
Chapter 4

Simple Performance Estimates of
the Cowichan Problems

The data sheets described in the previous chapter may be used as they are for
manual estimates of performance and scalability. However this becomes imprac-
tical for all but the smallest programs, so this chapter looks at a way of feeding
the datasheets into an equation and graph plotting program. This study was
performed to investigate when such a minimalist approach to modelling may be
applied.

Section 4.1 describes the basics of the approach; section 4.2 shows how data
sheet results are integrated; section 4.3 describes the models of the Cowichan
problems and section 4.4 discusses the results.

4.1 The models

Simple performance models of the MPI Cowichan suite were constructed using
the GNUplot package. GNUplot turned out to be a powerful tool, providing
functional composition to express hierarchy, as well as providing graphs.

The aim of this work was extremely rapid construction of models with gross
assumptions to see how valuable such an approach can be, contrasted to more
accurate (and time consuming) modelling.

In the simplest version, computation and communications costs were denoted
by parameters Tcompute and Tcomms (in section 4.2 the single communications para-
meter is replaced by the set of equations from a data sheet). Collective operations
were modelled using simple combinations of the parameters, e.g.

log(Nprocs) ∗ Tcomms ∗Ndata

The computation and communication performance parameters for all models
are specified in a GNUplot script file:
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tcomms = 10.0

tcompute = 1.0

tbcast(p,d) = tcomms*d*log(p)

tallreduce(p,d) = tcomms*d*log(p)

talltoall(p,d) = tcomms*d*log(p)

talltoallv(p,d) = tcomms*d*log(p)

talltoallvi(p,d) = tcomms*d*p

tallgather(p,d) = tcomms*d*log(p)

tallgatherv(p,d) = tcomms*d*log(p)

This gives the expected time for the communications functions MPI Bcast,
MPI Alltoall etc. in terms of the data size d and the number of processors p.
The parameters tcomms and tcompute give the expected times in microseconds
to send an integer or perform a computation step.

Individual models include these top level parameters.

4.1.1 An example: the mandelbrot set

The model for the mandelbrot set example appears as:

# model of mandel performance

tmandelcalc = tcompute * 8 * maxmandeliter

tmandel(p) = ncols * (nrows/p) * tmandelcalc

tmandelcalc is the time required to compute a single pixel of the set, given
here as eight compute steps per iteration multiplied by the maximum number of
iterations. tmandel(p) is the estimated time to compute the set on p processors
where each processor has an equal slice of the matrix to work on (i.e. a slice of
size ncols ∗ (nrows/p)).

Because these equations are included in a script file for GNUplot, a graph
(figure 4.1) may be produced with the line:

plot tmandel(x)

This just models the computation to be done, but the communication must
also be accounted for. This leads to a model such as:

# model of mandel performance (2)

tbroadcast(p) = tbcast(p,8)

tgatherresults(p) = tgather(p,ncols*nrows/p)

tmandelcalc = tcompute * 8 * maxmandeliter
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Figure 4.1: Simple plot of expected mandelbrot performance.

tmandelcomp(p) = ncols * (nrows/p) * tmandelcalc

tmandel(p) = tbroadcast(p) + tmandelcomp(p) + tgatherresults(p)

The components are shown in figure 4.2, with tcomm set to 1000.
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Figure 4.2: Time plot of expected mandelbrot performance with communications
added.

Speedup curves may also be plotted (figure 4.3):

plot tmandel(1) / tmandel(x)

Figure 4.4 shows the speedup curve with the compute times stepped from 1.0
to 100.0 and the communications time left at 1000.0.
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Figure 4.3: Speedup plot of expected mandelbrot performance with communica-
tions.
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Figure 4.4: Speedup plot: tcompute varied from 1 to 100.

4



All of these graphs may be produced extremely rapidly from a basic model
of a parallel program. Given particular values of tcompute and tcomms it is
straightforward to determine whether a particular algorithm will scale well on a
parallel machine. The difficulty is knowing what values to use for tcompute and
tcomms for an architecture. The simplistic estimates of collective performance
used above are not very believable, so a method using models derived from data
sheets is described in the next section.

