real hardware platform:

1. It can be used not only for the evaluation of our techniques but provides
a tool for an optimiser to estimate the performance on which it can base
its decisions. Simulation or real implementations can only cater for the
first purpose.

2. As already elaborated above, we want to obtain a model for a variety of
hardware platforms. Implementations and simulations produce results
that are specific to the respective hardware or range of hardware plat-
forms.

These advantages are accompanied by the disadvantage that the absolute cost
figures that are obtained probably do not compare directly with the ones that
are achieved in reality. A simulation or an implementation of the operation
would achieve preciser results. However, as we are concerned with comparing
possible partitions in a platform-independent manner, we will use an analyt-
ical approach. In future research it might be interesting to validate our analyt-
ical model by simulating or implementing the operation.

Performance Model

An arrow indicates that one model influences the other.

Architectural Model

Temporal Join Processing Model

Cost Model

Figure 8.1: The structure of the performance model and the modeling process.

168

8.2 The Architectural Model

8.2.1 Introduction

Nowadays, high-performance database management systems (DBMS) are run-
ning on a variety of hardware platforms. There are two categories:

• single processor servers

• multiprocessor servers

Machines of the first category usually employ a single, but very powerful pro-
cessor. Although there are still many DBMS installations running on unipro-
cessors, the use of multiprocessor systems is vital for performance whenever
the database size or the workload cause the CPU of a uniprocessor system to
be the performance bottleneck. Multiprocessor servers combine the raw com-
puting power of many (commodity) processors in order to achieve high per-
formance. However, parallelism is not restricted to the CPU but also to I/O
and main memory access. There are many ways in which processors, disks,
memory modules, buses etc. can be combined in order to build a parallel data-
base server and this section will discuss some of the resulting architectural
categories.

At the end of the 1980s and the beginning of the 1990s there was a wide
and controversial discussion1 about the question “Which is the most suitable
parallel architecture to support parallel database systems?” It was expected
that one could draw conclusions on the system’s performance by analysing its
underlying architecture. For a while, there was a confusion about what the
term “architecture” actually comprised: only the system’s hardware or also
the software? Therefore many researchers mixed hard- and software aspects
within this discussion. Actually, this was not a problem as the first parallel
database system prototypes used to have matching hard- and software archi-
tectures. However, things changed when parallel DBMS technology started to
be commercially exploited.

In the last few years, many vendors have tried to make their parallel DBMS
products independent from specific parallel hardware platforms in order to
achieve a wider acceptance in the market of high-end DBMS products. This
resulted in the fact that a DBMS’s software architecture does not necessarily
match the underlying hardware architecture. Similarly, vendors of parallel

1See summary in section 8.2.2.

169

hardware moved to general-purpose architectures that can run software of any
type but with certain software architectures being more favourable than others.

This development made it even more difficult to predict a system’s per-
formance from an analysis of the underlying architectures. Alternatives were
proposed such as the 5-layer-model by Norman and Thanisch. They suggest to
base a performance analysis on 5 layers with each layer representing a system’s
hard- and software components (see figure 8.2). Lines between the components
describe dataflows. By describing a system on top of this model one can now
see in which way workloads are balanced between the components within the
system [Norman and Thanisch, 1995].

Disks

Disk
Accessers

Slaves

Servers

Dispatchers

Users

Figure 8.2: The 5 layers of the generic model. Source: [Norman and Thanisch,
1995].

A further issue, which makes performance modeling a difficult task, is the
following: practical experience shows that a system’s performance is quite of-
ten also a result of tuning, i.e. the proper configuration of the hardware with
respect to the software and the workload and the configuration of the software
with respect to the hardware and the workload. Tuning is an important is-
sue as practical evidence shows that there is a huge difference in performance
between a well-tuned and a poorly-tuned system [Witkowski, 1993].

As a conclusion from the above, it becomes obvious that it is a difficult and
complex task to determine a system’s performance; there is a huge number

170

of factors and facts to be considered. However, in this thesis we are not con-
cerned with the overall performance of a DBMS under a certain workload but
with the performance of one particular operation. Consequently, we do not
need to make assumptions about the system’s software architecture; we can
merely concentrate on its hardware. This might stand in contrast to what we
said above but is purely justified by the fact that we concentrate on one single
operation rather than an entire DBMS.

This allows us to make some simplifying assumptions: we perceive the sys-
tem environment as a set of hardware resources that are available for proces-
sing the temporal join. These resources are characterised by parameters, e.g.
the (current) amount of free memory, the (current) communication bandwidth,
the number of processing nodes that are available for processing the join at that
particular moment etc. We assume these parameters to be dynamic, i.e. they
describe the current potential of the system, rather than static, i.e. they are not
supposed to be constant all the time. In that way, we incorporate the system’s
load / workload without making any assumptions about it. A high workload,
for example, might imply a small amount of free memory, low communication
and I/O bandwidths etc., whereas low workloads imply more beneficial para-
meter values. What remains to be defined is how these components interact,
i.e. the hardware architecture.

In section 8.2.2, we summarise the architectural discussion that was men-
tioned earlier. It provides an overview over the various basic architectural
types that can be considered. The arguments in favour and against these ba-
sic types explain the convergence to hybrid architectures which are presen-
ted in section 8.2.3. The latter incorporate concepts of various basic types.
We pick one of these architectures to be the one on which our performance
model is based. As outlined in section 8.1, it is parameterised by two variables.
These parameters provide us with the flexibility to setting up either a single-
processor architecture, a parallel shared-memory (SMP) architecture, a parallel
shared-nothing architecture or a hybrid, two-level architecture incorporating
advantages of the shared-memory and the shared-nothing approaches.

8.2.2 Summary of the Architectural Discussion

Traditionally, architectures for parallel DBMS were categorised by the way in
which processors share hardware resources like disk devices and memory.
This categorisation initially appeared in [Stonebraker, 1986] and was mainly
meant to be a discussion around the most appropriate parallel hardware archi-

171

tecture. Many researchers have participated in this discussion in the following
years; see e.g. [Bhide and Stonebraker, 1988], [DeWitt and Gray, 1990], [Hua
et al., 1991], [DeWitt and Gray, 1992], [Bergsten et al., 1993], [Valduriez, 1993b],
[Baru et al., 1995], [Gray, 1995] and many others, base their arguments on it. In
this section, we briefly describe the architectural categories and summarise the
conclusions that have been drawn. We note that many arguments that were
brought forward are of a historical nature because they reflect on the state of
the technology in the late 1980s and early 1990s and do not consider recent
developments. The categories are:

• shared-memory,

• shared-disk,

• shared-nothing.

Shared-Memory

Shared-memory (SM) – some authors, like [Hua et al., 1991] or [Bergsten et al.,
1993], prefer the equivalent term shared-everything – means that all disks and
all memory modules are shared by the processors as shown in figure 8.3. This
means that all disks are equally accessible by all processors and that there is
a global address space for main memory. The latter can be implemented as
a physically distributed memory in which each processor has a local memory
which forms a part of the global memory2. There are two forms for accessing
this distributed shared memory [Tannenbaum, 1994]:

• There is a uniform access memory (UMA) in which uniformity is guaran-
teed by a hardware-driven caching mechanism. This means that, in the-
ory, accesses to any location in memory are at the same costs. In practice,
however, caching cannot entirely extinguish the difference between local
and remote memory access costs but it makes this difference bearable.
The caching hardware, however, is complex and expensive and limits
SM-architectures to a small number of processors.

• The alternative is a non-uniform memory access (NUMA) in which access
to local memory is typically 10 times faster than to a remote access to
an address space which is located at another node. Remote accesses are
avoided either by the software or by the operating system which aims

2See discussion about shared-disk.

172

to shift memory pages to the location from which it is most frequently
accessed. In contrast to UMA, the NUMA approach is scalable, much
cheaper and more flexible at the expense of leaving the memory access
optimisation to the operating system.

A symmetric multiprocessor (SMP) is an example for the shared-memory con-
cept: it integrates a small number of identical processors in order to combine
their raw computing power. These processors cooperate over a single memory.

The following arguments have been raised when discussing SM-architec-
tures: It is said that SM is simple to program, essentially because of the global
address space in main memory. Load balancing can be arranged relatively
easily because each processor has equal access to all disks. Communication
among the processors is fast (and incurs low overhead) as they can cooperate
via main memory. However, system costs are high for big systems because
the bus becomes a bottleneck and various hardware mechanism have to be
employed to tackle this problem. Conflicting accesses to main memory can
decrease the performance. It is also argued that access to main memory is the
reason why SM-architectures do not scale up very well: [Bhide and Stoneb-
raker, 1988] showed that beyond a certain number of processors, access to main
memory can become a bottleneck that limits the system’s processing speed.
SM systems are therefore limited to a small number of processors ([Valduriez,
1993a] mentions 20; [Baru et al., 1995] argues that the limit is around 10 RISC
System/6000 processors).

M M M. . .

P PP . . .

.

.

.Interconnect

Processors

Memory Modules Disks

Communication
Network

Figure 8.3: Shared-Memory Architecture

173

Shared-Disk

In a shared-disk (SD) system, each processor has its private memory. The access
to disks, however, is shared by all of them. Figure 8.4 shows this architecture.
Actually it shows the way in which the SM is frequently implemented, namely
as a distributed shared memory with each processor holding one part of the
global memory. For that reason SD and SM can be considered as synonymous
nowadays.

In the following, we summarise the arguments that have been brought up
in favour or against SD systems: It is argued that the costs for SD system are
relatively low as the interconnect could be a bus system based on standard
technology. It is also argued that load balancing is also relatively easy for the
same reason as in the SM case, and that the availability of data is higher than in
an SN system (see below) as a crash on one processor does not result in the data
of a particular disk being unavailable. Software from uniprocessor systems can
be easily migrated since the data on disk need not be reorganised [Valduriez,
1993a]. Much of the down-side of SD systems is said to relate to an increase in
complexity, e.g. caused by the cache coherency control mechanisms that are ne-
cessary to maintain consistent disk pages in the processors’ individual caches.
A centralised lock management is also required. All this limits the scalability of
a SD system. Finally, the access to the shared disks might result in a bottleneck
through a limited interconnect capacity.

Interconnect

M M M

. . .
P PP

.

.

.

Figure 8.4: Shared-Disk Architecture

174

Shared-Nothing

In a shared-nothing (SN) system, each processor has its private memory and has
at least one disk connected; the processor acts as a server for the data on this
disk. Figure 8.5 shows this type of architecture.

The arguments around the SN-architecture are as follows: It is said that the
costs of a SN system are low because it can essentially be constructed from
commodity components3. Theoretically, SN can scale and speed up linearly; in
practice it is argued that the interconnect becomes saturated beyond a certain
volume of communication. Availability is also often considered to be a seri-
ous problem. Load balancing is another problem: it is argued that data skew
can cause serious imbalances. Furthermore, load imbalance can be caused by
the the execution of operations being in some way predetermined by the data
placement on the disks and the necessity to avoid huge data shipping through
the network to other processors.

For a long time, SN has been considered as the best parallel architecture,
mainly because of its allegedly unlimited scalability. There are two reasons
why this advantage has not manifested itself in practice:

• As already mentioned above, the interconnect gets saturated beyond a
certain point. Academics often pointed to Teradata machines4 as an ex-
ample of a commercial SN product that would allegedly scale up to sys-
tems with “over 1000 processors” [DeWitt and Gray, 1992]. However,
Teradata itself admitted that its interconnect, the YNET, would not scale
to the maximum, physically feasible configuration of 1000 processors
[Witkowski, 1993].

• As a matter of fact, there is a trend which offers an alternative to scalab-
ility: processor speed doubles roughly every 18 months [Gray, 1995].
Therefore, instead of adding quantity (i.e. more processors) one can add
quality (i.e. faster processors), thus avoiding the problem of the intercon-
nect saturation. We used the workload and performance model provided
in [Hua et al., 1991] to compare these two possibilities with respect to
join processing times. Starting with an initial SN architecture with 10

3This argument his entirely historical as many SM systems are now entirely built of com-
modity parts whereas SN systems frequently have proprietary (and therefore expensive) in-
terconnect.

4The interested reader might refer to papers such as [Teradata Corporation, 1983], [Teradata
Corporation, 1985], [Carino and Kostamaa, 1992], [Sloan, 1992], [Witkowski, 1993] and many
others to get details about Teradata machines and their successors.

175

processors we multiplied the number of processors by a scaling factor
x = 2, . . . , 5. Using the same initial architecture we did the same experi-
ment but this time we magnified the overall computing power by using
processors that were x = 2, . . . , 5 times faster. The result can be seen in
figure 8.6 and proves that adding faster processors is preferable. This
means that in practice scalability is actually a characteristic that is not as
important as it is frequently claimed by many academic researchers. This
also explains the fact that there are so few parallel computer systems on
the market nowadays that employ a large number of simple processors –
such as the Connection Machine [Hillis, 1985] or the MasPar MP-1 [Blank,
1990] – but a relatively small number – e.g. the Cray T3D [Cray Research,
1993] – or a handful – e.g. servers such as Sun’s SPARCcenter 2000 and
derived products [Cekleov et al., 1993] – of powerful processors.

Interconnect

. . .P

M

P

M

P

M

Figure 8.5: Shared-Nothing Architecture

8.2.3 A Hybrid Architecture

Regarding the characteristics of the preceding three architectural types it be-
comes obvious that there is no ideal, single consensus architecture for paral-
lel database systems. Hua et al. proposed an architecture that combines the
advantages of shared-nothing (scalability) with those of shared-memory (fast
communication, easy load-balancing) [Hua et al., 1991]. M symmetric multi-
processor (SMP) nodes, each of which comprisingN processors, are connected
in a shared-nothing manner. The architecture is shown in figure 8.7. Many re-
cent commercial products adopted this or similar architectures, such as the one
outlined in figure 8.8: basically it is the same architecture as in figure 8.7 but

176

100

200

300

400

500

sec

1 2 3 4 5

scaled SN architecture

SN architecture with
faster processors

scaling/acceleration factor

Scaling vs. Faster Processors

Figure 8.6: Scaling vs. using faster processors in a SN architecture.

177

allows access to disks from more than one node. As well as flexibility, this
provides a certain redundancy in case that a node fails.

. . .

P P P...

Bus

M

Interconnect

P P P...

Bus

M

Figure 8.7: Hybrid architecture described in [Hua et al., 1991].

P P P...

Bus

M

P P P...

Bus

M

. . .

P P P...

Bus

M

Interconnect

Figure 8.8: Hybrid architecture adopted by many recent commercial products

We will use this basic architectural model for modeling the performance of
temporal joins. Hua et al. have proved its suitability for this purpose when
analysing parallel join performances on this architecture and accurately sim-
ulating and predicting many architectural effects. We have already seen one
example in figure 8.6. But this architectural model provides further advant-
ages: the parametersM and N can be used to set up any of the architectural
types that have been discussed so far:

• M = 1, N = 1: In this case, we have one processing node that contains
one processor, i.e. a single-processor machine as it can be found in main-
frames or other database servers.

178

• M = 1,N > 1: This is a SM-/SD-architecture: one SMP node comprising
N processors.

• M > 1, N = 1: This is a SN-architecture withM single-processor nodes.
Alternatively, it can be considered as a NUMA-based SM-/SD-architec-
ture in which the interconnect represents a bus over which processors
access non-local memory modules.

In the following sections, we will not assume any particular values forM and
N . We will use them as parameters that describe the architecture. Only in the
experiments in section 8.5 and chapter 10 appropriate values will be chosen.

8.3 Temporal Join Processing Model

8.3.1 Preliminaries

Before we can start to describe how a temporal join R onC Q is processed, we
have to lay out the starting situation that we assume when such a join is pro-
cessed on a hardware architecture as in figure 8.7.

Firstly, we have to decide on the temporal join algorithm that is to be used.
We will model the performance of the algorithm presented in section 4.4.3 for
the following reasons:

• It is suitable for any configuration of the hybrid architecture that has been
described in section 8.2.3; the algorithm presented by Soo et al., for ex-
ample, is restricted to sequential processing (see section 4.4.4).

• It is based on a symmetric partitioning approach and thus easily applic-
able to n-way joins for n ≥ 3, too. In sections 4.4.5 and 4.5 we have
already seen that Lu et al.’s spatially partitioned join can be expected to
perform poorly in such a situation.

• It performs better than the basic algorithm of section 4.4.2 as it avoids
redundancies.

Therefore it is the most versatile of the algorithms that are based on explicit
partitioning. Furthermore, it can be expected to perform well according to the
analysis of section 4.5.

Secondly, the temporal relations R and Q are assumed to be physically dis-
tributed over the disk systems of theM nodes: the disks of node i hold frag-

179

ments R̂i and Q̂i of R and Q respectively (i = 1, . . . ,M) such that

R =
M⋃
i=1

R̂i

Q =
M⋃
i=1

Q̂i

These fragments are supposed to be pairwise disjoint, i.e.

R̂i ∩ R̂j = ∅
Q̂i ∩ Q̂j = ∅

for 1 ≤ i < j ≤ M. Later, we see that the first processing stage converts these
initial fragments into the R′k, R

′′
k, Q′k, Q

′′
k for k = 1, . . . ,m, which are required

for processing R onC Q based on symmetric partitioning. We will refer to this
as the repartitioning stage (see figure 8.9).

Thirdly, there is a partitioning strategy which produces a partition P =
{p1, . . . , pm−1} which is defined as in chapter 5. It is used within the reparti-
tioning stage for creating the fragmentsR′k, R′′k, Q

′
k, Q

′′
k for k = 1, . . . ,m. Please

note that it is P that provides the parameterm.
The repartitioning stage is followed by a joining stage in which the partial

joins are computed. We assume that

R′k onC Q
′′
k, R′k onC Q

′
k, R′′k onC Q

′
k (8.1)

are processed sequentially on one processor as proposed in section 4.4.3. We
refer to the computation of the three joins in (8.1) as RQk (k = 1, . . . ,m).

The machine hasM nodes each with N processors. The nodes are numbe-
red from 1 toM and the processors from 1 toMN such that all processors of
node i have numbers from (i − 1)N + 1 to iN . A function node(j) gives the
number of the node to which processor j belongs

node(j) = (j divM) + 1

So there are MN processors for performing m computations RQk with k =
1, . . . ,m. We now look at the way in which the RQk will be distributed over
the processors.

If m ≤MN then processors 1, 2, . . . ,m perform one computation RQk (for
k ∈ {1, . . . ,m}) each. Processorsm+1,m+2, . . . ,MN remain idle in that case.
If m >MN then the workload distribution is as follows: theMN processors

180

are divided into two sets. One has A processors, each of which performs α
computations RQk (for k ∈ {1, . . . ,m}) with

α =
⌈ m

MN
⌉

(8.2)

The other B = MN − A processors perform β computations RQk (for k ∈
{1, . . . ,m}) with

β =
⌊ m

MN

⌋
(8.3)

This is illustrated in figure 8.10. Please note that the processors work concur-
rently but each processor processes its ‘load’ sequentially.

The values of A and B can easily be computed from the values of α and β

from the following two constraints:

A+B = MN (8.4)

A · α + B · β = m (8.5)

From (8.4) follows that B =MN − A. If this is used to replace B in (8.5) then
we get

A =
m− β · MN

α− β (8.6)

But if m is not a multiple ofMN then we have

α − β = 1

Therefore (8.6) works out to be

A = m− β · MN (8.7)

and consequently

B = (β + 1) · MN −m (8.8)

because of (8.4). If m is a multiple of MN then we have α = β and we do
not need to divide the processors, i.e. it is A = MN and B = 0 in this case.
Actually, we do not need to separate a situation with m <MN from one with
m >MN as it is α = 1 and β = 0 in that case which leads to A = m and B = 0
because of (8.7) and (8.8) respectively. And if m = MN then it is α = β = 1
which leads to A = m and B = 0, too.

Now, we look at the opposite side of the coin, i.e. we want to determine the
number j of the processor that performs computation RQk with k ∈ {1, . . . ,m}.

181

To that end we have to assume that theRQk are assigned to the processors as in
figure 8.10. We note that this might not be the optimal assignment, for example
if the most expensive computations coincide to hold subsequent numbers and
therefore happen to be performed subsequently by the same processor. This
causes the respective processor’s load to be the most expensive one and the
one that determines the overall join processing performance. In order to keep
our performance model simple and manageable for a query optimiser, we do
not optimise such a situation at this stage by rearranging the computations’
order. Such a rearrangement could imply overhead costs if an optimal place-
ment cannot be determined beforehand. This means that data might have to be
transferred through the network and one would need to analyse the tradeoff
between this overhead and the optimised costs in order to see if such a re-
arrangement was worth while.

The function processor(k) is used to give the number j ∈ {1, . . . ,MN} of
the processor that performs computation RQk with k ∈ {1, . . . ,m} according
to an assignment as in figure 8.10. If RQk is among the first Aα computations,
i.e. 1 ≤ k ≤ Aα, then it is performed by processor⌈

k

α

⌉
Similarly, if k > Aα then it is performed by a processor j > A, i.e. by processor⌈

k − Aα
β

⌉
+A

This leads to processor(k) being defined as

processor(k) =

⌈
k
α

⌉
for 1 ≤ k ≤ Aα⌈

k−Aα
β

⌉
+A for Aα < k ≤ m

(8.9)

L(R ∪ Q) = [tmin, tmax] is the lifespan covered by the tuples of R and Q. In this
context tmin and tmax are

tmin = min{L(R), L(Q)}
tmax = max{L(R), L(Q)}

As mentioned above, P is an m-way partition of L(R ∪ Q), i.e. a set of m − 1
breakpoints

{p1, . . . , pm−1}

182

with pk ∈ L(R∪Q) for k = 1, . . . ,m−1. p0 = tmin−1 (or−∞) and pm = tmax (or
+∞) are used as the left and the right delimiters of the plot. P divides L(R∪Q)
into m partition ranges

(pk−1, pk] = {t ∈ L(R ∪ Q) : pk−1 < t ≤ pk}

for k = 1, . . . ,m. The function fragmentP (t) determines the number of the frag-
ment (partition range respectively) to which a timepoint t ∈ L(R ∪ Q) belongs
with respect to partition P

fragmentP (t) = k iff t ∈ (pk−1, pk]

This means that a tuple r with timestamp [ts, te] is put into R′fragmentP (ts) and the
R′′k with the k given by the set

K ′′P (r) = {k : fragmentP (ts) < k ≤ fragmentP (te)}

We will use the functions first(j) and last(j) to refer to the index of the first and
the last computation that is performed on processor j. According to figure 8.10,
these functions are defined as

first(j) =
{

(j − 1)α + 1 if j ≤ A
Aα+ (j − A− 1)β + 1 if j > A

last(j) =
{
jα if j ≤ A
Aα+ (j − A)β if j > A

Thus the first and last computations at a node i are

first-node(i) = first((i− 1)N + 1)

last-node(i) = last(iN)

respectively. Later, it will be useful to refer to the first fragmentsR′k, R
′′
k, Q

′
k, Q

′′
k

on each node, i.e. the first fragments on the first processor of this node. The
indices k of these fragments are collected in the set Kfirst:

Kfirst = {k : k = first-node(i) ∧ 1 ≤ i ≤M}

183

R′1 R′′1 R′2 R′′2 · · · R′m R′′m

R̂1 R̂2 · · · R̂M

�
�
�
�
�
�
���

C
C
C
C
C
C
CCW

@
@
@
@
@
@
@R

Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

PPPPPPPPPPPPPPPq

XXXXXXXXXXXXXXXz

�
�

�
�

�
�

�
�

�
��+

�
�

�
�

�
�
�	

�
�
�
�
�
�
���

C
C
C
C
C
C
CCW

Q
Q
Q
QQs

HHHHHj
...

C
C
C
C
C
C
CCW

�
�
�
�
�
�
���

�
�
��+

����) ����� �
�
��	

Figure 8.9: Repartitioning of the R̂1, . . . , R̂M.

RQ1 · · · RQα processor 1

RQα+1 · · · RQ2α processor 2

...
...

RQ(A−1)α+1 · · · RQAα processor A

RQAα+1 · · · RQAα+β processor A+ 1

RQAα+β+1 · · · RQAα+2β processor A+ 2

...
...

RQAα+(B−1)β+1 · · · RQAα+Bβ processor A+B

Figure 8.10: Workload distribution among processors.

184

8.3.2 Temporal Join Processing

In the previous section, we gave a rough outline of how a temporal join is
going to be processed on the architectural model. Here, we give a precise,
stepwise description of this process. It is based on the symmetric partitioning
that was discussed in section 3.5.2. Thus the process comprises the following
three stages (see figure 3.19):

1. A (re-)partitioning stage in which fragment R̂1, . . . , R̂M are repartitioned to
create fragmentsR′1, R′′1 , . . . , R′m, R′′m. The same is done for the Q̂1, . . . , Q̂M.
See figure 8.9.

2. A joining stage in which the RQk are computed for k = 1, . . . ,m. See
figure 8.10.

3. A merging stage in which the partial results are merged and written to
disk.

In the remainder we will concentrate on the stages 1 and 2. Stage 3 might
be omitted if further processing requires the data to be partitioned. Further-
more, from the performances comparison’s point of view, one can argue that
the time spent on stage 3 is (more or less) the same for all cases as it only con-
sists of writing the join result (which is the same in all cases) to disk. It would
only increase an already existing difference if some computations have already
been off balance and have caused big partial results. But such an ‘off-balance-
situation’ would already be penalised by a poor performance in stage 2, the
stage that creates the ‘off-balance-sized-results’. Therefore, stage 3 would only
contribute marginal differences in the overall performance. Consequently, we
can concentrate on the costs of stages 1 and 2 in order to create a performance
model that allows us to compare computations using different partitions. In the
remainder, we look at the processing within these two stages.

8.3.3 Stage 1: Repartitioning

In stage 1, the initial fragments R̂i of R and Q̂i of Q (i = 1, . . . ,M) are repar-
titioned as illustrated in figure 8.9. On the architectural model, this process is
performed as follows – the description is restricted to repartitioning of R; the
process works analogously for Q.

(a) Each node i reads its fragment R̂i of R; then each processor of that node
processes the N -th part of this fragment (i = 1, . . . ,M).

185

(b) Each processor j has 2m hash buffers: B′j,1, . . . ,B′j,m to accommodate tup-
les5 forR′1, . . . , R′m and hash buffersB′′j,1, . . . ,B′′j,m for tuples forR′′1, . . . , R′′m.

Furthermore there are 2m output buffers O′1, . . . , O′m, O′′1 , . . . , O′′m. They
are distributed over allMN processors of the machine according to fig-
ure 8.10, i.e. O′k and O′′k are located at processor j = processor(k), or, put
the other way round, a processor j has the output buffers O′first(j), . . . ,
O′last(j) and O′′first(j), . . . ,O′′last(j) (see figure 8.11). An output buffer O′k will
later receive all the tuples of R′k which come from the hash buffers B′j,k
for all j = 1, . . . ,MN . Similarly, O′′k receives all the tuples of R′′k which
come from hash buffers B′′j,k for all j = 1, . . . ,MN .

A processor j hashes its tuples to the hash buffers in the following way:
a tuple r with timestamp [ts, te] is put into

(i) hash buffer B ′j,k with k = fragmentP (ts)

(ii) hash buffers B′′j,k with k ∈ K′′P (r) ∩Kfirst.

Step (i) puts the tuple in the fragment that covers the range in which the
timestamp’s startpoint ts falls; step (ii) puts the tuples in those fragments
R′′k that are processed by the first processor on nodes (other than that
covered by step (i)) that will perform an RQk that involves r. By doing
so, we avoid the situation in which more than one copy of r is sent to the
same node over the interconnect. Within a node, r can be replicated via
main memory copies which is much faster (see step (c)). Thus step (ii)
avoids a lot of possible network traffic.

As soon as a hash buffer is full its contents is transmitted to the corres-
ponding output buffer.

(c) A further replication step is performed when a tuple r with a timestamp
[ts, te] arrives at an output buffer O′k or at a O′′k with k ∈ Kfirst. Such a
buffer is located at processor j = processor(k) which itself resides at node
i = node(processor(k)). From there, r is replicated within node i and put
into the output buffers O′′l with l ∈ K′′P (r). This node-internal replication
can be done within main memory which is much faster than if it had been
performed over the interconnect (see step (ii) in (b)).

5It is for simplicity reasons that we assume that these buffers keep tuples. Alternatively,
they might hold references to tuples or one could create 2m index structures for describing the
fragments. This would require very detailed performance modeling without providing any
benefit for our purposes. Therefore we assume that the fragments are to be materialised.

186

Each processor that holds an output buffer as described above replicates
r in the following way:

/* k = fragmentP (ts) or k ∈ Kfirst */

for l = k + 1 to min{maxK ′′P (r), last-node(i)} do

send tuple to the output bufferO′′l
od

(d) When an output buffer is full then its tuples are flushed to disk.

Processor j

hash buffers B′j,1 B′j,2 · · · B′j,m

hash buffers B′′j,1 B′′j,2 · · · B′′j,m

output buffers O′first(j) O′first(j)+1 · · · O′last(j)

output buffers O′′first(j) O′′first(j)+1 · · · O′′last(j)

Figure 8.11: Buffers at processor j.

The significant difference, in comparison to partitioning for a traditional paral-
lel join, is the replication of tuples in steps (b).(ii) and (c). We chose a two-level
replication: (b).(ii) replicates the tuples over the interconnect and positions the
tuples on all nodes that have a processor that has to process the respective
tuple. This step can be regarded as an inter-node replication. Step (c) replicates
the tuples within the nodes and sends them to the remaining processors. This
intra-node replication is faster because it can be done via shared-memory rather
than via communication over the interconnection network. If this step was
incorporated into step (b).(ii) the advantage of fast communication via main
memory would be lost.

As already stated, there are more efficient ways to repartition R and Q, e.g.
by building index structures to represent the new fragments rather than ma-
terialising them as described above. We will later see that the repartitioning
stage, even when performed in this non-optimal manner, still contributes only

187

a minor part to the overall costs. It is the joining stage that dominates the over-
all performance. For this reason we chose the naive approach for repartitioning
which not only improves the readability but also simplifies the cost model that
is created in section 8.4.

8.3.4 Stage 2: Joining

We now look at stage 2 of the algorithm. Here, each processor performs one or
more computations RQk with k = 1, . . . ,m in sequential order (see figure 8.10).
In the remainder, we focus on one single computation RQk only and describe
how it is done.

(8.1) defined an RQk to consist of the sequential computation of three indi-
vidual subjoins

R′k onC Q
′′
k, R′k onC Q

′
k, R′′k onC Q

′
k

Splitting the one ‘big’ join R onC Q into several smaller partial joins R1 onC Q1,
. . . , Rm onC Qm and each of these partial joins into subjoins as in (8.1) was
described in section 4.4.3. The two major advantages for this are:

1. It is

Rk onC Qk = R′k onC Q
′
k ∪ R′k onC Q

′′
k ∪ R′′k onC Q

′
k ∪ R′′k onC Q

′′
k

but the join R′′k onC Q′′k is redundant as it is

R′′k onC Q
′′
k ⊆ Rk−1 onC Qk−1

Processing can therefore be reduced to the first three subjoins, thus avoid-
ing a considerable amount of unnecessary computation.

2. A second advantage arises from the fact that the size of the R′k are easier
to control than those of the Rk or R′′k because every tuple appears only in
one R′k but possibly in several Rk or R′′k:

m∑
k=1

|R′k| = |R|

m∑
k=1

|Q′k| = |Q|

but
m∑
k=1

|Rk| ≥ |R|

m∑
k=1

|Qk| ≥ |Q|

188

Actually, it is possible to guarantee that for all k = 1, . . . ,m the R′k have
a certain maximum numberX of tuples (see chapter 5 and the oncoming
chapter 9). Thus a partition can be chosen that guarantees that all R′k fit
into a processor’s local main memory. But this means that each R′k needs
to be read from disk only once for the first subjoin R′k onC Q′′k and is then
kept in main memory for the second subjoin R′k onC Q′k. Alternatively
one could do the same with Q′k, computing the subjoin R′′k onC Q′k first,
keeping Q′k in main memory and then computing R′k onC Q′k. Thus we
are able to reduce the total number of disk accesses by |R|/2 and |Q|/2
respectively.

With respect to each subjoin, one can use any sequential temporal join al-
gorithm. We adopt a nested-loops approach for the following reason: the
selectivity factors of the partial joins Rk onC Qk – in the remainder we will
refer to these factors as partial selectivities – can be expected to be fairly high
because the data has been partitioned according to the join predicate (i.e. tem-
poral intersection in our case). We performed preliminary experiments in or-
der to confirm this conclusion: two temporal relations U and V of 10000 tuples
each were generated. U had a random profile with the majority of tuples be-
ing valid in the first half of the lifespan (1440 chronons). V was periodic in
the sense that there were several equal peak-to-peak distances for the function
giving the number of tuples being valid at a time. The average length of a time
interval was the same in both relations (120 chronons). The three temporal in-
tersection joins U onC V (experiment 1), U onC U (experiment 2) and V onC V

(experiment 3) were partitioned into m partial joins using (a) a uniform parti-
tion of the timeline and (b) an optimal partition using the algorithm IP-opt of
chapter 5. The resulting partial selectivities are shown in figure 8.12 and con-
firm our initial conclusion that partial selectivities are fairly high, beyond 70%
in most cases. This justifies to use a nested-loops approach. Further partition-
ing through sorting (sort-merge join) or hashing (hash join) would not increase
the performance by much but would introduce an overhead through sorting6

and hashing respectively.
After having clarified essential details we can now describe how a compu-

tation RQk is performed. We assume that the subjoins are computed in the
6One could argue that the relation might originally be sorted. However, it is difficult to

maintain such a sort-order during repartitioning, especially when communication over the
interconnect is involved. Most protocols do not guarantee that messages sent in a certain
order also arrive in this order. One would then need to restore this order on arrival of the
messages. Thus the usage of a sort-merge join algorithm would impose an overhead under
any circumstances.

189

Partial Selectivities with Uniform Partitioning

Experiment 1 Experiment 2 Experiment 3

m = number of fragments

2 4 6 8 10 12 14 16 18

in
 p

er
ce

nt
40

50

60

70

80

90

(a)

Partial Selectivities when Partitioning with IP-opt

Experiment 1 Experiment 2 Experiment 3

m = number of fragments

2 4 6 8 10 12 14 16 18

in
 p

er
ce

nt

40

50

60

70

80

90

(b)

Figure 8.12: Partial selectivities as achieved in preliminary experiments.

190

procedure intersection-join (R,Q)
begin

for each blockR of R do
load tuple ofR into main memory
for each blockQ of Q do

load tuple ofQ into main memory
now compare each r ∈ Rwith each q ∈ Q:
if [r.ts, r.te] intersects [q.ts, q.te] then

time-concatenate r and q
place result in an output bufferOj
if Oj is full then

flush contents of Oj to disk
fi

fi
od

od
end

Remark: j is the number of the processor on which the intersection join is
executed.

Figure 8.13: The procedure intersection-join(R,Q).

order in which they appear in (8.1). Furthermore it is assumed that the re-
spective outer relation is bigger than the corresponding inner relation for ef-
ficiency reasons (see section 3.4.1). If this is not the case one can easily swap.
The join condition C consists of a temporal intersection and some boolean ex-
pression C(r, q) over tuples r ∈ R and q ∈ Q. The latter is supposed to be
non-temporal and therefore amenable to the same optimisations that may be
applied to non-temporal join evaluation. For performance modeling purposes
we later assume that C(r, q) evaluates to true so that we can neglect any implic-
ations given by this part of the join condition and concentrate on the essential
temporal aspects. Finally, a processor j is supposed to accumulate join results
in an output buffer Oj which is flushed to disk when it is full. A join is then
performed as shown in figure 8.13 which already assumes that C(r, q) evaluates
to true. A computation RQk processes the three subjoins in sequential order:

(a) intersection-join(R′k,Q′′k)

(b) intersection-join(R′k,Q′k)

(c) intersection-join(R′′k,Q′k)

The term time-concatenate refers to the process of creating an appropriate time-
stamp when concatenating a tuple r ∈ R and a tuple q ∈ Q. This was described

191

by (4.1) in section 4.1.

8.4 Cost Model

8.4.1 The Basic Issues

The cost model that corresponds to the temporal join processing model of sec-
tion 8.3 is created in a similar approach as the one taken by Hua et al. when
they model the performance of a parallel hash join in [Hua et al., 1991]. Hua
et al. have shown that with their approach they were able to derive many in-
teresting characteristics and simulate many developments that arose in real-
world applications. We have already seen one example in figure 8.6. Another
is the convergence towards hybrid parallel architectures – a development that
was still neglected in 1992 by DeWitt and Gray in [DeWitt and Gray, 1992] but
which has become reality nowadays (see discussion in [Norman et al., 1996]).
We can therefore expect equally viable results when following their approach.

