
CS2: Debugging in Java
Jon Cook (LFCS) April 2003

1. General Advice

Debugging is not always easy. Some bugs can take a long time to find. Debugging
concurrent code can be particularly difficult and time consuming.

It helps to understand the language and its libraries. A common source of errors in
Java is to use libraries without properly understanding what methods do and how
they work. For example, one might forget to call a method to initialise an object.

It is a good idea to add toString methods to your own classes. Then when debugging
you can simply print out an object of that class and see some of its data. You will
see this in the example below.

It is also a good idea to add a main method to your class, which does some testing
of that class. Then the class can be executed directly and you can test your classes
separately. Again, you will see this at work in the example below.

2. Debugging by Adding Print Statements

One easy way to debug a program is to add print statements at various points
reporting the status of the program: for example the values of variables. This is
easy to do in Java as if o is an object, the System.out.println(o) will call
the toString() method of o and print out the result. (This assumes an appropriate
toString() method has been defined of course.)

It is important to make enough information visible but not too much. It can help
to highlight important information in various ways so that it stands out from the
output. e.g.

System.out.println("****** Got to start of foo method, arguments "

+ arg1 + ", " + arg2);

or

System.out.println("------------------------");

System.out.println("a = " + a + ", b = " + b);

System.out.println("------------------------");

It is a bad idea to use print statements of the form:

System.out.println("Got to here!");

1

since when you run the program the next day you may have forgotten where “here”
actually is.

A Debug Flag

If you add a class like the following class to your project:

public class Debug {

static boolean debugOn = true;

static int debugLevel = 3;

}

You can then, in your project, include code such as:

if(Debug.debugOn && Debug.debugLevel > 2)

System.out.println("a = " + a + ", b = " + b);

This makes it easy to switch debugging output on and off and to set the amount of
output you wish to see when you run the program.

Adding assert Statements

A new feature of Java 1.4 is the ability to add assertions to your code. These are
statements of the form: assert <boolean>;. If the program is run with assertions
switched off, this statement is just ignored. If assertions are on, though, and the
boolean evaluates to false, then an Error will be thrown.

Assertions state that you expect some condition to be true at some point in your
program. If that condition is not true at that point, then you want to be told about
it.

Consider the following program:

public class MyClass {

public static void main(String[] args) {

int a = Integer.parseInt(args[0]);

int b = Integer.parseInt(args[1]);

int sum = a + b + 1; // bug, + 1 is wrong.

assert sum == a + b;

}

}

This must be compiled with the command:

javac -source 1.4 MyClass.java

It can then be run as usual, or to switch on the assertions use one of the two following
commands:

2

java -enableassertions MyClass 1 2

java -ea MyClass 1 2

In this case the assertion will fail and an error message will be printed indicating
the line of the program which failed.

3. Common Errors and Bad Style

Bug: The Wrong Kind of Equals

The == operator, when applied to Objects, tests that the two objects are the same
object, not whether they contain the same data. To test that two Strings, for
example, contain the same text, use the equals() method.

For example:

String s = "Hello";

String t = s + "";

System.out.println(s == t); // prints false

System.out.println(s.equals(t)); // prints true

Bug: Break Statements in Switches

If a case of a switch statement doesn’t end in a break, then execution continues with
the next case statement:

int i = 3;

switch(i) {

case 1: System.out.println(1); break;

case 3: System.out.println(3);

case 5: System.out.println(5); break;

}

will print out 3 then 5.

Bad Style: Catching All Exceptions

It is a bad idea to write code that looks like this:

try {

...some code....

} catch(Exception e) { }

This catches all exception and if one is caught, it does nothing. This is very easy to
do, but what if something goes wrong in the try block: you may not even find out
that something went wrong, if it does, it will be hard to find out what.

It is better to catch more specific exceptions, or at the very least to print an error
message.

3

4. Debuggers

jdb

After you have watched me debugging this code in the lecture, you could have a go
at it yourself using jdb (the command line Java debugger).

Here are the commands for jdb:

Initializing jdb ...

