
The ipclib PEPA Library

Allan Clark
Laboratory for Foundations of Computer Science

School of Informatics
University of Edinburgh

Abstract

PEPA[6] is a popular stochastic process algebra which
allows a compositional approach to stochastic model de-
scription. The ipc compiler translates a given PEPA model
into a format suitable for processing by the Hydra[5]
Markovian response-time analyser. The ipc software has
undergone some improvements which have led to its refac-
toring as a library for handling PEPA models.

1. Introduction

PEPA allows the compositional description of Markov
Chains. The grammar for the standard description of PEPA
components is given by:

P ::= (a, λ).P | P + P | P ⊲⊳
L

P | P/L

A model is represented by a series of definitions which
describe the sequential behaviour of named components.
These named components are then combined together in a
main system equation which represents the interaction be-
tween the various components in a model. Full details of
the PEPA stochastic process algebra can be found in [6].

The HYpergraph-based Distributed Response Time
Analyser or Hydra[5] is a software tool which may be used
to compute transient distributions and response-time densi-
ties and quantiles in Markov chains with state spaces in the
order of 107 states.

The ipc tool[2] compiles PEPA models to the descrip-
tions of Markov chains accepted by Hydra. In addition ipc
fully supports the calculation of apparent rate synchronisa-
tion as defined in [6]. This procedure is described in [3].

The ipc tool has been adapted to cooperate with the
Condor[4] distributed computing platform. Many static-
analyses of PEPA models have been incorporated into the
ipc tool in order to avoid the needless solving of erroneous
models. There are a number of transformations which take
place within the compiler to prepare the model to be trans-
lated to a Markov chain. Also there are a number of new

features on top of the vanilla PEPA models which can now
be utilised. These include; process arrays, immediate ac-
tions and functional rates.

Current development of ipc has shown a trend towards
more flexibility. In particular allowing analysis methods
outside the realm of Hydra, for example stochastic simu-
lation, as an alternative to Markovian analysis.

To enhance maintainability and the re-use of ipc soft-
ware the code is to be reorganised as a PEPA library.

2. The ipclib library

Work on this library has begun and there are now several
components. These include: A PEPA model parser module,
a static-analysis module, a PEPA to LATEX translation mod-
ule and modules implementing tranformations over PEPA
models including simplifications such as the removal of pro-
cess arrays and the hiding operator using renaming. Addi-
tionally a stochastic probe[1] translator. This module also
implements the combining of the translated probe with the
model to be analysed.

The ipclib contains utility programs which operate over
PEPA models. These programs utilise some part of the li-
brary to provide a command-line interface to the user. The
pepaprobe utility is the most sophisticated of the tools de-
veloped thus far. The input is a PEPA model and a number
of probes given as --probe options. These probes are per-
formance measurement specification probes in the style of
[1] and describe, using a high-level regular-expression like
language, additional components to be combined with the
input model. Such probes are intended to be observational
and therefore do not change the original behaviour of the
given model. The output is the input model transformed
according to all of the given probes.

Two significant enhancements to the specification of
probes have been made. The first change is that each probe
may be specified as local to a given process within the whole
system of the model. This means that the probe may ob-
serve actions from an individual component as being dis-
tinct from those same actions performed by other compo-

Fourth International Conference on the Quantitative Evaluation of Systems

0-7695-2883-X/07 $25.00 © 2007 IEEE
DOI 10.1109/QEST.2007.20

55

nents in the model.
The second change is to labels. Originally labels could

only be either start or stop to specify that the probe
has entered or exited a passage to be measured. These were
essentially communication messages passed from the mea-
surement or observation probe to a control or master probe.
Since such untimed communication is not available in stan-
dard PEPA, these start and stop signals were previ-
ously implemented via renaming. With the addition of im-
mediate actions, untimed communication is possible which
simplifies the translation of labelled actions. Because of this
the labels are generalised to be any name the user wishes.
These can then be used as communication signals between
user defined probes. In addition labels may be attached to
the end of any probe rather than attached to a specific activ-
ity.

