Chapter 1

Introduction

This thesis documents usable techniques for designing parallel programs with a
priori knowledge of their run time. It asks whether the guesswork can be taken
out of the design process and replaced with engineering decisions based on firm
data.

There is currently a gulf between the sophisticated performance analysis tech-
niques developed by the academic community and the techniques which are used
in practice.

Because of this, the approach taken in this thesis deliberately focusses on the
low level parallel programming tools actually used, in the hope that it will have
an immediate practical benefit to developers. Higher level techniques can build
on this foundation later.

The contribution of this work to the subject is both in the form of useful tools
for characterising and predicting performance and in showing that post-mortem
techniques may be supplemented by ante-natal design.

This introduction reviews performance analysis techniques described in the

literature and outlines the approaches investigated in the thesis.

1.1 Parallel program design techniques

The two extremes in the art of performance analysis are PRAM style complexity
theory and post mortem tracing.

In practice, programmers usually concentrate on writing programs with a clear
structure and worry about the performance afterwards. This is not because they
don’t care about the performance, but because it takes too long to work it out.

Performance is not the only design aim of a parallel system, and may not even
be the the most important. However it is the one which differentiaties parallel

from sequential software development.



Various techniques for performance analysis are outlined below, including com-
putation models, high level models, mathematical models, software and hardware
engineering, real time systems development, simulation, micro-benchmarking and

sequential techniques.

1.1.1 The null method

This is the common approach for developing parallel programs. If a performance

analysis is done, it is an afterthought.

1.1.2 Post-hoc analysis

Many papers have been written about the performance of a program on an archi-
tecture. A good example is Singh and Hennessey’s paper on an ocean modelling
program [23]. These specific examples are interesting, but shed little light on how
one is supposed to go about developing a different program on another architec-

ture.

1.1.3 Higher level techniques

One approach is to restrict programs to using high level operations which have
been implemented efficiently (e.g. algorithmic skeletons [9] and the parallel util-
ities library at the Edinburgh Parallel Computing Centre (EPCC) [8]). This has
considerable appeal as it frees programmers from such low level concerns as per-
formance. However the techniques are not sufficiently well advanced to be applied

to all problems and are still an area of active research.

1.1.4 PRAM

Parallel algorithm researchers are concerned with predicting the asymptotic com-
plexity of algorithms, where the quality of an algorithm may be expressed in big
O notation (e.g. an O(log N) algorithm is “better” than an O(N?) one). This ap-
proach provides a clean, simple method of comparing algorithms, but has several
major drawbacks.

The first is that the computational model is idealised and will therefore not
(necessarily) have much relevance to actual implementations of algorithms. Work
in progress to make the models more complex and realistic (such as the HPRAMs,
other PRAMS) tends to make the model harder to use and hence less useful. The
other approach, redesigning parallel computers to implement the models more

effectively is fairly revolutionary and hence not likely to happen unless there

2



is overwhelming evidence in favour of programs being easier to design using a
PRAM-based model. Interestingly, PRAM-advocates insist that a major defi-
ciency of implicit parallelism through (say) dataflow or functional languages is
that performance prediction becomes trickier.

The second drawback is that the basis for comparison (asymptotic complexity)
is only valid for an infinite data size or number of processors. In practice, the

constant factors may be more important for machine/program sizes of interest.

1.1.5 BSP

An interesting approach, proposed by Valiant [43] provides a computational model
consisting of a sequence of parallel supersteps within which local computation
is performed and communication requests are posted. Between each superstep
is a global barrier operation after which all posted requests are guaranteed to
complete.

Restricting synchronisation to global barrier operations (and the programming
style to SPMD) simplifies the general performance prediction problem to one
of estimating the maximum superstep computation time and the time for the
global reorganisation of data at each superstep. The performance of a machine
is characterised by three values determined experimentally: s is the speed of
computation of a process in flops, 1 is the synchronisation latency cost in units of
s and g is the number of flops per word required for all processors to communicate
a message simultaneously. Hill, Crumpton and Burgess [17] present interesting
results using an implementation of BSP (BSPlib) on an IBM SP/2 and ethernet,
comparing simplistic pencil and paper modelling with results from a profiling

version of the library.

