
Chapter 7

Conclusion

Several methods for attacking the central problem of designing explicitly parallel
programs have been presented.

The techniques have focussed on solving the low level aspects of parallel pro-
gram design rather than in creating higher level abstractions. This is because the
low level problems have not been solved adequately and higher level programming
models are all built on the low primitives. The message passing model of MPI
was used.

The main difficulty is developing a technique which is simple enough to use at
the initial stages of design yet is accurate enough to provide meaningful guidance.
The main competition for any tool for parallel program design is not so much
an alternative tool, rather the current situation where performance is left as a
“tuning” task to be done after the event. Is it so bad that this aspect is left to
tuning? Is design important? In some ways the answer is no. Since software is
(superficially) easy to change, why not just build a program one way, test it then
make design changes afterwards? In other ways, the fact that the performance
characteristics of the primitives are not given means that the program designer
is forced to make decisions which affect the performance with nothing other than
guesswork and intuition for guidance. It is like designing a circuit with no data
sheets.

So the initial phase of work was to provide “data sheets” for programmers
(chapter 3). These may be used to provide concrete data to help with pencil and
paper calculations at the initial stages of design. Alone, these may be sufficient
for many people. A characterisation program generates the sheets automatically
for an MPI implementation. It times all the MPI functions using a range of data
and machine sizes, then fits a curve to the data. The aim of the data sheets is
to describe the delays as seen by the programmer and not to characterise the
hardware performance. Thus the time for an MPI Send is quoted as the time
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a process is delayed by calling MPI Send (and not the time for the message to
arrive). Sheets have been generated for a network of workstations, the Cray T3D
and the IBM SP2.

How can the information in the data sheets be best used? This was addressed
in chapter 4 which used the raw data from such simple models along with a
graphing package to produce scalability plots from equations. This is a very
quick method for obtaining rough estimates. The method produces useful graphs
showing how much (if any) speedup is expected. The shapes of the expected
speedup curves are very similar to those measured on the Cray T3D and a network
of workstations. It is easy to see the effects of varying input parameters on a
program’s overall performance; for example computation time is only predictable
to an order of magnitude so speedup curves at both ends of the compute time
range can be produced. The restrictions of the technique are that the models are
generated by hand, and it is hard to incorporate data dependent communications.

For more complicated patterns of communication, or where more detail is
needed, the reverse profiling technique of chapter 5 provides performance pre-
diction using the MPI profiling interface. This applies the data sheet model to
programs in the development stage to produce timing diagrams for a single run
or scalability graphs for multiple runs. The attraction of this technique is its ease
of use. Predictions may be obtained as part of normal development. It is most
appropriate for producing timing diagrams showing the detailed behaviour of a
single run. Cacheing effects mean that compute time may only be estimated to
a factor of ten, but communications time is predicted to a factor of two. The
program’s exact data dependent communications patterns are incorporated into
the expected timing diagram, as long as there are no non-deterministic receives.

Non-deterministic programs may be handled using discrete event simulation.
Chapter 6 described a version of this approach. It is a direct execution simulator
which uses the running application to drive the simulator kernel. It generates
predicted timing diagrams, and because it maintains strict ordering of simulation
events it is able to handle non-determinism correctly. The simulator implements
low level message passing two to three times faster than implementations of MPI
on a single workstation. Because it is a sequential simulator, however, the time
to simulate a program running on a parallel machine grows with the number of
processors simulated. The MPI data sheets provide the communications model
used by the simulator. In addition to these models, simulation allows more de-
tailed models of network architectures to be specified, and some experiments were
conducted using graphical techniques to keep the models visible. The cycle count-
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ing technique was also used to obtain more accurate estimates of compute times.
However it was found to be too cumbersome for widespread use. The simulation
approach provides the most detailed results and similar techniques have been
suggested by others for parallel program development. However it is too detailed
for most developers and it requires a re-implementation of the message passing
interface rather than simply building on top of an existing one.

7.1 Prediction as part of design?

In the introduction, it was stated that the ideal was to move away from post-
mortem techniques for performance analysis towards incorporating performance
into the design stage. From a design point of view, it is better to obtain evalu-
ations of proposed solutions at an early stage of development rather then when
coding is completed. The lightweight pencil and paper and graphing techniques
may be applied without having to realise the design as a concrete implementation,
so fit naturally into the early stages of design to help choose between alternative
strategies. The more sophisticated techniques of reverse profiling and simulation
both rely on complete programs, or sections of programs, in order to generate
more accurate predictions. Thus they are appropriate later in the design cycle for
selecting between different key algorithms or determining whether how a program
will run on a possibly unavailable machine.

The increase in level of detail of the approaches ties in naturally with top down
design, since an appropriate prediction technique may be used at each stage of
refinement. At the simplest level, overall estimated timings for application phases
may be used. The few phases expected to take the majority of the time may be
analysed using a more detailed method. For all the MPI programs developed, the
application phases were separated with some form of global communication or
synchronisation, so the total time could be calculated by summing the component
phase times. This separation of phases (into input, compute and output stages
for example) was done in order to obtain correct behaviour of the programs, but
also made modular prediction of performance simpler. The BSP model uses the
same approach throughout to simplify predictions.
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7.2 Further work

7.2.1 Data sheets

Parallel programmers are not given sufficient information at design time to design
effective parallel programs. The MPI data sheets presented in chapter 3 go some
way towards rectifying this situation for message passing, but similar measure-
ments should be available for other programming models.

The design of the MPI data sheets themselves could be improved, possibly
expanding the summary section at the start to include sample times for “common”
data and machine sizes in order to save having to plug values into an equation.
The current data sheet generator could be expanded to characterise I/O times in
addition to the communications functions. It could also characterise a range of
computation operations to improve estimates of computation times.

Such data sheets should be a standard part of parallel library documentation.

7.2.2 Combining reverse profiling and simulation

The reverse profiler could be extended by including a parallel simulation engine
such as that used in Lapse [1]. This would combine the ease of use of reverse
profiling with the ability to handle non-deterministic routines.

7.2.3 Improving compute time prediction

The compiler, processor pipelining and memory hierarchy all conspire to make
compute time unpredictable at design time. The only foolproof methods are
measurement and full simulation but neither is convenient to do at design time.
Intermediate techniques based on cycle counting of assembler code or interpret-
ation of compiler parse trees are too tied to particular implementations to be
generally applicable, and in any case are prone to order of magnitude errors.

So it is only practical to predict compute times to within an order of mag-
nitude. The techniques of this thesis left the basic compute time step as a para-
meter to allow early experimentation to check how sensitive an algorithm is to
such compute time variations. In practice, many of the algorithms run on the
Cray and the network of workstations produced remarkably little change in expec-
ted speedup. They were either communications dominated to an extent that only
minimal speedups were available, or computation dominated, giving reasonable
speedups across the compute time range. It was only for algorithms with roughly
equal computation and communications times that getting the computation step
right was essential.
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7.3 Overall conclusion

This thesis has presented three approaches to performance prediction; each has its
merits. The best technique to use is the simplest one possible. The information
in the data sheets along with a calculator (or pen) may well be enough for simple
programs. The graphing package is not much more difficult to use for estimates of
speedups. For producing timing diagrams showing the way in which complex data
dependent communications will work in practice, reverse profiling is as simple to
use as standard profiling. Simulation is overkill at the early stages of design, but
is appropriate for non-deterministic applications, or for investigating the effects
of a program on a network.
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