4.2 Using data sheet models

The MPI datasheet generator described in chapter 3 produces a set of equations
characterising the MPI communications performance.

The measured model for the Cray T3D is shown below (times are in micro-
seconds; p is the number of processors in the group and d is the message size).

# Cray T3D model

talltoall(p,d) = 40*p + 0.3*p*d

tallsend(p,d) = 40 + 0.1*p + 0.1*d

tgather(p,d) = 200*log(p) + 0.0009*p*p*d

tallgather(p,d) = 40*p + 0.3*p*d

treduce(p,d) = 300 + 2*p + 0.6*log(p)*d

tallreduce(p,d) = 300 + 6*p + 1*log(p)*d

tbcast(p,d) = 100 + 2*p + 0.2*log(p) *d

tbarrier(p) = 40

For comparison, the model for a network of 8 Sun SPARCstation 5 worksta-
tions connected using ethernet is:

# Network of Workstations model

talltoall(p,d) = 2000 + 4000*p*p + 2*p*p*d

tallsend(d) = 2000 + 1*d

tgather(p,d) = 30000*log(p) + 4*log(p)*d

tallgather(p,d) = 8000*p + 4*p*p*d

treduce(p,d) = 20000*log(p) + 6*log(p)*d

tallreduce(p,d) = 10000 + 500*p*p + 2*d*p*p

tbcast(p,d) = 2000 + 700*p*p + 1*p*d

tbarrier(p) = 9000*p

This may be incorporated into the performance models for programs, effect-
ively instantiating measured values for tcomm. Figure 4.5 shows the expected
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speedups using the Cray model for communications and varying tcompute from
0.01 to 1.0. Note that a slowdown is expected at low values of tcompute; fig-
ure 4.6 shows that the minimum time occurs at 70 processors. Figure 4.7 shows
the expected speedup using the network of workstations performance model.
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Figure 4.5: Speedup plot generated using datasheet model for Cray T3D per-
formance.
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Figure 4.6: Closeup of figure 4.5 at tcompute=0.01us.

4.3 Modelling the Cowichan problems

This section describes models of all the Cowichan problems detailing what design
information may be gleaned from using this design technique. The models are
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Figure 4.7: Speedup plot generated using datasheet model for Network of Work-
stations performance.

presented in GNUplot equation format, with an equation for the time of each
phase of the program in terms of the number of processors p and the data size d.

4.3.1 Mandelbrot set generation (mandel)

Each of the points in the mandelbrot set may be computed independently, which
makes this an “embarrassingly parallel” problem. The only difficulty for perform-
ance prediction is that the computation at any point is unpredictable, with any
number of iterations in the central computation loop between 1 and the max-
imum number of iterations MAX MANDEL ITERS. The black regions inside the set
require large amounts of computation, those far from the set require very little.
The model given below includes the parameters p (the number of processors), d

(number of rows in the matrix) and c (the compute step time, set at 1us).

# model of mandel performance

tmandelcalc(c) = c * 8 * maxmandeliter

tmandelcomp(p,d,c) = d * (d/p) * tmandelcalc(c)

tmandel(p,d,c) = tmandelcomp(p,d,c) + tbarrier(p)

