
CHAPTER 1

HIERARCHICAL ARCHITECTURE
SIMULATION ENVIRONMENT

F.W. Howell and R.N. Ibbett

1.1. INTRODUCTION

The Hierarchical Architecture Simulation Environment (HASE) is a tool for
modelling and simulating computer architectures. Using HASE, designers
can create and explore architectural designs at different levels of abstraction
through a graphical interface based on X-Windows/Motif and can view the
results of the simulation through animation of the design drawings. This
chapter describes the design and animation facilities of HASE, compares
it with other simulation systems and concludes with suggestions for future
tools based on several years’ experience using HASE within the University
of Edinburgh department of computer science.

1.1.1. The Motivation

Advanced simulation tools are available for low level electronic design, such
as Spice for analogue circuits, and VLSI layout tools. However, tools for
rapid prototyping of architectural ideas are less well established. Simulation
languages can be used to model computer architectures, but the user has to
be an expert on simulation. This is also the problem of general purpose
simulation tools (e.g. SES/Workbench), where icons represent ‘queues’,
‘servers’ etc., and the link between a queueing model of an architecture and
the architecture itself is not immediately apparent to the engineer not fluent
in queueing theory.

1



2 F.W.HOWELL & R.N.IBBETT

Conventional languages (C, C++) are often used to construct simulators,
but this approach involves starting from scratch for each new project. User
interface aspects are often neglected as the tool will be thrown away with
the next architecture. This is very wasteful, as many aspects of computers
are constant between different architectures. The object oriented approach
offers a solution. Standard components (such as memories, microprocessors
and interconnection networks) can be held in a library. They can be con-
structed and linked together graphically on screen to create a simulation
of an architecture, in much the same way that standard components can
be wired together in a semi-custom VLSI tool. The difference is that the
simulation is not fixed to low level wires and chip pins, but is free to choose
the appropriate abstraction level.

HASE was designed to provide the flexibility of a raw programming
language with the user interface advantages of a graphical tool.

1.2. DESIGN OF HASE

1.2.1. Overall operation

The HASE tool acts as a graphical front end to SIM++1, a discrete event sim-
ulation extension of C++. SIM++ is used to describe the behaviour of basic
components of a simulation. It provides asim entity class from which
user components may be derived. Entities run in parallel and may schedule
messages to other entities using SIM++ library functions. The user can
link icons corresponding to entities together on screen and HASE produces
the SIM++ initialisation code necessary for simulating the network. New
components can be constructed by linking together standard components.
Each component can be simulated at any level of abstraction. A register
transfer level simulation will produce the most accurate simulation results;
behavioural level simulations run more swiftly. The tool allows different
parts of the simulation to run at different abstraction levels, so the user can
‘zoom in’ to specific parts of the design to simulate that at a low abstraction
level and run the rest of the design at a high level of abstraction. Figure 1.1
shows how the parts of the system fit together.

1.2.2. Internal design of Hase

Each project built using HASE has its own directory for storing the SIM++
code. This directory may be used for building and running the simulation



HASE 3

HASE

SIM++
Compiler

SIM++
Run Time
System

Library Network

Executable
Simulation
File

Parameters
File

Program
Memory Files

init.c Makefile

Trace
File

SIM++ Source Code

Figure 1.1. The top level design of HASE.



4 F.W.HOWELL & R.N.IBBETT

outwith the HASE environment using command line tools likemake, giving
the full flexibility of the SIM++ programming language. Alternatively the
simulation process may be controlled from the HASE front end. HASE
itself was written using C++, and a project is represented within HASE by
four main classes; theentity, theparameter, thelink and theport .

• Entity. This object stores a single component (or ‘entity’ in SIM++
terminology). The SIM++ code defining the behaviour is held in a file
which has the same name as the entity. Within the object are stored
details of the entity’s ports and parameters. In addition, it holds the
name of the bitmap file used for display and animation.

• Parameter. An entity may have many parameters. Details of these
are stored within HASE along with instructions for their animation.