1.1.6 LogP

An attempt to create a more realistic model based on actual machine paramet-
ers rather than an abstract ideal is LogP [10]. The parameters are L, an upper
bound on the latency suffered by a word sent from one module to another, o, the
overhead during which a processor is occupied sending or receiving a message,
g, the minimum time interval between successive message transmissions of recep-
tions, and P the number of processors [10]. The authors note that “Such a model
must strike a balance between detail and simplicity in order to reveal important
bottlenecks without making analysis of interesting problems intractable.”

The parameters can be estimated using a simple benchmark routine. They

provide a simple pipeline model for point to point communications. Costs for

3



collective communications may be expressed in terms of the point to point costs,
but this is not incorporated directly in the model.

1/2 developed by Hockney and Jesshope,

Another modelling notation is R, /n
originally for vector performance. R, is the maximum rate of transfer (for infinite
message sizes) and n'/? is the message size which achieves half of this rate. This

has some advantages over
startup_time + message_size x time_per_byte

in indicating the “break-even” point for message sizes in a usable way. Num-
rich [38] gives these values for point-point communication on the Cray T3D net-

work.

1.1.7 Scalability analysis tools

The NASA AIMS/MK toolset [32] extracts a program execution graph from a run
of a program and uses this to feed into a discrete event simulator. Sarukkai/Mehra
offer abstract interpretation techniques for generating complexity estimates [40].
Dunlop et al [1] looked at estimating the workload on the floating point unit and
the different parts of the memory hierarchy given Fortran source code, and used
this estimate for predictions.

Another top level approach described by Driscoll [11] looks at the total time
spent in communication and computation throughout the program, using a vari-
ant of Amdahl’s law to predict speedups. Gustafson [14] looked at the case of

problem size scaling with machine sizes.

1.1.8 Queueing model techniques

Queueing theory is a well developed mathematical technique for analysing steady
state performance of queueing networks. King [25] describes the application of
queueing theory to computer systems. Analytical solutions exist for simple net-
works but more realistic networks must be simulated. The basic parameters of a
queueing model (arrival rate, queue sizes etc.) may correspond directly to design
parameters.

Queueing models have been used for prediction. Liang and Tripathi [26] used
a simple queueing model to analyse fork/join program graphs. Mak and Lung-
strom [28] developed queueing models of architecture and program for their pre-

dictions.



1.1.9 Petri-net techniques

Petri nets [34] have been used for modelling behavioural aspects of concurrent
systems, particularly detecting the presence of deadlocks. Standard Petri nets do
not incorporate the notion of time, so timed and stochastic extensions are typically
used for modelling performance of systems. The problem with these more complex
varieties of Petri nets is that they make mathematical analysis more difficult, and
the state space becomes too large to search. Even with standard Petri nets,
the graphical models rapidly become incomprehensible. Hartleb [15] looked at
stochastic graph techniques for parallel program performance. Graph nodes were
deterministic, or used a random distribution. Reduction techniques were used for
simplifying models. Wabnig [21] derived a Petri net model of the communications

network from first principles and used this for performance studies.

1.1.10 Process algebras

Process algebras (CCS [29], CSP [19]) incorporate better support for modelling
hierarchy than Petri nets, and are amenable to analysis using state space searching
techniques.

Timed variants such as TCCS [30] may be used for proving properties such as
“state X occurs before state Y”, but are not so concerned with actual run times.
PEPA [18] allows for stochastic state transitions, with standard techniques used
to analyse the resultant Markov chains.

If delays are deterministic rather than probabilistic, then process algebras give

no more insight than simulation.

1.1.11 Parallel software engineering

Traditional software engineering techniques (Yourdon, Mellor, etc) generate a
large amount of concurrency in the initial “structured analysis” phase, which
they subsequently remove to produce a sequential structured design. They have
nothing to say about the problems of a parallel implementation.