Thus we assume the hybrid architecture of section 8.2.3 and expect the tem-
poral join to be processed as described in section 8.3. The costs are measured
in seconds. The total response time Ctotal of the temporal join depends on the
times Cpart and Cjoin spent in stages 1 and 2. In reality there might be an overlap
between these two stages; thus

max{Cpart, Cjoin} ≤ Ctotal ≤ Cpart + Cjoin

In our model, however, we assume that there is no overlap (e.g. enforced
through a barrier type synchronisation). Thus we use the upper bound

Ctotal = Cpart + Cjoin

The stages (a), (b) etc. within stages 1 and 2 are treated accordingly, i.e.7

Cpart = C1(a)(R) + C1(b)(R) + C1(c)(R) + C1(d)(R) +

C1(a)(Q) + C1(b)(Q) + C1(c)(Q) + C1(d)(Q)

Cjoin = C2(a) + C2(b) + C2(c)

Furthermore we assume that the overlap between the I/O, communication,
CPU and memory access phases within each stage is perfect. In reality, this

7We note that repartitioning applies to all relations that participate in the join, i.e. R and Q
in the prototypical case. Therefore the cost components C1(a), C1(b), C1(c), C1(d) are computed
for R using R’s parameters – this is indicated by C1(a)(R), C1(b)(R) etc. – and for Q using Q’s
parameters – this is indicated by C1(a)(Q), C1(b)(Q) etc.

192

can almost be achieved by separate I/O and communication processors. This
means that we have to analyse the costs for I/O, communication, CPU and
memory accesses for each substage of stages 1 and 2 and assume the max-
imum of these partial costs to be relevant for that substage. For stage 1 (a), for
example, this means that

C1(a) = max{C1(a),io, C1(a),com, C1(a),cpu, C1(a),mem}

Section 8.4.2 describes how Cpart is calculated; section 8.4.3 does the same for
Cjoin. This analysis assumes certain parameters like I/O bandwidth, processor
speed, amount of memory etc. These are introduced within those sections. As
a convention we will use

• i to refer to node indices, i.e. i ∈ {1, . . . ,M},

• j to refer to processor indices, i.e. j ∈ {1, . . . ,MN}, and

• k to refer to fragment indices, i.e. k ∈ {1, . . . ,m}.

If not specified otherwise we will assume the respective nominated range of
values for i, j and k.

8.4.2 Stage 1: Repartitioning

The stage – as described in section 8.3.3 – comprises disk accesses, communic-
ation, CPU time and memory accesses as the major cost factors. These costs
arise for the repartitioning of all participating relations. We restrict ourselves
to deriving the cost of the substages for one relation R; the other relations are
treated similarly:

(a) Loading fragments of R from disk

This substage does not involve any communication or memory accesses.
Only disk accesses and the CPU costs for initiating these accesses have to
be modelled. We note that we will not distinguish between random and
sequential disk I/O because we can expect an equal mix of random and
sequential accesses when comparing the costs caused by the various par-
titioning strategies. This goes along the argument that was mentioned at
the end of section 8.1, i.e. that we are interested in a relative comparison
rather than absolute figures. However, we stress that a distinction bet-
ween random and sequential accesses would be more realistic and has
therefore been frequently made in the literature, e.g. in [Soo et al., 1994].

193

We assume a uniform distribution of R over the nodes, i.e. the fragments
R̂i are equally sized. They are stored on the disks of the nodes. Therefore
each node i has to move

|R̂i| ≈
|R|
M

tuples each of size |r| to its main memory. The disk I/O bandwidth is wio

which leads to

C1(a),io =
|R|
M · |r|

wio

(8.10)

as the disk access costs whereby a portion of

|R|
MN

is loaded by each processor. We assume that tuples are moved blockwise8

from disk to the processors. Thus a disk I/O has to be initiated only once
per block (page). If b is the size of such a page then

|R|
MN ·

|r|
b

is the number of pages to be moved. The time spent on initiating one
page movement is

Iio

µ

where Iio is the number of microprocessor instructions necessary; µ is
the number of instructions per second being performed by the processor.
Thus

C1(a),cpu =
|R|
MN ·

|r|
b
· Iio

µ
(8.11)

is the CPU time spent in substage 1 (a).

As mentioned in the previous section, we assume that disk I/O, commu-
nication, CPU and memory access phases have a perfect overlap. There-
fore it is the maximum of the individual times that is finally relevant. The
total time spent on substage 1 (a) is therefore the maximum of (8.10) and
(8.11):

C1(a) = max{C1(a),io , C1(a),cpu} (8.12)

8or – in other terms – pagewise.

194

(b) Redistribution of the data via the network, including inter-node rep-

lication

Substage 1 (b) describes the distribution of the data between the nodes.
It hashes tuples to the hash buffers and initiates an inter-node replica-
tion via the interconnect. Thus it comprises communication, CPU and
memory costs.

Each of theM nodes has to deal with

|R|
M

tuples. These are distributed over the interconnect to other nodes de-
pending on their respective timestamp. We assume that 1/M-th of the
tuples are not sent over the interconnect but remain at the node, i.e. a
share of

M− 1
M

of the tuples is actually involved in inter-node communication. The data
comprises not only the primary but also the replicated tuples. We use the
parameter δR to denote the average number of times that a tuple of R is
replicated on the basis of an underlying partition P :

δR =
1
|R| ·

(
m∑
k=1

|R′k|+ |R′′k|
)

=
1
|R| ·

(
m∑
k=1

|R′k|+
m∑
k=1

|R′′k|
)

=
1
|R| ·

(
|R|+

m∑
k=1

|R′′k|
)

= 1 +
1
|R|

m∑
k=1

|R′′k| (8.13)

However, communication via the interconnect is only necessary for inter-
node replication, i.e. replication across node boundaries. A node bound-
ary appears every αN -th fragmentRk in the beginning, later every βN -th
fragment. On average this happens everyN -th fragment if m ≤ MN or
everym/M fragments otherwise. This translates to node boundaries be-
ing encountered every max{N ,m/M} fragments on average. Thus, on
average, a tuple is replicated over node boundaries

γR =
δR

max{N ,m/M} (8.14)

195

times. In other words: whereas δR provides the average number of frag-
mentsRk in which a tuple has to be present, γR gives the average number
of nodes over which these Rk are spread. Hence each node sends

M− 1
M · |R|M · γR · |r|

bytes. As each of theM node sends this amount the total communication
costs are

C1(b),com =
M− 1
M · |R| · γR ·

|r|
wcom

(8.15)

where wcom refers to the communication bandwidth. To initiate the com-
munication for a tuple transfer each processor is supposed to perform Icom

instructions, thus it has to spend

Icom

µ

seconds per transfer. Similarly, the CPU costs for hashing a tuple to a
buffer are

Ihash

µ

if Ihash is the average number of CPU instructions for the hashing. For all
r hashed by a single processor there arise CPU costs of

|R|
MN ·

Ihash

µ

The total CPU costs are therefore

C1(b),cpu =
M− 1
M · |R|MN · γR ·

Icom

µ
+
|R|
MN ·

Ihash

µ
(8.16)

Finally, on each node there are

|R|
M · δR

tuples to be moved to buffers in main memory. This causes memory
access costs of

|r|
wmem

per tuples with wmem referring to the bandwidth for main memory ac-
cesses. Thus

C1(b),mem =
|R|
M · δR ·

|r|
wmem

(8.17)

are the total costs for memory accesses per node. The total time spent on
stage 1 (b) is the maximum of (8.15), (8.16) and (8.17):

C1(b) = max{C1(b),com, C1(b),cpu, C1(b),mem} (8.18)

196

(c) Intra-node replication via main memory

Stage 1 (c) replicates tuples within a node. This can be done via main
memory. Originally, a node i had to cope with

|R̂i| ≈
|R|
M

tuples per node. Each tuple is replicated δR times on average. If δR
exceeds m/M (the average number of fragments per node) then most
tuples are replicated over all processors of a node; otherwise just δR times.
Writing one tuple to memory creates costs of

|r|
wmem

if wmem is the memory bandwidth in bytes per second. Thus the memory
access costs for this stage are

C1(c),mem =
|R|
M · |r|

wmem

·min{δR,
m

M} (8.19)

CPU costs for these memory accesses can be neglected as they comprise
by far less instructions as computing expressions (e.g. as Ihash for hashing)
or processing two tuples (see Iproc). Thus (8.19) states the total costs for
stage 1 (c):

C1(c) = C1(c),mem (8.20)

(d) Writing new fragments of R to disk

Stage 1 (d) writes the new fragments R′1, R′′1 , R′2, R′′2 , . . . , R′m, R′′m to disk.
A node i has to move

last-node(i)∑
k=first-node(i)

|R′k|+ |R′′k|

tuples to its disks which results in I/O costs of last-node(i)∑
k=first-node(i)

|R′k|+ |R′′k|

 · |r|
wio

However, as this is performed concurrently it is only the costs of the node
that takes longest to perform the task that are relevant. Thus the I/O costs
for this stage are

C1(d),io =
M

max
i=1

last-node(i)∑

k=first-node(i)

|R′k|+ |R′′k|

 · |r|wio

(8.21)

197

By analogy to stage 1 (a), this I/O has to be initiated by the CPUs with
each page movement requiring Iio instructions. A processor j moves

last(j)∑
k=first(j)

|R′k|+ |R′′k|

tuples to the disks of its node. Again, for the overall costs only the pro-
cessor that has the highest workload is relevant. This leads to overall
CPU costs of

C1(d),cpu =
MN
max
j=1

last(j)∑

k=first(j)

|R′k|+ |R′′k|

 · |r|b · Iio

µ
(8.22)

The total costs for stage 1 (d) arise from the maximum of (8.21) and (8.22):

C1(d) = max{C1(d),io, C1(d),cpu} (8.23)

The cost components of stage 1 are summarised in tables 8.1, 8.2, 8.3 and 8.4.
Relation Q has to be repartitioned in the same way using the respective para-
meters |Q|, |q|, δQ etc. With equations (8.12), (8.18), (8.20) and (8.23) we can
derive the total costs of stage 1 as

Cpart = C1(a)(R) + C1(b)(R) + C1(c)(R) + C1(d)(R) +

C1(a)(Q) + C1(b)(Q) + C1(c)(Q) + C1(d)(Q) (8.24)

with C1(a)(R) indicating that parameters of relation R should be used for com-
puting the costs of stage 1 (a). Similarly, it has to be distinguished between R
and Q in the other substages.

8.4.3 Stage 2: Joining

In this section we derive the costs Cjoin of stage 2 of the temporal join proces-
sing model. This stage is described in section 8.3.4. Here, each processor j
performs computations RQfirst(j), RQfirst(j)+1, . . . , RQlast(j). Each computation
RQk consists of performing the three subjoins

(a) R′k onC Q′′k

(b) R′k onC Q′k

(c) R′′k onC Q′k

198

Stage 1 (a)

Disk I/O |R|
M ·

|r|
wio

Communication

CPU |R|
MN ·

|r|
b
· Iio
µ

Memory

Table 8.1: Cost components for stage 1 (a).

Stage 1 (b)

Disk I/O

Communication M−1
M · |R| · γR · |r|wcom

CPU M−1
M · |R|MN · γR ·

Icom
µ

+

|R|
MN ·

Ihash
µ

Memory |R|
M · δR ·

|r|
wmem

Table 8.2: Cost components for stage 1 (b).

Stage 1 (c)

Disk I/O

Communication

CPU

Memory |R|
M ·

|r|
wmem
·min{δR, mM}

Table 8.3: Cost components for stage 1 (c).

199

Stage 1 (d)

Disk I/O
M

max
i=1

{
last-node(i)∑

k=first-node(i)
|R′k|+ |R′′k|

}
· |r|
wio

Communication

CPU
MN
max
j=1

{
last(j)∑

k=first(j)
|R′k|+ |R′′k|

}
· |r|
b
· Iio
µ

Memory

Table 8.4: Cost components for stage 1 (d).

in exactly that order in order to exploit the opportunity to keep (a part of)R′k in
main memory at the end of join (a), thus avoiding to reload it at the beginning
of join (b). Alternatively, we could use the order (c), (b), (a) and exploit the
same fact for the Q′k. In the remainder, however, we will assume the order (a),
(b), (c); arguments and results can be easily transferred to the alternative case.

The subjoins are performed by using the nested-block join technique. This
means that in joins (a) and (b) an R′k is cached either entirely or blockwise in
main memory while being joined with Q′′k and Q′k respectively. In join (c) we
assume the same for the Q′k when being joined with R′′k. The number of blocks
in which an R′k has to be divided is referred to by λk. If mem is the amount of
main memory at each node then each processor gets a share of

mem
N

Thus λk can be computed by

λk =
⌈
|R′k| · |r| ·

N
mem

⌉
Similarly, ϕk refers to the number of blocks into which a Q′k is divided for
computation in subjoin (c):

ϕk =
⌈
|Q′k| · |q| ·

N
mem

⌉
We note that λk and ϕk are 1 if R′k and Q′k respectively fit in main memory.

The costs for each of the subjoins are computed in the same way: the two
sets of tuples have to be read from disk and are then joined using a nested-
blocked approach9. A minor difference appears for join (b) that can exploit the

9See section 3.4.1.

200

fact that (a block of) R′k already resides in main memory and therefore has not
to be reloaded from disk.

There is no communication via the interconnect involved because the com-
putations RQk are independent from each other. In the following paragraphs,
we describe the cost components for join (a). The costs for joins (b) and (c) are
derived accordingly with the marginal difference in the case of join (b) that has
been mentioned above. All cost components are summarised in tables 8.5, 8.6
and 8.7.

First, we look at the I/O costs. These have to be considered on a node-wide
level as disks are shared among all the processors of a node. For join (a), all
tuples of R′k have to be read once from disk and those of Q′′k once per block of
R′k, i.e. λk times. Thus a node i has to load

last-node(i)∑
k=first-node(i)

|R′k|+ |Q′′k| · λk

tuples of sizes |r| and |q| respectively. This implies I/O costs of

1
wio

·
last-node(i)∑

k=first-node(i)

|R′k| · |r| + |Q′′k| · |q| · λk

at node i. For the overall costs only the costs of the node with the heaviest load
is relevant, i.e.

C2(a),io =
1
wio

· M
max
i=1

last-node(i)∑

k=first-node(i)

|R′k| · |r| + |Q′′k| · |q| · λk

 (8.25)

As in stage 1, the individual processors have to initiate the I/O transfers. Iio
CPU instructions are required per page transfer. Furthermore, every tuple in
R′k is tested with every tuple in Q′′k which makes

last(j)∑
k=first(j)

|R′k| · |Q′′k|

tests on a processor j. We assume that processing a pair of tuples requires Iproc

instructions. This means that the CPU costs for a processor j are

1
b
· Iio

µ
·

last(j)∑
k=first(j)

|R′k| · |r| + |Q′′k| · |q| · λk +
Iproc

µ
·

last(j)∑
k=first(j)

|R′k| · |Q′′k|

201

For the overall costs, only the processor with the heaviest load is relevant.
Therefore the CPU costs for join (a) are

C2(a),cpu =
MN

max
j=1

1
b
· Iio

µ
·

last(j)∑
k=first(j)

|R′k| · |r|+ |Q′′k| · |q| · λk +

Iproc

µ
·

last(j)∑
k=first(j)

|R′k| · |Q′′k|

 (8.26)

The joining stage requires one main memory access to a tuple r ∈ R′k per tuple
q ∈ Q′′k, i.e.

|R′k| · · · |Q′′k|

accesses in total, each retrieving a tuple of size |r|. Memory – as disks – is
shared among all processors per node. Costs for main memory access therefore
have to be considered on a node-wide level. Thus on a node i there are

last-node(i)∑
k=first-node(i)

|R′k| · |Q′′k|

accesses to a tuple of size |r|which produces costs of

|r|
wmem

·
last-node(i)∑

k=first-node(i)

|R′k| · |Q′′k|

Again, for the overall costs only the costs of the node with the heaviest load is
relevant, i.e.

C2(a),mem =
|r|
wmem

· M
max
i=1

last-node(i)∑

k=first-node(i)

|R′k| · |Q′′k|

 (8.27)

The total costs for stage 2 (a) – the join (a) – arise from the maximum of equa-
tions (8.25), (8.26) and (8.27):

C2(a) = max{C2(a),io, C2(a),cpu, C2(a),mem} (8.28)

As explained above, the costs C2(b) for join (b) and C2(c) for join (c) are similarly
derived. Tables 8.5, 8.6 and 8.7 summarise the cost components for stage 2. The
total costs Cjoin for this stage are

Cjoin = C2(a) + C2(b) + C2(c) (8.29)

202

Stage 2 (a)

Disk I/O 1
wio
· M

max
i=1

{
last-node(i)∑

k=first-node(i)
|R′k| · |r| + |Q′′k| · |q| · λk

}

CPU
MN
max
j=1

{
1
b
· Iio
µ
·

last(j)∑
k=first(j)

|R′k| · |r|+ |Q′′k| · |q| · λk

+ Iproc

µ
·

last(j)∑
k=first(j)

|R′k| · |Q′′k|
}

Memory |r|
wmem

· M
max
i=1

{
last-node(i)∑

k=first-node(i)
|R′k| · |Q′′k|

}

Table 8.5: Cost components for the joining stage 2 (a).

Stage 2 (b)

Disk I/O 1
wio
· M

max
i=1

{
last-node(i)∑

k=first-node(i)
|R′k| · |r| · λk−1

λk
+ |Q′k| · |q| · λk

}

CPU
MN

max
j=1

{
1
b
· Iio
µ
·

last(j)∑
k=first(j)

|R′k| · |r| · λk−1
λk

+ |Q′k| · |q| · λk

}

+ Iproc

µ
·

last(j)∑
k=first(j)

|R′k| · |Q′k|
}

Memory |r|
wmem

· M
max
i=1

{
last-node(i)∑

k=first-node(i)
|R′k| · |Q′k|

}

Table 8.6: Cost components for the joining stage 2 (b).

Stage 2 (c)

Disk I/O 1
wio
· M

max
i=1

{
last-node(i)∑

k=first-node(i)
|R′′k| · |r| · ϕk + |Q′k| · |q|

}

CPU
MN

max
j=1

{
1
b
· Iio
µ
·

last(j)∑
k=first(j)

|R′′k| · |r| · ϕk + |Q′k| · |q|

+ Iproc

µ
·

last(j)∑
k=first(j)

|R′′k| · |Q′k|
}

Memory |q|
wmem
· M

max
i=1

{
last-node(i)∑

k=first-node(i)
|R′′k| · |Q′k|

}

Table 8.7: Cost components for the joining stage 2 (c).

203

8.5 Evaluation of Characteristics

Before designing techniques for partitioning temporal data we want to evalu-
ate some characteristics of the performance model that was described in sec-
tions 8.2 – 8.4. Interesting questions, for example, are:

• Which cost components dominate? Is it I/O, communication, CPU time
or memory accesses?

• What is the ratio between Cpart and Cjoin ?

• Which workload parameters affect which cost components?

The problem about answering these questions is that the partition that un-
derlies the simulated join computation is an important factor within the cost
model. Therefore it is impossible to evaluate the entire performance model
without making any assumptions about the underlying partition. In order to
reduce the importance of that we will create experiments for computing tem-
poral intersection joins

R onC Q = R1 onC Q1 ∪ · · · ∪ Rm onC Qm

assuming that the underlying data is uniform.
Section 8.5.1 describes the uniform workload. In section 8.5.2, this work-

load is used to perform a series of experiments that provide useful information
about the characteristics of the performance model.

8.5.1 Uniform Workloads

In practice, uniform workloads are a very rare exception. Therefore they can-
not be used to draw realistic conclusions. However, they can help to simplify
the evaluation of the components of the performance model that are not sus-
ceptible to data skew and other forms of non-uniformity. To prepare such a
preliminary evaluation is the focus of this section. Under the notion of uni-
formity of the workload we assume the following:

• All intervals in R and Q have the same length τ .

• The startpoints of these intervals are uniformly distributed over the time-
line, i.e. at any time t ∈ L(R ∪ Q) there is the same number of intervals
starting as at a time t′ ∈ L(R ∪Q) with t′ 6= t.

204

• The only input parameter to define a partition is m. The (m − 1) break-
points are supposed to be at equal distances.

• Both relations have the same span, i.e.

L(R) = L(Q) = L(R ∪Q)

• The previous points imply that

|R1| = |R2| = · · · = |Rm|

|Q1| = |Q2| = · · · = |Qm|

• We also assume that both relations have the same number of tuples, i.e.

|R| = |Q|

• Tuples in R and Q are supposed to be of an equal size, i.e.

|r| = |q|

for r ∈ R and q ∈ Q.

Following these assumptions on uniform data, we can derive the necessary
parameters for the costs model.

First, we want to approximate the size of a fragmentRk with k ∈ {1, . . . ,m}.
For that purpose we can use δR which gives the average number of fragments
to which a tuple r ∈ R is assigned. Assuming a partition of L(R ∪ Q) into m

equally sized segments, i.e. any two subsequent breakpoints, pk and pk+1, are
at equal distance. The latter can be calculated by |L(R∪Q)|

m
. If τ is the average

length of a timestamp interval then the interval occupies a portion of

τ
|L(R∪Q)|

m

(8.30)

of a segment. As interval startpoints are uniformly distributed over a segment,
there are some intervals starting in close enough proximity to the end of a
segment to overlap a breakpoint. Therefore we have to add 1 to the value
obtained by (8.30) in order to get an estimate for δR:

δR =
m

|L(R ∪Q)| · τ + 1

Figure 8.14 shows an example for τ = 4, |L(R∪Q)|
m

= 10 and one interval in R

starting at each point t ∈ L(R∪Q). (8.30) gives a value of 0.4 which means that

205

p
k

p
k+1

10 chronons 10 chronons

p
k+2

time line

4 chronons

Figure 8.14: An example for the approximation of δR for |L(R∪Q)|
m

= 10 chronons
and τ = 4 chronons.

40% of the intervals starting within a segment overlap the right breakpoint. In
the example of figure 8.14, these comprise 4 out of 10 intervals. From a global
point of view this implies that 40% of the relation’s tuples overlap a breakpoint.
Therefore it is

m∑
k=1

|Rk| = 1.4 · |R| = δR · |R|

Thus δR = 1.4 in this example.
The quotient in (8.30) can also result in values beyond 1 which means that

|L(R∪Q)|
m

< τ which means that the (average) length of a segment is smaller than
the average length of an interval. Consequently, most (in the general case) or
all (under the assumption of uniformity) intervals overlap the right breakpoint.
This is a bad choice for a partition.

Now we can approximate the size of a fragmentRk for k ∈ {1, . . . ,m}:

|Rk| =
|R|
m
· δR

As each tuple can only be assigned to one R′k, the sizes of these are given by

|R′k| =
|R|
m

From |Rk| = |R′k|+ |R′′k| we can conclude that

|R′′k| = |Rk| − |R′k| =
|R|
m
· (δR − 1)

In the same way, the values for the |Qk|, |Q′k| and |Q′′k| can be derived. Table 8.8
summarises the approximations made under the assumption of uniformity.

206

Parameter Approximation

|Rk| |R|
m
· δR

|R′k|
|R|
m

|R′′k|
|R|
m
· (δR − 1)

δR
m

|L(R∪Q)| · τ + 1

(a) RelationR

Parameter Approximation

|Qk| |Q|
m
· δQ

|Q′k|
|Q|
m

|Q′′k|
|Q|
m
· (δQ − 1)

δQ
m

|L(R∪Q)| · τ + 1

(b) RelationQ

Table 8.8: Summary of the approximations under uniformity.

8.5.2 Experiments

A series of four experiments was conducted in order to explore the contribu-
tion of the various cost components to the overall costs under the assumption
of a uniform workload. For this purpose, we assumed a parallel architecture
comprising M · N = 16 processors and performance parameters as outlined
in table 8.9. We used average values as provided by manufacturers of paral-
lel hardware and commodity products, e.g. as in [Compaq Computer Corp.,
1997], [Tandem Computers GmbH, 1997] or [Seagate Technology, 1997]. In
each of the experiments a certain parameter of the workload was varied. The
following parameter values were used unless the respective parameter was
varied in the experiment:

M = 4

N = 4

m = 16

|R| = |Q| = 120000 tuples

|r| = |q| = 500 bytes

τ = 300 chronons

|L(R ∪ Q)| = 10000 chronons

In the first experiment, the dependency of the hardware configuration, i.e. the
distribution of the 16 processors between nodes, was investigated. We used
M = 1, 2, 4, 8, 16 nodes. The results for the various cost components are shown

207

in table 8.10 and in figure 8.15. As it became obvious that the repartitioning
costs, Cpart, would only play a minor role in the overall costs we omitted to
present the cost component values for the repartitioning stage (see tables 8.1
– 8.4). The only difference between the four configurations is in the memory ac-
cess costs: theM = 1 andM = 2 node configuration suffer from all processors
accessing the same physical memory. This underlines the viability of our per-
formance model as, in practice, the bus becomes frequently the bottleneck in
such configurations. This problem gradually goes away with an increasing
number of nodes and therefore with memory being more widely distributed.

The second experiment explored the dependency of the cost components on
the numberm of partial computation into which the join R onC Q was divided.
The results are shown in table 8.10 and figure 8.16. A general trend is that Ctotal

decreases for increasing values of m. However, the best performance results
are achieved if m is a multiple ofM· N = 16. Such configurations achieve an
optimal match between the number of processors and the number of computa-
tions (see figure 8.10). A further significant result is that the CPU and memory
access times for the joins R′k onC Q′k (i.e. C2(b),cpu and C2(b),mem) decrease for an
increasing m while C2(a),cpu, C2(a),mem, C2(c),cpu and C2(c),mem remain almost con-
stant and become increasingly dominant for the total costs during this process.
This is a significant conclusion as it underlines the necessity and the potential
for a minimisation (or at least reduction) of overlapping intervals by choosing
an adequate partition.

In the third experiment, the dependency of the costs on the size of the par-
ticipating relation was analysed. |R| and |Q| were increased by 20000 tuples
in each step with an initial number of 20000 tuples. The results are shown in
table 8.10 and figure 8.17. As for conventional joins, most components show
a quadratic behaviour with linearly increasing relation sizes. This reflects the
quadratic time complexity of the nested-loops join algorithm.

Finally, in the fourth experiment, we looked at the dependency of costs with
respect to the (average) interval length τ . The results are shown in table 8.10
and figure 8.18. As one can expect, the joins R′k onC Q

′
k are not affected; there-

fore all components of C2(b) remain constant when varying τ . All other cost
components show a linear increase with a linearly increasing value of τ .

8.5.3 Conclusions

We summarise the main conclusions that can be drawn form the results that
have been described in the previous section:

208

Parameter Description Value

M·N total number of processors 16
µ processor speed in MIPS 200 MIPS

mem free main memory per node 32 MB
wio disk I/O bandwidth per node 20 MB/sec
wcom communication bandwidth 40 MB/sec
wmem memory bandwidth per node 400 MB/sec
Iproc number of CPU instructions for pro-

cessing a tuple in each step
1000

Ihash number of CPU instructions for hash-
ing a tuple

1000

Icom number of CPU instructions for initi-
ating a data transfer

500

Iio number of CPU instructions for initi-
ating a disk I/O

500

b page size 4 kB

Table 8.9: The parameters describing the parallel architecture that is used in
the experiments.

1. In all experiments Cjoin clearly dominates Ctotal; Cpart can be ignored. This
has two consequences:

• It proves that the performance model is largely independent of the
underlying parallel programming paradigm, such as message-pas-
sing or multithreading, as this fact is mainly relevant for the repar-
titioning stage.

• When designing partitioning strategies, we can concentrate on op-
timising Cjoin.

2. The CPU time dominates the costs for the three subjoins. Memory costs
can become important in the case of a hardware platform in which a large
number of processors shares the access to the common main memory (see
experiment 1).

3. The subjoins that involve replicated tuples, i.e. subjoins (a) and (c), be-
come increasingly important

• for large numbers, m, of fragments (see experiment 2),

• for large average interval lengths, τ (see experiment 4).

209

We have to keep these major influences in mind when designing partitioning
strategies for non-uniform situations which have to be expected in reality.

210

Input Parameters C2(a) C2(b) C2(c)

M N m |R|, |Q| τ Cpart I/O CPU Mem I/O CPU Mem I/O CPU Mem Cjoin Ctotal

Experiment
1

1 16 16 120000 300 15.0 5.6 135.0 515.0 7.2 281.3 1072.9 5.6 135.0 515.0 2102.9 2117.9
2 8 16 120000 300 7.6 2.1 135.0 257.5 1.4 281.3 536.4 2.1 135.0 257.5 1051.4 1059.0
4 4 16 120000 300 4.4 1.1 135.0 128.7 0.7 281.3 268.2 1.1 135.0 128.7 551.3 555.7
8 2 16 120000 300 3.7 0.5 135.0 64.4 0.4 281.3 134.1 0.5 135.0 64.4 551.3 554.9

16 1 16 120000 300 4.9 0.3 135.0 32.2 0.2 281.3 67.1 0.3 135.0 32.2 551.3 556.1

Experiment
2

4 4 12 120000 300 4.9 1.3 180.0 171.7 1.0 500.0 476.8 1.3 180.0 171.7 860.0 864.9
4 4 14 120000 300 4.6 1.2 154.3 147.1 0.8 367.4 350.4 1.2 154.3 147.1 675.9 680.5
4 4 16 120000 300 4.4 1.1 135.0 128.7 0.7 281.3 268.2 1.1 135.0 128.7 551.3 555.7
4 4 18 120000 300 5.2 1.5 240.0 171.6 1.0 444.5 317.9 1.5 240.0 171.6 924.4 929.6
4 4 20 120000 300 5.9 1.8 215.9 205.9 1.1 360.0 343.3 1.8 215.9 205.9 791.9 797.8
4 4 22 120000 300 5.7 1.7 196.3 187.2 1.0 297.6 283.8 1.7 196.3 187.2 690.2 695.9
4 4 24 120000 300 5.4 1.6 180.0 171.7 1.0 250.0 238.4 1.6 180.0 171.7 610.0 615.5
4 4 26 120000 300 5.3 1.6 166.2 158.5 0.9 213.1 203.2 1.6 166.2 158.5 545.4 550.7
4 4 28 120000 300 5.1 1.5 154.3 147.1 0.8 183.7 175.2 1.5 154.3 147.1 492.2 497.4
4 4 30 120000 300 5.0 1.4 144.0 137.3 0.8 160.0 152.6 1.4 144.0 137.3 448.0 453.0
4 4 32 120000 300 4.9 1.4 135.0 128.7 0.7 140.6 134.1 1.4 135.0 128.7 410.6 415.5

Experiment
3

4 4 16 20000 300 0.7 0.2 3.8 3.6 0.1 7.8 7.5 0.2 3.8 3.6 15.3 16.1
4 4 16 40000 300 1.5 0.4 15.0 14.3 0.2 31.3 29.8 0.4 15.0 14.3 61.3 62.7
4 4 16 60000 300 2.2 0.5 33.8 32.2 0.4 70.3 67.1 0.5 33.8 32.2 137.8 140.0
4 4 16 80000 300 3.0 0.7 60.0 57.2 0.5 125.0 119.2 0.7 60.0 57.2 245.0 248.0
4 4 16 100000 300 3.7 0.9 93.8 89.4 0.6 195.3 186.3 0.9 93.8 89.4 382.8 386.5

Experiment
4

4 4 16 120000 200 4.1 0.9 90.0 85.8 0.7 281.3 268.2 0.9 90.0 85.8 461.2 465.3
4 4 16 120000 400 4.8 1.2 180.0 171.7 0.7 281.3 268.2 1.2 180.0 171.7 641.3 646.0
4 4 16 120000 600 5.4 1.4 270.0 257.5 0.7 281.3 268.2 1.4 270.0 257.5 821.3 826.7
4 4 16 120000 800 6.1 1.6 360.0 343.3 0.7 281.3 268.2 1.6 360.0 343.3 1001.3 1007.3
4 4 16 120000 1000 6.7 1.9 450.0 429.1 0.7 281.3 268.2 1.9 450.0 429.1 1181.2 1187.9
4 4 16 120000 1200 7.4 2.1 540.0 515.0 0.7 281.3 268.2 2.1 540.0 515.0 1361.3 1368.6

Cost values are in seconds.

Table 8.10: Results of the four experiments.

211

M=1, N=16

M=2, N=8

M=4, N=4

M=8, N=2

M=16, N=1

C
 p

ar
t

C
 2

a
io

C
 2

a
cp

u

C
 2

a
m

em

C
 2

b
io

C
 2

b
cp

u

C
 2

b
m

em

C
 2

c
io

C
 2

c
cp

u

C
 2

c
m

em

C
 jo

in

C
 to

ta
l

se
co

nd
s

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

2000.0

2200.0

Figure 8.15: Dependency on architectural parametersM and N (Experiment 1).

212

m = 12

m = 14

m = 16

m = 18

m = 20

m = 22

m = 24

m = 26

m = 28

m = 30

m = 32

C
 p

ar
t

C
 2

a
io

C
 2

a
cp

u

C
 2

a
m

em

C
 2

b
io

C
 2

b
cp

u

C
 2

b
m

em

C
 2

c
io

C
 2

c
cp

u

C
 2

c
m

em

C
 jo

in

C
 to

ta
l

se
co

nd
s

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

Figure 8.16: Dependency on the number m of partial joins (Experiment 2).

213

|R|,|Q| = 20000

|R|,|Q| = 40000

|R|,|Q| = 60000

|R|,|Q| = 80000

|R|,|Q| = 100000

C
 p

ar
t

C
 2

a
io

C
 2

a
cp

u

C
 2

a
m

em

C
 2

b
io

C
 2

b
cp

u

C
 2

b
m

em

C
 2

c
io

C
 2

c
cp

u

C
 2

c
m

em

C
 jo

in

C
 to

ta
l

se
co

nd
s

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

Figure 8.17: Dependency on the relations’ sizes |R| and |Q| (Experiment 3).

214

tau = 200

tau = 400

tau = 600

tau = 800

tau = 1000

tau = 1200

C
 p

ar
t

C
 2

a
io

C
 2

a
cp

u

C
 2

a
m

em

C
 2

b
io

C
 2

b
cp

u

C
 2

b
m

em

C
 2

c
io

C
 2

c
cp

u

C
 2

c
m

em

C
 jo

in

C
 to

ta
l

se
co

nd
s

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

Figure 8.18: Dependency on the average interval length τ (Experiment 4).

215

Chapter 9

Partitioning Strategies

Synthesis of Partitions

Analysis of Partitions

Optimising Decision

Data Analysis
System

In this chapter, we present several families of parti-
tioning strategies1, all of which can be based on the
information stored in an IP-table. These strategies
create partitions P = {p1, . . . , pm−1} for computing
a symmetrically partitioned temporal join (3.6):

R onC Q = R1 onC Q1 ∪ · · · ∪Rm onC Qm

of two relations R and Q. There are many goals ac-
cording to which the fragments R1, . . . , Rm, Q1, . . . ,
Qm can be created. For example, one could aim to minimise the processing
costs. However, this task is not that easy due to the complexity of the perform-
ance model (see chapter 8). Even relatively simple constraints, such as the ones
for IP (see chapter 5), can necessitate a very expensive calculation in order to
find a suitable partition. This leads us to consider alternative goals, such as the
efficiency of the partitioning strategy itself.

In the following, several goals, and the family of strategies that result from
it will be discussed. We thereby concentrate on the most general goals and
strategies. All the algorithms that are used in that context van be efficiently
implemented using IP-tables. In the remainder, we adopt the notation of com-
plete IP-tables. Nevertheless, all of the techniques and algorithms that are de-
scribed can be used in conjunction with incomplete IP-tables too, possibly at
the expense of a decreased quality of the result. If this is the case we will point
to this fact.

1In the remainder, we will frequently use the term strategy as a shortcut for partitioning
strategy.

216

9.1 Uniform Strategies

This family comprises a number of a very simple strategies. Their common
characteristic is that they divide a certain set of chronons – to which we refer as
the span – intom disjoint segments, each of which containing the same number
of chronons. The differentiating element is therefore the set of chronons that
is used as the span; we discuss the following three and show how the corres-
ponding partitions are computed by using IP-tables:

• the joint lifespan L(R ∪Q) (see section 9.1.1),

• the joint range T (R ∪Q) (see section 9.1.2),

• the startpoints’ span SP (R ∪ Q) = [minS(R ∪ Q),maxS(R ∪ Q)] (see
section 9.1.3).