Figure 4.8 shows the measured and predicted speedup on a network of work-
stations. The shapes of the curves match very closely; the predicted slowdown
with small data sizes does actually occur, and the best speedup occurs at eight
processors. Using sixteen processors yields no additional speedup as expected.
Figure 4.9 shows the measured and predicted times which also match up well.
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Figure 4.8: Mandel measured and predicted speedup on a network of worksta-
tions.
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Figure 4.9: Mandel measured and predicted times on a network of workstations.
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On the Cray T3D, with the compute time step left at 1us the measured and
predicted times are shown in figure 4.10, with the speedup in figure 4.11. The
speedup prediction is overly optimistic at low data sizes and overly pessimistic
for high data sizes. The reason for this was determined by looking at the detailed
timing diagrams. The matrix is distributed by entire rows. A 20× 20 matrix size
only makes use of 20 out of the available 32 processors, leaving the other 12 idle.
This quantisation effect was not included into the simple model, resulting in the
overly optimistic prediction. The second discrepancy was caused by missing an
initial startup computation cost from the model - the time to allocate the memory
for the matrix. This data dependent startup cost actually improves speedup with
larger data sizes, since it has more impact on the single processor timing than on
the multiple processor timing. This discrepancy was not apparent for the network
of workstations comparison because communications time was dominant in that
case.
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Figure 4.10: Mandel measured and predicted times on the Cray T3D.

4.3.2 Random matrix generation (randmat)

The matrix is divided equally among the processors and each computes the ran-
dom numbers within its section. The overhead with respect to the sequential
algorithm is that the initial seed must be computed for each process before it
can start generating. This initial seed calculation requires a time proportional
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Figure 4.11: Mandel measured and predicted speedup on the Cray T3D.

to the logarithm of the number of matrix elements, so takes slightly longer for
processors at the bottom of the matrix than for those at the top.

# model of randmat performance

tjrandom(i,p,d,c) = log(i*d*d/p) * c * 8

trandmat(p,d,c) = c * d * d/p * 10

ttotal(p,d,c) = tjrandom(p,p,d,c) + trandmat(p,d,c) + tbarrier(p)

Figure 4.12 shows the measured and predicted speedup on a network of work-
stations. All the important aspects of the performance are predicted correctly;
the slowdown above four processors with the maximum data size, and the slow-
down with more than one processor at the minimum data size. Figure 4.13 shows
the measured and predicted times. For small data sizes, the time is dominated
by the barrier time. The computation time has been consistently underestimated
by a factor of two.

On the Cray, figure 4.14 shows the times (on a logarithmic axis). The pre-
diction is an underestimate for small numbers of data elements but converges for
larger matrix sizes, indicating that a constant overhead of the order of 500us has
been left out of the model.
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Figure 4.12: Randmat measured and predicted speedup on a network of worksta-
tions.
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Figure 4.13: Randmat measured and predicted times on a network of worksta-
tions.
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Figure 4.14: Randmat measured and predicted times on the T3D.

4.3.3 Perfect shuffle (half)

This module is heavy on communications as half of the matrix must be sent at
each shuffle step. The model takes into account the time to build the complex
MPI message data type required to complete the shuffle with one communications
call.

# model of half performance

tcomputedtypes(p,d,c) = d * (d/p) * c * 2

tlocalshuffle(p,d,c) = d * (d/p) * c * 3

ttotal(p,d,c) = tcomputedtypes(p,d,c) + \

talltoallvi(p, (d/p)/p) + \

tlocalshuffle(p,d,c)

Figure 4.15 shows the measured and predicted speedup on a network of work-
stations. The prediction has yielded the useful information that a maximum
speedup of two can be expected across eight processors. Figure 4.16 shows the
measured and predicted times. These agree for all but the one point at the
maximum number of processors and data.
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Figure 4.15: Shuffle (Half) measured and predicted speedup on a network of
workstations.
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Figure 4.16: Shuffle (Half) measured and predicted times on a network of work-
stations.
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4.3.4 The game of life (life)

This has a boundary swap followed by the local computation. The boundary
swap consists of two sends followed by two receives.

# model of life performance

tboundaryswap(d) = 2*tsend(d) + 2*trecv(d)

tliferow(d,c) = c * d

tsublife(p,d,c) = (d/p) * tliferow(d,c) + \

d * (d/p) * c

titer(p,d,c) = tboundaryswap(d) + tsublife(p,d,c)

ttotal(p,d,c) = nlifeiters * titer(p,d,c) + tbarrier(p)

Figure 4.17 shows the measured and predicted times on a network of worksta-
tions. As predicted, the times are dominated by communications, so no speedup
is obtained. Figure 4.18 shows the measured and predicted speedups.
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Figure 4.17: Life measured and predicted times on a network of workstations.