As an example the probe:
Client1 (a, b, a, b : start), c : stop defines a probe which
will be attached to a Client1 component. The probe waits
for a sequence of a, b, a, b actions before sending a start
signal. After this if the probe observes a c action it sends a
stop signal (and returns to the original state).

The without operator (R/a) allows the probe to be reset
to a given position. It means that the probe expects to ob-
serve a sequence of activities corresponding to the probe R
without at any time witnessing the excluded action a. The
probe: (a, a, a)/b : start, b : stop will wait until it observes
three a activities without observing a b activity before send-
ing the start communication signal.

Another utility program is pepacheck. This program
runs the various static program analyses over the PEPA
model input files. These analyses check the model for
constructs which are either unsuitable for compilation to a
CTMC or are likely to indicate a mistake on the part of the
the modeller. These include, but are not limited to; the use
of an undefined process name, a process which is defined
but not used and a cooperation over a set of actions in which
one or both sides do not perform all of the actions.

This could be called externally as part of another PEPA
tool or used to periodically check a library of PEPA models.

The pepalatex tool accepts as input a PEPA model and
outputs a translation into LATEX format.

3. Conclusions and Future Work

The re-organisation of the core of the ipc code into re-
usable library modules has inabled considerable simplifica-
tion of the code and interfaces between separate tasks. This
has increased the maintainability of the code and its fitness
to accomodate further enhancements. This has so far been
highlighted with the addition of the full probe specfication
language and indeed enhancements to both the semantics
for probes and their user descriptions. This is an original

contribution which provides a superset of the features of-
fered by an earlier (distinct) implementation of stochastic
probes due to Ashok Argent-Katwala.

In the immediate future the remainder of the ipc code
will be ported into ipclib. In the longer-term the modules
of ipclib should prove useful in the further development of
PEPA tools such as editor environments, teaching aids and
the generation of a PEPA component library.

The code for ipclib may be downloaded from:
http://homepages.inf.ed.ac.uk/s9810217/
software/.

4. Acknowledgements

This work has been sponsored by the project SENSO-
RIA, IST-2005-016004. Stephen Gilmore has participated
in countless helpful discussions. Jeremy Bradley first cre-
ated the ipc software tool and has since provided many help-
ful insights into its workings.

References

[1] A. Argent-Katwala, J. Bradley, and N. Dingle. Expressing
performance requirements using regular expressions to specify
stochastic probes over process algebra models. In Proceedings
of the Fourth International Workshop on Software and Perfor-
mance, pages 49–58, Redwood Shores, California, USA, Jan.
2004. ACM Press.

[2] J. Bradley, N. Dingle, S. Gilmore, and W. Knottenbelt. Deriva-
tion of passage-time densities in PEPA models using IPC: The
Imperial PEPA Compiler. In G. Kotsis, editor, Proceedings
of the 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunications
Systems, pages 344–351, University of Central Florida, Oct.
2003. IEEE Computer Society Press.

[3] J. Bradley, N. Dingle, S. Gilmore, and W. Knottenbelt. Ex-
tracting passage times from PEPA models with the HYDRA
tool: A case study. In Jarvis [7], pages 79–90.

[4] A. Clark and S. Gilmore. Evaluating quality of service for
service level agreements. In L. Brim and M. Leucker, edi-
tors, Proceedings of the 11th International Workshop on For-
mal Methods for Industrial Critical Systems, pages 172–185,
Bonn, Germany, Aug. 2006.

[5] N. J. Dingle, W. J. Knottenbelt, and P. G. Harrison. HYDRA:
HYpergraph-based Distributed Response-time Analyser . In
H. R. Arabnia and Y. Man, editors, PDPTA’03, Proceedings of
the 2003 International Conference on Parallel and Distributed
Processing Techniques and Applications, volume 1, pages 215–
219, Las Vegas, NV, June 2003.

[6] J. Hillston. A Compositional Approach to Performance Mod-
elling. Cambridge University Press, 1996.

[7] S. Jarvis, editor. Proceedings of the Ninteenth UK Perfor-
mance Engineering Workshop, University of Warwick, July
2003.

56