A comparison between the three types of spans is shown in figure 9.1 for some
scenario of intervals; this comparison should make the differences obvious.

min T = min S max S

lifespan

range

max T

startpoints’ span

Notation: T = T (R ∪Q), S = S(R ∪ Q)

Figure 9.1: Comparison of the notions of a lifespan, a range and a startpoint
span.

9.1.1 Uniform Lifespan Partitioning

The lifespan L(R∪Q) is simply the span between the first and the last timepoint
in the IP-table I(R ∪Q), i.e.

L(R ∪Q) = [t1, tN]

The length |L(R∪Q)| of the lifespan, i.e. the number of chronons, can therefore
be calculated as

|L(R ∪Q)| = tN − t1

217

Partitioning the lifespan uniformly into m segments means that each segment
should comprise

|L(R ∪Q)|
m

(9.1)

chronons and the breakpoints of the partition P are at that distance from each
other. A breakpoint pk is determined by

pk = t1 +
⌈
k · |L(R ∪Q)|

m

⌉
for k = 1, . . . ,m − 1. This takes into account the possibility that the ratio in
(9.1) might not result in an integer. Figure 9.2 summarises the algorithm for
calculating a uniform lifespan partition. An example of such a partition is
shown in figure 9.3 for the example scenario that has been used chapter 5.

/* V (R ∪Q) = {t1, . . . , tN}with tj < tj+1 */

target = (tN − t1) /m /* target length of the segments */

for k = 1 tom− 1 do
pk = t1 + dk · targete

od

Figure 9.2: Algorithm for partitioning L(R ∪Q) uniformly.

0 5 10 15 20

8
7 3 9 sum = 19

10 1110
overlaps:

time line

Figure 9.3: A uniform lifespan partition for the example of figure 5.2.

218

9.1.2 Uniform Range Partitioning

The main difference between the lifespan L(R ∪ Q) and the range T (R ∪ Q) is
that the range does not contain those parts of the lifespan that are not covered
by any interval in R or Q. In terms of the examples of chapter 7, where we
analysed login-information to computers, this means that there might be times
during which nobody was logged in to the computer(s), e.g. because of a down-
time or a holiday. The idea behind partitioning the range rather than the
lifespan is to omit such ‘gaps’ during which no temporal data is valid. Soo
et al., for example, use this approach2.

The complete IP-table I(R ∪ Q) provides sufficient information to identify
the gaps, i.e. those parts of L(R ∪ Q) that do not belong to T (R ∪ Q): the gaps
are those areas between a tj−1 and a tj that are not overlapped by any intervals,
i.e. oR∪Q(tj) = 0. Thus all entries in I(R ∪Q) with a 0 entry in the third column
identify a gap.

In order to determine the breakpoint of a uniform range partition one has
to calculate the length |T (R ∪ Q)| of the range, compute the target length of
each segment by ⌈

|T (R ∪Q)|
m

⌉
and finally determine the breakpoints pk. Figure 9.4 summarises the algorithm.
The uniform range partition for the example of figure 5.2 is identical with
the uniform lifespan partition as shown in figure 9.3 because the lifespan and
range are identical in that case.

Uniform range partitioning, as outlined in figure 9.4, works well with com-
plete IP-tables. However, we might not be able to identify the gaps when using
an incomplete IP-table because the condensation process might have collapsed
a gap into a condensed timepoint (see sections 7.3.3 and 7.3.4). Therefore the
result will be close to the one achieved by uniform lifespan partitioning.

In practice, one has to doubt whether uniform range partitioning achieves
much better results than uniform lifespan partitioning as one can expect the
range to be close to the lifespan in many applications. Also, algorithms for
uniform range partitioning, such as the one in figure 9.4 or ChooseIntervals in
[Soo et al., 1994], are very inefficient in comparison to the one in figure 9.2. This
fact presumably outweighs the small benefit that can be drawn from partition-
ing the range rather than the lifespan.

2See algorithm ChooseIntervals in [Soo et al., 1994].

219

/* V (R ∪Q) = {t1, . . . , tN}with tj < tj+1 */

rangelength = 0

for j = 2 to N do /* calculate |T (R ∪Q)| */
if oR∪Q(tj) > 0 then /* consider only if there was no gap */

rangelength = rangelength + (tj − tj−1)
fi

od

target = drangelength /me /* target length of the segments */
k = 1 /* number of next breakpoint pk to be computed */
length = 0 /* length of current segment */

for j = 2 to N do /* scans the IP-table for R ∪Q */
if length > target then /* length of current segment exceeds target length */
pk = tj−1
k = k + 1
length = 0

fi
if oR∪Q(tj) > 0 then /* consider length only if there was no gap */

length = length + (tj − tj−1)
fi

od

Figure 9.4: Algorithm for partitioning T (R ∪Q) uniformly.

220

9.1.3 Uniform Startpoints’ Span Partitioning

As a third option, we propose to divide the startpoints’ span

SP (R ∪Q) = [minS(R ∪Q),maxS(R ∪Q)]

for the following reason: after maxS(R ∪ Q), no more intervals start, i.e. no
more intervals are added to the plot. If a breakpoint pk was chosen after that
point then the fragments Rk+1 and Qk+1 would hold only intervals that are
already in Rk and Qk and thus would already be joined in Rk on Qk. Thus a
join Rk+1 on Qk+1 would be without relevance. It is therefore feasible to divide
the startpoints’ span rather than the lifespan in order to avoid such a situation.

The only significant difference in comparison to uniform lifespan partition-
ing is that |SP(R ∪ Q)| ≤ |L(R ∪ Q)| and therefore that the lengths of the
segments might be smaller. |SP (R∪Q)| can be calculated by using the IP-table
I(R ∪Q):

|SP (R ∪Q)| = tS − t1

with
tS = max{t ∈ V (R ∪Q) : sR∪Q(t) > 0} = maxS(R ∪Q)

The algorithm for determining the breakpoints is given in figure 9.5. Figure 9.6
shows the uniform startpoints’ partition for the example of figure 5.2.

As in the case of uniform range partitioning, incomplete IP-tables might
not provide sufficient information to determine the startpoints’ span exactly.
Nevertheless, the algorithm in figure 9.5 might still calculate a tS < tN and
therefore might still provide some of the benefits of the startpoints’ span over
the lifespan approach.

The index of a tS within an IP-table can be stored as an additional parameter
in order to avoid to compute it at run time: when two or more IP-tables are
merged then the resulting tS can be computed as

tS = max{tS1, tS2, . . . , tSn}

where tS1, tS2, . . . , tSn are the respective maximum startpoints of the IP-tables
that participate in the merge.

9.1.4 Conclusions

We conclude our discussion of uniform partitioning strategies considering two
practical aspects:

221

/* V (R ∪ Q) = {t1, . . . , tN} with tj < tj+1 */

tS = max{t ∈ V (R ∪Q) : sR∪Q(t) > 0}
target = (tS − t1) /m

for k = 1 to m− 1 do
pk = t1 + dk · targete

od

Figure 9.5: Algorithm for partitioning SP(R ∪Q) uniformly.

0 5 20

8
7 3 9 sum = 19

10 1110
overlaps:

time line

9 14

Figure 9.6: A uniform startpoints’ span partition for the example of figure 5.2.

222

• It is doubtful if there is much difference between the lifespan, the range
and the startpoints’ span of temporal relations that are found in practice.
Especially the significantly higher effort to determine the range from an
IP-table in the algorithm of figure 9.4 will probably not pay off because
many temporal relations have ranges that have only a few or no gaps.
But it is the latter from which the benefits arise so the uniform range
partitioning strategy is unlikely to provide a performance advantage that
justifies the increased partitioning effort.

In contrast to that, there is the uniform startpoints’ span strategy that in-
volves no computational disadvantage but offers a benefit in comparison
to the uniform lifespan partitioning approach. The extent of this benefit
is likely to be small if the lifespan is long and / or intervals are short.
Both facts suggest that the startpoints’ span is almost identical with the
lifespan. However, the benefit might be marginal in other cases.

• It is obvious that the uniform strategies are liable to perform badly in the
case of skewed, i.e. non-uniformly distributed, data. There is hardly any
control over the fragments’ loads and thus over the load balance. There
are, however, many examples for temporal relations that have periodic-
ally repeated patterns of tuple timestamps: imagine a relation logging
the starting and ending times of calls made by customers of a telephone
company. The distribution of phone calls over a daytime period will vary
significantly with many calls during business hours and few in the early
morning and late evening. Considering a long time period, however, a
daily pattern is probably repeated periodically. Thus we can expect a
poor partition result when uniformly partitioning a one-day-span but a
much better one for a period comprising several days, in particular when
m matches the number of days. We will look into this issue further when
we evaluate the partitioning strategies in chapter 10.

9.2 Underflow Strategies

The major disadvantage of the uniform partitioning strategies was the lack of
control over the load balance. This deficit is overcome by the family of under-
flow strategies. Section 9.2.1 describes the algorithm for the basic strategy. In
section 9.2.2, we discuss variations of that algorithm.

223

9.2.1 Basic Strategy

The idea of this strategy is to sequentially fill the fragments R1, R2, . . . (Q1,
Q2, . . . , respectively) such that a given number X of tuples per fragment is
‘underflowed’, i.e. not exceeded. The IP-tables for the individual relations R
and Q together with equation (7.1) can be used for this purpose.

The algorithm starts by filling up fragments R1 and Q1 by moving the first
breakpoint, p1, as far as possible, i.e. as long as |R1| ≤ X and |Q1| ≤ X is guar-
anteed. When p1 is set, then R2 and Q2 are filled by moving the second break-
point, p2, as far as possible. The same process is repeated for the following
fragments. The number m of fragments is thereby a result of the partitioning
process rather than an input parameter as in the case of the uniform strategies.

Figure 9.7 summarises the algorithm that implements this strategy using
the IP-tables of relations R, Q and R ∪ Q. Figure 9.8 shows the partition res-
ulting from partitioning the example of figure 5.2 using the basic underflow
strategy with X = 10.

/* V (R ∪Q) = {t1, . . . , tN}with tj < tj+1 */

k = 1 /* number of next breakpoint pk to be computed */
loadR = 0 /* current load of fragment Rk */
loadQ = 0 /* current load of fragment Qk */

for j = 1 to N do
if load R + sR(tj) > X or loadQ + sQ(tj) > X then /* |Rk| or |Qk|would */
pk = tj−1 /* exceed the maximum */
k = k + 1 /* load X */
loadR = oR(tj−1)
loadQ = oQ(tj−1)

fi
loadR = loadR + sR(tj)
loadQ = loadQ + sQ(tj)

od

Figure 9.7: Algorithm for the basic underflow strategy using the IP-tables rela-
tions I(R), I(Q) and I(R ∪Q).

9.2.2 Variations

The algorithm in figure 9.7 controls the |Rk| and |Qk| by guaranteeing that they
do not exceed the limit X for all k = 1, . . . ,m. However, when discussing the

224

time line

0 20178 13

9 10 69

7 4overlaps: 3 sum = 14

Figure 9.8: The partition for the example of figure 5.2 using the basic underflow
strategy with a maximum load of X = 10.

performance model of chapter 8, we were mainly concerned with the numbers
|R′k| and |Q′k| as we wanted them to fit into the local main memory of a pro-
cessor if possible. But this can be easily achieved by keeping all |R′k| below a
limit XR and all |Q′k| below a limit XQ whereby the limits can be determined
by

|R′k| · |r| ≤ mem
N ⇔ |R′k| ≤ mem

N·|r| = XR

|Q′k| · |q| ≤ mem
N ⇔ |Q′k| ≤ mem

N·|q| = XQ

Alternatively, one can try to achieve a specific number mtarget of fragments.
Each tuple is assigned to exactly one primary fragment. Therefore one can
expect a partition to create m fragments if

XR ≈
|R|
mtarget

and XQ ≈
|Q|
mtarget

In practice, XR and XQ need to be slightly higher because most primary frag-
ments cannot be filled up to XR or XQ, respectively. Consequently, the result-
ing m will probably be higher than mtarget.

With XR andXQ being determined, the algorithm of figure 9.7 can be adap-
ted to guarantee that |R′k| ≤ XR and |Q′k| ≤ XQ for all k = 1, . . . ,m. It is shown
in figure 9.9.

Many more variations of that type can be designed. For example, one could
try the limit products, such as |Rk| · |Qk|, |R′k| · |Q′k| etc., by a certain maximum
X. These products are part of the most expensive cost components in the per-
formance model of chapter 8. However, there is no clear indication of how to
choose an adequate limiting value for X in that case. This makes such parti-
tioning strategies difficult to handle. Presumably, X would be determined by
performance experiments on an existing DBMS installation. Consequently, its

225

value would depend on rather installation-specific characteristics. We there-
fore do not expand on this issue any further.

The advantage of the underflow strategies is that the fragments’ loads are
well controlled and can be expected to be well balanced as long as the values
sR(tj) are relatively small in order to approach the limit X as close as possible
(see if-conditions in figures 9.7 and 9.9). There is, however, no control over the
number of intervals overlapping the breakpoints. In sections 9.3 and 9.4, we
present two techniques that can be considered as enhancements of the under-
flow strategies that have been presented so far.

/* V (R ∪Q) = {t1, . . . , tN}with tj < tj+1 */

k = 1 /* number of next breakpoint pk to be computed */
loadR = 0 /* load of current fragment R′k */
loadQ = 0 /* load of current fragment Q′k */

for j = 1 to N do
if load R + sR(tj) > XR or loadQ + sQ(tj) > XQ then /* |R′k| or |Q′k|would */
pk = tj−1 /* exceed the resp. max. */
k = k + 1 /* loads XR and XQ */
loadR = 0
loadQ = 0

fi
loadR = load R + sR(tj)
loadQ = loadQ + sQ(tj)

od

Figure 9.9: Algorithm implementing the underflow strategy for the primary
fragmentsR′k and Q′k.

9.3 Minimum-Overlaps Strategies

9.3.1 Basic Strategy

Similar to the underflow strategy, the goal of this one is to create fragmentsR1,
R2, . . . (Q1, Q2, . . . , respectively) such that a given number X of tuples is not
exceeded and that the sum of intervals overlapping the breakpoints, i.e.

m−1∑
k=1

oR∪Q(pk)

226

is minimal at the same time. But this looks very much like IP (see chapter 5).
In fact, we can use a variation of IP-opt to compute such a partition. We note
that the original version of IP-opt limits the total number of intervals (tuples)
that fall into a segment, i.e. in terms of a join R onC Q it would use

|Rk|+ |Qk| ≤ X

as the constraint to determine the breakpoints rather than

|Rk| ≤ X and |Qk| ≤ X

for all k = 1, . . . ,m as the basic underflow strategy.
The variation of IP-opt can be based on the information stored in the IP-

table I(R∪Q). First, two arrays loadR[j, i] and loadQ[j, i] are initialised accord-
ing to equation (5.10). Then the timepoints t1, . . . , tN of V (R∪Q) are processed
from 1 to N . For each ti, a partition is computed for the span [t1, ti] that has
minimal sum of overlaps and has fragment loads less than X. More precisely,
for each ti a predecessor pred (ti) is determined which represents the preceding
breakpoint that leads to the partition with a minimum number of overlapping
tuples. If no such predecessor can be found then the original IP-opt stops
with the message that there is no partition that satisfies the constraints. For
practical purpose, we propose to weaken this and to use the timepoint ti−1

(that precedes ti) as pred (ti) despite the fact that the fragment resulting from
that has a size larger than X. This is in line with the basic underflow strategy
which copes with such an extreme situation in the same way.

Finally, a minimising partition can be obtained from the sequence pred (tN),
pred (pred (tN)), . . . (until a delimiting dummy point t0 appears). For a de-
tailed discussion of IP-opt refer to section 5.5. Figure 9.10 summarises the
algorithm in a form that makes use of IP-tables.

Figure 9.11 shows how the example scenario is partitioned using the mini-
mum-overlaps strategy for X = 10. In comparison to the underflow strategy
it reduces the total number of overlaps from 13 to 9. Therefore, one can ex-
pect this strategy to perform at least as well as the basic underflow strategy for
single-processor systems. In the case of a multiprocessor setting, the advant-
age of having a reduced total number of overlaps might not necessarily pay
off: the minimum-overlaps algorithm chooses breakpoints that reduce over-
laps possibly at the expense of achieving well balanced fragments. In contrast,
the underflow strategy aims to create equally filled fragments. Finally, an-
other disadvantage is the algorithms run time complexity of O(N2) compared

227

to O(N) of the underflow strategy. This implies that the minimum-overlaps
strategy should only be applied to small IP-tables or to very big joins, i.e. in a
situation in which the time spent on the optimisation through the minimum-
overlaps strategy does contribute only marginally to the overall join costs.

9.3.2 Variations

Similarly to the variations for the basic underflow strategy one can design vari-
ations for the basic minimum-overlaps strategy. For example, one can aim to
limit the |R′k| by XR and the |Q′k| by XQ as done in section 9.2.2 but this time
also minimising the total number of overlapping tuples. This variation of basic
algorithm of figure 9.10 is shown in figure 9.12.

The major problem of the two versions of the minimum-overlaps strategy
is the run time complexity of O(N2). The only possibility to ease this problem
is to decrease N , e.g. by using condensed or endpoint IP-tables. A further
possible reduction method is the black-out preprocessing technique which is
described in the following section.

228

/* V (R ∪Q) = {t1, . . . , tN}with tj < tj+1 */

/* Use a dummy point t0 */
oR∪Q(t0) = 0
c(t0) = 0

/* Initialise arrays loadR[j, i] and loadQ[j, i] according to equation (5.10) */
for j = 0 to (N − 1) do

loadR[j, j] = oR(tj)
loadQ[j, j] = oQ(tj)
for i = (j + 1) to N do

loadR[j, i] = load R[j, i− 1] + sR(ti)
loadQ[j, i] = loadQ[j, i− 1] + sQ(ti)

od
od

/* Partitioning */
for i = 1 to N do

c(ti) = ∞
pred (ti) = ∞
for j = 0 to (i− 1) do

if loadR[j, i]≤ X and load Q[j, i]≤ X and oR∪Q(tj) + c(tj) < c(ti) then
c(ti) = oR∪Q(tj) + c(tj)
pred (ti) = tj

fi
od
if pred (ti) =∞ then

/* no pred (ti) has been found */
c(ti) = oR∪Q(ti−1) + c(ti−1)
pred (ti) = ti−1

fi
od

/* Create partition P */
p = tN
P = ∅
while p ≥ t1 do

p = pred (p)
P = P ∪ {p}

od
P = P − {t0}
m = |P |+ 1

Figure 9.10: Basic algorithm of the minimum-overlaps strategy for relations R
and Q.

229

0 206 9 17

8 105 6
2 3 4 sum = 9

time line

overlaps:

Figure 9.11: The partition for the example of figure 5.2 using the minimum-
overlaps strategy with a maximum load of X = 10.

230

/* V (R ∪Q) = {t1, . . . , tN}with tj < tj+1 */

/* Use a dummy point t0 */
oR∪Q(t0) = 0
c(t0) = 0

/* Initialise arrays loadR[j, i] and loadQ[j, i] according to equation (5.10) */
for j = 0 to (N − 1) do

loadR[j, j] = 0
loadQ[j, j] = 0
for i = (j + 1) to N do

loadR[j, i] = load R[j, i− 1] + sR(ti)
loadQ[j, i] = loadQ[j, i− 1] + sQ(ti)

od
od

/* Partitioning */
for i = 1 to N do

c(ti) = ∞
pred (ti) = ∞
for j = 0 to (i− 1) do

if loadR[j, i]≤ XR and loadQ[j, i] ≤ XQ and oR∪Q(tj) + c(tj) < c(ti) then
c(ti) = oR∪Q(tj) + c(tj)
pred (ti) = tj

fi
od
if pred (ti) =∞ then

/* no pred (ti) has been found */
c(ti) = oR∪Q(ti−1) + c(ti−1)
pred (ti) = ti−1

fi
od

/* Create partition P */
p = tN
P = ∅
while p ≥ t1 do

p = pred (p)
P = P ∪ {p}

od
P = P − {t0}
m = |P |+ 1

Figure 9.12: Algorithm of the minimal-overlaps strategy for limiting the pri-
mary fragments R′k and Q′k.

231

9.4 Black-Out Preprocessing Strategy

The underflow partitioning strategies do not pay any attention to the number
of overlapping intervals when they choose a breakpoint. The incorporation of
a mechanism that minimises the total number of overlaps led to the minimum-
overlaps strategy. However, the latter suffers from an algorithmic complexity
of O(N2) which is prohibitive for the high values of N that can be expected in
practice.

In this section, we describe an alternative, but heuristical technique to re-
duce the number of overlaps. The idea is the following: figure 9.13 shows a
typical example of a function3 oR(t). The general goal is to find breakpoints pk
for which oR(pk) is low, i.e. somewhere in the valleys formed by oR(t). There-
fore one could restrict a strategy’s choice to those timepoints, i.e. ‘cut out’ the
unfavourable bits of the time domain.

In practical terms, we can do this in the following way: the IP-table I(R)
is scanned and all tj ∈ V (R) with oR(tj) > Y are blacked out. Y is called the
black-out threshold. This process creates a new IP-table Ī(R) and is very similar
to the condensation process that was described in section 7.3.3. Figure 9.14
summarise the basic algorithm for this black-out strategy.

Figure 9.15 shows the result of the black-out strategy when it is applied to
oR(t) for R = EPCC (week-lifespan; see section 7.3.2) with

Y =
1
N
·
N∑
j=1

oR(tj)

i.e. the average of oR. The parts of V (R) that are cut out are marked as black
bars on the time axis. If the maximum load X (XR, XQ respectively) in an un-
derflow strategy is high enough then breakpoints can be chosen to put all the
tuples that are valid within one of the time periods marked by the bars to be
put into one fragment. If this is not the case for only one of the ‘bar-periods’
then an underflow strategy cannot find an allowable partition because of the
black-out preprocessing. Such a situation can arise if the black-out prepro-
cessing creates long ‘bar-periods’, for example as shown in figure 9.16 for a
different oR(t). There are two possibilities to shorten a long ‘bar-period’:

• The threshold Y can be increased.
3Here, we refer to oR(t) assuming that R is to be partitioned. However, the technique that

we describe can be applied to any temporal relation, in particular also to R ∪ Q in which case
oR∪Q(t) would have to be used rather than oR(t).

232

• The ‘bar-period’ is split by admitting some tj that fall into this period
despite the fact that oR(tj) > Y .

The first possibility is not very attractive because it is difficult to determine by
how much Y should be increased in order to guarantee an underflow strategy
to be able to find a breakpoint when it is reaches the maximum load X. Apart
from that the advantages of the black-out strategy are gradually lost when in-
creasing Y .

The second possibility suggests that a long ‘bar-period’ is split into pieces
that can be handled by an underflow strategy. Such pieces can be created by
checking the load that is created by cutting out timepoints tj ∈ V (R) if oR(tj) >
Y . If such a load would exceed a certain threshold Y ′ then a tj is inserted into
Ī(R) even if oR(tj) > Y . This advanced version of the black-out strategy is
summarised in figure 9.17. An example of two additional timepoints being
admitted within the ‘bar-period’ is shown in figure 9.18.

0

1000

2000

3000

4000

5000

o (t)R

0 2000 4000 6000 8000 10000
time (in minutes)

Overlapping Intervals

Figure 9.13: The function oR(t) for the temporal relation R = EPCC (week-
lifespan; see section 7.3.2).

233

/* Basic Black-Out Preprocessing for I(R) to create Ī(R) */

starts = 0
Ī(R) = ∅

for j = 1 to N do
starts = starts + sR∪Q(tj)
if j = 1 or j = N or oR∪Q(tj) ≤ Y then

insert (tj, starts, oR(tj)) into Ī(R)
starts = 0

fi
od

Figure 9.14: Basic black-out preprocessing for I(R).

Y

0

1000

2000

3000

4000

5000

o (t)R

0 2000 4000 6000 8000 10000
time (in minutes)

Overlapping Intervals

Figure 9.15: Black-out strategy applied to oR(t) of figure 9.13.

234

Y

0

5000

10000

15000

20000

o (t)R

0 200 400 600 800 1000 1200 1400
time t

Overlapping Intervals

Figure 9.16: Black-out strategy applied to oR(t) for R = EPCC (day-lifespan;
see section 7.3.2).

235

/* Advanced Black-Out Preprocessing for I(R) to create Ī(R) */

Ī(R) = ∅
starts = 0

for j = 1 to N do
starts = starts + sR∪Q(tj)
if j = 1 or j = N or oR∪Q(tj) ≤ Y then

insert (tj, starts, oR(tj)) into Ī(R)
starts = 0
jprev = j

else
if (oR(tjprev) + starts) > Y ′ then

if jprev 6= (j − 1) then
insert (tj−1, (starts− sR(tj)), oR(tj−1)) into Ī(R)
starts = oR(tj−1) + sR(tj)
jprev = j − 1

else
output “Error. Cannot break up bar-period.”

fi
fi

od

Figure 9.17: Advanced black-out preprocessing for I(R).

236

Y

0

5000

10000

15000

20000

o (t)R

0 200 400 600 800 1000 1200 1400
time t

Overlapping Intervals

Figure 9.18: Advanced black-out strategy applied to oR(t) for R = EPCC-day
(see section 7.3.2).

237

Chapter 10

Experimental Evaluation

In this chapter, we evaluate the process for optimising partitioned temporal
joins – as proposed in chapter 6 and elaborated in chapters 7 to 9. The exper-
iments will focus on the various features that have been discussed so far and
will follow the same path as the preliminary evaluation in section 8.5 which
assumed uniform test data. Here, we will use real temporal data that was ex-
tracted from existing temporal relations; section 10.1 describes these data sets
in more detail. In section 10.2 the performances of the various strategies of
chapter 9 are compared in order to identify the most promising ones on which
we can concentrate in the remaining experiments. This reduces the complex-
ity of the following experiments significantly and makes the results easier to
visualise and to interpret. In section 10.3, we look at the problem whether it is
better to partition a join into many small or into a few but slightly bigger join
computations. In other words, we vary the parameter m. While m is an in-
put parameter for the uniform partitioning strategies it is an output parameter
for the underflow and minimum-overlaps strategies. There, it is imposed by
parameters X or XR, XQ which set maximum sizes for the various fragments
or subfragments. In section 10.4 we therefore try to find a rule that allows us
to determine the best-performing value for these parameters. In section 10.5,
we look at the influence of the average interval length τ on the performances
and whether certain values of τ favour certain partitioning strategies. In sec-
tion 10.6, the sizes of the participating relations are varied. In section 10.7, we
return to the question of the best-performing mixtureM/N of SMP-nodes and
processors per SMP-node. We have already looked at this problem when con-
ducting the experiments for uniform data. Here, we use skewed and somehow
more realistic data. In sections 10.8 and 10.9, we look at the influences of con-
densation and black-out preprocessing on the performances. Finally, the main
results are summarised in section 10.10.

238

10.1 The Test Data

10.1.1 Introduction

Timestamps of a temporal relation are influenced by various statistical pro-
cesses. Let us re-consider the phone calls scenario: the start times are dictated
by many factors such as

• daily routines, eg. the times when we wake up, work, have lunch, sleep
etc.,

• business hours,

• the fact whether it is a working day or a public holiday, etc.

Furthermore, the lengths of the phone calls are a result of pricing or the nature
of the calls, e.g. business calls as opposed to calls to a friend or a relative. Pos-
sibly, calls in the evenings are generally longer than daytime calls because of
lower prices or because one tends to chat longer with friends or relatives rather
than customers, bank managers, travel agents etc.

This is only one of many examples that illustrate how a set of ‘real life’
timestamps can be the result of a variety of statistical processes. We note that
this feature is not restricted to transaction time but applies to many valid time
scenarios as well. Just imagine the bookings database of a travel agent, travel
organiser, car rental company or a hotel. Here, start and end times, i.e. the
timestamp intervals, are dictated by dates for holiday seasons, public holidays
or sports/theatre/music events, by special, promotional offers and possibly
even by the weather.

The high statistical complexity behind the creation of timestamps is a sig-
nificant difference in comparison to atomic data. It is therefore much more
difficult to artificially create temporal test data with realistic properties. In the
case of atomic data, many situations with a non-uniform distribution of the
attribute values (i.e. data skew) have been successfully modelled using a Zipf
distribution [Zipf, 1949]. An example of a paper that describes such experi-
ments is [Wolf et al., 1993]. A similar approach for temporal data would either
be

• unrealistic, if the statistical model is too simplistic, or

• too complex because a huge number of statistical parameters would have
to be used; the underlying combinatorial effect would cause the experi-
ments to be very hard to manage and to evaluate.

239

For these reasons, we decided to take an alternative approach for our experi-
ments. It is based on real temporal data that we manipulate in order to control
the experiments. The following section describes the data set and the manipu-
lations that were performed.

10.1.2 The Basic Data Set

In section 7.3.2, we already used several sets of real temporal data in order
to get an idea about realistic sizes of IP-tables. One of these sets was login
information about accesses to a supercomputer system at the Edinburgh Par-
allel Computing Centre (EPCC). The set comprises accesses over a period of
approximately five years. We used this set as a base for creating test data for
the experiments in this chapter. The initial set was in a form as shown in fig-
ure 10.1 and contained over 125000 entries. Lines that did not contain any suit-
able information – such as those marked with a * in figure 10.1 – were deleted.
This process left us with a set of 121728 entries. The latter were translated into
two temporal relations to which we will refer as R and Q. In both relations,
timestamps’ start- and endpoints are integer values. The relations’ lifespans
are the same, ranging from 0 to 10079. The intention behind this range is that
it corresponds to a week-long period in terms of minutes: 7 · 24 · 60 = 10080.
The differences betweenR and Q are the following:

• R has, what we call, a periodic profile. This means that the function iR(t)
– which shows the number of tuples that have a timestamp that inter-
sects with time t – consists of a pattern that is periodically repeated. In
the case of the login data, one can assume that the login behaviour of the
users repeats itself every day with weekends showing a reduced number
of accesses. We can expect a similar profile in many other example scen-
arios such as the distribution and lengths of phone calls over a period of
several days or holiday bookings (assuming yearly repeated patterns in
the latter case). Figure 10.2 shows the periodic profile iR(t) of R. It will
be discussed below in some more detail.

The timestamp intervals of R were created from the login information
in the following way: of each line, only the weekday and the start and
end times were used. Times on Mondays were converted to numbers
0 . . . 14391, times on Tuesdays to 1440 . . . 2879, times on Wednesday to
2880 . . . 4319, etc. For example the line

1The number of minutes per day is 1440 = 24 · 60.

240

root ttyp3 yanis.epcc.ed.a Sun Oct 27 11:45 - 11:46 (00:00)

results in the interval

[6 · 1440 + 11 · 60 + 45︸ ︷︷ ︸
Sun 11:45

, 6 · 1440 + 11 · 60 + 46︸ ︷︷ ︸
Sun 11:46

] = [9345, 9346]

The source code for the PERL script that converts login data as in fig-
ure 10.1 can be found in appendix B.1.

• Q has, what we call, a non-periodic profile. This means that the function
iQ(t) – which shows the number of tuples that have a timestamp that
intersects with time t – does not show patterns that are periodically re-
peated. In the case of the login data, one can assume that the login be-
haviour of the users during one day is non-periodic: from early morning
onwards, there is a gradually growing number of users logging into the
system. In the afternoon, this number starts to decrease with only a few
users being logged in during the night. A similar scenario is again the
distribution and lengths of phone calls during a single day. Figure 10.3
shows the non-periodic profile iQ(t) of Q. It will be discussed below in
some more detail.

The timestamp intervals of Q were created from the login information in
the following way: of each line, only the start and end times were used.
These times were converted to minutes of the day, i.e. mapped to a range
0 . . . 1439:

hh:mm → hh · 60 + mm

In a second step, these times were mapped to the range 0 . . . 10079 by
multiplying them with 7 and adding a random number between 0 and
6. The random number avoids all interval start- and endpoints being
multiples of 7. As an example, we consider again the line

root ttyp3 yanis.epcc.ed.a Sun Oct 27 11:45 - 11:46 (00:00)

which results in the interval

[(11 · 60 + 45) · 7 + rand(0 . . . 6) , (11 · 60 + 46) · 7 + rand(0 . . . 6)]
eg.
= [4939, 4941]

where rand(0 . . . 6) is supposed to randomly choose a number from the
set {0, 1, 2, 3, 4, 5, 6}. We note that the result is not deterministic because
of the random numbers. The source code for the PERL script that conver-
ted login data as in figure 10.1 can be found in appendix B.2.

241

yuh ftp alab-16.ed.ac.u Sun Oct 27 12:03 - 12:03 (00:00)
root ttyp3 yanis.epcc.ed.a Sun Oct 27 11:45 - 11:46 (00:00)
yuh ftp house.ed.ac.uk Sun Oct 27 11:36 - 11:36 (00:00)
yuh ttyp2 alab-16.ed.ac.u Sun Oct 27 11:32 - 17:05 (05:33)
zxa ttyp0 bottle.ph.ed.ac Sun Oct 27 10:42 - 16:07 (05:24)
reboot console Sun Oct 27 09:30 *
yuh ttyp3 alab-16.ed.ac.u Sun Oct 27 09:21 - down (00:08) *
onb01 ttyp0 aborg.dcs.st-an Sun Oct 27 08:03 - 08:05 (00:01)
onb01 ttyp0 aborg.dcs.st-an Sun Oct 27 07:52 - 07:56 (00:03)
yuh ftp house.ed.ac.uk Sat Oct 26 18:47 - 18:48 (00:00)
smith ttyp1 lilly.glg.ed.ac Sat Oct 26 18:46 - 08:46 (13:59)
smith ttyp1 lilly.glg.ed.ac Sat Oct 26 17:20 - 18:45 (01:24)

Figure 10.1: An extract of the original login information.

The procedures that created the two collections of interval timestamps, R and
Q, achieved different profiles. However, the procedure for Q mapped the ori-
ginal range of 0 . . . 1439 to one of 0 . . . 10079. This leads also to an increase in
the lengths of the intervals. In fact, the average length of an interval τR in R is
118.5 (minutes) so far, whereas in Q we find τQ = 512.9 (minutes). With respect
to the join performance, this difference could subsume any effect that is caused
by the different profiles. In order to avoid this, we applied an additional pro-
cedure change_lengths() to bring τR and τQ in line, namely to a value of 300
(minutes). The source code for change_lengths() is given in appendix C. Es-
sentially, it randomly picks intervals and adds or deletes chronons from them
until the desired average length is achieved. We will use this procedure also
for controlling the experiments in section 10.5.

The final profiles forR andQ are respectively shown in figures 10.2 and 10.3.
iR(t) has seven peeks corresponding to the daytime hours of the seven week-
days Monday, Tuesday, . . . , Sunday. As one can expect, there are less ac-
cesses during Saturdays and Sundays: the two rightmost peeks are signific-
antly lower than the previous ones. In contrast, iQ(t) describes the accesses
during a day (if we ignore the values of the time axis for a moment): as one
can expect, there is a sharp rise during the morning, with a little valley during
lunch time. In the afternoon there is a second peek, followed by a sharp fall
towards the evening. As we see from this interpretation of the profiles, there
is a large number of factors that contribute to their shapes. This underlines the
presence of a high statistical complexity that we can expect in many scenarios.

Table 10.1 summarises the main characteristics of R and Q. We will use R
and Q as the base for the experiments; some of the parameters, however, will
be varied such as τR and τQ (section 10.5) or |R| and |Q| (section 10.6). We note
that the parameters shown in table 10.1 approximately match those that were
used for the uniform data experiments in section 8.5.2. Similarly, we assume

242

the architectural parameters listed in table 10.2 which correspond to those in
table 8.9. A parallel architecture withM = 4 andN = 4 and a single processor
architecture (M = 1 and N = 1) will be used in the experiments.

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure 10.2: The periodic profile iR(t) of R.

243

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure 10.3: The non-periodic profile iQ(t) of Q.

Parameter R Q

size (in tuples) |R| = 121728 |Q| = 121728
profile periodic non-periodic
lifespan (in minutes) |L(R)| = 10080 |L(Q)| = 10080
τ (in minutes) τR = 300 τQ = 300
tuple size (in bytes) |r| = 500 |q| = 500

Table 10.1: The characteristics of the base relations R and Q.