Attempts to develop software engineering techniques for parallel systems such
as PARSE [22] have focussed on extending dataflow techniques and defining their
semantics more rigorously, but have no advice on how to build in efficiency. They
are also geared towards distributed systems (a few distinct processes communic-

ating) rather than parallel systems (many identical processes communicating).



1.1.12 Hardware engineering

Concurrency comes naturally to hardware engineers as electronic components all
run in parallel. Timing issues are often central to the design, so predicted timing
diagrams are drawn up early in the design.

Design tools are used to a far greater extent than in the software community;,
with graphical tools such as schematic editors, language based tools such as VHDL
and Verilog simulators, state machine designers etc etc.

Unfortunately hardware is not software so hardware design techniques cannot
be directly applied to engineering of parallel software.

The important differences are :

e software components are never specified as rigorously as hardware compon-

ents.
e interactions between software components are less restricted.

e a software component may be orders of magnitude more complex than a

hardware component.

Software gives the engineer infinite rope to play with, whereas hardware is
always bounded by physical constraints like pin count and chip area, so by ne-
cessity hardware components are better defined than software ones. Attempting
to restrict software to use a controlled interface is one of the aims of software
engineering, but the temptation is always there to bypass the restrictions and use
a “quick and dirty” technique. Doing this in a hardware design is of course also
possible, but much less common. Having to cast ideas into the stone of a circuit

board encourages cleaner designs than does the free form of software.

1.1.13 Real time systems

The area of real time systems covers similar timing issues to that of parallel
programming, but a poor design may be fatal rather than just inefficient. The
emphasis is on predictability rather than on absolute performance; an implement-
ation must guarantee that a deadline is met.

The Flex language [24] inserts #pragma comments with the expected timing
equation for each section of code. The MAXT approach [36] attempts to calcu-
late the maximum execution time of programs using software annotations and an
extra compilation step. The restrictions of this method are that compile time pre-

dictions of loop counts are not always possible and also recursion is not handled.



Park and Shaw [33] present a timing schema approach which benchmarks the per-
formance of a generalised assembler code on an architecture (with instructions
such as mov, add, mul etc.) and then parses high level source code in terms of

these instructions.

1.1.14 Direct execution simulation

Direct execution simulators allow detailed modelling of hardware and tweaking
of all kinds of parameters. Indeed Brewer [5] recommends using simulation as a
development platform in preference to running on a machine, based on experience
with the Proteus simulator [4] of shared memory software on the CM-5 machine.
The network parameters are fed in using a network model such as that described
in [2] or by doing a detailed hop by hop simulation.

One possible criticism of this approach for software development is that the
models take too long to construct and verify, and it is no easier than running on
the actual machine. Since the models are hidden from the programmer (behind
the mystique of the simulator), it is another post-mortem like approach, the only
difference being that the actual machine is not used.

The advantage of this detailed approach is that network contention and other
such issues may be modelled as accurately as desired.

An example of simulation applied to message passing software is PS [3], a dir-
ect execution simulator for PVM based on the Ptolemy simulation system [6]. It
uses a complex model of an ethernet interface for its communications subsystem,
and has been used for PVM applications running on a small number of worksta-
tions across a network. Pouzet [35] described a simulation tool for Transputer
applications.

Fahringer [12] developed a system for guiding compiler optimisation as part of
the Vienna Fortran Compilation System. The system statically computes a small
set of parameters which characterise the overall behaviour of a parallel Fortran

application.

1.1.15 Benchmaps

At the boundary between simulation and analytical techniques less work has been
done. Benchmaps were developed by Toledo [42, 41] for prediction of data parallel
programs. His technique relies on benchmarking the operations of a data parallel
language (NESL), fitting a linear equation to the data, and applying the model
to a running program. The memory hierarchy is modelled in a simple way with

different cost models applying depending on whether or not the data is likely to fit
7



inside the cache. He reported errors of about 33% in predictions of performance
on Sun workstations and the CM-5. Cache conflicts in the SGI Indigo workstation
meant that his method would only predict performance to within a factor of about
15. Saavedra developed a micro benchmark approach to characterise the low level

performance of the KSR1 memory system [39].