• Port. An entity sends messages to other entities via ‘ports’. A
port has a name, an icon and position relative to the entity’s icon. The
simulation code for an entity is written using sends and receives to and
from these ports rather than directly to and from other entities. This
constraint on SIM++ (which allows direct communication between
any entities in the simulation) means that reusable components may
be constructed with a defined interface.

• Link. This holds a link between two ports, drawn as a line on the
screen. The object includes mechanisms for animating packets sent
between entities.

1.2.3. Hierarchy

A subdivided entity may be defined in terms of a network of lower level
components. Sometimes this is purely to make the design more manageable
on screen, with the simulation still being performed using the low level
components. It is also possible to provide simulation code for this higher
level component and choose to use this one object rather than the low level
network in order to obtain faster simulation time and less detailed results.

This choice of simulation level may be made at run time and is made by
toggling a switch associated with the object. The external interface of the
high level component is defined to be the same as that of the lower level
network. This allows the simulation level of each object in the simulation
to be set independently. Figure 1.2 illustrates two subdivided components
connected by their external ports.



HASE 5

Possible Connections

SUBDIVIDED
COMPONENT

NORMAL
COMPONENTS

Figure 1.2. Two subdivided entities are connected by their external ports.

Figure 1.3. The HASE user interface.



6 F.W.HOWELL & R.N.IBBETT

1.2.4. Parameter Types

HASE parameters are the crucial link between the simulation code and the
animation. They form the internal representation of each entity’s state and
include integers, floats, enums, structs and arrays. Once a parameter has
been defined for an entity within HASE, that parameter is available to the
simulation code as a normal C++ variable. The initial value of the parameter
may be set using a Motif dialog and changes in the parameter’s value may be
recorded in the trace file at simulation run time, ready to be picked up by the
animator (see section 1.4.1. for more details). Array variables are initialised
at run time by reading in a text file. This process is powerful enough to
allow streams of instructions (for example consisting ofCOMPUTE <time>,
SEND <proc#>, RECV <proc#>) to be parsed and read in to a component’s
memory.

1.2.5. Templates

Templates for building common structures such as arrays and meshes of
components are included. The user can slot any component into the template,
set the dimensions and all the required components and links are produced.
Current templates include a linear array, a 2D mesh, an omega network and
a 3D torus.

1.2.6. Output Approaches

Simulations are renowned for producing vast quantities of raw data; trans-
ferring this into useful information is no trivial task. The result of a single
simulation run is a trace file with timestamps showing when all changes
in state and messages occurred. HASE includes two visualisation tools to
make sense of this information; an animator (see section 1.4.) and a timing
diagram display. The hierarchy is used to control the amount of information
displayed on the timing diagram and logic-analyser style measurements can
be taken.

Used in conjunction, these two tools show in detail what is actually going
on during a simulation run, which is very useful when developing models.
For very low level debugging purposes it is sometimes necessary to resort to
looking at the trace file itself. Once a model has been developed, it is natural
to stretch it with heavy workloads. This can rapidly generate unmanageably
large trace files, so there is a mechanism in Hase for controlling how much
trace information is produced (section 1.4.1.). For the largest runs it is usual



HASE 7

to garner a small number of statistical measures from the model. These
measures are taken using classes provided in SIM++ for histograms, counts
and accumulated averages.

Repeated runs are required to investigate how a model behaves using a
range of parameters2. These runs are typically controlled by a Perl script
and graphs produced using the GNUplot program.

1.2.7. Recycling Simulation Objects

One of the major benefits ascribed to object oriented techniques is that
software components may be reused by others instead of being recreated
from scratch.

This ideal has nearly been attained by hardware simulation systems;
hardware components have well defined inputs and outputs so designs may
be constructed by gluing together off-the-shelf components. The ideal is
only “nearly” attained in this case as effort is still required to package
components for others to use, so a certain amount of reinvention still occurs.