244

Parameter Description Value

µ processor speed in MIPS 200 MIPS
mem free main memory per node 32 MB
wio disk I/O bandwidth per node 20 MB/sec
wcom communication bandwidth 40 MB/sec
wmem memory bandwidth per node 400 MB/sec
Iproc number of CPU instructions for pro-

cessing a tuple in each step
1000

Ihash number of CPU instructions for hash-
ing a tuple

1000

Icom number of CPU instructions for initi-
ating a data transfer

500

Iio number of CPU instructions for initi-
ating a disk I/O

500

b page size 4 kB

Table 10.2: The parameters describing the architecture that is used in the ex-
periments.

245

10.2 A General Comparison between the Strategies

In chapter 9, several families of partitioning strategies have been discussed. In
this section, we want to obtain some insight about their performance charac-
teristics.

For that purpose, they were used to process the three joins R onC R, R onC

Q and Q onC Q2 where the join condition C simply requires the timestamp
intervals to intersect. We note that the three joins have the profiles iR(t) · iR(t),
iR(t) · iQ(t) and iQ(t) · iQ(t), i.e.

• the join R onC R has a periodic profile (figure 10.4),

• the join R onC Q has a partially periodic profile (figure 10.5),

• the join Q onC Q has a non-periodic profile (figure 10.6).

In total, we tested the following 11 strategies; each of them has been discussed
in chapter 9:

1. Uniform Lifespan: this strategy uniformly partitions the joint lifespan of
the participating relations (see section 9.1.1).

2. Uniform Range: this strategy uniformly partitions the joint range of the
participating relations (see section 9.1.2).

3. Uniform Startpoints Span: this strategy uniformly partitions the joint start-
points span of the participating relations (see section 9.1.3).

4. Basic Underflow: this is the basic underflow strategy as described in sec-
tion 9.2.1.

5. Basic Underflow with b/o: this is the basic underflow strategy (section 9.2.1)
used in conjunction with the black-out preprocessing strategy (section 9.4).

6. Primary Underflow: this is the variation that applies underflow partition-
ing to the primary subfragments only (section 9.2.2).

7. Primary Underflow with b/o: this is the variation that applies underflow
partitioning to the primary subfragments only (section 9.2.2). used in
conjunction with the black-out preprocessing strategy (section 9.4).

8. Basic Minimum-Overlaps: this is the basic minimum-overlaps strategy as
described in section 9.3.1.

2Sometimes we will refer to these joins also as join 1, join 2 and join 3 respectively.

246

9. Basic Minimum-Overlaps with b/o: this is the basic minimum-overlaps stra-
tegy (section 9.3.1) used in conjunction with the black-out preprocessing
strategy (section 9.4).

10. Primary Minimum-Overlaps: this is the variation that applies minimum-
overlaps partitioning to the primary subfragments only (section 9.3.2).

11. Primary Minimum-Overlaps with b/o: this is the variation that applies mini-
mum-overlaps partitioning to the primary subfragments only (section
9.3.2). It is used in conjunction with the black-out preprocessing strategy
(section 9.4).

We note that this list is not complete: in practice there can be many more parti-
tioning strategies, e.g. further variations within the three families or some that
take system-specific performance characteristics into account.

Table 10.3 shows the performance results for the strategies when being ap-
plied to the three joins and using a parallel and a single-processor hardware
architecture. In order to guarantee a fair comparison between the strategies,
the parameters X, XR and XQ for the underflow and minimum-overlaps stra-
tegies were chosen to produce m = 16 fragments / partial joins – the same
number as the uniform strategies. We note that in the case of the parallel archi-
tecture (M = 4, N = 4) this means that each processor processes one partial
join. For the black-out preprocessing strategy we used the average Ō of the
oR(t) values in an IP-table I(R) to be the respective threshold value Y , i.e.

Y = Ō =
1
N
·
N∑
j=1

oR(tj) (10.1)

We will now look at certain issues that are ‘hidden’ within the many numbers
in table 10.3. First, we want to get a general idea about the strategies, irre-
spective of the type of join. For that purpose, each of the numbers in table 10.3
is normalised in the following way: the performance results of the uniform

lifespan strategy are respectively used to represent a general value 100. Colum-
nwise, the times are converted into ratios with respect to the time achieved
with the uniform lifespan strategy:

time of strategy X for join n
time of uniform lifespan strategy for join n

· 100

For each of the two architectures, we then take the average of the three per-
formance results per strategy. This normalisation guarantees that each join

247

contributes an equal share to the average and it is not the most expensive join
that contributes most. Figure 10.7 shows the averages for the parallel and fig-
ure 10.8 for the single-processor architecture.

In the case of the parallel architecture, the primary underflow strategies are
the clear winners, causing only around a third of the costs compared with the
uniform strategies. The other underflow and the minimum-overlaps strate-
gies end up in the area between 50 and 60. Apart from the quantitative as-
pect, this result is not surprising as the principal goal of the underflow stra-
tegies is to achieve a good balance between the fragments, regardless of the
number of overlapping intervals. This means that all partial joins are more or
less of equal sizes – a fact that is beneficial in the context of parallelism. The
minimum-overlaps strategies make concessions with respect to the load bal-
ance in order to achieve a minimum-number of overlaps. These concessions
obviously do not pay off. An interesting difference between the four under-
flow and the four minimum-overlaps strategies is that the primary underflow
variations perform better than the basic strategies whereas the opposite rela-
tionship can be found between the minimum-overlaps strategies. In theory,
one would expect the primary strategies to perform better in both cases be-
cause they take various aspects of the cost model into consideration (see dis-
cussions in sections 9.2.2 and 9.3.2). To explain the contrary effect in the case
of the minimum-overlaps strategies, we have to look at the absolute figures in
table 10.3: the primary versions of the minimum-overlaps strategies are also
better for the joins R onC Q and Q onC Q but are somewhat far behind in the
join R onC R. This ‘destroys’ an otherwise favourable average value as used in
figure 10.7.

There are two more conclusions that can be drawn from the diagram in
figure 10.7:

• it confirms what we already expected in section 9.1, namely that there is
not much difference between the uniform strategies;

• there does not seem to be much benefit that can be drawn from black-out
preprocessing if there is a benefit at all. We will return to this problem
in section 10.9 where experiments are conducted to analyse the black-out
preprocessing strategy in more detail.

Now, we turn our attention to the figures obtained from the single-processor
architecture (figure 10.8). Here, the scene looks quite different: the underflow
and minimum-overlaps strategies perform at around 82-86% of the costs of

248

the uniform strategies. The basic minimum-overlaps strategy using black-out
preprocessing is a narrow winner. Through the experiments in section 10.3, we
will see that this scenario changes for higher values of m.

Finally, the question arises whether the optimisation process itself is ef-
ficient. It would not be worth while to optimise the partitioning if the op-
timisation itself imposed considerable costs. Figure 10.9 shows the average
elapsed times that were spent on the optimisation itself. The hardware plat-
form was a Sun SPARC SS-20 computing server with two processors. The
uniform and underflow strategies required less than 2 seconds, whereas the
minimum-overlaps strategies took around 16 seconds which is still relatively
low in comparison to the join processing times in table 10.3.

249

0

2e+007

4e+007

6e+007

8e+007

1e+008

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure 10.4: The profile of R onC R (“join 1”).

250

0

2e+007

4e+007

6e+007

8e+007

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure 10.5: The profile of R onC Q (“join 2”).

251

0

2e+007

4e+007

6e+007

8e+007

1e+008

1.2e+008

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure 10.6: The profile of Q onC Q (“join 3”).

252

Partitioning M = 4,N = 4 M = 1,N = 1
R onC R Q onC Q R onC Q R onC R Q onC Q R onC Q

Uniform Lifespan 3189 4327 3779 12783 19029 10322
Uniform Range 3207 4346 3755 12772 19053 10326
Uniform Startpoints Span 3225 4319 3773 12756 19019 10314
Basic Underflow 1490 2094 1884 11761 14900 8629
Basic Underflow with b/o 1695 2233 2085 11844 14852 8426
Prim. Underflow 1009 1194 1821 11706 14407 8868
Prim. Underflow with b/o 1120 1243 1634 11863 14392 8497
Basic Min.-Overlaps 1421 2001 2463 10542 14690 9199
Basic Min.-Overlaps with b/o 1502 2123 2780 10689 14714 8972
Prim. Min.-Overlaps 2298 1753 2243 11834 14621 8831
Prim. Min.-Overlaps with b/o 2457 1709 2619 12161 14599 9100

Table 10.3: The performance results (in sec.) for partitions with m = 16 fragments.

253

Costs with uniform lifespan partitioning = 100

30 40 50 60 70 80 90 100

Uniform Lifespan

Uniform Range

Uniform Startpoints Span

Basic Underflow

Basic Underflow with b/o

Prim. Underflow

Prim. Underflow with b/o

Basic Min.-Overlaps

Basic Min.-Overlaps with b/o

Prim. Min.-Overlaps

Prim. Min.-Overlaps with b/o

Figure 10.7: Performance result averages for the three joins on the parallel ar-
chitecture.

Costs with uniform lifespan partitioning = 100

30 40 50 60 70 80 90 100

Uniform Lifespan

Uniform Range

Uniform Startpoints Span

Basic Underflow

Basic Underflow with b/o

Prim. Underflow

Prim. Underflow with b/o

Basic Min.-Overlaps

Basic Min.-Overlaps with b/o

Prim. Min.-Overlaps

Prim. Min.-Overlaps with b/o

Figure 10.8: Performance result averages for the three joins on the single-
processor architecture.

254

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

Elapsed time in seconds

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00

Uniform Lifespan

Uniform Range

Uniform Startpoints Span

Basic Underflow

Basic Underflow with b/o

Prim. Underflow

Prim. Underflow with b/o

Basic Min.-Overlaps

Basic Min.-Overlaps with b/o

Prim. Min.-Overlaps

Prim. Min.-Overlaps with b/o

Figure 10.9: Average optimisation costs (in sec.) for all the experiments con-
ducted in this section.

255

10.3 Dependency on m

In the experiment of previous section, the number m of fragments / partial
joins was fixed to a value of 16 which matched the number of processors in the
parallel architecture. Here, we want to find out whether this value was a good
choice or whether higher values of m lead to better performances. In other
words: we want to find out whether it is better to have a small number of rel-
atively big partial joins or a large number of relatively small ones. There are no
indications neither from the performance model (chapter 8) nor from the stra-
tegies themselves (chapter 9) whether one way or the other is better. Therefore,
we have to rely on the observations made in the experiments. In order to re-
duce the complexity of the experiments and to concentrate on the main issues,
we chose four of the eleven strategies on offer, namely the uniform lifespan, basic

underflow, primary underflow and the primary minimum-overlaps strategies. The
choice was led by the goal to select at least one member of each family and also
those that are the most promising with respect to good performances.

Six experiments were conducted to test the dependency on m of these stra-
tegies, i.e. one per combination of join and hardware. The performance results
are given in tables 10.4, 10.5 and 10.6 and visualised in figures 10.10 to 10.15.

First, we want to analyse the behaviour of the strategies on the parallel ar-
chitecture. In all cases, the primary underflow strategy is a narrow winner
before the primary minimum-overlaps strategy. Both strategies show relat-
ively high costs on low values of m and perform better for higher values, with
almost constant costs in the second half of the chart. The costs of the uniform
lifespan strategy are between 2 and 3 times (join R onC R), between 1.3 and 2
times (join R onC Q) and between 2.2 and 3.5 times (join Q onC Q) higher than
those of the primary underflow strategy. In general, it also performs better for
higher values of m. However, there are some exceptions to this rule such as a
sharp rise from m = 896 to m = 1024 for the join R onC R or some significant
shaking in the area between m = 384 and m = 1024 for the join R onC Q. A
much more irregular behaviour is shown by the basic underflow strategy. The
exact shape of its cost function can only be explained by looking into details of
the data. However, it seems that it performs best for lower values of m, which
stands in contrast to the other three strategies. In general, it performs worse
than the primary underflow and minimum-overlaps strategies.

Now, we turn our attention to the results for the single-processor hardware
architecture. Here, the scene looks different: for lower values ofm the uniform
lifespan strategy has between 10% and 30% higher costs in comparison to the

256

primary underflow strategy, whereas for high values ofm it performs between
1% and 4% better. This is a surprising result. It means in other words that the
uniform lifespan strategy outperforms all other strategies if simply the value of
m is chosen to be high enough. However, the advantage in comparison to other
strategies is only very minor (see joins R onC R and Q onC Q) or does not exist
(see join R onC Q). A further interesting result is that the primary minimum-
overlaps strategy is better (joins R onC R and R onC Q) or at least as good (join
Q onC Q) as the primary underflow strategy. This is due to the facts that (a) a
good load balance between the partial joins is far less important on a single-
processor machine in comparison to a parallel one and that (b) the advantage
of having a reduced total number of overlapping intervals materialises in the
single-processor case.

From the results in tables 10.4, 10.5 and 10.6 we can also derive some in-
formation about the speed-up. It is defined as the ratio between the processing
times that are required for the same problem on a machine with n processors
and on one with 1 processor. Ideally, the speed-up is n in this case. In realistic
situations, however, such a speed-up is never achieved because of communica-
tion and synchronisation overheads. If we compare the respective lowest costs
on the parallel and single-processor machines for the three joins, then we get
speed-ups of 9.5 for R onC R, 4.6 for R onC Q and 10.6 for Q onC Q.

m

se
co

nd
s

500

1000

1500

2000

2500

3000

16 32 48 64 80 96 11
2

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Basic Underflow

Figure 10.10: Dependency on m of the performance results for the join R onC R
on a parallel architecture.

257

M = 4, N = 4 M = 1, N = 1
m Uniform Primary Primary Basic Uniform Primary Primary Basic

Lifespan Underflow Min.-O. Underflow Lifespan Underflow Min.-O. Underflow

16 3189 1077 1988 1490 12783 11370 11286 11807
32 2111 891 1359 1326 10580 9589 9464 9852
48 1930 843 1141 1439 9675 8839 8750 9650
64 1837 797 1178 1384 9117 8458 8394 9437
80 1743 788 1011 1529 8783 8228 8177 9299
96 1699 777 967 1749 8559 8009 8029 9389
112 1668 776 986 1713 8395 7952 7929 9328
128 1700 763 963 1791 8241 7847 7855 9133
256 1613 757 926 2884 7194 7633 7618 9209
384 1587 752 910 2808 7258 7580 7569 8980
512 1630 770 916 2465 7310 7578 7568 8773
640 1629 788 903 2143 7351 7586 7399 8708
768 1577 788 898 1612 7379 7586 7493 8633
896 1554 788 923 1657 7416 7586 7543 8649
1024 2501 788 935 1582 7093 7586 7594 8666

Table 10.4: Performance results (in sec.) for the join R onC R depending on m.

m

se
co

nd
s

7000

8000

9000

10000

11000

12000

13000

16 32 48 64 80 96 11
2

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Basic Underflow

Figure 10.11: Dependency on m of the performance results for the join R onC R
on a single-processor architecture.

258

M = 4, N = 4 M = 1, N = 1
m Uniform Primary Primary Basic Uniform Primary Primary Basic

Lifespan Underflow Min.-O. Underflow Lifespan Underflow Min.-O. Underflow

16 3779 1901 2458 1884 10322 9248 9029 8629
32 2771 1454 1747 1647 7793 6966 6995 7229
48 2431 1339 1556 1531 6942 6395 6451 6693
64 2238 1295 1380 1468 6522 6111 6109 6320
80 2160 1253 1424 1476 6258 5930 5931 6235
96 2089 1224 1351 1575 6096 5814 5814 5612
112 2040 1209 1389 1697 5974 5740 5736 5616
128 1914 1202 1396 1613 5874 5679 5685 5625
256 1795 1169 1324 2398 5333 5501 5336 5688
384 1763 1147 1301 2274 5335 5376 5358 5704
512 1523 1170 1239 2544 5353 5402 5390 5760
640 1551 1174 1247 3251 5375 5436 5425 5827
768 1758 1171 1260 3432 5393 5472 5462 5863
896 1598 1171 1263 3051 5420 5503 5474 5886

1024 1699 1171 1263 2417 5462 5503 5474 5939

Table 10.5: Performance results (in sec.) for the join R onC Q depending on m.

m

se
co

nd
s

1000

1500

2000

2500

3000

3500

16 32 48 64 80 96 11
2

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Basic Underflow

Figure 10.12: Dependency on m of the performance results for the join R onC Q
on a parallel architecture.

259

M = 4, N = 4 M = 1, N = 1
m Uniform Primary Primary Basic Uniform Primary Primary Basic

Lifespan Underflow Min.-O. Underflow Lifespan Underflow Min.-O. Underflow

16 4327 1243 1753 2122 19029 14551 14621 14739
32 3274 1058 1277 2165 14506 12153 12150 12878
48 2940 1001 1217 2281 12954 11389 11394 12330
64 2800 975 1111 2354 12189 10989 10986 12126
80 2683 964 1102 2590 11724 10773 10769 12076
96 2622 949 1060 2875 11413 10619 10616 12074
112 2575 936 1053 3111 11191 10514 10519 12030
128 2559 941 1047 4434 11010 10442 10441 11995
256 2451 938 1021 5912 10449 10214 10213 11973
384 2426 948 1013 6503 9964 10180 10179 12145
512 2447 963 1015 6522 9973 10195 10194 12062
640 2413 968 1025 6371 9992 10229 10228 12080
768 2430 997 1031 6117 10009 10272 10269 12095
896 2476 1009 1032 5626 10033 10323 10322 12001
1024 2252 1009 1048 2122 10072 10374 10376 12013

Table 10.6: Performance results (in sec.) for the join Q onC Q depending on m.

m

se
co

nd
s

5000

6000

7000

8000

9000

10000

16 32 48 64 80 96 11
2

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Basic Underflow

Figure 10.13: Dependency on m of the performance results for the join R onC Q
on a single-processor architecture.

260

m

se
co

nd
s

0

1000

2000

3000

4000

5000

6000

7000

16 32 48 64 80 96 11
2

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Basic Underflow

Figure 10.14: Dependency on m of the performance results for the join Q onC Q
on a parallel architecture.

m

se
co

nd
s

9000

10000

11000

12000

13000

14000

15000

16 32 48 64 80 96 11
2

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

Uniform Lifespan

Primary Underflow,
Primary Min.-Overlaps

Basic Underflow

Figure 10.15: Dependency on m of the performance results for the join Q onC Q
on a single-processor architecture.

261

10.4 Dependency on XR and XQ

In the previous section, we conducted experiments in which m was varied.
Whereas m is an input parameter for the uniform strategies, it is an output
parameter for the other strategies: it is implied by the value that we choose for
X (in the case of the basic underflow and the basic minimum-overlaps strate-
gies) or for XR and XQ (in the case of the primary underflow and the primary
minimum-overlaps strategies). In section 10.3, we found out that high values
form usually result in a good performance when using the primary underflow
or primary minimum-overlaps strategies. For practical purposes, this is a little
bit vague and does not give a clear indication how the values for XR and XQ,
i.e. the respective maximum sizes for the primary fragmentsR′k andQ′k, should
be chosen. In this section, we want to overcome this deficit. We will try to em-
pirically determine a rule that provides a good choice for XR and XQ. This is
also an important piece of knowledge that we require for the experiments in
the following sections.

XR and XQ are certainly parameters that depend on the numbers of tuples
inR andQ, i.e. |R| and |Q|. We set up a series of experiments in which we used
a value Z to control XR and XQ using the following equations:

XR = |R| · Z
100

XQ = |Q| · Z
100

Put in a different way: Z is the ratio (in percent) between the maximum num-
ber of tuples allowed per primary fragment and the number of tuples in the
relation. For example Z = 5 means that XR and XQ are 5% of the value of |R|
and |Q| respectively.

Several experiments were conducted, using 10, 9, . . . , 1, 0.75, 0.5, 0.25, 0.2
as values for Z. Table 10.7 shows the performances for the three joins using
the primary underflow strategy on the parallel architecture. The experiment
was run for R and Q and then again for samples of 40000 tuples of these two
relations. From this variation we hope to see whether a good choice of a value
for Z is really independent of |R| and |Q|. Figures 10.16 and 10.17 visualise the
data of table 10.7. In all cases, a value of Z = 0.75 provides the best perform-
ance.

We then moved on to see whether a similarly clear result can be obtained
for the primary minimum-overlaps strategy. Table 10.8 gives the performances
and figures 10.18 and 10.19 show them graphically. Here, we find that Z-values

262

|R| = |Q| = 121728 |R| = |Q| = 40000
Z R onC R R onC Q Q onC Q R onC R R onC Q Q onC Q

(Join 1) (Join 2) (Join 3) (Join 1) (Join 2) (Join 3)

10 1771 1823 2140 193 198 231
9 1681 1675 1876 183 181 202
8 1433 1601 1606 156 173 172
7 1203 1495 1356 132 161 146
6 1249 1657 1377 137 179 149
5 1455 1477 1583 160 160 170
4 1146 1435 1367 126 156 147
3 1051 1178 1044 115 129 113
2 836 1260 964 92 138 105
1 753 1174 930 85 131 103

0.75 708 1137 896 80 127 100
0.50 775 1147 949 88 131 108
0.25 766 1158 942 94 141 113
0.20 782 1165 956 96 144 118

Table 10.7: Performance results (in sec.) depending on Z for the three joins and
the primary underflow strategy on the parallel architecture.

between 0.2 and 0.75 provide best performances. Z = 0.2 is the best choice if
near-optimal performances are to be achieved for all cases.

Next, we looked at the performances that are achieved on a single-processor
machine. First, the primary underflow strategy was tested. The results are
shown in table 10.9 and visualised by the graphs in figures 10.20 and 10.21.
Here, we find the best performances for Z-values in the range 0.2 to 1. If we
consider all performances for these Z-values then Z = 0.5 is best because it
near-optimal performances in all cases.

Finally, the primary minimum-overlaps strategy was investigated. The res-
ults are shown in table 10.10 and visualised by the graphs in figures 10.22
and 10.23. Similar to the primary underflow case, it is the Z-values between
0.2 and 1 that perform best with Z = 0.5 achieving near-optimal performances
in all cases.

In summary, we conclude that values for Z = 0.75 on the parallel archi-
tecture and Z = 0.5 on the single-processor machine seem to be good choices
in general. We will use these values to determine XR and XQ for the primary
underflow and primary minimum-overlaps strategies in the remaining exper-
iments.

263

|R| = |Q| = 121728 |R| = |Q| = 40000
Z R onC R R onC Q Q onC Q R onC R R onC Q Q onC Q

(Join 1) (Join 2) (Join 3) (Join 1) (Join 2) (Join 3)

10 2523 2576 3164 274 276 336
9 2367 2251 2780 263 255 295
8 2523 2124 2343 275 207 250
7 2082 2433 1948 229 261 208
6 2150 2302 1964 236 248 212
5 1871 1773 1970 205 192 211
4 1759 1640 1694 192 198 182
3 1454 1545 1327 159 167 140
2 1389 1491 1201 153 157 141
1 1190 1373 1097 133 150 121

0.75 1148 1337 1114 126 149 116
0.50 985 1324 1058 114 146 120
0.25 922 1256 1014 111 151 121
0.20 912 1225 1025 114 148 125

Table 10.8: Performance results (in sec.) depending on Z for the three joins and
the primary minimum-overlaps strategy on the parallel architecture.

|R| = |Q| = 121728 |R| = |Q| = 40000
Z R onC R R onC Q Q onC Q R onC R R onC Q Q onC Q

(Join 1) (Join 2) (Join 3) (Join 1) (Join 2) (Join 3)

10 13352 9211 17218 1452 999 1848
9 14308 8704 16337 1553 941 1749
8 12865 8023 15571 1402 868 1666
7 12471 7845 14892 1356 849 1597
6 11371 7427 14163 1239 804 1514
5 10631 7084 13471 1155 768 1443
4 10148 6691 12744 1110 724 1364
3 9406 6291 12004 1022 682 1285
2 8753 5947 11284 956 647 1208
1 8014 5604 10578 880 591 1138

0.75 7858 5533 10410 867 593 1123
0.50 7665 5362 10262 854 602 1114
0.25 7580 5444 10182 861 635 1128
0.20 7578 5496 10199 871 653 1142

Table 10.9: Performance results (in sec.) depending on Z for the three joins and
the primary underflow strategy on the single-processor architecture.

264

|R| = |Q| = 121728 |R| = |Q| = 40000
Z R onC R R onC Q Q onC Q R onC R R onC Q Q onC Q

(Join 1) (Join 2) (Join 3) (Join 1) (Join 2) (Join 3)

10 12833 9216 17043 1394 995 1829
9 12482 8702 16242 1358 949 1736
8 12310 8444 15462 1336 895 1656
7 11497 7782 14840 1250 843 1589
6 11084 7484 14095 1203 807 1506
5 10381 7073 13426 1119 765 1435
4 9781 6769 12691 1058 729 1360
3 9296 6357 11995 1014 689 1284
2 8611 5967 11281 941 652 1209
1 7990 5626 10578 778 587 1138

0.75 7826 5335 10410 864 589 1123
0.50 7668 5342 10260 802 597 1114
0.25 7567 5420 10180 834 628 1128
0.20 7569 5467 10195 848 645 1141

Table 10.10: Performance results (in sec.) depending on Z for the three joins
and the primary minimum-overlaps strategy on the single-processor architec-
ture.

265

Z

se
co

nd
s

600

800

1000

1200

1400

1600

1800

2000

2200

10 9 8 7 6 5 4 3 2 1

0.
75

0.
50

0.
25

0.
20

Join 1

Join 2

Join 3

Figure 10.16: Dependency on Z of the performance results for |R| = |Q| =
121728 and the primary underflow strategy on the parallel architecture.

Z

se
co

nd
s

60

80

100

120

140

160

180

200

220

240

10 9 8 7 6 5 4 3 2 1

0.
75

0.
50

0.
25

0.
20

Join 1

Join 2

Join 3

Figure 10.17: Dependency on Z of the performance results for |R| = |Q| =
40000 and the primary underflow strategy on the parallel architecture.

266

Z

se
co

nd
s

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

10 9 8 7 6 5 4 3 2 1

0.
75

0.
50

0.
25

0.
20

Join 1

Join 2

Join 3

Figure 10.18: Dependency on Z of the performance results for |R| = |Q| =
121728 and the primary minimum-overlaps strategy on the parallel architec-
ture.

Z

se
co

nd
s

100

120

140

160

180

200

220

240

260

280

300

10 9 8 7 6 5 4 3 2 1

0.
75

0.
50

0.
25

0.
20

Join 1

Join 2

Join 3

Figure 10.19: Dependency on Z of the performance results for |R| = |Q| =
40000 and the primary minimum-overlaps strategy on the parallel architecture.

267

Z

se
co

nd
s

5000

7500

10000

12500

15000

17500

10 9 8 7 6 5 4 3 2 1

0.
75

0.
50

0.
25

0.
20

Join 1

Join 2

Join 3

Figure 10.20: Dependency on Z of the performance results for |R| = |Q| =
121728 and the primary underflow strategy on the single-processor machine.

Z

se
co

nd
s

500

750

1000

1250

1500

1750

2000

10 9 8 7 6 5 4 3 2 1

0.
75

0.
50

0.
25

0.
20

Join 1

Join 2

Join 3

Figure 10.21: Dependency on Z of the performance results for |R| = |Q| =
40000 and the primary underflow strategy on the single-processor machine.

268

Z

se
co

nd
s

5000

7500

10000

12500

15000

17500

10 9 8 7 6 5 4 3 2 1

0.
75

0.
50

0.
25

0.
20

Join 1

Join 2

Join 3

Figure 10.22: Dependency on Z of the performance results for |R| = |Q| =
121728 and the primary minimum-overlaps strategy on the single-processor
machine.

Z

se
co

nd
s

500

750

1000

1250

1500

1750

2000

10 9 8 7 6 5 4 3 2 1

0.
75

0.
50

0.
25

0.
20

Join 1

Join 2

Join 3

Figure 10.23: Dependency on Z of the performance results for |R| = |Q| =
40000 and the primary minimum-overlaps strategy on the single-processor ma-
chine.

269

10.5 Dependency on τ

We now want to look at the influence of a parameter that is imposed by the
data, namely the average length τ of the intervals of a temporal relation. Ob-
viously, the amount of overlapping intervals grows if τ is increased. This can
influence the performance levels that result from the various strategies. In this
section, we want to investigate the relationship between τ and the perform-
ance.

For that purpose, we used our base relations R and Q which both have
τ = 300. We applied the procedure change_lengths (see appendix C) to derive
relations Rτ and Qτ with average interval length τ respectively. Values for τ
were 200, 400, 600, 800, 1000 and 1200. The corresponding profiles iRτ (t) and
iQτ (t) are listed in appendix D. With increasing τ the profiles become smoother,
showing less significant peeks than for low values of τ .

In the experiments, we simulated the performances of the joins Rτ onC Rτ ,
Rτ onC Qτ and Qτ onC Qτ for the values of τ that are listed above. In order
to restrict the combinatorical complexity, we concentrated on one partitioning
strategy per family, namely the uniform lifespan, the primary underflow and
the primary minimum-overlaps strategies. All these strategies have been the
best performing members of their families in most cases so far. Tables 10.11
and 10.12 show the performance results (in sec.) for the parallel and for the
single-processor architecture, respectively. As before, it is difficult to see the
effects by simply looking at the absolute numbers. Therefore we have visual-
ised the results in figures 10.24, 10.25 and 10.26 for the parallel architecture and
in figures 10.27, 10.28 and 10.29 for the single-processor architecture.

In the parallel case, we can recognise significant differences depending on
the join:

• For the joins Rτ onC Rτ – where the profiles of both participating relations
are periodic – we find that the primary underflow strategy performs best
for low τ whereas the primary minimum-overlaps strategy is the clear
winner for high values of τ . Obviously, the longer the intervals become
the more overlaps occur and the more relevant the problem of overlaps
becomes. This seems to favour the primary minimum-overlaps strategy
for high values of τ .

• For the joins Rτ onC Qτ – where the profile of one relation is periodic
whereas the other one’s profile is non-periodic – we find that the primary

270

minimum-overlaps strategy performs best or at least close to the best for
all values of τ . The reason behind this is the same as in the previous case.

• For the joinsQτ onC Qτ – where the profiles of both participating relations
are non-periodic – we find that the primary underflow strategy performs
best for all τ . Its advantage over the other strategies seems to increase for
a growing τ . This stands in contrast to the two other joins and is due to
the fact that the Qτ ’s profiles (see figures D.7 to D.12 in appendix D) offer
less and less opportunities to set a breakpoint in a valley with an increas-
ing τ . The primary minimum-overlaps strategy, however, usually tries
to take advantage of such opportunities which it cannot in this particular
case. It is therefore that the primary underflow strategy, which focuses
on a good load balance, proves to provide better performances.

We then took the average for the three strategies over the three joins per value
of τ . The times were normalised in the same way as described in section 10.2 in
order to guarantee a fair comparison. Figure 10.30 shows the normalised per-
formances. We note that these averages suggest that the primary underflow
strategy performs best in most cases. This stands in contrast to the more de-
tailed analysis above. However, it is possible to recognise a trend that the per-
formances of primary underflow and primary minimum-overlaps partitioning
approach the one of uniform lifespan partitioning. This is not surprising when
we consider the profiles of the relations that were used in the experiments (see
appendix D): with an increasing τ they loose their respective periodic and non-
periodic characteristics and approach a profile of for uniform data which has a
constant profile, i.e. iR(t) and iQ(t) would be constant.

Now, we turn to the results that were obtained for the single-processor ar-
chitecture. These are shown in table 10.12 and in figures 10.27 to 10.29. In
contrast to the parallel case, we cannot observe any advantages for a particular
strategy for low or high values of τ . The normalised averages in figure 10.31
show a slow convergence with an increasing τ .

In summary, it is fair to say that the average interval length τ is a significant
parameter in the case of a parallel architecture whereas it is almost neglectable
on single-processor machines. For parallel join processing, however, we con-
clude that low values of τ favour the primary underflow strategy, whereas
high τ cause the periodicity or non-periodicity of the participating relations’
profiles to be a distinguishing factor. The presence of periodic profiles suggests
that primary minimum-overlaps partitioning is the a good choice whereas the

271

absence of such profiles indicates advantages for the primary underflow stra-
tegy.

272

Rτ onC Rτ Rτ onC Qτ Qτ onC Qτ
τ uniform primary primary uniform primary primary uniform primary primary

lifespan underflow min.-overlaps lifespan underflow min.-overlaps lifespan underflow min.-overlaps

200 1145 559 633 1269 817 814 1692 688 716
400 1914 974 1550 1985 1451 1617 3188 1241 1504
600 2286 1161 1865 2939 1850 1934 4232 1778 2476
800 2513 2513 2357 3214 3214 2415 5750 2237 3153

1000 2992 2992 2658 3598 3598 3138 6954 2659 4377
1200 3817 3817 3043 4071 4071 4386 7073 3074 5574

Table 10.11: Dependency on τ of the performance results (in sec.) for the three joins on the parallel architecture.

Rτ onC Rτ Rτ onC Qτ Qτ onC Qτ
τ uniform primary primary uniform primary primary uniform primary primary

lifespan underflow min.-overlaps lifespan underflow min.-overlaps lifespan underflow min.-overlaps

200 5331 5905 5892 3564 3785 3793 6745 7241 7238
400 9420 9671 9643 7076 7292 7063 13045 13534 13530
600 12526 12762 12736 10465 10683 10426 18885 19369 19369
800 15440 15440 15618 13782 13782 13726 24246 24722 23942

1000 18429 18429 18558 16999 16999 16908 29075 29550 28412
1200 21661 21661 21743 20375 20375 20371 33801 33940 33926

Table 10.12: Dependency on τ of the performance results (in sec.) for the three joins on the single-processor architecture.

273

ττ

se
c

o
nd

s

0

500

1000

1500

2000

2500

3000

3500

4000

200 400 600 800 1000 1200

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Figure 10.24: Performances for the joins Rτ onC Rτ on the parallel architecture.

ττ

se
c

o
nd

s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

200 400 600 800 1000 1200

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Figure 10.25: Performances for the joins Rτ onC Qτ on the parallel architecture.

274

ττ

se
c

o
nd

s

0

1000

2000

3000

4000

5000

6000

7000

8000

200 400 600 800 1000 1200

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Figure 10.26: Performances for the joins Qτ onC Qτ on the parallel architecture.

ττ

se
c

o
nd

s

0

5000

10000

15000

20000

25000

200 400 600 800 1000 1200

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Figure 10.27: Performances for the joins Rτ onC Rτ on the single-processor
architecture.

275

ττ

se
c

o
nd

s

0

5000

10000

15000

20000

25000

200 400 600 800 1000 1200

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Figure 10.28: Performances for the joins Rτ onC Qτ on the single-processor
architecture.

ττ

se
c

o
nd

s

0

5000

10000

15000

20000

25000

30000

35000

200 400 600 800 1000 1200

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Figure 10.29: Performances for the joins Qτ onC Qτ on the single-processor
architecture.

276

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

ττ

Costs with uniform partitioning = 100

40 50 60 70 80 90 100 110

200

400

600

800

1000

1200

Uniform Lifespan AAA
AAA
AAA

Primary Underflow AAA
AAA
AAA

Primary Min.-Overlaps

Figure 10.30: Comparison between the performances of the three strategies on
a parallel architecture with a varying τ .

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

ττ

Costs with uniform partitioning = 100

40 50 60 70 80 90 100 110

200

400

600

800

1000

1200

Uniform Lifespan AAA
AAA
AAA

Primary Underflow AAA
AAA
AAA

Primary Min.-Overlaps

Figure 10.31: Comparison between the performances of the three strategies on
a single-processor architecture with a varying τ .

277

10.6 Dependency on |R| and |Q|
In this section, we want to find out whether the sizes of the participating rela-
tions can make a difference to the optimisation decision on the most suitable
partitioning strategy. The experiments were set up as in the previous section
but this time τ remained constant at its original value of 300. Here, we varied
the number of tuples within the participating relations, i.e. |R| and |Q|. The re-
lations were created by randomly picking tuples from the original sets which
have 121728 tuples each. In this section’s experiments the sample sizes are
20000, 40000, 60000, 80000 and 100000.

Table 10.13 shows the performance results for the three joins on the par-
allel architecture; table 10.14 shows the corresponding figures for the single-
processor machine. There are no big surprises within these numbers. Fig-
ures 10.32 and 10.33 therefore show the averages for the three joins respect-
ively. The quadratic time complexity of the underlying join algorithm can be
easily recognised on both machines. In figures 10.34 and 10.35 the normalised
results are shown. Here, we do not see any surprising effects either. In total,
we can conclude that the relation sizes have no impact on the choice of the best
partitioning strategy.