On the Cray, the measured and predicted times are shown in figure 4.19. The
predictions are good for small numbers of processors, but out by a factor of three
for 32 processors, because of quantization effects.
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Figure 4.18: Life measured and predicted speedup on a network of workstations.
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Figure 4.19: Life measured and predicted times on the T3D.
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4.3.5 Image thresholding (thresh)

This model includes the local and global histogram computations time, the time
to compute the threshold value and the time to generate the mask image.

# model of thresh performance

tglobalminmax(p,d,c) = d * (d/p) * c + tallreduce(p,1)

tlocalhist(p,d,c) = c * d * d / p

tglobalhist(p) = tallreduce( p, maxval )

tthresh(p,c) = c * fraction * maxval

tmask(p,d,c) = c * d * d/p

ttotal(p,d,c) = tglobalminmax(p,d,c) + tlocalhist(p,d,c) +\

tglobalhist(p) + tthresh(p,c) + tmask(p,d,c) +\

tbarrier(p)

Figure 4.20 shows the predicted and measured times for a network of worksta-
tions, and figure 4.21 shows the predicted and measured speedups. This applica-
tion shows an expected and measured slowdown on networks of workstations.
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Figure 4.20: Thresh measured and predicted times on a network of workstations.

Figure 4.22 shows the measured and predicted times on the T3D. The times
are underestimated by a factor of two; figure 4.23 shows that the speedup has
been reasonably estimated.
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Figure 4.21: Thresh measured and predicted speedups on a network of worksta-
tions.

measured time

5
10

15
20

25
30

50

100

150

0.001

0.01

0.1

Number of Processors

No of data elements

Time (s)

predicted time

Figure 4.22: Thresh measured and predicted times on the T3D.
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Figure 4.23: Thresh measured and predicted speedups on the T3D.

4.3.6 Outer product (outer)

This is interesting because of the possibility of cutting down the amount of com-
putation by communicating results from the lower diagonal of the matrix to the
upper diagonal.

tdist(c) = 50*c

tmklocal(p,d) = tallgatherv(p,d)

tcreate(p,d,c) = d * tdist(c)

tfillmatrix(p,d,c) = d * (d / p) * tdist(c)

tdiagfill(p,d,c) = d * tdist(c)

ttotal(p,d,c) = tmklocal(p,npoints/p) + tcreate(p,d,c) +\

tfillmatrix(p,d,c) + tallreduce(p,1) +\

tdiagfill(p,d,c) + tbarrier(p)

Figure 4.24 compares predicted and measured speedups on the T3D, with the
compute time parameter varied from 0.05us to 0.5us. The general shape of the
speedup curve is not changed by the order of magnitude change in compute time,
indicating that on the T3D the algorithm is not dominated by communications.

On the network of workstations, the times are shown in figure 4.25. The time
is out by at most a factor of three. Figure 4.26 shows how sensitive this algorithm
is to the compute step value; at 0.1us the speedup prediction is accurate; at 1us
the prediction is optimistic.
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Figure 4.24: Outer measured and predicted speedups on the T3D.
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Figure 4.25: Outer measured and predicted times on a network of workstations.
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Figure 4.26: Outer measured and predicted speedups on a network of worksta-
tions.

4.3.7 Elastic net simulation (elastic)

This is a complex algorithm and the model reflects this. The parameters are
the number of iterations and the number of cities. The total time is made up of
the time required to copy all the city locations to all processes (tmklocal), an
initialisation step tinit and the time for all the iterations. Each iteration involves
a nearest neighbour exchange (tneigh), the time to compute the influence of all
the cities on the net tcity and the time to apply the resultant force to update
the net tmove.