The situation isn’t so rosy with object oriented software. This is partly
because software is inherently more flexible than hardware. It becomes more
difficult to define interfaces between objects when they aren’t constrained to
N physical wires, but may instead be composed of data types, interdependent
methods, global variables and so on. It requires a significant investment in
time and effort to document and prepare objects so others may use them3. As
a result, few objects are generally shared between people, and most people
only reuse code they have written themselves.

It was an early design aim of the Hase system to encourage object re-use
as much as possible. This has met with some success in practice (but not
as much as was hoped for). The interface to most Hase objects is by typed
messages to ports, which makes reuse of objects simpler than the general
C++ case (but not quite as straightforward as low level hardware models).
Objects which play by these rules may be included in a project with no
problems. However Hase does not enforce this model; it is possible for
objects to use SIM++ techniques to communicate using global variables or
to bypass the ports. This makes it more complicated to simply slot such
an object into a project. Practicalities such as proper documentation being
provided for objects also affect reuse.

The Hase library system has been designed to address these issues.
Rather than storing a set ofcomponents, it stores a set ofprojectseach
of which includes a list of components, the parameter and message type



8 F.W.HOWELL & R.N.IBBETT

declarations and the global variables.

1.2.8. Object Oriented Databases

There has been substantial commercial and academic interest in object ori-
ented databases recently. One common type of object oriented database is
an extension to an object oriented language (such as C++) which provides
for persistenceof the objects. This approach is advertised as being suitable
for storing the complex objects common in CAD systems, and providing
desirable facilities such as version control and checkpointing of designs.

To investigate this approach to managing designs, Hase objects were
made persistent by using the ObjectStore4 database system. The experience
was not without its problems. All HASE source files had to be prepro-
cessed by the ObjectStore compiler before seeing the C++ compiler, which
lengthened compile times. General run time performance became sluggish
as all standard C++ pointers were replaced with persistent pointers, which
could potentially result in a disk access. Any changes to class definitions
made all previous database files unreadable (unless they were processed
using a command line tool). Substantial source code modifications were
required to be compatible with ObjectStore assumptions, and more modific-
ations were later needed to obtain reasonable performance.

The conclusion from this experiment with object oriented databases is
that the technology isn’t yet mature enough for this type of CAD system.
The general idea of allowing persistent objects within a language (without
requiring I/O code) is a good one to be greeted with enthusiasm; in practice,
however, adding an object oriented database requires much more effort than
it would take just to write I/O code.

1.2.9. Limitations of graphical simulation systems

Die hard hackers sneer at graphical tools in general since they may never be
as flexible as a programming language. This lack of flexibility is indeed a
problem withentirelygraphical tools which construct models at all levels by
joining icons. At the lowest level of design, a description in a programming
language is often best. However, there are also limitations withentirely
textual descriptions; hardware and software designers usually use pictures
to explain a system in terms of its subsystems. A compromise is therefore
in order.

HASE is an inherently graphical system; if no pictures are needed, then
there is little point in using it. However it does not impose a graphical



HASE 9

approach to the specification of individual objects. These are described in
SIM++ and the full power of SIM++ is available to the programmer.

This compromise is finely balanced and it typically changes during the
life cycle of a simulation project. Initially when the design is fluid, animation
and graphics are very important for communicating ideas between research-
ers. Later, when the design solidifies, the important aspect is simulation run
times for collecting experimental data.

1.3. OTHER APPROACHES

1.3.1. VHDL

VHDL has become established as the standard hardware simulation lan-
guage. It enjoys support from all major EDA companies and provides for
simulation at levels from behavioural down to gate level. This section com-
pares the VHDL approach with using a C++ based simulation language for
simulating hardware systems.

1.3.1.1. Why use anything other than VHDL? High level simulations
incorporating software are usually written in C or C++ since these are the
languages used by programmers. It is possible to link code from different
languages, but the process is never entirely painless as interface routines
have to be written to convert between the different data formats. The ideal is
to use one language throughout. McHenry6 uses VHDL for high level system
modelling, and Swamy7 describes object-oriented extensions to VHDL to
make it more suited to system modelling.