As a “side-result” of these experiments we note that the numbers for the
skewed data (table 10.13) are quite different from those that were obtained
under the assumption of uniformity (see table 8.10 on page 211): for example,
for |R|, |Q| = 100000 we got 386.5 seconds with uniform data and 538, 753 and
545 seconds with the primary underflow strategy with the skewed data. This
difference underlines how important it is to consider data skew and to look at
techniques that can cope with this effect. Especially the results in table 10.13
clearly show how badly the uniform strategy performs as it does not consider
any characteristics of the underlying data apart from the lifespan (or range or
startpoints span).

278

R onC R R onC Q Q onC Q

|R|, |Q| uniform primary primary uniform primary primary uniform primary primary
lifespan underflow min.-overlaps lifespan underflow min.-overlaps lifespan underflow min.-overlaps

20000 47 22 33 52 34 39 72 27 33
40000 180 80 126 197 127 149 269 100 116
60000 395 177 284 436 280 335 595 221 272
80000 813 366 684 610 419 423 582 239 253

100000 1175 538 914 1170 753 888 1486 545 661

Table 10.13: Dependency on |R|, |Q| of the performance results (in sec.) for the three joins on the parallel architecture.

R onC R R onC Q Q onC Q

|R|, |Q| uniform primary primary uniform primary primary uniform primary primary
lifespan underflow min.-overlaps lifespan underflow min.-overlaps lifespan underflow min.-overlaps

20000 211 221 221 157 155 154 278 287 287
40000 811 867 864 594 593 589 1079 1123 1123
60000 1798 1933 1927 1319 1320 1313 2413 2517 2517
80000 3825 4062 4078 2153 2164 2242 2353 2543 2543

100000 5463 5867 5853 3683 3695 3679 5990 6290 6289

Table 10.14: Dependency on |R|, |Q| of the performance results (in sec.) for the three joins on the single-processor architecture.

279

|R| and |Q| (in tuples)

se
co

nd
s

0

200

400

600

800

1000

1200

1400

20000 40000 60000 80000 100000

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Figure 10.32: Performance averages for the three joins on the parallel architec-
ture for varying |R| and |Q|.

|R| and |Q| (in tuples)

se
co

nd
s

0

1000

2000

3000

4000

5000

6000

20000 40000 60000 80000 100000

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Figure 10.33: Performance averages for the three joins on the single-processor
architecture for varying |R| and |Q|.

280

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

|R
| a

nd
 |Q

| (
in

 tu
pl

es
)

Costs with uniform partitioning = 100

40 50 60 70 80 90 100 110

20000

40000

60000

80000

100000

Uniform Lifespan
AAA
AAA
AAA Primary Underflow

AAA
AAA
AAA Primary Min.-Overlaps

Figure 10.34: Comparison between the performances of the three strategies on
a parallel architecture for varying |R| and |Q|.

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

|R
| a

nd
 |Q

| (
in

 tu
pl

es
)

Costs with uniform partitioning = 100

40 50 60 70 80 90 100 110

20000

40000

60000

80000

100000

Uniform Lifespan
AAA
AAA
AAA Primary Underflow

AAAA
AAAA
AAAAPrimary Min.-Overlaps

Figure 10.35: Comparison between the performances of the three strategies on
a single-processor architecture for varying |R| and |Q|.

281

10.7 The Architectural Influence

In experiment 1 of section 8.5, we already tried to find out which parallel ar-
chitecture, i.e. which type and which mixture of SMP-nodes, would be most
appropriate. Here, we repeat this experiment. This time, however, the work-
load will not be uniform but skewed. As in section 8.5, the M/N combin-
ations 1/16, 2/8, 4/4, 8/2 and 16/1 will be investigated, i.e. there will be a
total of M · N = 16 processors in all cases. As before, we will run the three
joins R onC R, R onC Q and Q onC Q on these architectures using the uni-
form lifespan (with m = 384), the primary underflow (with XR = 0.0075 · |R|,
XQ = 0.0075 · |Q|) and the primary minimum-overlaps (with XR = 0.0075 · |R|,
XQ = 0.0075 · |Q|) strategies.

Table 10.15 shows the results of these experiments. The performances are
visualised in figures 10.36, 10.37 and 10.38. Overall, the shapes of the cost
graphs are similar to the one of figure 8.15 (page 212). However, there are
three effects which are slightly out of line:

• For the joins R onC R and Q onC Q the combinationM /N seems to make
a difference, at least for underflow and minimum-overlaps partitioning.
4/4, 8/2 and 16/1 are the favourable combinations, causing only around
40% of the costs in most cases and in comparison to the 1/16 architecture.
However, this is higher than in experiment 1 of section 8.5 where the 4/4,
8/2 and 16/1 architectures had only around 26% of the costs of the 1/16
architecture. This proves again that the somewhat unrealistic assump-
tion of uniformity presented a distorted picture of the figures that can be
expected for real applications.

• For the joinR onC Q, the performance advantage of the 4/4, 8/2 and 16/1
combinations is between 10% and 20% for all strategies in comparison to
the 1/16 architecture. This is rather low when compared to the 60% gains
for the other joins.

• For the join Q onC Q, the performance results for uniform partitioning are
almost the same between the architectures. On the other hand, the res-
ults change a lot for primary underflow and primary minimum-overlaps
partitioning.

The effects that we have observed here can be explained by looking into the
components that contribute to the costs. These are shown in tables 10.16, 10.17
and 10.18 respectively. As an example, the numbers for the primary underflow

282

strategy were visualised in figures 10.39, 10.40 and 10.41. For the joins R onC R
and Q onC Q, we find that the memory access costs dominate the processing
of the subjoins for the 1/16 and 2/8 architectures whereas the CPU costs dom-
inate in the case of the 4/4, 8/2 and 16/1 architectures. In the case of the join
R onC Q it is the CPU costs that dominate in most situations. Therefore, the
mixture between closely and loosely coupled processors is not as significant as
for the other joins. This can also be seen in the case of uniform lifespan par-
titioning for the join Q onC Q. In contrast to primary underflow and primary
minimum-overlaps partitioning we find here that the CPU costs dominate on
each one of the architectures. Therefore there is hardly any performance dif-
ference in that case.

Finally, we tried to compute performance marks for the five architectures
in order to find the best one out. For that purpose, we normalised the perform-
ance results of table 10.15 in the following way: first, the costs with uniform
lifespan partitioning (for a certain join and on a certain architecture) were as-
sumed to represent a value of 100; then, the other cost values were transformed
to express the costs in comparison to the 100 that represented the correspond-
ing uniform lifespan partitioning value; finally the average per architecture
was taken over all cost results. Table 10.19 shows the new numbers and fig-
ure 10.43 visualises the averages. The 4/4, 8/2 and 16/1 architectures are the
clear winners in that comparison – a conclusion that has already been drawn
from the results of section 8.5.

283

R onC R R onC Q Q onC Q

M /N uniform primary primary uniform primary primary uniform primary primary
lifespan underflow min.-overlaps lifespan underflow min.-overlaps lifespan underflow min.-overlaps

1/16 1904 1939 1927 1858 1448 1560 2514 2540 2540
2/8 1623 1000 1215 1782 1196 1382 2435 1329 1523
4/4 1598 809 1074 1765 1155 1365 2426 974 1094
8/2 1585 803 1068 1746 1144 1355 2402 965 1085
16/1 1582 801 1066 1739 1139 1351 2390 961 1082

Table 10.15: The performance results (in sec.) for the three joins on varying parallel architectures.

284

M / N

se
co

nd
s

750

1000

1250

1500

1750

2000

2250

2500

2750

1/16 2/8 4/4 8/2 16/1

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Figure 10.36: Performance results for the R onC R on varying parallel architec-
tures.

285

M / N

se
co

nd
s

750

1000

1250

1500

1750

2000

2250

2500

2750

1/16 2/8 4/4 8/2 16/1

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Figure 10.37: Performance results for the R onC Q on varying parallel architec-
tures.

M / N

se
co

nd
s

750

1000

1250

1500

1750

2000

2250

2500

2750

1/16 2/8 4/4 8/2 16/1

Uniform Lifespan

Primary Underflow

Primary Min.-Overlaps

Figure 10.38: Performance results for the Q onC Q on varying parallel architec-
tures.

286

Parameters C2(a) C2(b) C2(c)

M N m Cpart I/O CPU Mem I/O CPU Mem I/O CPU Mem Cjoin Ctotal

Uniform
Lifespan

1 16 384 86 36 729 845 0.0 113 128 36 729 845 1818 1904
2 8 384 52 23 729 573 0.0 113 91 23 729 573 1571 1623
4 4 384 27 12 729 329 0.8 113 51 12 729 329 1571 1598
8 2 384 14 6 729 176 0.5 113 27 6 729 176 1571 1585

16 1 384 11 5 729 174 0.5 113 27 5 729 174 1571 1582

Primary
Underflow

1 16 124 51 21 378 873 2.9 39 143 21 378 873 1888 1939
2 8 124 26 11 378 450 1.5 39 73 11 378 450 974 1000
4 4 124 15 6 378 265 0.8 39 37 6 378 265 794 809
8 2 124 9 4 378 154 0.4 39 19 4 378 154 794 803

16 1 124 7 2 378 90 0.2 39 9 2 378 90 794 801

Primary
Min.-
Overlaps

1 16 124 51 20 442 818 2.9 175 240 20 442 818 1876 1927
2 8 124 28 12 442 506 1.7 175 145 12 442 506 1187 1215
4 4 124 15 6 442 255 1.0 175 91 6 442 255 1059 1074
8 2 124 9 4 442 176 0.5 175 50 4 442 176 1059 1068

16 1 124 7 2 442 106 0.4 175 42 2 442 106 1059 1066

Table 10.16: The performance component results (in sec.) for R onC R on varying parallel architectures.

287

Parameters C2(a) C2(b) C2(c)

M N m Cpart I/O CPU Mem I/O CPU Mem I/O CPU Mem Cjoin Ctotal

Uniform
Lifespan

1 16 384 86 36 1057 600 0.0 73 52 36 596 643 1772 1858
2 8 384 56 26 1057 449 0.0 73 31 21 596 399 1725 1782
4 4 384 40 23 1057 441 1.6 73 30 13 596 390 1725 1765
8 2 384 21 12 1057 259 0.9 73 18 7 596 204 1725 1746

16 1 384 13 7 1057 252 0.5 73 17 5 596 142 1725 1739

Primary
Underflow

1 16 196 67 29 670 601 2.9 47 60 27 414 651 1381 1448
2 8 196 44 22 670 538 2.0 47 45 15 414 436 1152 1196
4 4 196 24 12 670 275 1.0 47 24 7 414 232 1130 1155
8 2 196 14 7 670 250 0.6 47 19 5 414 156 1130 1144

16 1 196 9 4 670 160 0.3 47 11 3 414 99 1130 1139

Primary
Min.-
Overlaps

1 16 183 63 27 779 599 2.9 73 71 24 490 645 1497 1560
2 8 183 40 18 779 381 1.8 73 36 14 490 364 1342 1382
4 4 183 23 12 779 308 1.1 73 33 7 490 276 1342 1365
8 2 183 13 6 779 220 0.6 73 19 5 490 172 1342 1355

16 1 183 9 3 779 186 0.4 73 18 2 490 117 1342 1351

Table 10.17: The performance component results (in sec.) for R onC Q on varying parallel architectures.

288

Parameters C2(a) C2(b) C2(c)

M N m Cpart I/O CPU Mem I/O CPU Mem I/O CPU Mem Cjoin Ctotal

Uniform
Lifespan

1 16 384 86 36 1141 1164 0.0 92 100 36 1141 1164 2428 2514
2 8 384 61 27 1141 838 1.9 92 61 27 1141 838 2374 2435
4 4 384 52 24 1141 817 1.6 92 59 24 1141 817 2374 2426
8 2 384 28 13 1141 458 0.9 92 37 13 1141 458 2374 2402

16 1 384 16 7 1141 272 0.5 92 22 7 1141 272 2374 2390

Primary
Underflow

1 16 124 64 27 457 1166 2.9 40 143 27 457 1166 2476 2540
2 8 124 33 14 457 611 1.5 40 74 14 457 611 1296 1329
4 4 124 21 9 457 419 0.8 40 37 9 457 419 953 974
8 2 124 12 5 457 213 0.4 40 19 5 457 213 953 965

16 1 124 9 2 457 109 0.2 40 10 2 457 109 953 961

Primary
Min.-
Overlaps

1 16 124 64 27 494 1161 2.9 86 153 27 494 1161 2476 2540
2 8 124 34 14 494 691 1.8 86 106 14 494 691 1489 1523
4 4 124 21 9 494 401 1.0 86 65 9 494 401 1073 1094
8 2 124 12 5 494 221 0.5 86 40 5 494 221 1073 1085

16 1 124 9 2 494 118 0.3 86 21 2 494 118 1073 1082

Table 10.18: The performance component results (in sec.) for Q onC Q on varying parallel architectures.

289

AA
AA

AA AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AAA AA
AA

AA
AA

AA AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA AA AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AAA

AAA

AA
AA

AA AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AA AAA AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA

AA
AA

AA AAA AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Cost components

se
co

nd
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

C
 p

ar
t

C
 2

a,
 io

C
 2

a,
 c

pu

C
 2

a,
 m

em

C
 2

b,
 io

C
 2

b,
 c

pu

C
 2

b,
 m

em

C
 2

c,
 io

C
 2

c,
 c

pu

C
 2

c,
 m

em

C
 jo

in

C
 to

ta
l

M=1, N=16

M=2, N=8

AAA

AAA

AAA M=4, N=4

AAA

AAA

AAA

AAA

M=8, N=2

AAA

AAA

AAA
M=16, N=1

Figure 10.39: Cost components for R onC R using primary underflow partitioning.

290

AA
AA

AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA

AAA AA
AA

AA
AA

AA AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AA AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AA AAA

AAA

AA
AA

AA AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AA AAA AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA

AAA

AAA

AAA AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Cost components

se
co

nd
s

0

200

400

600

800

1000

1200

1400

1600

C
 p

ar
t

C
 2

a,
 io

C
 2

a,
 c

pu

C
 2

a,
 m

em

C
 2

b,
 io

C
 2

b,
 c

pu

C
 2

b,
 m

em

C
 2

c,
 io

C
 2

c,
 c

pu

C
 2

c,
 m

em

C
 jo

in

C
 to

ta
l

M=1, N=16

M=2, N=8

AAA

AAA

AAA M=4, N=4

AAA

AAA

AAA

AAA

M=8, N=2

AAA

AAA

AAA
M=16, N=1

Figure 10.40: Cost components for R onC Q using primary underflow partitioning.

291

AA
AA

AA AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AA
AA

AA
AA

AA AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA AA AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AAA

AAA

AA AA AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AA AAA AA
AA
AA
AA
AA
AA
AA

AA
AA
AA

AA
AA

AA AAA AA
AA
AA
AA
AA
AA
AA

AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Cost components

se
co

nd
s

0

500

1000

1500

2000

2500

3000

C
 p

ar
t

C
 2

a,
 io

C
 2

a,
 c

pu

C
 2

a,
 m

em

C
 2

b,
 io

C
 2

b,
 c

pu

C
 2

b,
 m

em

C
 2

c,
 io

C
 2

c,
 c

pu

C
 2

c,
 m

em

C
 jo

in

C
 to

ta
l

M=1, N=16

M=2, N=8

AAA

AAA

AAA M=4, N=4

AAA

AAA

AAA

AAA

M=8, N=2

AAA

AAA

AAA
M=16, N=1

Figure 10.41: Cost components for Q onC Q using primary underflow partitioning.

292

AA
AA

AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA AA
AA

AA
AA

AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AA AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AA
AA

AA AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AA AAA AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA

AAA

AAA

AAA AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Cost components

se
co

nd
s

0

500

1000

1500

2000

2500

3000

C
 p

ar
t

C
 2

a,
 io

C
 2

a,
 c

pu

C
 2

a,
 m

em

C
 2

b,
 io

C
 2

b,
 c

pu

C
 2

b,
 m

em

C
 2

c,
 io

C
 2

c,
 c

pu

C
 2

c,
 m

em

C
 jo

in

C
 to

ta
l

M=1, N=16

M=2, N=8

AAA

AAA

AAA M=4, N=4

AAA

AAA

AAA

AAA

M=8, N=2

AAA

AAA

AAA
M=16, N=1

Figure 10.42: Cost components for Q onC Q using uniform lifespan partitioning.

293

R onC R R onC Q Q onC Q
M / N uniform primary primary uniform primary primary uniform primary primary average

lifespan underflow min.-overlaps lifespan underflow min.-overlaps lifespan underflow min.-overlaps

1/16 100 102 101 100 78 84 100 101 101 96
2/8 100 62 75 100 67 78 100 55 63 78
4/4 100 51 67 100 65 77 100 40 45 72
8/2 100 51 67 100 66 78 100 40 45 72

16/1 100 51 67 100 66 78 100 40 45 72

Table 10.19: The normalised performance results for the three joins on varying parallel architectures.

294

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

M
 /

N

normalised performances

60 65 70 75 80 85 90 95 100

1/16

2/8

4/4

8/2

16/1

Figure 10.43: Comparison of the five parallel architectures.

295

10.8 Influence of the Condensation Factor a

In section 7.3.3 we proposed to ‘condense’ IP-tables in order to reduce their
size. The idea was to collapse a of the original entries into one new entry. The
new IP-table would have only 1

a
of the entries and therefore only 1

a
of the size

of the original IP-table. A special form of condensation is the endpoint IP-table
in which only those entries appear which correspond to interval endpoints.
Theoretically, condensation can be expected to have two effects:

• The IP-table entries become coarser because they contain summarised
information. For example, an entry does not contain the number of inter-
vals starting at time tj, i.e. sR(tj) in a complete IP-table I(R), but the num-
ber of intervals starting between time tj−1 and time tj, i.e. s′R(tj) in a con-
densed IP-table I ′(R, a). However, the underflow strategies use the sR(t)
(s′R(t) respectively) values to approach the maximum number of tuples
that are allowed per fragment3. The more condensed the IP-tables are
the bigger are the steps with which an underflow strategy approaches
the respective limit. This means that it might not come as close to the
limit if it uses ‘big’ steps. This would be wasteful of effort expended
in choosing carefully a near-optimal limit. Also, the difference between
the loads of the fragments, i.e. the load imbalance, can be bigger for the
same reason. Therefore, we can expect the underflow strategy to perform
worse with an increasing value of a, especially on a parallel architecture
where a good balance between the loads of the partial joins is essential in
order to perform well.

The effect on the minimum-overlaps strategies is difficult to predict. As
mentioned before, their prime goal is to reduce the total number of over-
laps. During this process, they possibly make concessions that worsen
the load balance. It will be interesting to see whether the minimum-
overlaps strategies perform better or worse with an increasing value for
a.

• A clear advantage of condensation is that it reduces the sizes of the IP-
tables. This has a direct impact on the time that is spent on the optim-
isation itself. The underflow strategies have a time complexity of O(N)
where N is the number of entries in the (joint) IP-table. The minimum-
overlaps strategies haveO(N2) while the time complexity of the uniform

3See if-statement in figures 9.7 (page 224) and 9.9 (page 226).

296

partitioning strategies does not depend on the IP-tables’ sizes. We can
therefore expect the underflow and minimum-overlaps strategies to be-
nefit from condensed IP-tables as they require less time to decide on a
suitable partition.

We set up experiments that test the impact of condensation on the primary un-
derflow and the minimum-overlaps strategies (both with XR = 0.0075 · |R|,
XQ = 0.0075 · |Q|) when applied to the three joins. As usual, the experi-
ments were conducted for a parallel architecture and on a single-processor
machine. We used the set {end, 1, 2, . . . , 30, 32, 36, 40, 44, . . . , 60} as values for a;
‘end’ is thereby used as a symbolic value meaning that the respective IP-table
was condensed by using endpoints only. The performance results are listed
in tables 10.20 and 10.21 and visualised in figures 10.44, 10.45, 10.46 and 10.47.
Figures 10.44 and 10.45 contain a lot of noise which makes it difficult to observe
a certain trend. We therefore converted them to the graphs of figures 10.48
and 10.49 in which a value for a certain join and a certain a was computed by
taking the average of the four preceding a values and a itself (‘moving aver-
age’). This process smoothes the graphs and makes the general trends more
visible. Finally, there is figure 10.50 that shows the times that were spent on
the optimisation process only. Times are only given for a ≤ 30 as the times
were almost constant for a > 30.

First, we analyse the graph of figure 10.48 which shows the performances
for primary underflow partitioning on a parallel architecture. As expected, the
performances become worse for an increasing a, but only for the joins R onC R
and Q onC Q. For the join R onC Q there is a rather unexpected effect: for most
values of a, the performance is slightly better in comparison to a = 1 or a = end.
This is rather surprising and cannot be explained from an algorithmic point of
view. Its origin lies either in the data itself or in the fact that the chosen XR and
XQ values (see above) were not optimal for R onC Q and that the summarising
effect of condensation corrected this a little bit as outlined above. Also, when
processing R onC R, R onC Q and Q onC Q, the strategies use the timepoint sets

V ′(R, a) ∪ V ′(R, a) = V ′(R, a)

V ′(R, a) ∪ V ′(Q, a)

V ′(Q, a)∪ V ′(Q, a) = V ′(Q, a)

respectively. However, the set V ′(R, a) ∪ V ′(Q, a) obviously contains much
more timepoints to choose from than V ′(R, a) or V ′(Q, a). Because of condens-

297

ation there are hardly coinciding timepoints which leads to

|V ′(R, a) ∪ V ′(Q, a)| ≈ |V ′(R, a)|+ |V ′(Q, a)|

for a ≥ 2. This advantage translates into a much better resistance against the
negative effects of condensation for the join R onC Q in comparison to the joins
R onC R and Q onC Q. Actually, we can observe this advantage in all the other
charts in figures 10.49, 10.46 and 10.47 too.

Now we turn to figure 10.49 which shows the averaged performances on
the parallel architecture for the primary minimum-overlaps strategy depend-
ing on a. We note that there is a rather positive effect of condensation in the
first part of the chart. The best performances are achieved around a = 16 (for
R onC R), a = 22 (for R onC Q) and a = 19 (for Q onC Q). Previously, we ob-
served that there is a relatively severe penalty caused by the concessions that
the strategy makes with respect to the load balance in order to achieve a mini-
mum number of overlaps. It seems that the strategy can make less concessions
(a) if there are less timepoints from which it can choose and (b) if the values
sR(t) and sQ(t)4 are larger. Naturally, if the choice becomes too restricted then
there is a negative impact on the performance. Therefore, there is a tradeoff
between restricting the choice a little bit but not too much. This is exactly what
can be seen in the graphs of figure 10.49.

The scenery changes when it comes to the single-processor architecture (fig-
ures 10.46 and 10.47). For the joins R onC R (join 1) and Q onC Q (join 3), the
impact of an increasing condensation of the IP-tables on the performance is
generally negative5. Again, processing of the join R onC Q (join 2) resists much
better against the negative effects of condensation because of the reasons men-
tioned above. We can even observe a slight performance benefit which is prob-
ably caused by the same reasons as mentioned earlier.

Finally, we turn our attention to the effect that condensed IP-tables have on
the performance of the optimisation itself. Figure 10.50 shows the times that
the optimisation process took when being run on a two-processor Sun SS20
computing server. As expected, we see that the primary minimum-overlaps
partitioning benefits most of it due to its time complexity of O(N2). It is inter-
esting that – in terms of elapsed time – it is roughly as fast as primary under-
flow partitioning for a ≥ 10.

4 . . . or s′R(t) and s′Q(t) in the case of condensed IP-tables.
5with one single exception, i.e. for join 1, a = 16 and the primary minimum-overlaps stra-

tegy (figure 10.47).

298

In summary, it is fair to say that experiments show that condensation does
not only have positive effects on the performance the optimisation process it-
self but also that the anticipated negative effects are not that severe at all. The
primary minimum-overlaps strategy in particular can draw performance be-
nefits when using condensed IP-tables. Generally, it is possible to say that a
condensation factor a between approx. 10 and 20 can improve the perform-
ances in many cases or at least does not severely penalise the performances in
the other cases. This is an interesting result with respect to section 7.3 in which
we addressed the problem of IP-table size. It means that the sizes of IP-tables
which were already comparable or lower than those of data samples could
be further decreased to between 1

10 to 1
20 of the original size without paying a

severe performance penalty and sometimes even improving the join perform-
ances.

299

Primary Underflow Primary Min.-Overlaps
a R onC R R onC Q Q onC Q R onC R R onC Q Q onC Q

(Join 1) (Join 2) (Join 3) (Join 1) (Join 2) (Join 3)

end 716 1141 896 1111 1336 1114
1 716 1141 896 1111 1336 1114
2 807 1131 976 1085 1327 1109
3 795 1178 962 1026 1346 1063
4 801 1140 957 1007 1302 1044
5 777 1105 947 979 1234 1014
6 758 1144 921 968 1237 948
7 819 1083 925 981 1229 1021
8 780 1107 889 932 1299 1063
9 787 1138 1026 920 1302 1028
10 823 1063 950 935 1139 926
11 825 1091 942 986 1282 975
12 791 1096 1004 931 1318 1045
13 814 1095 1020 908 1205 1117
14 749 1089 1067 848 1180 1058
15 802 1160 1041 853 1217 966
16 771 1038 1006 936 1176 970
17 793 1050 913 952 1207 1039
18 792 1179 933 964 1122 960
19 820 1117 966 985 1132 1019
20 788 1242 1002 959 1128 1055
21 755 1090 1041 1049 1159 1101
22 804 1055 1027 1024 1111 1144
23 774 1016 1061 1011 1301 1100
24 864 1036 1047 1079 1274 1141
25 859 999 1027 1065 1172 1166
26 762 1030 1089 1076 1188 1112
27 856 1061 1098 1097 1175 1154
28 918 1102 1179 1117 1147 1173
29 1000 1009 1092 1087 1206 1096
30 959 1073 1114 1054 1067 1152
32 871 1103 1236 969 1069 1227
36 1015 1057 1249 1134 1071 1238
40 971 1064 1217 1161 1196 1196
44 1070 1016 1327 1331 1283 1283
48 1058 1116 1260 1334 1154 1265
52 1139 1043 1352 1096 1277 1299
56 1140 1165 1420 1410 1201 1420
60 1237 1235 1288 1643 1212 1350

Table 10.20: Performance results (in sec.) on the parallel architecture depend-
ing on a varying condensation factor a for the IP-tables.

300

Primary Underflow Primary Min.-Overlaps
a R onC R R onC Q Q onC Q R onC R R onC Q Q onC Q

(Join 1) (Join 2) (Join 3) (Join 1) (Join 2) (Join 3)
a Join 1 Join 2 Join 3 Join 1 Join 2 Join 3

end 7898 5560 10410 7877 5362 10410
1 7898 5560 10410 7877 5361 10410
2 7897 5555 10406 7880 5572 10406
3 7934 5550 10402 7882 5564 10400
4 7922 5554 10394 7888 5567 10394
5 7976 5550 10394 7888 5564 10389
6 7970 5541 10390 7900 5371 10383
7 7961 5531 10381 7898 5371 10379
8 7985 5532 10378 7894 5562 10366
9 7993 5377 10370 7896 5373 10379
10 7957 5386 10366 7898 5370 10361
11 7991 5378 10365 7914 5546 10345
12 8005 5377 10372 7913 5380 10355
13 8013 5363 10368 7916 5376 10365
14 8009 5381 10354 7922 5389 10359
15 8037 5380 10344 7915 5388 10341
16 8034 5386 10331 7556 5390 10320
17 8065 5388 10331 7922 5389 10311
18 8088 5396 10332 7928 5402 10311
19 8098 5382 10333 7952 5389 10314
20 8107 5360 10330 7977 5371 10311
21 8144 5377 10332 7999 5400 10313
22 8177 5367 10344 8023 5397 10322
23 8191 5368 10353 8047 5404 10331
24 8204 5377 10363 8075 5419 10342
25 8214 5368 10369 8087 5414 10353
26 8245 5367 10382 8115 5415 10364
27 8282 5374 10393 8140 5421 10377
28 8314 5354 10405 8163 5404 10392
29 8321 5350 10416 8188 5376 10403
30 8335 5354 10429 8215 5404 10418
32 8395 5358 10457 8259 5390 10441
36 8490 5362 10511 8370 5380 10499
40 8583 5335 10567 8468 5344 10554
44 8687 5306 10627 8574 5313 10617
48 8785 5321 10685 8669 5316 10677
52 8859 5306 10744 8770 5302 10735
56 8961 5325 10807 8863 5314 10796
60 9044 5293 10871 8952 5281 10863

Table 10.21: Performance results (in sec.) on the single-processor machine de-
pending on a varying condensation factor a for the IP-tables.

301

condensation factor a

se
co

nd
s

700

800

900

1000

1100

1200

1300

1400

1500

en
d 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 36 44 52 60

Join 1

Join 2

Join 3

Figure 10.44: Performances for primary underflow partitioning on the parallel architecture and depending on a.

302

condensation factor a

se
co

nd
s

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

en
d 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 36 44 52 60

Join 1

Join 2

Join 3

Figure 10.45: Performances for primary min.-overlaps partitioning on the parallel architecture and depending on a.

303

condensation factor a

se
co

nd
s

5000

6000

7000

8000

9000

10000

11000

en
d 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 36 44 52 60

Join 1

Join 2

Join 3

Figure 10.46: Performances for primary underflow partitioning on a single-processor machine and depending on a.

304

condensation factor a

se
co

nd
s

5000

6000

7000

8000

9000

10000

11000

en
d 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 36 44 52 60

Join 1

Join 2

Join 3

Figure 10.47: Performances for primary min.-overlaps partitioning on a single-processor machine and depending on a.

305

condensation factor a

se
co

nd
s

700

800

900

1000

1100

1200

1300

1400

en
d 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 36 44 52 60

Join 1

Join 2

Join 3

Figure 10.48: Performance, expressed as moving averages for primary underflow partitioning on the parallel architecture, vary-
ing on a.

306

condensation factor a

se
co

nd
s

800

900

1000

1100

1200

1300

1400

en
d 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 36 44 52 60

Join 1

Join 2

Join 3

Figure 10.49: Performance, expressed as moving averages for primary min.-overlaps partitioning on the parallel architecture,
varying on a.

307

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AAA

AAA

AAA

AAA

AAA

AAA

AAA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AAA

AAA

AAA

AAA

AA
AA
AA
AA
AA

AA
AA
AA
AA

AAA

AAA

AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA
AA

AAA

AAA

AAA

AAA

AA
AA
AA
AA

AA
AA
AA
AA

AAA

AAA

AAA

AAA

AAA

AA
AA
AA
AA

AA
AA
AA
AA

AAA

AAA

AAA

AAA

AA
AA
AA

AA
AA
AA
AA

AAA

AAA

AAA

AAA

AA
AA
AA
AA
AA

AA
AA
AA
AA

AA
AA
AA

AAA

AAA

AAA

AAA

AA
AA
AA
AA

condensation factor a

se
co

nd
s

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

en
d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Primary Underflow

AAA

AAA

AAA

Primary Min.-Overlaps

Figure 10.50: Times for the optimisation process on a Sun SS20 for a varying a.

308

10.9 Impact of Black-Out Preprocessing

In section 9.4, we presented the black-out preprocessing strategy that essentially
scraps all entries of an IP-table I(R) whose associated oR(t) value lies bey-
ond a certain threshold value Y . These entries are considered as unsuitable
to provide a good breakpoint for a partition. Therefore, an underflow strategy
cannot choose such unsuitable breakpoints if the IP-tables that it uses have
been preprocessed in this way.

The experiments of section 10.2 showed discouraging results for black-out
preprocessing. However, this might be due to a bad choice for the threshold
Y which was chosen to be the average Ō of all oR(t) values in the respective
IP-table I(R) according to equation (10.1). Here, we want to look at black-out
preprocessing in more detail. Experiments were set up in which the threshold
Y was varied. For practical purposes we express Y in percent of Ō. A value
of 70%, for example, is supposed to mean that Y = 0.7 · Ō. The respective Y ′

threshold was set to be 10% below the corresponding XR and XQ values, i.e.

Y ′ = 0.9 ·XR = 0.9 · 0.0075 · |R|
= 0.9 ·XQ = 0.9 · 0.0075 · |Q|
= 0.9 · 0.0075 · 121728 = 821.7

Table 10.22 shows the performance results on the parallel and on the single-
processor architectures. Figures 10.51 and 10.52 show the differences with re-
spect to the time that is required if black-out preprocessing is not used in the
partitioning process.

Not surprisingly, we find that the lower the threshold Y is, the higher is
the impact of black-preprocessing on the performances, at least on the parallel
architecture. The performance gains, if there are any, remain marginal with 5%
at best. From figures 10.51 and 10.52 we can see that black-out preprocessing is
often beneficial for the performances for the ‘mixed’ joinR onC Qwhile we find
a negative effect on the performances for the ‘self’ joins R onC R and Q onC Q.
The latter effect is due to two slightly different reasons:

• The periodic profile of R, especially with many sharply rising flanks,
already provides many opportunities for choosing ‘good’ breakpoints,
i.e. ones with a low oR(t) value. Therefore, most XR and XQ values cause
the ordinary primary underflow strategy (i.e. without black-out prepro-
cessing) to produce breakpoints that lie on or close to the bottoms of
the valleys. This was, for example, the case in our experiments. But

309

this means that ordinary primary underflow partitioning already pro-
duces a good partition. The introduction of black-out preprocessing can
then only have a negative effect by restricting the primary underflow
strategies’ choice on breakpoints and leads to a bad load balance. This
also explains that there is hardly any negative impact on the perform-
ances for R onC R on the single-processor machine because there, the
load balance is by far not as important.

• The non-periodic profile ofQ forces the ordinary primary underflow stra-
tegy to choose breakpoints with high oQ(t) values. Black-out prepro-
cessing can change this but possibly on the expense of worsening the
load balance between the fragments. However, we have already seen
that the load balance is the most important factor for the performances
on the parallel architecture. Again, the negative impact is reduced on the
single-processor machine which underlines the significance of the load
balance factor.

In contrast to the joins that have been discussed above, we note that the per-
formances for the join R onC Q are positively affected by black-out prepro-
cessing, although one has to stress that the improvement is modest. It is due
to the reduction of overlapping intervals – the initial idea of black-out prepro-
cessing – without affecting the load balance negatively.

In summary, we can conclude that the positive influence of black-out pre-
processing are lower than we had hoped for when designing this strategy in
section 9.4. In a considerable amount of cases it restricts the primary under-
flow strategy too much in its choice and causes a load balance which is worse
than in the original case. This is usually penalised when a join is processed on
a parallel architecture. In contrast, there is a modest benefit in most cases if the
join is processed sequentially.

310

parallel architecture single-processor machine
Y R onC R R onC Q Q onC Q R onC R R onC Q Q onC Q

(in % of Ō) (Join 1) (Join 2) (Join 3) (Join 1) (Join 2) (Join 3)

no black-out 716 1141 896 7898 5560 10410
120% 716 1150 896 7898 5562 10410
110% 716 1133 896 7898 5384 10410
100% 712 1133 898 7892 5385 10411
90% 723 1140 895 7889 5564 10412
80% 737 1132 901 7917 5384 10414
70% 754 1132 904 7926 5376 10413
60% 750 1142 910 7904 5560 10416
50% 752 1092 911 7908 5571 10420
40% 764 1087 911 7909 5578 10443
30% 781 1091 937 7936 5594 10475

Table 10.22: Performance results (in sec.) depending on Y for the three joins
and the primary underflow strategy using black-out preprocessing.

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA

AAA
AAA

AAAA
AAAA
AAAA

AA
AA
AA

AA
AA

AAAA
AAAA
AAAA

AAA
AAA
AAA

AAAA
AAAA
AAAA

AAA
AAA
AAA

A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAA
AAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AA
AA

AA
AA
AA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA

AAA
AAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

Y
 (

in
 p

er
ce

nt
 o

f Ô
)

difference in comparison to non-b/o-costs

-5% -4% -3% -2% -1% 0% 1% 2% 3% 4% 5% 6% 7% 8% 9%

120%

110%

100%

90%

80%

70%

60%

50%

40%

30%

Join 1

AAA
AAA
AAA

Join 2

AAA
AAA
AAA Join 3

Figure 10.51: Performance differences for primary underflow partitioning with
black-out preprocessing on the parallel architecture.