nnet(d) = d * 2.5

ncities(d) = d

tmklocal(p,d) = tallgather(p,d / p)

tinit(p,d,c) = c*(d + nnet(d)/p)

tneigh(p,d,c) = (nnet(d)/p)*c + 2*tsend(1) + 2*trecv(1)

tmove(p,d,c) = c * (nnet(d) / p)

tcity(p,d,c) = nnet(d) * c + \

ncities(d) * ( \

c * (d * nnet(d)/p) +\

tallreduce(p,1) +\

c * nnet(d)/p \
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)

titer(p,d,c) = tneigh(p,d) + tcity(p,d) + tmove(p,d)

ttotal(p,d,c,i) = tmklocal(p,d) + tinit(p,d) + i*titer(p,d) +\

tbarrier(p)

On the network of workstations, the times are shown in figure 4.27. The
prediction is very good apart from the figures for two workstations. The measured
figures for these were investigated by examining the timing diagrams. The culprit
was found to be a random network delay which was delaying the inner loop
communication by over 2 seconds, an occasional hazard of using a shared ethernet.
The prediction is so good for all other points because the time is totally dominated
by communications which are well predicted.
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Figure 4.27: Elastic measured and predicted times on a network of workstations.

On the Cray, the initial prediction was not so good. Figure 4.28 shows that
the prediction using the standard value of 0.5us for the compute step value led
to a factor of 10 over-estimate in overall times. A value of 0.05us produced an
accurate fit, indicating that this problem uses small enough data sizes to fit into
the cache, leading to the order of magnitude better than expected performance.

4.3.8 Invasion percolation (invperc)

In the model, titer is the individual iteration time, tenqueue is the time needed
to add a point to the local queue, tglobalhead is the time to determine the
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Figure 4.28: Elastic measured and predicted times on the Cray T3D.

overall head of the queue. The possible speedup comes from having a smaller
queue insertion time on a parallel machine.

# model of invperc performance

maxqlen(d) = d*d * fraction;

qlen(p,d) = maxqlen(d) / (p*10);

tglobalhead(p) = tallreduce(p,4)

tenqueue(p,d,c) = c * qlen(p,d) * 4;

titer(p,d,c) = tglobalhead(p) + tenqueue(p,d,c);

ttotal(p,d,c) = titer(p,d,c) * maxqlen(d);

Figure 4.29 shows the measured and predicted speedups on the Cray T3D.
The amount of speedup available is very sensitive to the compute step time; the
initial estimate was a factor of four overly optimistic for large data sizes. This
error was caused by having to guess the average queue length in the model; the
times for this program are highly data dependent. Using a lower value for the
compute time (0.05us) produced the lower bound curve in the figure.

Figure 4.30 shows the corresponding speedup curves for a network of work-
stations. The severe slowdown for this application is correctly predicted.
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Figure 4.29: Invasion percolation measured and predicted speedups on the Cray
T3D.
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Figure 4.30: Invasion percolation measured and predicted speedups on a network
of workstations.
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4.3.9 Vector product (product)

The algorithm for the vector-matrix product first ensures that each process has
its own copy of the entire vector, then each process may continue independently.

# model of product performance

tmklocal(p,d) = tallgatherv(p,(d/p))

tcalc(p,d,c) = d * (d/p) * 2 * c

ttotal(p,d,c) = tmklocal(p,d*2.5) + tcalc(p,d*2.5,c) + tbarrier(p)

Figure 4.31 shows the measured and predicted times on a network of work-
stations. The times are dominated by communications for this problem, so
adding more processors slows things down. The predictions are within a factor of
two throughout; this discrepancy was tracked down to an underestimate in the
allgather times caused by the curve fit in the MPI model. The corresponding
times for the Cray T3D are shown in figure 4.32. This is a very good fit, with
times dominated by computation.
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Figure 4.31: Vector product measured and predicted times on a network of work-
stations.

4.3.10 Successive over-relaxation (sor)

This is an iterative algorithm, so it is not possible to predict the convergence rate.
It is however possible to put upper bounds on the convergence (i.e. sormaxiters).
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Figure 4.32: Vector product measured and predicted times on the Cray T3D.