VHDL incorporates very powerful features for modelling hardware;
there are explicit constructs for wiressignals and detailed timing inform-
ation may be included. It’s possible to detect glitches and other low level
hardware problems.

At the software level, good support is also included for concurrent pro-
cesses; e.g.

architecture behavioural of component is
signal w : bit := ’0’;

begin
proc1: process is
begin
w <= 1;



10 F.W.HOWELL & R.N.IBBETT

wait for 10 ns;
w <= 0;
wait for 10 ns;

end;
proc2: process is
begin
wait until w = ’0’;

end;
end behavioural;

Concurrent processes may be includedwithin the description of a com-
ponent. In SIM++, the unit of concurrency is theentity object. These
entities communicate by sending and receivingevents, which may contain
data objects themselves. There is no concept of awire as there is in VHDL,
and no concept of a hierarchy of components (all entities are equal and may
send messages to any other entity). The hierarchy is imposed on SIM++ by
the Hase concept of ports. Programming in SIM++ is akin to programming
a message passing parallel program.

The primary advantage of C++ based simulation languages (such as
SIM++) over VHDLfor system simulation is that linking to software libraries
is significantly more straightforward. Basing communication upon messages
passed between components rather than upon asserting signals allows a
higher level view of the system, with the ability to send a data object at any
abstraction level. VHDL on the other hand has much better tool support and
standardisation than the various C++ simulation systems and includes direct
support for modelling low level wire behaviour.

1.3.2. SIMULA / DEMOS

Another popular simulation approach is based on SIMULA and the discrete
event package built on top of it (DEMOS). The original version of HASE
was based on DEMOS5; the switch to SIM++ was motivated by the higher
performance of C++ and thedesire to interface to existing Cand C++ libraries
of code. Interaction between objects is based on sharedresourceswhich may
have several operations defined, such aswait, coopt (a synchronisation).

1.3.3. Ptolemy

The Ptolemy project at Berkeley is a wide ranging simulation effort with a
focus on signal processing8. It is a framework encompassing many different



HASE 11

simulation styles, including a discrete event domain. The package includes
support for animations written manually using the Tcl/Tk toolkit.

1.3.4. Commercial Tools

Several commercial tools are available for network modelling and general
system simulation, an example being BoNeS9. These tools present a slicker
and more complete interface than research prototypes like HASE, but as
their source code isn’t freely available they are less suited to playing with
new ideas and adding new features.

1.4. ANIMATION

Watch the cogs and pistons of a steam engine for a while and you get a feel
for the workings of the machine. This is trickier with electronic systems;
although they are many times more complex than the steam engine, they just
appear to sit and work their magic without effort (bar the odd flashing light
and smoldering component).

An animation of a simulation model can generate a similar intuitive
feel for how an electronic machine works. This often suggests ‘obvious’
improvements and highlights design flaws which may be concealed by a flat
diagram or descriptive paragraph. It is also fun to watch a complex design
coming alive on screen and behaving as intended (or, as is more likely,not
behaving exactly as intended).

The main reason that animation isn’t usually an integral part of the design
process is the amount of effort involved in building one. The problem with
creating an animation separate from the main design is that changes to the
design have to be made to the animation code as well. This makes the
animation diverge from the actual design and become unusable.

Hase addresses this by making animation anintegral part of design.
Simple animations are generated automatically, based on the state changes
of components and the messages which are passed between them. More
complex animations may be customised to includeGIF colour icons.

1.4.1. The Approach

Animation is based on the changes in value of a component’s parameters.
These may be dragged onto the screen using the component editor (fig-
ure 1.4); once this has been done, any time that parameter’s value changes



12 F.W.HOWELL & R.N.IBBETT

it appears on the display.

Figure 1.4. The component editor allows the state variables of an object to be dragged
onto the display for animation.

The way a parameter is shown may be varied.Value just shows the
value in screen (e.g.123 for integers,1.234 for floats,BUSY for enums).
Name+Value shows the variable name as well (e.g.curr state = BUSY).