311

A
A

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

A
A
A

A
A

AA
AA
AA

AAA
AAA

AAAA
AAAA
AAAA

A
A
A

A
A

A
A
A

A
A
A

A
A

A
A
A

A
A

AAA
AAA
AAA

AAAA
AAAA
AAAA

A
A
A

Y
 (

in
 p

er
ce

nt
 o

f Ô
)

difference in comparison to non-b/o-costs

-5% -4% -3% -2% -1% 0% 1% 2% 3% 4% 5% 6% 7% 8% 9%

120%

110%

100%

90%

80%

70%

60%

50%

40%

30%

Join 1

AAA
AAA
AAA

Join 2

AAA
AAA
AAA Join 3

Figure 10.52: Performance differences for primary underflow partitioning with
black-out preprocessing on the single-processor machine.

312

10.10 Summary

We will now summarise the principal conclusions that can be drawn from the
experiments of sections 10.2 to 10.9.

10.10.1 Experiments on the Parallel Architecture

On the parallel architecture withM = 4 and N = 4, primary underflow parti-
tioning produced the best performances in almost every situation. Exceptions
were high values of τ (see figures 10.24 and 10.25) where primary minimum-
overlaps partitioning performed better. This does not mean that the primary
underflow strategy is the strategy to choose in every case but it does allow to
conclude that well balanced partial join computations – this is the goal of the
primary underflow strategy – are much more important for the join perform-
ance than a reduced number of overlapping intervals – the goal for which the
primary minimum-overlaps strategy aims. The uniform partitioning strategies
could not match the performances of the primary underflow and minimum-
overlaps strategies. The costs were at times twice as high in comparison to pri-
mary underflow and minimum-overlaps partitioning (see tables 10.4 and 10.6,
for example). This underlines our initial assumption that a naive partitioning
approaches end in poor performances and that more sophisticated strategies,
such as the underflow and minimum-overlaps strategies, are required.

The experiments of section 10.4 showed that, for a temporal intersection
join R onC Q, XR and XQ values with

XR ≈ Z

100
· |R|

XQ ≈ Z

100
· |Q|

generally deliver the best or at least near-best performance results for Z ≤ 1.
A further, very significant conclusion is that condensation is not as harmful

as we previously expected. In some cases it even improved the performances,
especially for the primary minimum-overlaps strategies (see figure 10.49). A
condensation factor a between 10 and 20 is feasible. We remember that this
means that IP-tables can be reduced to between 1

10 -th to 1
20-th of their original

sizes. This not only accelerates the optimisation process (see figure 10.50) but
also has many positive effects with respect to storage and maintenance of IP-
tables.

The impact of black-out preprocessing largely depends on the profiles of the
relations that participate in the join. On the parallel architecture, performances

313

could improve up to 4% but also decrease up to 9% depending on the actual
situation. The experiments in section 10.9 are certainly not sufficient to provide
clear guidelines when and when not to use black-out preprocessing. However,
the 4% increase and 9% decrease in performance suggest that the margins for
improvements are only minor.

10.10.2 Experiments on the Single-Processor Architecture

On the single-processor architecture, uniform lifespan partitioning surpris-
ingly produces the best performance results in many situations as long as the
value for m is high enough (i.e. approx. m ≥ 500). For primary underflow and
minimum-overlaps partitioning the best choice of XR and XQ values for a join
R onC Q is given by the rule

XR ≈ Z

100
· |R|

XQ ≈ Z

100
· |Q|

for Z ≤ 1, according to the experiments of section 10.4.
Condensation is similarly successful on the single-processor machine as on

the parallel architecture. Primary underflow as well as primary minimum-
overlaps partitioning is hardly affected by condensation approx. for a ≤ 30.
In some cases we even observed some minor performance improvements (see
figures 10.46 and 10.47). This is again very encouraging due to the many ad-
vantages that can be drawn from smaller IP-tables.

In contrast to the parallel case, the negative impact of black-out prepro-
cessing on the join performances were only minor (around 0.6% performance
decrease for the worst case). In some situations, however, improvements of up
to 3.3% were observed. This is again relatively modest.

314

Chapter 11

Using IP-Tables for Selectivity
Estimation

11.1 Introduction

So far, the main purpose of IP-tables has been the efficient support for the op-
timisation of partitioned temporal join processing. In this chapter, we want to
show that the scope and the applicability of IP-tables goes beyond that. In fact,
IP-tables can be considered as a general metadata-structure that can be used
in a wide range of temporal query optimisation techniques, especially in those
that require (semi-) optimal partitioning of temporal data over a timestamp
attribute, such as physical data partitioning or balancing temporal index struc-
tures.

In this chapter, we concentrate on an optimisation issue which is not dir-
ectly connected to temporal data partitioning but that can nevertheless be ef-
ficiently supported by IP-tables, namely the selectivity estimation of temporal
conditions. Selectivity estimation is a powerful way to predict the result sizes
for many operations. On the basis of these predictions, an optimiser can then
take many performance-relevant decisions, such as

• Which algorithm should be used to perform the respective operation
most efficiently? Often there is a wide range of algorithms available, with
some being suitable for low selectivities, others for high selectivities. The
join operation is a good example for this: in chapter 3 we saw a variety
of join algorithms with the nested-loops approach being suitable only for
high selectivities whereas sort-merge or hash algorithms were more effi-
cient in the case of low selectivities.

• Which is an efficient order in which operations should be processed? A
query that incorporates various operations is often translated into an op-

315

erator tree. In this tree, operations with low selectivities (i.e. small res-
ult sizes) are moved near the leaves (i.e. these operations are performed
first) and operations with high selectivities towards the root. This has the
advantage that the initially-processed operations already discard large
amounts of data and therefore reduce the sizes of the intermediate res-
ults. This can reduce the overall performance by a considerable amount.

• How many resources are required to process the query? From a sys-
tem’s point of view, the optimiser might want to consider the impact of
the query on the system’s overall performance: if the query is ‘heavy’
(i.e. very resource-consuming), for example, then other, ‘lighter’ queries
might be granted priority.

Furthermore, an optimiser could warn a user if a query result size will be huge,
and therefore possibly useless or not what has been intended; the user can
then think of rewriting his/her query without a useless query being processed
by the system. This is particularly relevant in the context of data mining or
decision support systems which are likely to issue complex, ad-hoc queries
involving huge amounts of data.

We restrict ourselves to the discussion of selectivities of temporal join con-
ditions as these have been the focus of major parts of this thesis. This restric-
tion is also sufficient to prove the wide applicability of IP-tables. As defined in
section 3.4, the selectivity factor (or selectivity, for short) of a join R onC Q is

(join) selectivity =
size of the join result

size of the cartesian product
=
|R onC Q|
|R| · |Q| (11.1)

In section 11.2, we classify temporal join conditions. Actually this is a sum-
mary of what was discussed in section 4.1 but this time with a slightly different
emphasis. In section 11.3, we derive equations that allow either the exact cal-
culation, or a reasonably accurate estimation of the size of temporal join results
and therefore also the selectivity of the corresponding temporal join condition.

11.2 Temporal Join Conditions

We now want to recapitulate the discussion on temporal join conditions in sec-
tion 4.1 and focus on the way in which they can be decomposed. Previously,
we classified temporal joins according to their corresponding temporal join
conditions. Thus, when speaking about decomposing a certain class/type of

316

temporal join we often refer to the decomposition of the underlying join con-
dition (and vice versa). There is a set of elementary (i.e. non-decomposable)
temporal joins / join conditions which is presented in section 11.2.1. On top
of these, several composite conditions can be created, in particular those that
arise from Allen’s interval relationships (see section 11.2.2). We note that the
classification scheme used here differs slightly from the one in section 4.1 be-
cause we focus on whether a condition is elementary or composite.

11.2.1 Elementary Conditions

As previously mentioned, there are many possible relationships between two
intervals: one interval can lie completely before the other, both intervals can
start and/or end at the same time, they can overlap each other etc. Temporal
joins can be classified according to the type of interval relationship that its join
condition is based on. Table 11.1 shows a set of join conditions. We treat them
as elementary for the three reasons spelled out in section 4.1.
Please note that the after join is redundant within this list as

R
aft
on Q = Q

bef
on R

Allen’s interval relationships [Allen, 1983] are frequently considered to be ele-
mentary too. However, they lead to more complex expressions when trans-
lated into relationships between intervals’ start- and endpoints. This makes it
more difficult to decompose complex temporal join conditions into elementary
ones. For that reason we opt for the set presented in table 11.1.

11.2.2 Composite Conditions

Several temporal references in natural language translate into more complex
interval relationships than those listed in table 11.1. For example, “same time”
frequently means that time intervals have to intersect, i.e. they have to share
a certain range, “during” means that one interval has to be entirely included
into the other one, “exactly at the same time” implies that the intervals must
be the same. Such conditions can be implemented by composing several of the
elementary ones. Table 11.2 gives a list of such conditions and also shows the
way in which they have been composed of elementary ones. This information
will be useful in section 11.3.2 when the calculation of join result sizes and join
selectivities of these types of joins is composed of the results of the elementary
ones.

317

Relationship Join Name & Symbol Condition Informal De-
scription

start start join:
sta
on r.ts = q.ts same timestamp

startpoints

finish finish join:
fin
on r.te = q.te same timestamp

endpoints

meet meet join:
mt
on r.te = q.ts timestamp of

r ends where
timestamp of q
starts, i.e. they
meet.

before before join:
bef
on r.te < q.ts timestamp of r

comes before q’s
timestamp

after after join:
aft
on r.ts > q.te timestamp of r

comes after q’s
timestamp

left-overlap left-overlap join:
lo
on r.ts > q.ts ∧ r.ts < q.te startpoint of

r’s timestamp
lies within q’s
timestamp

right-overlap right-overlap join:
ro
on r.te > q.ts ∧ r.te < q.te endpoint of

r’s timestamp
lies within q’s
timestamp

Additional constraints are: r.ts ≤ r.te ∧ q.ts ≤ q.te

Table 11.1: Elementary temporal joins and respective conditions for joining
tuples r ∈ R with q ∈ Q.

318

Join Name Composition Informal Description

equal join R
=
on Q = R

sta
on Q ∩ R

fin
on Q same timestamps

overlap join R
olp
on Q = R

lo
on Q ∪ R

ro
on Q timestamps overlap but

do not start or finish at the
same point

contain join R
con
on Q = (R

lo
on Q ∩ R

ro
on Q) ∪ timestamp of an r ∈ R

(R
sta
on Q ∩ R

ro
on Q) ∪ contains the entire

(R
lo
on Q ∩ R

fin
on Q) timestamp of a q ∈ Q

during join R
dur
on Q = Q

con
on R timestamp of an r ∈ R

is required to lie entirely
within the timestamp of a
q ∈ Q

intersection join R
int
on Q = R

lo
on Q ∪ R

ro
on Q ∪ timestamps intersect

R
sta
on Q ∪ R

fin
on Q ∪

R
mt
on Q ∪ Q

mt
on R

Table 11.2: Examples of temporal join types that can be derived from the ele-
mentary ones.

319

11.3 Size and Selectivity Calculations

In this section, we want to show how selectivity factors and result sizes can be
computed for temporal joins. Section 11.3.1 looks at the elementary temporal
joins that arise from section 11.2.1. In section 11.3.2, these results are used for
calculating the selectivities for the composite types of section 11.2.2.

11.3.1 Elementary Joins

We now show how the result size – and therefore also the selectivity factor
according to (11.1) – of the elementary temporal joins of table 11.1 can be cal-
culated. For notational purposes, we assume that the selectivity factor / result
size of some joinR onC Q is to be derived. The set V (R∪Q) = {t1, . . . , tN} com-
prises the interval start- and endpoints of all the rows in both of the relations
that participate in the join, i.e. R and Q.

In the case of a start join R
sta
on Q we are looking for combinations r ◦ q

of tuples r ∈ R and q ∈ Q whose timestamps start at the same time. There
are sR(t) tuples in R and sQ(t) tuples in Q that start at a timepoint t. As
sR(t) = sQ(t) = 0 for all t 6∈ {t1, . . . , tN} we can concentrate on the tj for
j = 1, . . . , N . Considering that any timestamp has exactly one startpoint, we
know that there are no redundant counts, therefore the result size can be com-
puted by summing up the numbers. Thus the result size of a start join is

|R
sta
on Q| =

N∑
j=1

sR(tj) · sQ(tj)

Similarly, one can compute the result sizes for finish and meet joins:

|R
fin
on Q| =

N∑
j=1

eR(tj) · eQ(tj)

|R
mt
on Q| =

N∑
j=1

eR(tj) · sQ(tj)

A before join R
bef
on Q requires a timestamp of a tuple r to end before the time-

stamp of q starts if they are to be combined and put into the join result. Thus
those tuples in R that end at timepoint t combine with all those tuples inQ that
start after t, i.e.

eR(t) ·
∑
t′>t

sQ(t′)

320

tuple combinations arise from that. Alternatively, one could consider those
tuples in Q that start at t. They join with all tuples in R that have ended before
t, i.e.

sQ(t) ·
∑
t′<t

eR(t′)

tuple combinations arise from that. As above and for the same reasons we can
concentrate on those t that are start- and endpoints. Thus the result size of a
before join is

|R
bef
on Q| =

N−1∑
j=1

(
eR(tj) ·

N∑
l=j+1

sQ(tl)

)
=

N∑
j=2

(
sQ(tj) ·

j−1∑
l=1

eR(tl)

)

As the after join is an inverted before join, its result size is derived similarly as

|R
aft
on Q| =

N∑
j=2

(
sR(tj) ·

j−1∑
l=1

eQ(tl)

)
=

N−1∑
j=1

(
eQ(tj) ·

N∑
l=j+1

sR(tl)

)

Finally, a left-overlap join R
lo
on Q requires an r’s timestamp’s startpoint to lie

inside the timestamp of a q if they are to qualify for the result. At a timepoint
t these are sR(t) · oQ(t) tuples. Similarly, a right-overlap join R

ro
on Q requires

an r’s timestamp’s endpoint to lie inside the timestamp of a q if they are to
qualify for the result. At a timepoint t these are eR(t) · oQ(t) tuples. Again,
we can concentrate on the tj and calculate the result sizes of left-overlap- and
right-overlap joins as

|R
lo
on Q| =

N∑
j=1

sR(tj) · oQ(tj)

|R
ro
on Q| =

N∑
j=1

eR(tj) · oQ(tj)

11.3.2 Composite Joins

We now turn to the calculation of result sizes of composite temporal joins. Ac-
tually, one can concentrate on showing how the intersections and unions of
two (elementary, and later also composite) join results translate into formulas
for calculating the respective result sizes. With composite joins we will have to
rely on estimations rather than exact values because we cannot assume to the
existence of IP-tables for the join results. Unfortunately, they cannot be calcu-
lated from the initial IP-tables and would have to be created by scanning the
join result which is too expensive.

321

First, we discuss the intersection of two joins, as in the case of an equal join
R

=
on Q. As stated in table 11.2, it can be considered as an intersection of a

start- and a finish join. We take the view that a selectivity factor of a join R onC
Q gives the probability with which a tuple combination r ◦ q satisfies C . If

r ◦ q satisfies the start join condition with a probability of sel(R
sta
on Q) and the

finish join condition with a probability of sel(R
fin
on Q) then it qualifies with a

probability of

sel(R
=
on Q) ≈ sel(R

sta
on Q) · sel(R

fin
on Q) (11.2)

for the equal join R
=
on Q according the multiplication rule for independent

probabilities [Bronstein and Semendjajew, 1987]. In order to emphasise the
fact that this step is an approximation rather than an exact analytical result we
use the ≈ symbol in (11.2). In fact, (11.2) requires some careful consideration:

sel(R
sta
on Q) and sel(R

fin
on Q) are independent if and only if a tuple combination

r ◦ q satisfies the start join condition irrespective from the question whether it
satisfies the finish join condition. In other words, the interval startpoints must
follow a probability distribution as well as the intervals’ lengths and therefore
the endpoints1. If this is the case, then (11.2) means that the result size of the
equal join is

|R
=
on Q| = sel(R

=
on Q) · |R| · |Q|

(11.2)
≈ sel(R

sta
on Q) · sel(R

fin
on Q) · |R| · |Q|

(11.1)
=

|R
sta
on Q|

|R| · |Q| ·
|R

fin
on Q|

|R| · |Q| · |R| · |Q|

=
|R

sta
on Q| · |R

fin
on Q|

|R| · |Q|

This is only an instance of the more general formula

|R onC Q ∩R onD Q| ≈
|R onC Q| · |R onD Q|

|R| · |Q| (11.3)

if the join selectivities of the two joins are independent from each other as out-
lined above.

Now we look at the union of two joins as in the case of an overlap join

R
olp
on Q. As shown in table 11.2, it can be regarded as the union of a left-overlap

1In the context of the phone calls scenario this would mean that the time when a phone call
starts should not imply a certain length of the phone call.

322

join R
lo
on Q and a right-overlap join R

ro
on Q. This case can be treated by the rule

from set theory for calculating the size of the union of two sets X and Y:

|X ∪ Y| = |X |+ |Y| − |X ∩ Y|

This translates into

|R onC Q ∪R onD Q| = |R onC Q|+ |R onD Q| − |R onC Q ∩R onD Q|
(11.3)
≈ |R onC Q|+ |R onD Q| −

|R onC Q| · |R onD Q|
|R| · |Q| (11.4)

An example for applying (11.4) is the overlap join. However, we cannot just
add up numbers because some tuples might appear in both joins, in this case
these are those combinations r ◦ q in which r’s timestamp is contained inside
q’s timestamp. So we have to deduct the number of tuples falling in the inter-
section of the elementary joins. Thus the result size is

|R
olp
on Q| = |R

lo
on Q ∪ R

ro
on Q| = |R

lo
on Q|+ |R

ro
on Q| − |R

lo
on Q ∩R

ro
on Q|

which reflects (11.4).
Using (11.3) and (11.4), we can now break down complex temporal join

conditions into smaller ones until we have only a set of elementary ones which
can be computed according to the formulas given in section 11.3.1. This can be,
for example, applied to the contain, during and intersection joins.

The latter one, however, can alternatively be treated as one of the element-
ary ones as the IP-tables provide sufficient information for calculating its size
exactly: consider a timepoint t with sR(t) tuple timestamps in R starting at t.
Then these intervals intersect with exactly iQ(t) tuple timestamps ofQ. Altern-
atively, one can start with tuples of Q: sQ(t) timestamps start at t and intersect
with iR(t) tuple timestamps in R. Further alternatives involve the considera-
tion of intervals’ endpoints. For reasons mentioned above, one can concentrate
on the tj. All in all, we get the following equations for computing the result
size of an intersection join:

|R
int
on Q| =

N∑
j=1

sR(tj) · iQ(tj) + iR(tj) · sQ(tj)

=
N∑
j=1

eR(tj) · iQ(tj) + iR(tj) · eQ(tj) (11.5)

323

11.3.3 Parallel and Other Partitioned Joins

In this thesis, we have been focusing on temporal joins that are processed by
symmetrically partitioning the participating relations in order to create a num-
ber of smaller and independent joins. This is based on the algebraic expression

R onC Q = R1 onC Q1 ∪ · · · ∪ Rm onC Qm (11.6)

where equally indexed fragmentsRk andQk are created in such a way that they
hold tuples whose timestamps can possibly join with each other (k = 1, . . . ,m).
In the case of the temporal intersection join, for example, this means that an
Rk holds those tuples whose timestamps intersect with a certain range of the
timeline; the corresponding Qk is created in the same way.

With respect to join selectivity, this creates a new problem: a fragment Rk
represents a number of tuples of R that have been selected according to certain

rules. Therefore, anRk does not necessarily have the same statistical properties
asR. Thus, if we want to estimate the join selectivity of a partial join Rk onC Qk

we cannot use statistical approaches such as in [Segev et al., 1993] because they
assume the same statistical properties for all fragments. To see why this is not
necessarily the case, consider again the phone calls example mentioned in sec-
tions 2.1, 7.3.1 and 9.1.4. A fragment Rk can, for example, hold phone calls
made during Christmas time or during a period with a promotional offer of
cheap rates or during any other type of period which causes a different con-
sumer behaviour. This means that Rk is likely to have widely different prop-
erties than many other Rj with j 6= k or R itself. However, one has to keep
in mind that the partial joins in (11.6) are processed in parallel. Therefore it is
the most expensive one among these that determines the overall performance.
Thus, if there is at least one partial join whose result size “gets out of hand” for
the reasons mentioned above then this translates into an immediate perform-
ance penalty. In order to avoid such a situation one requires a method that can
cope with statistical properties that vary over time.

Our analytical approach can tackle this problem. Consider, for example, a

partial temporal intersection join Rk
int
on Qk where Rk and Qk hold tuples from

R andQ, respectively, whose timestamps intersect with a time period that runs
from time x to time y. Let

jx = min {j : j ∈ {1, . . . , N} and tj ≥ x}
jy = max {j : j ∈ {1, . . . , N} and tj ≤ y}

i.e. jx and jy are the indices of the start- or endpoints within the set {t1, . . . , tN}

324

that are closest to x and y, respectively, but inside the range between x and y,
i.e. x ≤ tjx ≤ tjy ≤ y.

At the beginning, at time x, we have those tuples whose timestamps start
before time x. There are oR(tjx−1) and oQ(tjx−1) of these in Rk and Qk respect-
ively. All their timestamps intersect. Thus all their combinations are in the res-

ult of Rk
int
on Qk. Furthermore and similar to the derivation of equation (11.5),

there are those tuples in Rk whose timestamps start between x and y. These
join with those tuples in Qk that intersect the respective startpoint. Therefore
the result size of the partial intersection join is given by

|Rk

int
on Qk| = oR(tjx−1) · oQ(tjx−1) +

jy∑
j=jx

sR(tj) · iQ(tj) + iR(tj) · sQ(tj)

11.4 Summary

In this chapter, we have shown an analytical way of calculating temporal join
result sizes or – respectively – temporal join selectivities. To our knowledge,
there has only been one paper discussing the selectivity estimation for tem-
poral joins [Segev et al., 1993]. Its approach requires that the statistical pro-
cess that creates the timestamps is either well understood or follows certain
standard probability distributions such as the Poisson distribution for interval
startpoints or the Erlang-n distribution for interval lengths. The first case is
quite rare: imagine the example of the distribution and lengths of telephone
calls which depend on many statistical processes that are influenced by holi-
days, pricing, marketing or TV campaigns and even the weather. It is difficult
to incorporate all these effects into a thorough statistical model for a query op-
timiser. In the second case, the assumptions can be erroneous for the same
reasons.

In contrast to that, our technique is based on the information stored in IP-
tables. For a set of elementary temporal joins, exact result sizes can be com-
puted (section 11.3.1). For cases of temporal joins that arise from a composition
of the elementary join conditions we gave the formulas (11.3) and (11.4). These
allow to derive the result sizes of composite temporal joins from those of the
elementary joins that are involved (section 11.3.2). Finally, we also provided a
way to calculate result sizes of partial temporal joins that occur in parallel join
processing (section 11.3.3).

The advantages of our analytical approach as opposed to statistical ones are

• Most results are exact rather than estimations.

325

• The calculations consider the fact that timestamps are often the result of
a variety of interfering statistical processes.

• They are also sensitive to the fact that these statistical processes can chan-

ge over time (see phone calls example). This property, for example, al-
lowed to derive the result sizes of partial joins in parallel processing.

• It can be applied to all types of temporal data, regardless of the under-
lying semantics and its implications for statistical modeling. This means
that one does not have to analyse the nature of the temporal data and the
underlying statistical processes in order to be able to estimate result sizes
but can work on a purely analytical basis regardless of the origin of the
temporal data.

326

Chapter 12

Summary, Conclusions and Future
Work

12.1 Summary

We now give a short summary of the main issues that have been discussed in
this thesis.

In chapter 2, we motivated the significance and importance of interval data,
especially in the context of temporal databases. The usage of interval data
does not work well with many traditional performance-enhancing methods,
such as indexes, or performance-critical algorithms, such as those that are tra-
ditionally used for the join operation. The latter were the focus of chapter 3
which gave an overview over the huge number of algorithms that have been
designed and proposed in the past. Many of these are tuned to perform well
with equi-join conditions, as these are the most frequent ones in conventional
database processing. In chapter 4, we analysed how these algorithms can be
adapted to process temporal joins. Those join algorithms that are not based on
explicit and symmetric partitioning hardly required any changes. Hash and
parallel join processing have gained an increased significance with the advent
of parallel database systems in recent years, especially in the context of data
warehousing and data mining. However, these techniques are based on ex-
plicitly and symmetrically partitioning the relations that participate in a join.
Partitioning interval data is different from partitioning atomic data in the sense
that it results in non-disjoint relation fragments due to intervals that overlap the
partition’s breakpoints. This can cause three types of overhead:

• a replication overhead,

• a processing overhead, and

327

• a duplicates overhead

In a first step, we adapted the hash and parallel join technique which now
avoids the duplicates overhead and reduces the other two. We suspected that
there is a major potential of further improving a partitioned temporal join’s
performance by carefully choosing the partition and thereby reducing the num-
ber of replicated tuples. In chapter 5, we looked at this issue from a theoretical
point of view. The interval partitioning (IP) problem was defined and its com-
plexity was analysed. The result was that there is an algorithm that computes
an optimal solution in polynomial time. We could also relate IP to the sequen-
tial graph partitioning (SGP) problem. This confirmed the initial result and
enables us in the future to take advantage of the many theoretical and prac-
tical results that have been obtained in the context of graph partitioning. The
analytical part of the thesis was concluded in chapter 6 and the results were
merged into the design of a process for the optimisation of partitioned tem-
poral joins which consists of four stages (see figure 6.1):

• a data analysis, in which the temporal data is analysed in order to derive
the characteristics of its timestamp intervals,

• a synthesis of partitions, in which several partitioning strategies create sev-
eral partition candidates for the scenario,

• an analysis of partitions, in which the partition candidates are analysed
with respect to their performance impact, and

• an optimisation decision that decides on the most convenient partition for
processing the respective temporal join.

These stages were elaborated in the following chapters.
In chapter 7, IP-tables were introduced as a new type of metadata-structure.

The information that is stored in an IP-table allows us to determine many para-
meters that influence the processing performance. We looked at several issues
that concern the usage of IP-tables, such as their sizes and measures by which
they can be decreased, the process of merging two or more IP-tables into one
and finally how the information in the IP-tables can be maintained.

In chapter 8, we created a performance model for temporal join processing.
This was divided into three steps. First, we created a model of the hardware
architectures on which parallel and sequential database systems might run. It
had to be general enough to embrace the large number of differing architec-
tures that have been proposed and introduced. In a second step, we described

328

the model in which a temporal join is processed on top of the architectural
model. Finally, we were able to create a very detailed cost model for proces-
sing a partitioned temporal join in parallel or sequentially. It takes advantage
of the data that is provided by the IP-tables of the participating relations.

In chapter 9, three families of partitioning strategies were described: the
uniform, underflow and minimum-overlaps strategies. All of them can be ef-
ficiently implemented on the base of IP-tables. Each strategy emphasises a
certain goal, such as simplicity or reducing one or more performance-critical
parameters. There are many possible variations of these strategies. We presen-
ted one such possibility which is based on preprocessing the IP-tables that are
involved in the partitioning process and cutting out possibly bad breakpoint
candidates (black-out preprocessing).

In chapter 10, a thorough evaluation of the optimisation process was provi-
ded. A parallel and a single-processor architecture were used. The experi-
ments indicated advantages and disadvantages of the partitioning strategies
and also gave useful information on how to choose suitable values for the in-
put parameters of the strategies.

Finally, in chapter 11, we showed that IP-tables not only suit for partitioning
purposes but have a much wider scope. They can be used to exactly calculate
or, at least, to estimate the sizes of temporal join result. Such information is
required by many query optimising modules for taking optimisation decisions.
The main advantage of the IP-table based approach is that it does not require a
deep insight into the, possibly complex, statistical properties of the underlying
temporal application. Such an insight is necessary for the selectivity estimation
methods that have previously been proposed.

12.2 Conclusions

The principal contribution of this thesis is the elaboration and description of a
novel way in which partitioned temporal join processing can be optimised. All
parts of the optimisation process can be made very efficient by using IP-tables.
If the algorithms, e.g. those presented in chapter 9, had to be implemented on
top of a data sampling approach then they would be very inefficient as most
of them would need to scan the data sample various times. The theoretical
and experimental results provide a base as to how an optimisation module
of a database management system can be enhanced to cope with partitioned
temporal joins.

329

Apart from this major contribution there is a list of further important results
that were obtained when investigating various aspects of this work. They are
the following:

• We designed a temporal hash algorithm that (a) avoids the duplicates
overhead, (b) reduces replication by avoiding unnecessary tuple com-
parisons and (c) increases the opportunities for main memory join pro-
cessing (see section 4.4.3).

• We showed that the interval partitioning (IP) problem has a polynomial
solution. Furthermore, it is related to graph partitioning which is a well
investigated problem.

• The IP-table has emerged from the analysis of the IP problem. It proved
to be a very versatile metadata-structure that can describe the character-
istics of the timestamp intervals that are found in one or more temporal
relations. We used IP-tables mainly for interval partitioning purposes
but showed that there is a wider scope for them: they can be used for
estimating the selectivity of temporal join conditions too.

• The IP-table based selectivity estimation has proved to be more generally
applicable than statistical methods that have been proposed in the past.
The latter require a thorough understanding of the, possibly complex,
statistical processes that underly the temporal application. Our analytical
approach does not.

• The condensation of IP-tables is a very efficient way of reducing the sizes
of the IP-tables, thereby accelerating the optimisation process. The exper-
imental results on the impact of condensation on the quality of partition-
ing were very encouraging. Condensation factors a between 10 and 20
are feasible and hardly penalise the processing performance. This range
of condensation factor values reduces an IP-table’s size to below 0.5%
of the corresponding relation’s size (see table 7.1). This is far below the
sizes of data samples that constitute an alternative to an IP-table based
partitioning approach.

• Naive, uniform partitioning results in very poor processing performances
for parallel temporal joins. Costs can be up to three times higher than
with more sophisticated techniques, such as the underflow and mini-
mum-overlaps strategies. See figure 10.7 or table 10.6, for example.

330

• On the single-processor machine, uniform partitioning proved to be a
viable option as long as a large numberm of breakpoints was chosen (see
results in section 10.3).

• For parallel temporal join processing, the experimental results show that
a good load balance – even at the expense of an increased number of
replicated tuples – is far more important than minimising replication.
This can be seen from the fact that the primary underflow strategy pro-
duced better performances than the primary minimum-overlaps strategy
in most situations on the parallel architecture. This result is contrary to
our initial assumption. However, this is an encouraging result in the
sense that partitioning over an interval attribute is not that severely pen-
alised and thus can be an alternative to partitioning over an atomic at-
tribute, e.g. if the latter’s values are heavily skewed and would therefore
cause a severe load imbalance.

However, there are several issues about this work which require careful con-
sideration and possibly some more research in the future. One of these issues
is the efficiency of the maintenance of the IP-tables. In section 7.4, we were
concerned with showing how IP-tables can be updated. Thus there was an
emphasis on feasibility rather than efficiency. Therefore the algorithms in that
section do not claim to be the most efficient ones. In fact, one could imagine
temporal database applications and query situations in which the overhead
that is imposed by IP-table updates might become so significant that it out-
weighs the benefits of the IP-tables. It is still unclear, for example, whether
an operational database with frequent updates to its (temporal) tables would
significantly suffer from the IP-table overhead. Some more analysis in this
quantitative aspect is required, either to discard this possibility or to assume
that such situations might appear. In the latter case, one might want to find
indicators that identify such problematic situations.

Our analytical cost model is a further issue which needs some validation.
In the past, similar approaches have proved to be valuable for qualitative ana-
lysis, e.g. in [Hua et al., 1991]. However, one cannot say the same about the
quantitative aspect. Modern hardware, especially parallel machines, have be-
come systems that employ many complex performance enhancing mechan-
isms (such as caching or special devices to accelerate broadcasts or other typ-
ical communication patterns over the interconnect) which we could hardly
incorporate into our cost model if we wanted to keep it reasonably general

331

(to allow to derive conclusions for a wide range of platforms) and reasonably
simple so that it could be efficiently used in a query optimiser. In other words:
there is a good justification that if our cost model shows that strategy X per-
forms better than strategy Y then this effect can be observed on a wide range
of implementations. However, we still need some validation for the absolute
numbers, i.e. if a strategy causes costs X according to our cost model then it
remains to be seen how realistic this prediction is. But this could be confirmed
by implementing the strategies and the join algorithm on real hardware or at
least by simulating them using one of the available simulation tools.

Finally there is another issue that has to be considered carefully: the costs
for the optimisation itself. We gave results of elapsed times for deriving the
costs imposed by the various strategies. These elapsed times were obtained on
a specific machine. For an optimiser it could be beneficial to have a cost model
for the optimisation process of section 6.1 itself. In that way, it could decide
whether it is worth while to consider expensive partitioning techniques, such
as those of the minimum-overlaps family, or whether simple and fast ones are
sufficient in the light of saving optimisation costs.

12.3 Future Work

As we have seen in the conclusions section, there are several possibilities to
confirm and extend the applicability of this work. For example, one has to con-
sider that many temporal join conditions do not only consist of an intersection,
contain, overlap or during predicate between timestamp intervals but possibly
also of additional non-temporal expressions, e.g. equality of (non-temporal) at-
tribute values. Such a situation suggests that partitioning over the attributes
that are involved in the equality condition should be the preferred option as
there is no overhead imposed through tuple replication. However, if one of
the equi-condition attributes holds heavily skewed values an optimiser might
dismiss this option. As we have seen in the experiments, tuple replication has
not as much impact as we initially expected. On a parallel architecture the pre-
dominant goal must be to achieve a good load balance. Therefore, partition-
ing over the timestamp intervals is still a feasible alternative to partitioning
over equi-condition attributes in the same way as the fragment-and-replicate
technique has proved to be a valuable alternative to symmetric partitioning
in commercial parallel query processing [Tseng and Reiner, 1993], despite the
overhead that it incurs. It is necessary to get some experimental results on the

332

issue when a query optimiser should opt for partitioning over interval time-
stamps.

A second issue that could contribute to the appeal of IP-tables is to resolve
the doubts about whether IP-tables can be maintained in an efficient way.
There are various alternatives if IP-table maintenance becomes an efficiency
problem and future research could analyse these alternatives:

• We have already seen that condensation is a good possibility to decrease
the sizes of IP-tables without doing a lot of harm to the quality of the
optimisation process. Reducing the sizes of the IP-tables should have an
immediate performance benefit also for the IP-table update operations.
One would need to know whether condensation is sufficient in the cases
in which IP-table maintenance becomes a problem.

• As mentioned in section 7.5, there might not be many individual updates
to temporal relations in a data warehouse environment but one bulk up-
date, for example once per night. In this case, one could compute a tem-
porary IP-table for the bulk update (which should be significantly more
efficient than updating an existing IP-table) and then merge this tempor-
ary IP-table with the existing IP-table of the corresponding temporal re-
lation.

• One could argue that condensation proved that we do not require exact
numbers from the IP-tables. Therefore, one could consider that IP-tables
do not require immediate updates. The latter could be accumulated and
be processed similarly to the bulk update in a data warehouse or one
could simply recompute a temporal relation’s IP-table every now and
then. One would need some experimental results in order to see if such
an approach is viable.

• Finally, one could look at more efficient algorithms for the IP-table up-
dates than those that we presented in section 7.4. One possibility could
be to store the values sR(t) and eR(t) rather than sR(t) and oR(t). This
makes the IP-table update operations more efficient (the for-loops in fig-
ures 7.10 – 7.15 can be avoided) but imposes more work when using IP-
tables (one has to use the recursive equations in figure 5.1(a) rather than
the non-recursive ones of figure 5.1(b)). One would need to determine
the trade-off between these two effects.

A discussion of these options along with a quantitative analysis of the impact
of the update operations is necessary and certainly an issue for future research.

333

This might be supported by findings made in the context of histograms as out-
lined in section 7.6.

The validation of our cost model by implementation of simulation is an-
other imminent task that should be tackled in future research. It could be done
in two stages. The first one would try to confirm the relative differences bet-
ween partitioning strategies. This would consolidate many statements made
in this thesis (e.g. the statement that uniform partitioning can be up to three
times more expensive on a parallel machine than underflow partitioning). In a
second stage, one would try to validate the absolute numbers that we obtained
from the cost model. As outlined in section 6.2, it would be especially useful to
bring our cost model in line with cost models for other join techniques in order
to allow an optimiser to select the most efficient join algorithm.