# model of SOR performance

tmklocal(p,d) = tallgatherv(p,d)

titer(p,d,c) = (d/p) * (

d * c * 2 +

c * 8) +

tmklocal(p,d/p) +

tallreduce(p,1)

ttotal(p,d,c) = tmklocal(p,d*2.5/p) * 2 +

sormaxiters * titer(p,d*2.5,c)

Figure 4.33 shows the measured and predicted times on the Cray T3D, a very
good fit. The fit for network of workstations is less good (figure 4.34) as the
underlying model for collective performance is less predictable. However it does
provide the useful design information that no speedup is expected.

4.3.11 Gaussian elimination (gauss)

The matrix to solve is distributed blockwise by row. The algorithm used to
implement Gaussian elimination involves a single pass through the rows of the
matrix in which all processes participate. The process which stores the current
row then computes a pivot and broadcasts it. All processes apply this pivot row
to their local section of the matrix. Figure 4.37 illustrates the performance model.
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Figure 4.33: SOR measured and predicted times on the Cray T3D.
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Figure 4.34: SOR measured and predicted times on a network of workstations.

26



# model of gauss performance

tcopy(d,c) = d*c

tpivotcompute(d,c,i) = (d-i) * 2 * c + 4 * c

ttransform(p,d,c) = d * (d/p) * c * 5

tgauss(p,d,c) = d * (tpivotcompute(d,c,d/2) +

tbcast(p,d) +

ttransform(p,d,c) )

ttotal(p,d,c) = tcopy(d*2.5,c) + tgauss(p,d*2.5,c)

Figure 4.35 shows the measured and predicted speedups on the Cray T3D.
The actual speedup is worse than expected because the compute times were over-
estimated by a factor of five. The compute times were also overestimated on the
network of workstations (figure 4.36).
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Figure 4.35: Gauss measured and predicted speedups on the Cray T3D.

4.3.12 Point normalisation (norm)

The parallel implementation of point normalisation involves a global reduction
followed by independent computation phases. For design purposes it is necessary
to know if the time for the global reduction swamps the total time for computa-
tion.

# model of norm performance
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Figure 4.36: Gauss measured and predicted speedups on a network of worksta-
tions.

Titer ... repeated x
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... repeated x
 p2.local_nrows()
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 pnprocs.local_nrows()
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Ttransform

Figure 4.37: The Gauss performance model.
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tlocalredptvector(d,c) = d * c

tglobredptvector(p,d,c) = tlocalredptvector(d/p,c) + \

4*tallreduce(p,1)

tnorm(p,d,c) = (d/p) * 8 * c

ttotal(p,d,c) = tglobredptvector(p,d,c) +

tnorm(p,d,c) + tbarrier(p)

Figure 4.38 shows the predicted and measured times on a network of worksta-
tions. The algorithm runs more slowly as more processors are added, as predicted.
However the actual times for the single processor runs are faster than predicted.
This is because no communication calls are actually made, but the simple model
doesn’t include this special case. The prediction for the Cray T3D is a consistent
factor of two pessimistic (figure 4.39), apart from the single processor case. This
is because the model for the allreduce time (which dominates) is not accurate
for the very small amounts of data used here.
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Figure 4.38: Point normalisation predicted and measured times on a network of
workstations.

4.3.13 Weighted point selection (winnow)

# model of winnow performance

maxpts(p,d) = d * d * maskpercent

minpts(p,d) = maxpts(p,d) / p
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Figure 4.39: Point normalisation predicted and measured times on the Cray T3D.