Enumerated parameters may be displayed as icons instead of text; the
icons are read in from bitmap files with the same name as the state (e.g.
BUSY.btm or IDLE.gif). This is a simple but powerful technique for state
animations; by simply providing the bitmaps for the corresponding states
a customised animation is generated. These bitmaps may be displayed
alongside the entity, or alternatively may be used to set the entity’s bitmap.

structparametersare displayed by drawing a box around theconstituent
elements (each of which may be displayed as above).

Thus far attention has been focussed on animating single parameters;
any number of a component’s parameters may be dragged onto the screen to
be shown during animation, or they may be left hidden. It is also possible to
define array parameters. The contents of these may be displayed on screen
in a list box with a scroll bar and any updates or reads from the array are
highlighted during the animation. Such updates are written to the trace
using theMEM READ() andMEM UPDATE() macros in the SIM++ code. This
technique has proved useful for displaying register contents and instruction
buffers.



HASE 13

A simulation is not solely composed of state changes; there are also the
messages sent between components. These messages may contain any form
of data or handshake signal. The basic icon for a “message” may take any
of the forms of static state parameters outlined above. This icon is animated
by moving it down a link from one entity to another. The requisite line in
the trace file is generated by thesend DATA() function in the SIM++ code,
and the animation of the message is performedat the time the message is
sent. Note that this is not necessarily the same as the time the message is
acted upon by the receiving entity, as every SIM++ message is queued until
the receiver is ready for it.

Figure 1.5. Changes in a component’s state may be displayed on screen.

To show how the simulation code relates to the animation, figure 1.5
shows asrc object connected to aqueue and the following fragment shows
part of the corresponding SIM++ code .

// excerpt from src.sim
Pkts++;
Flits++;
if (ok_to_send)
state=SRC_OK;

else
state=SRC_BLOCKED;

dump_state();
DataPkt d(123);
sim_hold(1.234);
send_DATAPKT(out,d,0.0);
sim_wait(ev);

An example shows the format of the trace file which is generated on
running the simulation and read in by the animator:-



14 F.W.HOWELL & R.N.IBBETT

// example trace file generated at run time
u:src0 at 0.000: P SRC_BLOCKED 12 123
u:queue0 at 0.000: P FULL_6
u:src1 at 0.000: P SRC_OK 1 4
u:queue1 at 0.000: P FULL_1
u:src0 at 1.234: S out 123

Sometimes protocols require several messages to be exchanged between
entities; in these cases it would be messy to animate all the acknowledge
packets, so it is possible to send messages without generating any trace
information. For large scale simulations, it is also often useful to avoid
animating messages altogether and just show the state changes, so the “trace
level” may be set to control which types of trace information are generated.
The levels are:

comments and line numbers1
message sends 2
memory updates 3
state changes 4
summary 5

Table 1.1. The levels of trace generation.

Setting the trace level to 4 (say) includes state updates and summary
information in the trace, but not messages, memory updates or comments.

1.4.2. An example

Figure 1.6 shows an animation of a crossbar interconnection network with
input and output queues. When the inputs block the icon is highlighted; it
is possible to see the individual flits moving down the links and the queues
grow and shrink dynamically.

1.5. APPLICATIONS

Architectural simulation work using the DEMOS prototype version of HASE
is detailed in5. In 1992 work began on the current SIM++/Motif version
which has been used in many MSc and final year honours projects, including
simulation of multiprocessor WAN bridger/routers, simulation of the DLX
processor and simulation of the DASH multiprocessor10. More details of



HASE 15

Figure 1.6. An interconnection network with input and output queues demonstrates the
HASE animation facilities.



16 F.W.HOWELL & R.N.IBBETT

projects using Hase are given in11. Currently the main focus is on simulating
multiprocessor interconnection networks and parallel MPI software. Many
of the projects have involved linking simulation code to substantial existing
libraries of C or C++ routines.