1.1.16 Post mortem

If performance analysis is done at all by programmers at the moment, they are
most likely to use one of the post mortem trace analysis tools. Examples include
Paragraph [16], Pablo [37], Vispad [20], the Upshot tool included with MPICH [31]
and XMTYV included with the LAM implementation of MPI [7].

They work by instrumenting a program with tracing commands, and gener-
ating a trace file with time stamps.

Post mortem techniques measure one run of the performance on one machine
(and say nothing about the performance on other machines, or with different data

sizes).

1.1.17 Sequential code analysis techniques

Tools exist for optimisting code on sequential machines, such as prof, gprof, the
SPARCworks analyzer etc. These measure figures such as the number of times
each function is called and the percentage of time spent in each. MacDonald [27]

describes methods for analytical predictions of sequential code execution times.

1.2 Thesis overview

The methods described in this thesis are based on the standard message passing
model MPI [13]. Message passing was selected for two reasons; it is more stand-
ardised than shared memory and its explicit parallel nature cries out for a design
technique.

The performance of the interface is characterised by a routine which generates
datasheets for each MPI function. This characterisation of the primitives is per-
formed in the same spirit as Toledo’s benchmapping approach for data parallel
programs [42]. The characterisation takes the form of an equation for each MPI
function, along with graphs displaying the data from which the equation was de-
rived. Chapter 3 describes the routines used to characterise the performance of

parallel building blocks and generate the data sheets. (figure 1.1).



Performance

— Data
Characterisation Sheets

(Chapter 3)

Figure 1.1: Performance predictions are based on automatically generated data-
sheets for an architecture.

These data sheets may be used as they are for initial design. A simple cal-
culating utility for evaluating the equations for given parameters was written to
help with this.

Pencil and paper analysis becomes tedious and time consuming for all but the
simplest program, so three computer aided techniques with increasing levels of
sophistication were developed to help use the data sheets for practical develop-
ment. Figure 1.2 gives an overview.

The first technique uses the data sheet results with a graphing package for
rapid evaluations of the scalability of programs. This approach is presented in
chapter 4. This allows experimentation at an early stage into the top level beha-
viour of algorithms.

A finer grain approach is presented in chapter 5. This uses the standard
profiling mechanism of MPI to insert timings evaluated from the data sheets,
a technique which is as easy to use as normal profiling. This allows automatic
calculation of the expected timing diagrams, and copes with data dependent
timings, something which compile time analysis techniques cannot handle. The
results are compared with timing diagrams produced from standard profiles to
assess the accuracy which can be expected from the approach. A similar approach
applied to the simpler BSP model was described by Hill et al [17].

Chapter 6 investigates a simulation tool which extends the approach above to
handle non deterministic programs as well as deterministic ones. It also permits
inclusion of detailed hardware models in addition to the data sheet models.

Chapter 2 describes the experimental techniques used to evaluate the various
approaches. A suite of problems requiring a variety of parallel implementation
strategies was chosen to test the ease of use and accuracy of the design techniques.

These strands are drawn together in the conclusion (chapter 7) which evaluates

the techniques and presents plans for future development.



Data
Sheets

Graphing
Package

(Chapter 4)

Scalability
Graphs

Reverse
Profiling

(Chapter 5)

Program
being
developed

Simulation
Tool

(Chapter 6)

Detailed
Timing
Diagrams

Figure 1.2: Three techniques for using the datasheets to help design programs.

10



1]

Bibliography

A.Dunlop, E.Hernandez, O.Naim, T.Hey, and D.Nicole. A Toolkit for Op-
timising Parallel Performance. In HPCN International Conference Milan,
number 919 in LNCS, pages 548-553. Springer-Verlag, May 1995.