As we also mentioned in the conclusions, it would be advantageous to have
a cost model for the optimisation process itself. However, considering the wide
range of possible partitioning strategies and also the wide range of possible
implementations – figure 6.1, for example, suggests that there is a good chance
to parallelise the optimisation too – makes this task costly and tedious but not
impossible.

As we have seen in chapter 11, IP-tables prove to be a metadata-structure
whose applicability goes beyond interval partitioning for join processing. Se-
lectivity estimation is one area and we require experimental analysis of the
results that were obtained in chapter 11. For example, one needs to investigate
the impact of condensation on the quality of the selectivity results.

A further area to which IP-tables and interval partitioning is relevant is
that of temporal index structures. Here, tree balancing is a major task in order
to optimise memory requirements and access times for such indexes. In fact,
Gunadhi and Segev met similar partitioning problems for temporal indexes as
we did for temporal joins [Gunadhi and Segev, 1993]. We therefore expect that
our IP-table based approach could be beneficial in that area too.

All this can establish IP-tables as a generally useful index structure for in-
terval data. The initial results in this thesis are very encouraging in this respect
and provide the base for future research.

334

Appendix A

Summary of the Cost Model

Hardware Parameters
Parameter Description

M number of processing nodes

N number of processors per node

M·N total number of processors

µ processor speed in MIPS

mem main memory available to the application per node

wio disk I/O bandwidth per node

wcom communication bandwidth

wmem memory bandwidth per node

Iproc number of CPU instructions for processing a tuple in
each step

Ihash number of CPU instructions for hashing a tuple

Icom number of CPU instructions for initiating a data trans-
fer

Iio number of CPU instructions for initiating a disk I/O

b page size

Table A.1: Hardware parameters.

335

Data Parameters
Parameter Description

|R| number of tuples in R

|Q| number of tuples in Q

|r| size of a tuple r ∈ R in bytes

|q| size of a tuple q ∈ Q in bytes

τR average length of an interval in R in chronons

τQ average length of an interval in Q in chronons

Table A.2: Data parameters.

336

Partition-related Parameters
Parameter Description

m number of fragments, subjoins in (3.6) =

number of segments into which the lifespan of the re-
lation(s) is divided by a partition {p1, . . . , pm−1}

|R′k| number of tuples in R′k =

number of intervals in R that start within (pk−1, pk]

|R′′k| number of tuples in R′′k =

number of intervals inR that intersect with but do not
start in (pk−1, pk]

|Q′k| number of tuples in Q′k =

number of intervals in Q that start within (pk−1, pk]

|Q′′k| number of tuples in Q′′k =

number of intervals in Q that intersect with but do not
start in (pk−1, pk]

δR average number of segments with which an interval
of R intersects

γR average number of processing nodes at which a tuple
of R has to reside after repartitioning

δQ average number of segments with which an interval
of Q intersects

γQ average number of processing nodes at which a tuple
of Q has to reside after repartitioning

λk number of blocks into which R′k is divided for a
nested-block join computation of the subjoins R′k onC

Q′′k and R′k onC Q′k

ϕk number of blocks into which Q′k is divided for a
nested-block join computation of the subjoin R′′k onC

Q′k

Table A.3: Partition related parameters.

337

Stage 1 (a)

Disk I/O |R|
M ·

|r|
wio

Communication

CPU |R|
MN ·

|r|
b
· Iio
µ

Memory

Table A.4: Cost components for stage 1 (a).

Stage 1 (b)

Disk I/O

Communication M−1
M · |R| · γR · |r|wcom

CPU M−1
M · |R|MN · γR ·

Icom
µ

+

|R|
MN ·

Ihash
µ

Memory |R|
M · δR ·

|r|
wmem

Table A.5: Cost components for stage 1 (b).

Stage 1 (c)

Disk I/O

Communication

CPU

Memory |R|
M ·

|r|
wmem
·min{δR, mM}

Table A.6: Cost components for stage 1 (c).

338

Stage 1 (d)

Disk I/O
M

max
i=1

{
last-node(i)∑

k=first-node(i)
|R′k|+ |R′′k|

}
· |r|
wio

Communication

CPU
MN
max
j=1

{
last(j)∑

k=first(j)
|R′k|+ |R′′k|

}
· |r|
b
· Iio
µ

Memory

Table A.7: Cost components for stage 1 (d).

Stage 2 (a)

Disk I/O 1
wio
· M

max
i=1

{
last-node(i)∑

k=first-node(i)
|R′k| · |r| + |Q′′k| · |q| · λk

}

CPU
MN
max
j=1

{
1
b
· Iio
µ
·

last(j)∑
k=first(j)

|R′k| · |r|+ |Q′′k| · |q| · λk

+ Iproc

µ
·

last(j)∑
k=first(j)

|R′k| · |Q′′k|
}

Memory |r|
wmem

· M
max
i=1

{
last-node(i)∑

k=first-node(i)
|R′k| · |Q′′k|

}

Table A.8: Cost components for the joining stage 2 (a).

Stage 2 (b)

Disk I/O 1
wio
· M

max
i=1

{
last-node(i)∑

k=first-node(i)
|R′k| · |r| · λk−1

λk
+ |Q′k| · |q| · λk

}

CPU
MN

max
j=1

{
1
b
· Iio
µ
·

last(j)∑
k=first(j)

|R′k| · |r| · λk−1
λk

+ |Q′k| · |q| · λk

}

+ Iproc

µ
·

last(j)∑
k=first(j)

|R′k| · |Q′k|
}

Memory |r|
wmem

· M
max
i=1

{
last-node(i)∑

k=first-node(i)
|R′k| · |Q′k|

}

Table A.9: Cost components for the joining stage 2 (b).

339

Stage 2 (c)

Disk I/O 1
wio
· M

max
i=1

{
last-node(i)∑

k=first-node(i)
|R′′k| · |r| · ϕk + |Q′k| · |q|

}

CPU
MN

max
j=1

{
1
b
· Iio
µ
·

last(j)∑
k=first(j)

|R′′k| · |r| · ϕk + |Q′k| · |q|

+ Iproc

µ
·

last(j)∑
k=first(j)

|R′′k| · |Q′k|
}

Memory |q|
wmem
· M

max
i=1

{
last-node(i)∑

k=first-node(i)
|R′′k| · |Q′k|

}

Table A.10: Cost components for the joining stage 2 (c).

340

Appendix B

Test Data Creation

Sections B.1 and B.2 respectively show the source code of the PERL programs
that were used to convert login information obtained by UNIX’s last com-
mand into the integer timestamps for relations R and Q which were used in
chapter 10.

B.1 Timestamps for R
#!/usr/local/bin/perl

week-long lifespan, consider weekday (periodic)

This is a PERL script to convert the output of the "last" command.
The login times are converted to minutes (eg. Wed, 9:24 ->
2*1024 + 9*60 + 24 = 2572). The result gives intervals within the
lifespan 0..10079 (10080 = number of minutes within a week).

an associative array to map weekday names to integers

%weekday = ("Mon",0,"Tue",1,"Wed",2,"Thu",3,"Fri",4,"Sat",5,"Sun",6);

number of minutes per day

$one_day = 24 * 60;

subsequently read lines of standard input ...

while (<>) {

split an input line using white spaces as separators

@fields = split(/\s+/,$_);

convert hh:mm start and end times into integers

341

($hours,$minutes) = split(/:/,$fields[6]);
$start = $weekday{$fields[3]} * $one_day + $hours * 60 + $minutes;
($hours,$minutes) = split(/:/,$fields[8]);
$end = $weekday{$fields[3]} * $one_day + $hours * 60 + $minutes;

deal with logins that ran over midnight

if ($start > $end) {
$end = $end + $one_day;

}

write interval [$start,$end] to standard output;
if the [$start,$end] does not fall within the scope [0,10079]
then a "point" interval [$start,$start] is used

if (($start <= $end) && ($end < 10080)) {
print "[",$start,",",$end,"]\n";

}
else {

print "[",$start,",",$start,"]\n";
}

}

B.2 Timestamps for Q
#!/usr/local/bin/perl

--
week-long lifespan, do not consider weekday (non-periodic)
--
This is a PERL script to convert the output of the "last" command.
Day information is negelected, only login start and end times are
considered. The login times are converted to minutes (eg. 9:24 ->
9*60+24 = 524) and the projected from a daytime base to a weektime
base (eg. 524 -> 524*7+<random number between 0 and 6> = 3948..3954).
The result gives intervals within the lifespan 0..10079
(10080 = number of minutes within a week).

number of minutes per day

$one_day = 24 * 60;

initialise random generator

srand;

subsequently read lines of standard input ...

while (<>) {

342

split an input line using white spaces as separators

@fields = split(/\s+/,$_);

convert hh:mm start and end times into integers

($hours,$minutes) = split(/:/,$fields[6]);
$start = $hours * 60 + $minutes;
($hours,$minutes) = split(/:/,$fields[8]);
$end = $hours * 60 + $minutes;

project daytime period to weektime period

$start = $start * 7 + int(rand(7));
$end = $end * 7 + int(rand(7));

deal with logins that ran over midnight

if ($start > $end) {
$end = $end + $one_day;

}

write interval [$start,$end] to standard output;
if the [$start,$end] does not fall within the scope [0,10079]
then a "point" interval [$start,$start] is used

if (($start <= $end) && ($end < 10080)) {
print "[",$start,",",$end,"]\n";

}
else {

print "[",$start,",",$start,"]\n";
}

}

343

Appendix C

Manipulation of Interval Lengths

This is the C source code for a function change_lengths (change) that changes the
average interval length τ by the value given in change.

/*************************************/
/***** change_lengths (change) *****/
/*************************************/
/*

Changes the average length of the intervals by the
value given in "change". The interval starpoints
are stored in ts[0..N-1] and the corresponding
endpoints in te[0..N-1].
The function randomly picks an interval and adds
or subtracts chronons in order to achieve the new
average length.

*/

void change_lengths (int change) {

/*
Global variables or macros:

N = total number of intervals
ts[0..N-1] = intervals startpoints
te[0..N-1] = intervals endpoints
tmax = maximum value for a ts[] or a te[]
MAX_IDLE = max. number of loop runs that can be idle
total_length = sum of all intervals’ lengths
average_length = current average length of the intervals

Local variables:

i = index of interval whose length will be changed
useless = counter for the number of intervals with ts >= te
idle = number of subsequent idle loop passes
difference = interval i’s length = te[i] - ts[i]
direction = +1 if average length is to be increased

= -1 if average length is to be decreased
to_change = number of chronons that remain to be

added or subtracted
abs_change = abs(change) = change * direction

344

end = 0 if ts[i] is to be moved to the left or right
= 1 if te[i] is to be moved to the left or right

*/

unsigned i, useless, idle, difference, abs_change;
int end = 1;
long to_change;
short direction;

/* Are chronons added or subtracted */

if (change >= 0)
direction = 1;

else
direction = -1;

/* determine the absolute value of "change" */

abs_change = change * direction;

/* total amount of chronons to add / to substract */

to_change = change * N;

/* determine new total length */

total_length = total_length + to_change;

/* initialise random generator */

srand(seed);

/* initialise "idle" */

idle = 0;

/* main loop that subsequently adds or substracts chronons */

while ((to_change > 0) && (idle < MAX_IDLE)) {

/* find a suitable interval */

do {
i = rand() % N;

} while ((ts[i]==0) && (te[i]==tmax));

/* will start- or endpoint be changed? */

345

end = rand() % 2;

/* increase lengths */

if (direction == 1) {

idle++;

if ((end == 0) && (ts[i] > 0)) {
ts[i]--;
to_change--;
idle = 0;

}

if ((end == 1) && (te[i] < tmax)) {
te[i]++;
to_change--;
idle = 0;

}
}

/* decrease lengths */

else {

/* search for another interval if the current one
comprises no chronon, i.e. it is a timepoint.
The search is stopped when the number of useless
intervals matches the total number of intervals. */

useless = 0;

while ((ts[i] == te[i]) && (useless < N)) {
i = (i+1) % N;
useless++;

}

/* If no suitable interval is found then leave the loop */

if (useless >= N)
idle = MAX_IDLE;

/* If the interval i is suitable then ... */

if (ts[i] < te[i]) {

difference = te[i] - ts[i];

/* decrease length as much as possible */

if (difference <= abs_change) {
if (end)

te[i] = ts[i];
else

ts[i] = te[i];

346

to_change = to_change + difference;
}
else if ((difference > abs_change) &&

(to_change < (2*change))) {
if (!end)

ts[i] = ts[i] + abs_change;
else

te[i] = te[i] - abs_change;
to_change = to_change + abs_change;

}
else {

if (!end)
ts[i]++;

else
te[i]--;

to_change++;
}

}
}

}

if (to_change != 0) {
fprintf(stderr,"--- Warning ---\n");
fprintf(stderr,"Too many idle attempts!\n");
fprintf(stderr,"Abandoned change loop.\n");
total_length = total_length - to_change;

}

/* determine new average length */

average_length = total_length / N;

return;
}

347

Appendix D

Profiles of the Rτ and Qτ

The following figures respectively show the profiles iRτ (t) and iQτ (t) of the re-
lations Rτ and Qτ as they were used for the experiments in section 10.5. Values
for the average interval length τ are 200, 400, 600, 800, 1000 and 1200.

348

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.1: The profile of Rτ with τ = 200.

349

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.2: The profile of Rτ with τ = 400.

350

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.3: The profile of Rτ with τ = 600.

351

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.4: The profile of Rτ with τ = 800.

352

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.5: The profile of Rτ with τ = 1000.

353

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.6: The profile of Rτ with τ = 1200.

354

0

2000

4000

6000

8000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.7: The profile of Qτ with τ = 200.

355

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.8: The profile of Qτ with τ = 400.

356

0

5000

10000

15000

20000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.9: The profile of Qτ with τ = 600.

357

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.10: The profile of Qτ with τ = 800.

358

0

5000

10000

15000

20000

25000

30000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.11: The profile of Qτ with τ = 1000.

359

0

5000

10000

15000

20000

25000

30000

35000

0 2000 4000 6000 8000 10000

time (in minutes)

Intersecting Intervals

Figure D.12: The profile of Qτ with τ = 1200.

360

List of Figures

1.1 An example of two temporal relations. 3
1.2 Example of processing an equi-join in parallel. 6
1.3 Example of processing a temporal join in parallel 6

2.1 Example of a temporal relation Staff 16
2.2 Relationship between time domain, timepoints, chronons and

intervals. 17
2.3 Temporal relation Staff using an integer time representation. . 17
2.4 A temporal relation as a time cube with a snapshot being a time

slice. 20
2.5 The concept of a data warehouse. 22

3.1 Example relations holding staff members and students. 25
3.2 Result of the join Staff onC Student 26
3.3 An example of a conceptual database design in entity-relationship

notation. 28
3.4 Relation Teaches . 29
3.5 Example of a ‘key = foreign key’ join. 30
3.6 Brute force nested-loops join. 35
3.7 Search strategy of the brute force nested-loops join. 36
3.8 Sort-merge join algorithm for equi-joins. 38
3.9 Search strategy of a sort-merge equi-join. 39
3.10 Example for hashing the relation Staff into buckets. 41
3.11 Simple hash join. 41
3.12 Search strategy of a simple hash equi-join. 42
3.13 Search strategy of a simple hash equi-join with complete parti-

tioning. 42
3.14 Grace hash join. 44
3.15 Join algorithm based on a join index. 46
3.16 Search strategy of the join-index based algorithm. 46

361

3.17 Search strategy of the fragment-and-replicate technique with the
partial joins performed as nested-loops. 48

3.18 Search strategy of the fragment-and-replicate technique with the
partial joins performed as sort-merge. 49

3.19 The structure of a parallel join based on symmetric partitioning. 50
3.20 Search strategy of the symmetric partitioning technique with the

partial joins performed as nested-loops. 51
3.21 Join algorithm categorisation. 55

4.1 Non-explicit partitioning joins. 62
4.2 Search strategy for a nested-loop temporal intersection join. . . 63
4.3 Sort-merge temporal intersection join algorithm. 65
4.4 Search strategy of the sort-merge temporal intersection join of

figure 4.3. 66
4.5 Join algorithm using an index. 68
4.6 Search strategy of an index based temporal intersection join. . . 68
4.7 Explicit partitioning joins. 69
4.8 Search strategy for the simple partitioned temporal join (partial

joins as nested-loops). 73
4.9 Illustration of equation (4.2) for R3 onC Q3 in figure 4.8. 75
4.10 Improved partitioning for computing a temporal intersection join. 75
4.11 Search strategy for the improved partitioned temporal join. . . . 77
4.12 Sequential processing of a partitioned temporal intersection join. 78
4.13 Spatial rendition and numbering of fragments for the example. 81
4.14 Partial joins that are to be computed for processing the spatially

partitioned join. 82
4.15 Search strategy for the spatially partitioned temporal join being

processed sequentially. Partial joins are processed as nested loops. 83
4.16 Search strategy for the spatially partitioned temporal join being

processed in parallel. Partial joins are processed as nested loops. 84
4.17 Search strategy for the improved (range) partitioned temporal

join with different partitioning ranges (compare with figure 4.11). 88

5.1 Relationships between sR, eR, oR and iR. 94
5.2 A collection of intervals that has been uniformly partitioned. . . 95
5.3 Definition of IP . 96
5.4 Moving breakpoints to the nearest endpoints to the left in case

of the example of figure 5.2. 99

362

5.5 The algorithm IP-opt for computing an optimal partition for
an instance of IP. 103

5.6 Optimal partition for the intervals of figures 5.2 and 5.4. 104
5.7 Definition of SGP . 108
5.8 The reduction of an instance of IP to one of SGP. 110
5.9 Result of reducing the collection of intervals of figures 5.2, 5.4

and 5.6 to a graph. 111
5.10 The algorithm SGP-opt for computing an optimal partition for

an instance of SGP. 115
5.11 Values for load (vi, vj) for the graph of figure 5.9. 116

6.1 Structure of the optimisation process. 123
6.2 A query tree for the relational expression πA(σB(R)) onC σD(Q) onE

S. The leaves consist of input, internal nodes hold operators. . . 126

7.1 Definition of an IP-table. 129
7.2 An example scenario for timestamp intervals of a temporal rela-

tion R. 130
7.3 The IP-table I(R) (in bold typeface) for the intervals in figure 7.2

plus the derivable values eR(tj) and iR(tj). 131
7.4 A typical example of login information. 135
7.5 An extract of a flight schedule of Frankfurt Airport. 136
7.6 Condensation of timepoints with a = 2 for the example of fig-

ure 7.2. 137
7.7 The IP-table I ′(R, 2) (in bold typeface) for the intervals in fig-

ure 7.2 plus the values e′R(t′j) and i′R(t′j). 140
7.8 Collapsing timepoints into interval endpoints for the example

of figure 7.2. 141
7.9 The IP-table I ′′(R) (in bold typeface) for the intervals in figure 7.2

plus the values eR(t′′j) and iR(t′′j). 143
7.10 The insertion algorithm for complete IP-tables. 146
7.11 The deletion algorithm for complete IP-tables. 147
7.12 The insertion algorithm for condensed IP-tables. 149
7.13 The deletion algorithm for condensed IP-tables. 150
7.14 The insertion algorithm for endpoint IP-tables. 151
7.15 The delete algorithm for endpoint IP-tables. 152
7.16 Acquiring information about (temporal) characteristics of tem-

poral relations by using IP-tables 154

363

7.17 The merge algorithm for two complete IP-tables. 156
7.18 The merge algorithm for incomplete IP-tables. 159
7.19 The algorithm for merging a complete and an incomplete IP-table.160
7.20 An example of an attribute value frequency distribution. 163
7.21 An equal-width histogram for the distribution of figure 7.20. . . 164
7.22 An equal-height histogram for the distribution of figure 7.20. . . 164
7.23 A variable-width histogram for the distribution of figure 7.20. . 165

8.1 The structure of the performance model and the modeling process.168
8.2 The 5 layers of the generic model. Source: [Norman and Than-

isch, 1995]. 170
8.3 Shared-Memory Architecture . 173
8.4 Shared-Disk Architecture . 174
8.5 Shared-Nothing Architecture . 176
8.6 Scaling vs. using faster processors in a SN architecture. 177
8.7 Hybrid architecture described in [Hua et al., 1991]. 178
8.8 Hybrid architecture adopted by many recent commercial products178
8.9 Repartitioning of the R̂1, . . . , R̂M. 184
8.10 Workload distribution among processors. 184
8.11 Buffers at processor j. 187
8.12 Partial selectivities as achieved in preliminary experiments. . . 190
8.13 The procedure intersection-join(R,Q). 191
8.14 An example for the approximation of δR for |L(R∪Q)|

m
= 10 chro-

nons and τ = 4 chronons. 206
8.15 Dependency on architectural parametersM andN (Experiment 1).212
8.16 Dependency on the numberm of partial joins (Experiment 2). . 213
8.17 Dependency on the relations’ sizes |R| and |Q| (Experiment 3). . 214
8.18 Dependency on the average interval length τ (Experiment 4). . . 215

9.1 Comparison of the notions of a lifespan, a range and a startpoint
span. 217

9.2 Algorithm for partitioning L(R ∪ Q) uniformly. 218
9.3 A uniform lifespan partition for the example of figure 5.2. 218
9.4 Algorithm for partitioning T (R ∪Q) uniformly. 220
9.5 Algorithm for partitioning SP(R ∪Q) uniformly. 222
9.6 A uniform startpoints’ span partition for the example of figure 5.2.222
9.7 Algorithm for the basic underflow strategy using the IP-tables

relations I(R), I(Q) and I(R ∪ Q). 224

364

9.8 The partition for the example of figure 5.2 using the basic under-
flow strategy with a maximum load of X = 10. 225

9.9 Algorithm implementing the underflow strategy for the primary
fragmentsR′k and Q′k. 226

9.10 Basic algorithm of the minimum-overlaps strategy for relations
R and Q. 229

9.11 The partition for the example of figure 5.2 using the minimum-
overlaps strategy with a maximum load of X = 10. 230

9.12 Algorithm of the minimal-overlaps strategy for limiting the pri-
mary fragmentsR′k and Q′k. 231

9.13 The function oR(t) for the temporal relation R = EPCC (week-
lifespan; see section 7.3.2). 233

9.14 Basic black-out preprocessing for I(R). 234
9.15 Black-out strategy applied to oR(t) of figure 9.13. 234
9.16 Black-out strategy applied to oR(t) for R = EPCC (day-lifespan;

see section 7.3.2). 235
9.17 Advanced black-out preprocessing for I(R). 236
9.18 Advanced black-out strategy applied to oR(t) for R = EPCC-day

(see section 7.3.2). 237

10.1 An extract of the original login information. 242
10.2 The periodic profile iR(t) of R. 243
10.3 The non-periodic profile iQ(t) of Q. 244
10.4 The profile of R onC R (“join 1”). 250
10.5 The profile of R onC Q (“join 2”). 251
10.6 The profile of Q onC Q (“join 3”). 252
10.7 Performance result averages for the three joins on the parallel

architecture. 254
10.8 Performance result averages for the three joins on the single-

processor architecture. 254
10.9 Average optimisation costs (in sec.) for all the experiments con-

ducted in this section. 255
10.10Dependency onm of the performance results for the joinR onC R

on a parallel architecture. 257
10.11Dependency onm of the performance results for the joinR onC R

on a single-processor architecture. 258
10.12Dependency onm of the performance results for the joinR onC Q

on a parallel architecture. 259

365

10.13Dependency onm of the performance results for the joinR onC Q

on a single-processor architecture. 260
10.14Dependency onm of the performance results for the joinQ onC Q

on a parallel architecture. 261
10.15Dependency onm of the performance results for the joinQ onC Q

on a single-processor architecture. 261
10.16Dependency on Z of the performance results for |R| = |Q| =

121728 and the primary underflow strategy on the parallel ar-
chitecture. 266

10.17Dependency on Z of the performance results for |R| = |Q| =
40000 and the primary underflow strategy on the parallel archi-
tecture. 266

10.18Dependency on Z of the performance results for |R| = |Q| =
121728 and the primary minimum-overlaps strategy on the par-
allel architecture. 267

10.19Dependency on Z of the performance results for |R| = |Q| =
40000 and the primary minimum-overlaps strategy on the par-
allel architecture. 267

10.20Dependency on Z of the performance results for |R| = |Q| =
121728 and the primary underflow strategy on the single-processor
machine. 268

10.21Dependency on Z of the performance results for |R| = |Q| =
40000 and the primary underflow strategy on the single-processor
machine. 268

10.22Dependency on Z of the performance results for |R| = |Q| =
121728 and the primary minimum-overlaps strategy on the single-
processor machine. 269

10.23Dependency on Z of the performance results for |R| = |Q| =
40000 and the primary minimum-overlaps strategy on the single-
processor machine. 269

10.24Performances for the joins Rτ onC Rτ on the parallel architecture. 274
10.25Performances for the joins Rτ onC Qτ on the parallel architecture. 274
10.26Performances for the joins Qτ onC Qτ on the parallel architecture. 275
10.27Performances for the joins Rτ onC Rτ on the single-processor

architecture. 275
10.28Performances for the joins Rτ onC Qτ on the single-processor

architecture. 276

366

10.29Performances for the joins Qτ onC Qτ on the single-processor
architecture. 276

10.30Comparison between the performances of the three strategies on
a parallel architecture with a varying τ 277

10.31Comparison between the performances of the three strategies on
a single-processor architecture with a varying τ 277

10.32Performance averages for the three joins on the parallel architec-
ture for varying |R| and |Q|. 280

10.33Performance averages for the three joins on the single-processor
architecture for varying |R| and |Q|. 280

10.34Comparison between the performances of the three strategies on
a parallel architecture for varying |R| and |Q|. 281

10.35Comparison between the performances of the three strategies on
a single-processor architecture for varying |R| and |Q|. 281

10.36Performance results for the R onC R on varying parallel architec-
tures. 285

10.37Performance results for theR onC Q on varying parallel architec-
tures. 286

10.38Performance results for theQ onC Q on varying parallel architec-
tures. 286

10.39Cost components for R onC R using primary underflow parti-
tioning. 290

10.40Cost components for R onC Q using primary underflow parti-
tioning. 291

10.41Cost components for Q onC Q using primary underflow parti-
tioning. 292

10.42Cost components for Q onC Q using uniform lifespan partitioning. 293
10.43Comparison of the five parallel architectures. 295
10.44Performances for primary underflow partitioning on the paral-

lel architecture and depending on a. 302
10.45Performances for primary min.-overlaps partitioning on the par-

allel architecture and depending on a. 303
10.46Performances for primary underflow partitioning on a single-

processor machine and depending on a. 304
10.47Performances for primary min.-overlaps partitioning on a single-

processor machine and depending on a. 305

367

10.48Performance, expressed as moving averages for primary under-
flow partitioning on the parallel architecture, varying on a. . . . 306

10.49Performance, expressed as moving averages for primary min.-
overlaps partitioning on the parallel architecture, varying on a. 307

10.50Times for the optimisation process on a Sun SS20 for a varying a. 308
10.51Performance differences for primary underflow partitioning with

black-out preprocessing on the parallel architecture. 311
10.52Performance differences for primary underflow partitioning with

black-out preprocessing on the single-processor machine. 312

D.1 The profile of Rτ with τ = 200. 349
D.2 The profile of Rτ with τ = 400. 350
D.3 The profile of Rτ with τ = 600. 351
D.4 The profile of Rτ with τ = 800. 352
D.5 The profile of Rτ with τ = 1000. 353
D.6 The profile of Rτ with τ = 1200. 354
D.7 The profile of Qτ with τ = 200. 355
D.8 The profile of Qτ with τ = 400. 356
D.9 The profile of Qτ with τ = 600. 357
D.10 The profile of Qτ with τ = 800. 358
D.11 The profile of Qτ with τ = 1000. 359
D.12 The profile of Qτ with τ = 1200. 360

368

List of Tables

3.1 Join algorithms, their type of partitioning and the degree of over-
lap. 55

4.1 Elementary temporal joins and respective conditions for joining
tuples r ∈ R with q ∈ Q. 58

4.2 Examples of temporal join types that can be derived from the
elementary ones. 59

5.1 Values within IP-opt for the example in figures 5.2 and 5.4. . . 104
5.2 Values computed for the graph of figure 5.9 by SGP-opt when

X = 10. 117

7.1 IP-table sizes as percentages of the original relation. 134
7.2 Characteristics of some real-world temporal relations. 135
7.3 Endpoint IP-table characteristics of some real-world temporal

relations. 144

8.1 Cost components for stage 1 (a). 199
8.2 Cost components for stage 1 (b). 199
8.3 Cost components for stage 1 (c). 199
8.4 Cost components for stage 1 (d). 200
8.5 Cost components for the joining stage 2 (a). 203
8.6 Cost components for the joining stage 2 (b). 203
8.7 Cost components for the joining stage 2 (c). 203
8.8 Summary of the approximations under uniformity. 207
8.9 The parameters describing the parallel architecture that is used

in the experiments. 209
8.10 Results of the four experiments. 211

10.1 The characteristics of the base relations R and Q. 244

369

10.2 The parameters describing the architecture that is used in the
experiments. 245

10.3 The performance results (in sec.) for partitions with m = 16
fragments. 253

10.4 Performance results (in sec.) for the join R onC R depending on m. 258
10.5 Performance results (in sec.) for the join R onC Q depending on m. 259
10.6 Performance results (in sec.) for the join Q onC Q depending on m. 260
10.7 Performance results (in sec.) depending on Z for the three joins

and the primary underflow strategy on the parallel architecture. 263
10.8 Performance results (in sec.) depending on Z for the three joins

and the primary minimum-overlaps strategy on the parallel ar-
chitecture. 264

10.9 Performance results (in sec.) depending on Z for the three joins
and the primary underflow strategy on the single-processor ar-
chitecture. 264

10.10Performance results (in sec.) depending on Z for the three joins
and the primary minimum-overlaps strategy on the single-processor
architecture. 265

10.11Dependency on τ of the performance results (in sec.) for the
three joins on the parallel architecture. 273

10.12Dependency on τ of the performance results (in sec.) for the
three joins on the single-processor architecture. 273

10.13Dependency on |R|, |Q| of the performance results (in sec.) for
the three joins on the parallel architecture. 279

10.14Dependency on |R|, |Q| of the performance results (in sec.) for
the three joins on the single-processor architecture. 279

10.15The performance results (in sec.) for the three joins on varying
parallel architectures. 284

10.16The performance component results (in sec.) for R onC R on
varying parallel architectures. 287

10.17The performance component results (in sec.) for R onC Q on
varying parallel architectures. 288

10.18The performance component results (in sec.) for Q onC Q on
varying parallel architectures. 289

10.19The normalised performance results for the three joins on vary-
ing parallel architectures. 294

370

10.20Performance results (in sec.) on the parallel architecture de-
pending on a varying condensation factor a for the IP-tables. . . 300

10.21Performance results (in sec.) on the single-processor machine
depending on a varying condensation factor a for the IP-tables. 301

10.22Performance results (in sec.) depending on Y for the three joins
and the primary underflow strategy using black-out preprocessing.311

11.1 Elementary temporal joins and respective conditions for joining
tuples r ∈ R with q ∈ Q. 318

11.2 Examples of temporal join types that can be derived from the
elementary ones. 319

A.1 Hardware parameters. 335
A.2 Data parameters. 336
A.3 Partition related parameters. 337
A.4 Cost components for stage 1 (a). 338
A.5 Cost components for stage 1 (b). 338
A.6 Cost components for stage 1 (c). 338
A.7 Cost components for stage 1 (d). 339
A.8 Cost components for the joining stage 2 (a). 339
A.9 Cost components for the joining stage 2 (b). 339
A.10 Cost components for the joining stage 2 (c). 340

371

Bibliography

Allen, J. (1983). Maintaining Knowledge about Temporal Intervals. Communic-

ations of the ACM, 26(11):832–843.

Balcázar, J., Díaz, J., and Gabarró, J. (1988). Structural Complexity, volume 1.
Springer.

Baru, C., Fecteau, G., Goyal, A., Hsiao, H., Jhingran, A., Padmanabhan, S.,
Copeland, G., and Wilson, W. (1995). DB2 Parallel Edition. IBM Systems

Journal, 34(2):292–322.

Bayer, R. (1972). Symmetric Binary B-trees: Data Structure and Maintenance
Algorithms. Acta Informatica, 1(4):290–306.

Becker, L., Hinrichs, K., and Finke, U. (1993). A New Algorithm for Computing
Joins with Grid Files. In Proc. of the 9th International Conference on Data

Engineering, Vienna, Austria, pages 190–197.

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Prin-
ceton, NJ, USA.

Bergsten, B., Couprie, M., and Valduriez, P. (1993). Overview of Parallel Archi-
tectures for Databases. The Computer Journal, 36(8).

Bhide, A. and Stonebraker, M. (1988). A Performance Comparison of Two Ar-
chitectures for Fast Transaction Processing. In Proc. of the 4th International
Conference on Data Engineering, Los Angeles, CA, USA, pages 536–545.

Blank, T. (1990). The MasPar MP-1 Architecture. Technical report, MasPar
Computer Corporation.

Blasgen, M. and Eswaran, K. (1977). Storage and Access in Relational Data-
bases. IBM Systems Journal, 16(4):363–377.

372

Bratbergsengen, K. (1984). Hashing Methods and Relational Algebra Opera-
tions. In Proc. of the 9th Int. Conference on Very Large Data Bases (VLDB),
Singapore, pages 323–333.

Bronstein, I. and Semendjajew, K. (1987). Taschenbuch der Mathematik. Verlag
Harri Deutsch, 23rd edition.

Brooks, F. B. (1956). The Analytic Design of Automatic Data Processing Systems.
PhD thesis, Harvard University, Cambridge, MA, USA.

Carino, F. and Kostamaa, P. (1992). Exegesis of DBS/1012 and P-90 – industrial
supercomputer database machine. In Proc. of the 4th International PARLE

Conference, Paris, France, pages 877–892.

Cattell, R. (1996). The Object Database Standard: ODMG-93 (release 1.2). Morgan
Kaufmann.

Cekleov et al. (1993). SPARCceter 2000: Multiprocessing for the 90’s! In Pro-

ceedings COMPCON Spring’93, San Francisco.

Chen, P. (1976). The Entity-Relationship Model: Toward A Unified View Of
Data. ACM Transactions on Database Systems, 1(1):9–36.

Clark, N. (1997). Millenium Bug: Government accused of not doing enough.
Financial Times. (20.3.97).

Clifford, J. and Croker, A. (1987). The Historical Relational Data Model
(HRDM) and Algebra Based on Lifespans. In Proc. of the 3rd Internat. Con-
ference on Data Engineering, Los Angeles, USA, pages 528–537.

Clifford, J., Dyreson, C., Isakowitz, T., Jensen, C., and Snodgrass, R. (1997).
On the Semantics of “Now” in Databases. ACM Transactions on Database

Systems, 22(2):171–214.

Clifford, J., Dyreson, C., Snodgrass, R., Isakowitz, T., and Jensen, C. (1994).
Now in TSQL2. A TSQL2 Commentary.

Clifford, J. and Tuzhilin, A., editors (1995). Recent Advances in Temporal Data-

bases – Proc. of the International Workshop on Temporal Databases, Zürich,

Switzerland, Workshops in Computing. Springer.

CODASYL (1971). CODASYL Data Base Task Group April 71 Report. ACM,
New York.

373

Codd, E. (1970). A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6). Republished in Milestones of Research –
Selected Papers 1958-1982 (CACM 25th Anniversary Issue), CACM, 26(1),
January 1983.

Compaq Computer Corp. (1997). Compaq Access – Configuration and Tun-
ing of Microsoft SQL Server 6.5 for Windows NT on Compaq Serv-
ers. http://www.compaq.com / support / techpubs / whitepapers /
415a0696.html.

Conover, W. (1980). Practical Nonparametric Statistics. John Wiley & Sons, New
York, 2nd edition.

Cray Research (1993). Cray T3D System Architecture Overview. Cray Research
Inc. HR-04033 edition.

Darwen, H. (1997). Developments in SQL3. personal conversation.

Date, C. (1995). An Introduction to Database Systems, volume I. Addison-Wesley,
6th edition.

Davies, C., Lazell, B., Hughes, M., and Cooper, L. (1995). Time is just another
attribute – or at least, just another dimension. In [Clifford and Tuzhilin,
1995], pages 175–193.

DeWitt, D. and Gerber, R. (1985). Multiprocessor hash-based join algorithms.
In Proc. of the 11th Intern. Conf. on Very Large Data Bases (VLDB), Stockholm,

Sweden, pages 151–164.