1.6. CONCLUSIONS

1.6.1. Important Messages

Animation has proved to be the most appealing feature of the Hase tool.
The way in which it is incorporated into the design process allows swift
construction of animation models and encourages communication and de-
bate between designers. These advantages couldn’t be obtained with an
animation tool separated from the main design environment as there would
be a problem maintaining consistency between the animation model and the
one used for simulation.

The combination of an efficient threaded C++ with messages to commu-
nicate between objects is a powerful and intuitive programming model for
software and hardware systems. It has also been useful that Hase imposes
no restrictions on using SIM++ features.

The final message is that no simulation system will encompass all the
needs of all projects. Many of the Hase features were included by students
“extending” Hase to cope with the particular requirements of their project
and this has proved the ultimate in flexibility, and a major advantage of
having the source code and design available (which wouldn’t be the case
with commercial tools).

1.6.2. Future of the approach

New directions for the tool currently being investigated are closer tie-ins with
an object oriented version of VHDL (to strengthen the links with hardware).
VHDL itself is an attractive language for modelling hardware, but needs
the addition of messages to model systems at a higher level. For software
systems, it is very convenient to use a C/C++ like language since this makes
it easy to include existing libraries of software.

Use of a parallel simulation language has been considered since the start
of the Hase project and SIM++ originally had a timewarp version, but in pro-
jects to date the bottleneck hasn’t been the simulation run time of individual
runs, but rather the time to construct simulations. The lengthy simulations



HASE 17

have been successive runs with different parameters which have been run
simultaneously on different workstations. We are currently experimenting
with our own implementation of SIM++ to run on the Cray T3D to map out
the performance of a model over a large area of the input parameter space
in parallel.

REFERENCES

1. JADE INC, Sim++ User Manual, (Jade Simulations InternationalCorp.,
Calgary, Canada, 1992).

2. J. HILLSTON, A Tool To Enhance Model Exploitation, Technical Re-
port CSR-20-92, Dept. of Computer Science, University of Edinburgh,
1992.

3. B. STROUSTRUP, The C++ Programming Language(Addison-
Wesley, 1991), 382-384.

4. OBJECT DESIGN INC, ObjectStore Release 3.0 User Guide, (Object
Design Incorporated, Burlington, MA, 1993).

5. A.R. ROBERTSON and R.N. IBBETT, “HASE: A Flexible High Per-
formance Architecture Simulator”, in Proc HICSS-27(IEEE, Hawaii,
1994).

6. J.T. McHENRY and S.F.MIDKIFF, “VHDL Modeling for the Perform-
ance Evaluation of Multicomputer Networks”, in Proc MASCOTS-94,
(IEEE Computer Society Press, New York, 1994).

7. S. SWAMY, A. MOLIN and B. COVNOT, “OO-VHDL: Object-
Oriented Extensions to VHDL”, IEEE Computer, 28:10, 18-26 (1995).

8. J. BUCK, S. HA, E.A. LEE and D.G. MESSERSCHMITT, “Ptolemy:
A Framework for Simulating and Prototyping Heterogeneous Systems”,
Int. J. Comp. Sim., 4, 155-182 (1994).

9. S.J. SCHAFFER and W.W. LaRUE, “BONeS DESIGNER: A Graph-
ical Environment for Discrete-Event Modelling and Simulation”, in
Proc MASCOTS-94, (IEEE Computer Society Press, New York, 1994).



18 F.W.HOWELL & R.N.IBBETT

10. L.M. WILLIAMS, Simulating DASH in HASE, (MSc Dissertation, De-
partment of Computer Science, University of Edinburgh, 1995).

11. R.N. IBBETT, P.E. HEYWOOD and F.W. HOWELL, “HASE:
A Flexible Toolset for Computer Architects”, to appear in
The Computer Journal, (1996).



Index

Animation, 11

BoNeS, 11

C++, 2
Crossbar network, 14

DEMOS, 10

Ptolemy, 10

SIM++, 13
SIMULA, 10

VHDL, 9

19