A. Agarwal. Limits on interconnection network performance. IEEE Trans.
on Par. & Dist. Sys., 2(4), October 1991.

R. Aversa, A. Mazzeo, N. Mazzocca, and U. Villano. The PS Project: devel-
opment of a simulator of PVM applications for Heterogeneous and Network
Computing. In Innes Jelly and Ian Gorton, editors, Software Engineering
for Parallel and Distributed Systems : Proceedings of the First IFIP TC10
International Workshop on Parallel and Distributed Software Engineering.
IFIP, Chapman and Hall, March 1996.

E.A. Brewer, C.N. Dellarocas, A. Colbrook, and W.E. Weihl. PRO-
TEUS: A high performance parallel-architecture simulator. Technical Re-
port MIT/LCS/TR-516, MIT Laboratory for Computer Science, September
1991.

E.A. Brewer and W.E. Weihl. Developing parallel applications using high-
performance simulation. In Proceedings of 1993 Workshop on Parallel and
Distributed Debugging. San Diego, CA, 1993.

J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: a framework for
simulating and prototyping heterogenous systems. Int. Journal of Comp.
Sim., August 1992.

G.D. Burns, R.B. Daoud, and J.R. Vaigl. LAM: An Open Cluster Environ-
ment for MPI. In Supercomputing Symposium ’94, Toronto, Canada, June
1994.

L.J. Clarke. PUL concepts I. Technical Report EPCC-KTP-PUL-CONC-I,
Edinburgh Parallel Computing Centre, University of Edinburgh, 1991.

11



[9]

[10]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M.I. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-
putation. Pitman & MIT Press, 1989.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Sub-
ramonian, and T. von Eicken. LogP: Towards a realistic model of parallel
computation. In Proceedings of the Fourth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. San Diego, CA, May 1993.

M.A. Driscoll and W.R. Daasch. Accurate predictions of parallel program
execution time. Journal of Parallel and Distributed Computing, 25(1), Feb-
ruary 1995.

T. Fahringer and H.P. Zima. A static parameter based performance predic-
tion tool for parallel programs. In Proceedings of the 7th ACM International
Conference on Supercomputing, July 1993.

Message Passing Interface Forum. MPI: A Message Passing Interface. Tech-

nical report, University of Tennessee, June 1995.

J.L. Gustafson. Reevaluating Amdahl’s Law. Communications of the ACM,
31(5):532-533, May 1988.

F. Hartleb. Graph models for Performance Evaluation of Parallel Programs.
In A.Bode and M.Dal Cin, editor, Parallel Computer Architectures : Theory,
Hardware, Software, Applications, number 732 in LNCS. Springer-Verlag,
1993.

M.T. Heath and J.A. Etheridge. Visualizing the performance of parallel
programs. [EFEE Software, pages 29-39, Sept 1991.

J.M.D. Hill, P.I. Crumpton, and D.A. Burgess. Theory, practice and a tool for
bsp performance prediction. Technical Report TR-4-96, Oxford University
Programming Research Group, Feb 1996.

J. Hillston. PEPA: Performance Enhanced Process Algebra. Technical Re-
port CSR~24-93, Department of Computer Science, University of Edinburgh,
March 1993.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

A. Hondroudakis and R. Procter. The design of a tool for parallel program
performance analysis and tuning. In Proceedings of IFIP WG10.3 Working

12



[21]

[22]

[23]

[25]

[26]

[27]

[31]

Conference on Programming Environments for Massively Parallel Distributed
Systems. TFIP, April 1994.

H.Wabnig, G.Haring, D.Kranzmuller, and J.Volkert. Communication Pat-
tern Based Performance Prediction on the nCUBE-2 multiprocessor System.
In CONPAR, pages 41-52, Linz, Austria, Sept 1994. Springer-Verlag.

LLE. Jelly and I. Gorton. The PARSE project. In Innes Jelly and Ian Gor-
ton, editors, Software Engineering for Parallel and Distributed Systems :
Proceedings of the First IFIP TC10 International Workshop on Parallel and
Distributed Software Engineering, pages 271-276. IFIP, Chapman and Hall,
March 1996.