DeWitt, D. and Gray, J. (1990). Parallel Database Systems: The Future of Data-
base Processing or a Passing Fad. ACM SIGMOD RECORD, 19(4):104–112.

DeWitt, D. and Gray, J. (1992). Parallel Database Systems: The Future of High
Performance Database Systems. Communications of the ACM, 35(6):85–98.

DeWitt, D., Naughton, J., and Schneider, D. (1991). An Evaluation of Non-
Equijoin Algorithms. In Proc. of the 17th International Conference on Very

Large Data Bases, Barcelona, Spain, pages 443–452.

DeWitt, D., Naughton, J., Schneider, D., and Seshradi, S. (1992). Practical Skew
Handling in Parallel Joins. In Proc. of the 18th International Conference on

Very Large Data Bases, Vancouver, Canada, pages 27–40.

374

El-Masri, R. and Navathe, S. (1994). Fundamentals of Database Systems. Addison-
Wesley, 2nd edition.

Elmasri, R., Wuu, G., and Kouramajian, V. (1993). The Time Index and the
Monotonic B+-tree. In [Tansel et al., 1993], chapter 18, pages 433–456.

Gadia, S. (1988). A Homogeneous Relational Model and Query Languages for
Temporal Databases. ACM Transactions on Database Systems, 13(4):418–448.

Gadia, S. (1992). A Seamless Generic Extension of SQL for Querying Temporal
Data. Technical Report TR-92-02, Computer Science Department, Iowa
State University.

Garey, M. and Johnson, D. (1979). Computer and Intractability – a Guide to the

Theory of NP-Completeness. Freeman.

Gerber, R. (1986). Dataflow Query Processing Using Multiprocessor Hash-
Partitioned Algorithms. Technical Report 672, Computer Science Dept.,
University of Wisconsin.

Gibbons, P., Matias, Y., and Poosala, V. (1997). Fast Incremental Maintenance
of Approximate Histograms. In Proc. of the Intern. Conf. on Very Large Data

Bases (VLDB), Athens, Greece, pages 466–475.

Glass, R. (1997). The Next Date Crisis and the Ones After That. Communications
of the ACM, 40(1):15–17.

Gong, Y., Chuan, C., and Xiaoyi, G. (1996). Image Indexing and Retrieval Based
on Color Histograms. Multimedia Tools and Applications, 2(2):133–156.

Goyal, P., Li, H., Regener, E., and Sadri, F. (1988). Scheduling of Page Fetches
in Join Operations Using Bc-Trees. In Proc. of the 4th Int. Conference on Data
Engineering, Los Angeles, USA, pages 304–310.

Graefe, G. (1993). Query Evaluation Techniques for Large Databases. ACM

Computing Surveys, 25(2):73–170.

Graefe, G. (1994). Sort-Merge-Join: An Idea Whose Time Has(h) Passed? In
Proc. of the 10th Int. Conference on Data Engineering, Houston, USA, pages
406–417.

Gray, J. (1995). A Survey of Parallel Database Techniques and Systems. Tu-
torial given at the 21st International Conference on Very Large Data Bases
(VLDB), Zürich, Switzerland.

375

Gunadhi, H. and Segev, A. (1990). A Framework for Query Optimization in
Temporal Databases. In Michalewicz, Z., editor, Proc. of the 5th International
Conf. on Statistical and Scientific Database Management, Charlotte, NC, USA,
number 420 in Lecture Notes in Computer Science (LNCS), pages 131–147.
Springer.

Gunadhi, H. and Segev, A. (1991). Query Processing Algorithms for Temporal
Intersection Joins. In Proc. of the 7th International Conference on Data Engin-

eering, Kobe, Japan, pages 336–344.

Gunadhi, H. and Segev, A. (1993). Efficient Indexing Methods for Temporal
Relations. IEEE Transactions on Knowledge and Data Engineering, 5(3):496–
509.

Günther, O. (1993). Efficient Computation of Spatial Joins. In Proc. of the 9th

International Conference on Data Engineering, Vienna, Austria, pages 50–59.

Heinrich, C. and Hofmann, M. (1996). Decision Support from the SAP Open
Information Warehouse. White paper, SAP AG, Walldorf, Germany. avail-
able via http:// www.sap-ag.de/ r3/ pdf/ oiw_e.pdf.

Hillis, D. (1985). The Connection Machine. MIT Press, Cambridge, MA, USA.

Hinrichs, K. and Nievergelt, J. (1983). The Grid File: A Data Structure Designed
to Support Proximity Queries on Spatial Objects. In Proc. of the 1983 Work-
shop on Graphtheoretic Concepts in Computer Science, pages 100–113.

Hua, K. and Lee, C. (1991). Handling Data Skew in Multiprocessor Database
Computers Using Partition Tuning. In Proc. of the 17th International Confer-

ence on Very Large Databases (VLDB), Barcelona, Spain.

Hua, K., Lee, C., and Peir, J.-K. (1991). Interconnecting Shared-Everything Sys-
tems for Efficient Parallel Query Processing. In Proceedings of the 1st Inter-

national Conference on Parallel Distributed Information Systems, Miami Beach,
FL, USA, pages 262–270.

Hyafil, L. and Rivest, R. (1973). Graph Partitioning and Constructing Op-
timal Decision Trees are Polynomial Complete Problems. Rapport de
Recherche 33, IRIA-Laboria, Domaine de Voluceau, Rocquencourt, 78150
Le Chesnay, France.

Informix Inc. (1995). Informix & Data Warehousing. http:// www.informix.com/

informix/ solution/ warehous/ intro.htm.

376

Inmon, W. (1996). Building the Data Warehouse. John Wiley & Sons, 2nd edition.

International Data Corporation (IDC) (1996). The Financial Impact of Data
Warehousing. extract available via http:// www.sagus.com/ prod-info/ dw/

idcexec.htm.

Ioannidis, Y. and Christodoulakis, S. (1993). Optimial Histograms for Limiting
Worst-Case Error Propagation in the Size of Join Results. ACM Transactions

on Database Systems, 18(4):709–748.

ISO92 (1992). International Organization for Standardization / International
Electrotechnical Commission – Database Language SQL. ISO/IEC 9075.

Jensen, C., Clifford, J., Elmasri, R., Gadia, S., Hayes, P., and Jajodia, S. (1994a).
A Consensus Glossary of Temporal Database Concepts. SIGMOD Record,
23(1):52–64.

Jensen, C., Clifford, J., Gadia, S., Segev, A., and Snodgrass, R. (1992). A Gloss-
ary of Temporal Database Concepts. SIGMOD Record, 21(3).

Jensen, C., Mark, L., and Roussopoulos, N. (1991). Incremental Implementa-
tion Model for Relational Databases with Transaction Time. IEEE Transac-

tions on Knowledge and Data Engineering, 3(4):461–473.

Jensen, C., Snodgrass, R., and Soo, M. (1994b). The TSQL2 Data Model. A
TSQL2 Commentary.

Jensen, C., Soo, M., and Snodgrass, R. (1994c). Unifying Temporal Data Models
via a Conceptual Model. Information Systems, 19(7):513–547.

Keller, A. and Roy, S. (1991). Adaptive Parallel Hash Join in Main-Memory
Databases. In Proceedings of the First International Conference on Parallel and
Distributed Information Systems, pages 58–67.

Kernighan, B. (1971). Optimal Sequential Partitions of Graphs. Journal of the

ACM, 18(1):34–40.

Kim, W. (1980). A New Way to Compute the Product and Join of Relations.
In Proc. of the ACM SIGMOD Int. Conference on Management of Data, Santa
Monica, USA, pages 179–187.

Kitsuregawa, M., Harada, L., and Takagi, M. (1989). Join Strategies on Kd-Tree
Indexed Relations. In Proc. of the 5th Int. Conference on Data Engineering, Los

Angeles, USA, pages 85–93.

377

Kitsuregawa, M. and Ogawa, Y. (1990). Bucket Spreading Parallel Hash: A
New, Robust, Parallel Hash Join Method for Data Skew in the Super Data-
base Computer (SDC). In McLeoad, D., Sacks-Davis, R., and Schek, H.,
editors, Proceedings of the 16th International Conference on Very Large Data

Bases (VLDB), Brisbane, Australia, pages 210–221. Morgan Kaufmann.

Kitsuregawa, M., Tanaka, H., and Moto-Oka, T. (1983). Application of Hash to
Database Machine and its Architecture. New Generation Computing, 1(1).

Kitsuregawa, M., Tanaka, H., and Moto-oka, T. (1984). Architecture and Per-
formance of Relational Algebra Machine Grace. In Proceedings of the Inter-
national Conference on Parallel Processing, Chicago, Illinois, USA.

Kline, N. (1993). An Update of the Temporal Database Bibliography. SIGMOD
Record, 22(4):66–80.

Knuth, D. (1973). The Art of Computer Programming – Sorting and Searching,
volume 3. Addison-Wesley.

Kolovson, C. (1993). Indexing Techniques for Historical Databases. In [Tansel
et al., 1993], chapter 17, pages 418–432.

Korth, H. and Silberschatz, A. (1991). Database System Concepts. McGraw-Hill,
2nd edition.

Lamb, C., Landis, G., Orenstein, J., and Weinreb, D. (1991). The ObjectStore
System. Communications of the ACM, 34(10):50–63.

Lehman, T. and Carey, M. (1986). Query Processing in Main Memory Data-
base Management Systems. In Proc. of the ACM SIGMOD Int. Conference on

Management of Data, Washington, USA, pages 239–250.

Leung, T. and Muntz, R. (1990). Query Processing for Temporal Databases. In
Proc. of the 6th International Conference on Data Engineering, Los Angeles, CA,

USA, pages 200–208.

Leung, T. and Muntz, R. (1992). Temporal Query Processing and Optimiza-
tion in Multiprocessor Database Machines. In Proc. of the 18th International
Conference on Very Large Data Bases, Vancouver, Canada, pages 383–394.

Leung, T. and Muntz, R. (1993). Stream Processing: Temporal Query Proces-
sing and Optimization. In [Tansel et al., 1993], chapter 14, pages 329–355.

378

Lo, M.-L. and Ravishankar, C. (1996). Spatial Hash-Joins. In Proceedings ACM

SIGMOD Conference on Management of Data, Montreal, Canada, pages 247–
258.

Lockemann, P., Krüger, G., and Krumm, H. (1993). Telekommunikation und

Datenhaltung. Studienbücher der Informatik. Hanser Verlag.

Lorentzos, N. and Mitsopoulos, Y. (1994). SQL Extension for Interval Data.
Technical Report 105, Informatics Laboratory, Agricultural University of
Athens.

Lorentzos, N. and Mitsopoulos, Y. (1997). SQL Extension for Interval Data.
IEEE Transactions on Knowledge and Data Engineering, 9(3):480–499.

Lu, H., Ooi, B.-C., and Tan, K.-L. (1994). On Spatially Partitioned Temporal
Join. In Proc. of the 20th Internat. Conf. on Very Large Data Bases (VLDB),
Santiago de Chile, pages 546–557.

Mannino, M., Chu, P., and Sager, T. (1988). Statistical Profile Estimation in
Database Systems. ACM Computing Surveys, 20(3):191–221.

Mishra, P. and Eich, M. (1992). Join Processing in Relational Databases. ACM

Computing Surveys, 24(1):63–113.

Ng, R. and Tam, D. (1997). Analysis of Multilevel Color Histograms. In Proc. of
the Conf. on Storage and Retrieval for Image and Video Databases, San Jose, CA,

USA, pages 22–33.

Norman, M. and Thanisch, P. (1995). Parallel Database Technology: An Evaluation

and Comparison of Scalable Systems. The Bloor Research Group, UK. ISBN
1-874160-17-1.

Norman, M., Zurek, T., and Thanisch, P. (1996). Much Ado about Shared-
Nothing. SIGMOD Record, 25(3):16–21.

O’Neil, P. and Graefe, G. (1995). Multi-Table Joins Through Bitmapped Join
Indices. SIGMOD Record, 24(3):8–11.

Oracle Corp. (1996). Data Warehousing – Informed Decision Making. http://

www.oracle.com/ initiatives/ wti/ html/ index.html.

Orenstein, J. (1986). Spatial Query Processing in an Object-Oriented Database
System. In Proc. of the ACM SIGMOD Int. Conference on Management of Data,

Washington, USA, pages 326–336.

379

Orenstein, J. and Manola, F. (1988). PROBE Spatial Data Modeling and Query
Processing in an Image Database Application. IEEE Transactions on Soft-
ware Engineering, 14(5):611–629.

Patel, J. and DeWitt, D. (1996). Partition Based Spatial-Merge Join. In Proceed-
ings ACM SIGMOD Conference on Management of Data, Montreal, Canada,
pages 259–270.

Perrizo, W., Gustafson, J., Thureen, D., and Wenberg, D. (1991). Domain Vec-
tor Accelerator (DVA): A Query Accelerator for Relational Operations. In
Proc. of the 7th International Conference on Data Engineering, Kobe, Japan,
pages 491–498.

Piatetsky-Shapiro, G. and Connell, C. (1984). Accurate Estimation of the Num-
ber of Tuples Satisfying a Condition. In Proceedings ACM SIGMOD 1984

Conference on Management of Data, pages 256–276.

Pissinou, N., Snodgrass, R., Elmasri, R., Mumick, I., Tamer Özsu, M., Pernici,
B., Segev, A., Theodoulis, B., and Dayal, U. (1994). Towards an Infrastruc-
ture for Temporal Databases – Report of an Invitational ARPA/NSF Work-
shop (June 1993). Technical Report TR 94-01, Dept. of Computer Science,
University of Arizona.

Poosala, V., Ioannidis, Y., Haas, P., and Shekita, E. (1996). Improved Histo-
grams for Selectivity Estimation of Range Predicates. In Proceedings ACM

SIGMOD Conference on Management of Data, Montreal, Canada, pages 294–
305.

Prism Solutions Inc. (1996). Why a Data Warehouse. http://

www.prismsolutions.com/ data/ why.html.

Rana, S. and Fotouhi, F. (1993). Efficient Processing of Time-Joins in Temporal
Data Bases. In Proc. of the 3rd Internat. Symposium on Database Systems for
Advanced Applications, pages 427–432.

Red Brick Systems (1995a). Specialized Requirements for Relational Data
Warehouse Servers. White paper, Red Brick Systems.

Red Brick Systems (1995b). Star Schemas and STARjoin Technology. White
paper, Red Brick Systems. available via http:// www.redbrick.com/ rbs/ whitepapers/

star_wp.html.

380

Red Brick Systems (1995c). The Data Warehouse. White paper, Red Brick Sys-
tems.

Ryan, N. and Smith, D. (1995). Database Systems Engineering. Thomson, 1st
edition.

Sarda, N. (1993). HSQL: A Historical Query Language. In [Tansel et al., 1993],
chapter 5, pages 110–140.

Schneider, D. and DeWitt, D. (1989). A Performance Evaluation of Four Parallel
Join Algorithms in a Shared-Nothing Multiprocessor Environment. Tech-
nical Report TR-836, Computer Science Dept., University of Wisconsin.

Seagate Technology (1997). Ultra SCSI – Technical Fact Sheet.
http://www.seagate.com / support / disc / papers / ultrafs.shtml.

Segev, A. (1993). Join Processing and Optimization in Temporal Relational
Databases. In [Tansel et al., 1993], chapter 15, pages 356–387.

Segev, A. and Gunadhi, H. (1989). Event-Join Optimization in Temporal Re-
lational Databases. In Proc. of 15th Internat. Conf. on Very Large Data Bases

(VLDB), Amsterdam, Netherlands, pages 205–215.

Segev, A., Gunadhi, H., Chandra, R., and Shanthikumar, J. (1993). Selectiv-
ity Estimation of Temporal Data Manipulations. Information Sciences,
74(1/2):111–149.

Shapiro, L. (1986). Join Processing in Database Systems with Large Memories.
ACM Transactions on Database Systems, 11(3):239–264.

Sloan, R. (1992). A Practical Implementation of the Data Base Machine –
Teradata DBC/1012. In Proc. of the 25th Hawaii International Conference on

System Sciences, Kauai, HI, USA, pages 320–327.

Snodgrass, R. (1987). The temporal query language TQuel. ACM Transactions

on Database Systems, 12(2):247–298.

Snodgrass, R., editor (1995). The TSQL2 Temporal Query Language. Kluwer
Academic Publishers.

Snodgrass, R. (1996). A Road Map of Additions to SQL/Temporal. Change
Proposal, available via ftp from ftp.cs.arizona.edu .

381

Snodgrass, R., Ahn, I., Ariav, G., Batory, D., Clifford, J., Dyreson, C., Elmasri,
R., Grandi, F., Jensen, C., Käfer, W., Kline, N., Kulkarni, K., Leung, T.,
Lorentzos, N., Roddick, J., Segev, A., Soo, M., and Sripada, S. (1994).
TSQL2 Language Specification. SIGMOD RECORD, 23(1):65–86.

Soo, M., Snodgrass, R., and Jensen, C. (1994). Efficient Evaluation of the Valid-
Time Natural Join. In Proc. of the 10th International Conference on Data En-
gineering, Houston, Texas, USA, pages 282–292.

Stonebraker, M. (1986). The Case for Shared Nothing. IEEE Data Engineering,
9(1).

Stonebraker, M. (1987). The Postgres Data Model. In Proc. of the 13th Interna-

tional Conference on Very Large Data Bases (VLDB), Brighton, England, pages
83–96.

Stonebraker, M., Rowe, L., and Hirohama, M. (1990). The Implementation of
Postgres. IEEE Transaction on Knowledge and Data Engineering, 2(1):125–142.

Su, S. (1988). Database Computers: Principles, Architectures, and Techniques.
McGraw-Hill.

Tandem Computers GmbH (1997). System-Interconnect-Technologie.
http://www.tandem.de / technik / svrnet.htm.

Tannenbaum, A. (1994). Distributed Operating Systems. Prentice-Hall.

Tansel, A. (1986). Adding Time Dimension to Relational Model and Extending
Relational Algebra. Information Systems, 11(4):343–355.

Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A., and Snodgrass, R.
(1993). Temporal Databases – Theory, Design and Implementation. Ben-
jamin/Cummings.

Teradata Corporation (1983). DBC/1012 Data Base Computer Concepts & Fa-
cilities. Technical Report Document No. C02-0001-00, Teradata Corpora-
tion.

Teradata Corporation (1985). DBC/1012 Database Computer System Manual Re-
lease 2.0. Document No. C10-0001-02.

Tseng, E. and Reiner, D. (1993). Parallel Database Processing on the KSR1 Com-
puter. In Proc. of the 1993 ACM SIGMOD Conference, Washington DC, USA,
page 453ff.

382

Tsichritzis, D. and Lochovsky, F. (1977). Data Base Management Systems. Aca-
demic Press, New York.

Tsotras, V. and Kumar, A. (1996). Temporal Database Bibliography Update.
SIGMOD Record, 25(1).

Uhlig, R. (1997). Millenium Computer Chaos ‘will cost £ 31 bn’. Electronic

Telegraph. (12.4.97).

Valduriez, P. (1987). Join Indices. ACM Transactions on Database Systems,
12(2):218–246.

Valduriez, P. (1993a). Parallel Database Systems: open problems and new is-
sues. Distributed and Parallel Databases, 1(2):137–165.

Valduriez, P. (1993b). Parallel Database Systems: the case for shared-
something. In Proc. of the 9th International Conference on Data Engineering,

Vienna, Austria, pages 460–465.

Walton, C., Dale, A., and Jenevein, R. (1991). A Taxonomy and Performance
Model of Data Skew Effects in Parallel Joins. In Lohman, G. M., Sernadas,
A., and Camps, R., editors, Proceedings of the 17th International Conference

on Very Large Data Bases, pages 537–548. Morgan Kaufman San Mateo.

Wang, X. and Luk, W. (1988). Parallel Join Algorithms on a Network of Work-
stations. In Proc. of Intern. Symposium on Databases in Parallel and Distributed
Systems, Austin, Texas, USA, pages 87–96.

Witkowski, A. e. a. (1993). NCR 3700 – the next-generation industrial database
computer. In Proceedings of the 19th International Conference on Very Large

Data Bases, Dublin, Ireland, pages 230–243.

Wolf, J., Dias, D., and Yu, P. (1990). An Effective Algorithm for Parallelizing
Sort-Merge Joins in the Presence of Data Skew. In Proc. of the 2nd Interna-

tional Symposium on Parallel and Distributed Systems, Dublin, Ireland.

Wolf, J., Dias, D., and Yu, P. (1993). A Parallel Sort Merge Join Algorithm for
Managing Data Skew. IEEE Transactions on Parallel and Distributed Proces-
sing, 4(1):70–86.

Zhou, H. (1993). Two-stage m-way graph partitioning. Parallel Computing,
19(12):1359–1373.

383

Zipf, G. (1949). Human Behaviour and the Principle of Least Effort. Addison-
Wesley.

Zurek, T. (1996). Parallel Temporal Nested-Loop Joins. Technical Report ECS-
CSG-20-96, Dept. of Computer Science, Edinburgh University.

Zurek, T. (1997a). Optimal Interval Partitioning for Temporal Databases. In
Proc. of the 3rd BIWIT Workshop, Biarritz, France, pages 140–147. IEEE Com-
puter Society Press.

Zurek, T. (1997b). Optimisation of Partitioned Temporal Joins. In Proc. of the
15th BNCOD Conference, London, UK, LNCS 1271, pages 101–115. Springer.

Zurek, T. (1997c). Parallel Processing of Temporal Joins. To appear in Informat-

ica, ISSN 0350-5596.

Zurek, T. (1997d). Parallel Temporal Joins. In “Datenbanksysteme in Büro, Technik

und Wissenschaft” (BTW), German Database Conference, Ulm, Germany, pages
269–278. Springer. (in English).

Zurek, T., Minty, E., and Thanisch, P. (1996). Recursive Query Processing on
a Connection Machine. In Keane, J., editor, Parallel Information Processing,
pages 211–237. UNICOM, Stanley Thornes Publishers.

Zurek, T. and Thanisch, P. (1995). Strategies for Parallel Linear Recursive Query
Processing. In Sellis, T., editor, Proc. of the 2nd International Workshop "Rules
in Database Systems" (RIDS), Glyfada, Athens, Greece, LNCS 985, pages 213–
229. Springer.

384

Index

on, 24
aft
on, 59, 318
bef
on, 58, 318
con
on , 59, 319
dur
on , 59, 319
=
on, 59, 319
fin
on, 58, 318
int
on, 59, 319
lo
on, 58, 318
mt
on, 58, 318
olp
on, 59, 319
ro
on, 58, 318
sta
on, 58, 318
(ts, te), 18
(ts, te], 18, 92
[ts, te), 18
[ts, te], 13, 18, 92
〈r1, . . . , rn〉, 91

A, 107, 110, 181
A′, 108
A1, A2, . . . , Am, 24
Ak, 108
a, 135, 296
α, 181
B, 181
B1, B2, . . . , Bn, 24
B′j,k, 186
B′′j,k, 186
β, 181
C , 2, 24, 191, 246

C(r, q), 191
C1(a),cpu, 194
C1(a),io, 194
C1(a), 194
C1(b),com, 196
C1(b),cpu, 196
C1(b),mem, 196
C1(b), 196
C1(c),mem, 197
C1(c), 197
C1(d),cpu, 198
C1(d),io, 197
C1(d), 198
C2(a),io, 201
C2(a),mem, 202
C2(a), 202
Cjoin, 192, 202
C2(a), 202
C2(b), 202
C2(c), 202
Cpart, 192, 193, 198
Ctotal, 192
c(qi), 102
δR, 195, 205
E(R), 92
eR, 93
e′R, 139
entrysize, 131, 132
f(j), 140
first(j), 183
first-node(i), 183

385

fragmentP (t), 183
ϕk, 200
G = (V,A), 107, 109, 110
γR, 195
h, 71
I(R), 129
I(R ∪Q), 154
I ′(R, a), 136
I ′′(R), 140
Ī(R), 232
Icom, 196
Ihash, 196
Iio, 194
i, 193
iQ, 241, 242
iR, 93, 240, 242
i′
R
, 139

iQτ , 270, 348
iRτ , 270, 348
j, 193
je, 145
js, 145
jx, 324
jy, 324
k, 193
Kfirst, 183
K ′′P (r), 183
L(R ∪ Q), 182
L(R), 92
l(vi, vj), 107, 110
last(j), 183
last-node(i), 183
load (qj, qi), 102
loadQ, 227
loadR, 227
left(t), 98
λk, 200

M , 109
M, 176, 238
m, 92, 224, 238, 256
mtarget, 225
mem , 200
µ, 194
N , 176, 238
N ′, 136, 139
N ′′, 140
node(j), 180
oR, 93, 129, 139, 143
oR∪Q, 154
overlaps (vk), 113
Oj, 191
O′k, 186
O′′k, 186
Ō, 247, 309
P , 92
p0, 93, 183
pQ, 35
pR, 35
pk, 92, 111, 183
pm, 93, 183
q0, 102
pred (qi), 102
pred (ti), 227
pred (vi), 113
processor(k), 182
Q, 24, 91, 241, 341
Q̂i, 180
Q′k, 225, 228
Q.Bj, 25
Qk, 224, 226
Qτ , 270, 348
q, 91
R onC Q, 25
R, 19, 24, 91, 240, 341

386

Rk, 224, 226
Rτ , 270, 348
R.Ai, 25
R.A θ Q.B, 32
R′k, 74, 188, 225, 228
R′′k, 74
Ṙk, 53
R̂i, 180
RQk, 180
|r|, 194
r, 19, 24, 91
r.te, 19
r.ts, 19
r ◦ q, 24
S, 24
S(R), 92
SP(R), 217, 221
sR, 93
sR∪Q, 154
s′R∪Q, 158
sR, 129
s′R, 136
s′′R, 141
T (R), 92
t̂, 18
tmax, 92, 182
tmin, 92, 182
t′j, 136
t′′j , 140
tleft , 140
tright , 140
tS, 221
tuplesize, 131, 133
τ , 204, 238, 270
τQ, 242, 270, 344
τR, 242, 270, 344
θ, 32

V , 107, 109, 110
V (R), 129
V (R ∪Q), 154
V ′(R, a), 136
V ′′(R), 140
Vk, 107, 109
vi ≺ vj, 107
vi, 107
vEpk, 108, 111
w(vi), 107, 110
wcom, 196
wio, 194
wmem, 196
X, 107, 224, 226, 238, 262
XQ, 225, 228, 238, 262, 313, 314
XR, 225, 228, 238, 262, 313, 314
Y , 232, 247, 309
Y ′, 233, 309
Z, 262, 313, 314

1NF, 16

after join, 59, 318, 321
analysis of partitions, 121
append-only characteristic, 64
architectural model, 169
architecture, 169, 282
assymmetry property, 71

B-tree, 67
band-join, 121
bar-period, 232
basic fragment, 54
basic minimum-overlaps strategy, 246
basic minimum-overlaps strategy with

b/o, 247
basic underflow strategy, 246
basic underflow strategy with b/o,

246

387

Bc-tree, 45
before join, 30, 58, 318, 320
bitmap index, 45
black-out preprocessing, 232, 246, 247,

309
black-out threshold, see Y
breakpoint, 3, 92, 95, 97, 182
brute force nested-loops join, see nested-

loops join

cardinality, 25
cartesian product, 25, 31, 35, 37, 39,

50, 61, 316
catalog, 121, 127, 144
change_lengths(), 242, 270, 344

chronon, 17, 18, 189, 206, 217, 242,
344

collection, 91
composite condition, 317, 321
composite join, 317, 321
concatenation, 24, 59, 191
condensation, 135, 219, 232, 238, 296,

313, 330, 334
condensation factor, 136, 296
contain join, 59, 71, 319, 323
conventional database, 12
cost model, 120, 192

data analysis, 121, 127
data mining, 1, 316
data partitioning, 1
data sample, 121, 127, 131
data sample size, 132
data sampling, 121, 131
data skew, 43, 47, 76, 175, 204, 223,

238, 239, 278, 282, 331
data warehouse, 21, 61
data warehousing, 1, 21

DBMS, 12
DDL, 12
decision support system, 22, 61, 316
degree of overlap, 54
deletion, 20, 145, 148
DEPT, 134
discreteness, 17
distributed shared memory, 172, 174
DML, 12
domain vector, 45
DSS, see decision support system
duplicates overhead, 70, 70, 72, 74,

328, 330
during join, 59, 71, 319, 323
DW, see data warehouse

elementary condition, 317, 320
elementary join, 317, 320
entity-relationship model, 27
EOR, 38, 65
EPCC, 134, 240
equal join, 59, 319, 322
equi-join, 2, 30, 32, 51
Erlang-n distribution, 325
errorsize, 132
evaluation, 238

f-a-r, see fragment-and-replicate
Faust, 3
finish join, 58, 318, 320
first normal form, 16
foreign key, 28
fragment, 3, 48, 95, 128
fragment, basic, 53
fragment-and-replicate, 47, 69, 78
FRANKFURT, 134

gap, 219

388

geographic information system, see

GIS
GIS, 1, 33
GP, 106
Grace hash join, 43
granularity, 17
graph partitioning, 106

Hamlet, 3
hash bucket, 40
hash buffer, 186
hash function, 71
hash join, 40, 50
hash table, 43
hashing, 40
histogram, 161
historical database, 22
hybrid architecture, 176

I/O bandwidth, 2
I/O parallelism, 1
index join, 45, 67
infimum, 93
inner relation, 34
insertion, 145, 148, 153
instant, 17, 18
inter-node replication, 187
intersection (of joins), 322
intersection join, 3, 59, 71, 319, 323,

324
intersects, 13
interval, 1, 17, 17, 18, 32, 91

closed, 18
open, 18
right-open, 18

interval length, 128, 344
interval partitioning, 90, 95, 96

interval timestamp, 19, 57

interval, left-open, 18
IP, 90, 95, 127
IP-graph, 116
IP-opt , 102, 103, 120, 189, 227
IP-table, 121, 127, 129

complete, 129, 130, 145, 154
condensed, 135, 146, 155, 228
endpoint, 140, 148, 155, 228
incomplete, 153, 155

IP-table size, 131
IP-table, maintenance, 144
IP-tables, merging, 153

join, 2, 24

after, see after join
band-, see band-join
before, see before join
composite, see composite join
contain, see contain join
during, see during join
elementary, see elementary join
equal, see equal join
equi-, see equi-join
finish, see finish join
hash, see hash join
index, see index join
intersection, see intersection join
left-overlap, see left-overlap join
meet, see meet join
nested-block, see nested-block join
nested-loop, see nested-loop join
nonequi-, see nonequi-join
overlap, see overlap join
parallel, see parallel join
partial, see partial join
right-overlap, see right-overlap join
sort-merge, see sort-merge join
spatial, see spatial join

389

star-, see star-join
start, see start join
temporal, see temporal join
theta-, see theta-join

join 1, 246
join 2, 246
join 3, 246
join algorithms, 34
join attributes, 25
join classification, 53
join condition, 2, 24, 29, 32, 57, 191,

316
join index, 45, 67
join selectivity, 37, 316
join types, 32
joining stage, 50, 180, 185, 188, 198

kd-tree, 45
key, 28
key = foreign key relationships, 28
Kolmogorov test, 132
Kolmogorov test statistic, 121

left-overlap join, 58, 318, 321
lifespan, 182, 217
lifespan partitioning, 217, 246
load balance, 47, 90, 173, 223, 257,

271, 296, 310, 331
load imbalance, 175
logical deletion, 20
logical replication, 69, 89

matching stage, 54
meet join, 58, 318, 320
merging (IP-tables), 153
merging stage, 50, 185
metadata, 87, 129, 315
min-max dilemma, 90
minimum-overlaps strategy, 226, 246

natural join, valid-time, 58
natural time-join, 58
nested-block join, 35, 200
nested-loop join, 34, 51, 62
network data model, 28
non-periodic profile, 241
nonequi-join, 30, 32, 51
normalisation, 28
now, 14, 16, 20
NUMA, 172, 179

object-oriented data model, 29
operational database, 22
optimal partition, 4, 90, 96, 97, 98,

101, 129, 139, 140
optimisation, 119, 120
outer relation, 34
overlap join, 59, 319, 322
overlap, complete, 54
overlap, disjoint, 54
overlap, minimum, 54
overlap, no, 54
overlap, variable, 54

parallel architecture, 282
parallel join, 2, 43, 47
parallel nested-loop join, 50
partial join, 43, 48, 74, 324
partial selectivity, 189
partition, 92, 182
partition range, 92, 96, 128, 183
partitioning, 53, 85, 95

explicit, 53, 61, 69
fragment-and-replicate, see fragment-

and-replicate
graph, see graph partitioning
implicit, 53
interval, see interval partitioning

390

lifespan, see lifespan partitioning
no, 53
precomputed, 53
range, see range partitioning
sequential graph, see sequential

graph partitioning
spatial, 78, 85
startpoints’ span, see startpoints’

span partitioning
symmetric, see symm. partition-

ing, 78
types of, 53
uniform, see uniform partition-

ing
partitioning stage, 50, 53, 180, 184,

185, 193
partitioning strategies, 120, 121, 216
performance, 31
performance model, 121, 166
period, see interval
periodic profile, 240
physical deletion, 20
physical replication, 69, 89
Poisson distribution, 325
polygon, 32
primary minimum-overlaps strategy,

247, 262, 270
primary minimum-overlaps strategy

with b/o, 247
primary tuples, 74, 76
primary underflow strategy, 246, 262,

270
primary underflow strategy with b/o,

246
processing overhead, 70, 72, 327
profile, 240, 241

query optimisation, 13, 315

rand(), 241
range, 92, 217
range partitioning, 71, 86, 219, 246
rectangle, 32
reduction, 107
repartitioning stage, 180, 184, 185,

193
replicated tuples, 74, 76
replication, 47, 89
replication overhead, 69, 327
right-overlap join, 58, 318, 321
rocking, 37

same time as, 13
SD, 174
search space, 97
segment, 92, 217
selectivity, 37, 51, 316
selectivity estimation, 87, 315
selectivity factor, 37, 189, 316
semantic data model, 27
semantic optimisation, 13
sequential graph partitioning, 106,

107
SGP, 106, 107
SGP-opt , 113
shared-disk, 172, 174, 179
shared-everything, 172
shared-memory, 171, 172, 172, 174,

179
shared-nothing, 171, 172, 175, 179
simple hash join, 41
simulation, 168
simultaneity, 13
SM, 172
SMP, 171, 173, 176
SN, 175
snapshot, 19

391

snapshot database, 19
sort-merge join, 37, 63
sorting, 86
span, 92, 217
spatial data types, 33
spatial join, 33, 80
spatial join condition, 33
spatial partitioning, 86
speed-up, 257
SQL/Temporal, 15
SQL3, 15
Staff, 16, 17, 25
star-join, 47
start join, 58, 318, 320
startpoint, 19
startpoints’ span, 217, 217, 221
startpoints’ span partitioning, 221,

246
strategy, 216
STUD, 134
Student, 25
subjoin, 188
surrogate, 45
symmetric multiprocessor, 173, 176
symmetric partitioning, 47, 69, 216
synthesis of partitions, 121

T-join, 58
T-tree, 45
TDBMS, 11
TE-join, 58
Teaches, 29
temporal data, 10
temporal data model, 11
temporal data types, 33
temporal database, 10, 23
temporal database management sys-

tem, 11

temporal join, 3, 30, 33, 56, 57
temporal join condition, 33, 57, 316
temporal join processing model, 179
temporal query language, 12
temporal relation, 2, 16, 19
temporal semantics, 14
theta operator, 32
theta-join, 32
time cube, 19
time domain, 17, 17

time index, 67
time line, 17
time slice, 20
time-concatenation, 59, 191
time-intersection equi-join, 58
time-join, 58
timepoint, 17, 17, 18, 91
timestamp, 3, 8, 14, 16, 16, 20, 30,

32, 57–60, 64, 67, 71, 74, 76,
79, 89, 95, 130, 135, 144, 148,
153, 183, 186, 191, 195, 205,
223, 239, 246, 315, 318–321,
323–326, 328, 330

timestamped attributes, 16
timestamped tuples, 16
transaction time, 14, 20, 64, 239
trend analysis, 60
TSQL2, 15

UMA, 172
underflow strategy, 223, 246
uniform lifespan strategy, 217, 246,

270
uniform partitioning, 217
uniform range strategy, 219, 246
uniform startpoints span strategy, 221,

246
uniform strategies, 217

392

uniform workload, 204
union (of joins), 322
update (IP-table), 144

valid time, 20, 239

393