localpoints(p,d,unevenness) = unevenness * maxpts(p,d) +

(1-unevenness)* minpts(p,d)

stride = 4

tbuildlocal(p,d,c) = c * (d/p) * maskpercent * 5

tminmaxtot(p) = 3 * tallreduce( p, 1 )

tpivotcompute(p,d,c) = 3 * p * c +

localpoints(p,d,c) * 3 * tcompute

tbuffercompute(p,c) = 2 * p * c

tlocalsort(d,c) = d * log(d) * c *4

tpackstrided(p,d,c) = c * 2 * d

ttotal(p,d,c,e) = tbuildlocal(p,d,c) +

tminmaxtot(p) +

tpivotcompute(p,d,c) +

talltoall(p,1) +

tbuffercompute(p,d,c) +

talltoallv( p, localpoints(p,d,e) )+

tlocalsort( localpoints(p,d,e),c ) +

tallgather( p,1 ) +

tpackstrided( p, localpoints(p) / stride,c )
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This routine includes many phases and is too complex to make computing
the time by hand a sensible proposition, so GNUplot is useful as a quick tool for
“what if” calculations. The function MPI Alltoallv performs the redistribution
in which each process sends and receives a different amount of data to/from all
the others. A parameter of “unevenness” would ideally be used to work out how
long the collective redistribution operation will take. The extremes of this para-
meter are 0.0 (equal distribution) and 1.0 (all in one processor). A mathematical
definition is given below:- We have N elements distributed amongst P processors.
Ideally there would be N/P in each. Actually there are Ni(i : 0..P − 1).

Deviation Di = Abs(Ni −
N

P
))

P−1∑
i=0

Di = 0 (for equal distribution)

= 2N(1 − 1/P ) (for all elements in one processor)

Unevenness =
∑P−1
i=0 Di

2N(1 − 1/P )

As a simplification, the maximum number of elements stored in any one pro-
cessor was taken as the parameter to determine the expected time of talltoallv.

Figure 4.40 shows the measured and predicted times on the Cray T3D. The
unevenness parameter was varied from 0 to 0.1; perfect data distribution led to an
over optimistic prediction and 10% unevenness was about right. 100% unevenness
creates no speedup. This illustrates the sensitivity of this algorithm to the data
distribution.

On the network of workstations, the algorithm produces a slowdown (fig-
ure 4.41), and this is expected even with perfect distribution.

4.3.14 Vector difference (vecdiff)

This program computes the maximum element by element difference between two
vectors. The vectors are distributed evenly across the processors; each computes
the maximum difference between the local elements, and then there is a global
reduction to determine the overall maximum difference.

Thus this problem is a balance between the computation time and the reduc-
tion time. The crossover point is located where the time for the local maximum
computation is equal to the time for the allreduce operation.

# model of vecdiff performance
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Figure 4.40: Winnow measured and predicted times on the Cray T3D.
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Figure 4.41: Winnow measured and predicted times on a network of workstations.
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tlocalmax(p,d,c) = c * (d*2.5 / p)

tglobalmax(p) = tallreduce( p, 2 )

ttotal(p,d,c) = tlocalmax(p,d,c) + tglobalmax(p) + tbarrier(p)

Figure 4.42 compares measured and predicted times on a network of worksta-
tions. The times are accurately predicted for all but the single processor case, for
which the communications operations take less time than the models predict. On
the Cray (figure 4.43), the prediction is a factor of two pessimistic. This is be-
cause the tallreduce operation is a factor of two faster than the model predicts
for small message sizes.
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Figure 4.42: Vecdiff measured and predicted times on a network of workstations.

4.4 Conclusion

A graphing package is a very powerful and simple tool for performance prediction
when used with data sheet performance models. The importance of perform-
ance modelling was highlighted by the number of slowdowns obtained with the
Cowichan problems on networks of workstations.

Scalability plots are straightforward to generate, as are plots varying para-
meters across a wide range to check that the design performs as intended.

The best predictions were for the programs dominated either by the commu-
nications or by the computation. Programs spending equal times computing and
communicating are very sensitive to minor changes, so are hard to predict.
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Figure 4.43: Vecdiff measured and predicted times on the Cray T3D.

The restrictions of the technique are that it requires the bounds on loop iter-
ations to be fixed at design time and the fact that data dependencies are difficult
to include. As the models for programs are generated by hand, there is a danger
that seemingly unimportant phases of the algorithm will be left out, leading to
overly optimistic predictions.

These restrictions are removed by the reverse profiling technique described in
the next chapter.
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