J.P.Singh and J.L.Hennessy. Finding and exploiting parallelism in an ocean
simulation program: experience, results and implications. Journal of parallel
and distributed computing, 15:27-48, 1992.

K.B. Kenny and K. Lin. Building flexible real-time systems using the flex
language. IEEE Computer, 24(5):70-78, May 1991.

P.J.B King. Computer and Communication Systems Performance Modelling.
Prentice-Hall, 1990.

De-Ron Liang and S.K. Tripathi. Performance prediction of parallel compu-
tation. In Proc 8th IPPS, pages 625-629. CS Press, 1994.

N. MacDonald. Predicting execution times of sequential scientific kernels.
In Christoph W. Kessler, editor, Automatic Parallelization, pages 32-44.
Vieweg, 1994.

V. Mak and S. Lundstrom. Predicting performance of parallel computations.
IEEE trans. on par. & distr. sys., 1(3), July 1990.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

F.M. Moller. A temporal calculus of communicating systems. Technical
Report ECS-LFCS-89-104, Univ. of Edinburgh Dept. of Computer Science,
1989.

MPICH - A Portable Implementation of MPI.
http://www.mcs.anl.gov/Projects/mpi/mpich/, 1996.

13



[32]

[33]

[34]

[38]

[39]

[40]

[41]

NASA AMES Research Center. AIMS: An Automated Instrumentation and
Monitoring System.
http://www.nas.nasa.gov/NAS/Tools/Projects/AIMS/, 1995.

C.Y. Park and A.C. Shaw. Experiments with a program timing tool based
on source-level timing schema. IEEE Computer, 24(5):48-57, May 1990.

J.L. Peterson. Petri-net theory and the modelling of systems. Prentice Hall,
1981.

P.Pouzet, J.Paris, and V.Jorrand. Parallel Application Design: The Simu-
lation Approach with HASTE. In W.Gentzsch and V.Harms, editors, High
Performance Computing and Networking II : Networking and Tools, number
797 in LNCS, pages 379-393. Springer-Verlag, April 1994.

P. Puschner and C.H. Koza. Calculating the maximum execution time of
real-time programs. J. Real-Time Systems, 1(2):159-176, 1989.

D.A. Reed, R.A. Aydt, R.J. Noe, P.C. Roth, K.A. Shields, B. Schwartz,
and Luis F. Tavera. Scalable Performance Analysis: The Pablo Perform-
ance Analysis Environment. In Anthony Skjellum, editor, Proceedings of the
Scalable Parallel Libraries Conference. IEEE Computer Society, 1993.

R.W .Numrich, P.L.Springer, and J.C.Peterson. Measurement of Communic-
ation Rates on the Cray T3D Interprocessor Network. In W.Gentzsch and
V.Harms, editors, High Performance Computing and Networking II : Net-
working and Tools, number 797 in LNCS, pages 150-157. Springer-Verlag,
April 1994.

R.H. Saavedra, R.S. Gaines, and M.J. Carlton. Micro benchmark analysis of
the KSR1. In Supercomputing 93, Portland, Oregon, 1993.

S.R. Sarukkai. Scalability analysis tools for SPMD message-passing parallel
programs. In MASCOTS ’9: Proceedings of the 2nd International Workshop
on Modeling, Analysis and Simulation of Computer and Telecommunications

Systems, January 1994.

Sivan Toledo. Quantitative Performance Modelling of Scientific Computa-
tions and Creating Locality in Numerical Algorithms. PhD thesis, Massachu-
setts Institute of Technology, 1995. Also available as Technical Report MIT-
LCS-TR-656.

14



[42] Sivan Toledo. Performance prediction with benchmaps. In Proceedings of
the 10th International Parallel Processing Symposium, Honolulu, Hawaii,
pages 479-484, Los Alamitos, California, April 1996. IEEE, IEEE Computer

Society Press.

[43] L.G. Valliant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103-111, 1990.

15