> ** command list **

run [class [args]] -- start execution of application’s main class

threads [threadgroup] -- list threads

thread <thread id> -- set default thread

suspend [thread id(s)] -- suspend threads (default: all)

resume [thread id(s)] -- resume threads (default: all)

where [thread id] | all -- dump a thread’s stack

wherei [thread id] | all -- dump a thread’s stack, with pc info

up [n frames] -- move up a thread’s stack

down [n frames] -- move down a thread’s stack

kill <thread> <expr> -- kill a thread with the given exception object

interrupt <thread> -- interrupt a thread

print <expr> -- print value of expression

dump <expr> -- print all object information

eval <expr> -- evaluate expression (same as print)

set <lvalue> = <expr> -- assign new value to field/variable/array element

locals -- print all local variables in current stack frame

classes -- list currently known classes

class <class id> -- show details of named class

methods <class id> -- list a class’s methods

fields <class id> -- list a class’s fields

threadgroups -- list threadgroups

threadgroup <name> -- set current threadgroup

stop in <class id>.<method>[(argument_type,...)]

-- set a breakpoint in a method

stop at <class id>:<line> -- set a breakpoint at a line

clear <class id>.<method>[(argument_type,...)]

-- clear a breakpoint in a method

clear <class id>:<line> -- clear a breakpoint at a line

clear -- list breakpoints

catch [uncaught|caught|all] <exception-class id>

4

-- break when specified exception occurs

ignore [uncaught|caught|all] <exception-class id>

-- cancel ’catch’ for the specified exception

watch [access|all] <class id>.<field name>

-- watch access/modifications to a field

unwatch [access|all] <class id>.<field name>

-- discontinue watching access/modifications to a field

trace methods [thread] -- trace method entry and exit

untrace methods [thread] -- stop tracing method entry and exit

step -- execute current line

step up

-- execute until the current method returns to its caller

stepi -- execute current instruction

next -- step one line (step OVER calls)

cont -- continue execution from breakpoint

list [line number|method] -- print source code

use (or sourcepath) [source file path]

-- display or change the source path

exclude [class id ... | "none"]

-- do not report step or method events for specified classes

classpath -- print classpath info from target VM

monitor <command> -- execute command each time the program stops

monitor -- list monitors

unmonitor <monitor#> -- delete a monitor

read <filename> -- read and execute a command file

lock <expr> -- print lock info for an object

threadlocks [thread id] -- print lock info for a thread

pop

-- pop the stack through and including the current frame

reenter -- same as pop, but current frame is reentered

redefine <class id> <class file name>

-- redefine the code for a class

disablegc <expr> -- prevent garbage collection of an object

enablegc <expr> -- permit garbage collection of an object

!! -- repeat last command

<n> <command> -- repeat command n times

help (or ?) -- list commands

version -- print version information

exit (or quit) -- exit debugger

5

<class id> or <exception-class id>: full class name with package

qualifiers or a pattern with a leading or trailing wildcard (’*’)

NOTE: any wildcard pattern will be replaced by at most one full class

name matching the pattern.

<thread id>: thread number as reported in the ’threads’ command

<expr>: a Java(tm) Programming Language expression.

Most common syntax is supported.

Startup commands can be placed in either "jdb.ini" or ".jdbrc"

in user.home or user.dir

Example jdb Session

[bashed]s0090668: jdb

Initializing jdb ...

> stop in ArrayDictionary.insertItem

Deferring breakpoint ArrayDictionary.insertItem.

It will be set after the class is loaded.

> run ArrayDictionary

run ArrayDictionary

Set uncaught java.lang.Throwable

Set deferred uncaught java.lang.Throwable

>

VM Started: Set deferred breakpoint ArrayDictionary.insertItem

Breakpoint hit: "thread=main", ArrayDictionary.insertItem(),

line=38 bci=0

38 int index = recFind(key,0,size-1);

main[1] step

>

Step completed: "thread=main", ArrayDictionary.recFind(), line=16 bci=0

16 if (i1 > i2)

main[1] cont

>

Exception occurred: java.lang.NullPointerException (uncaught)

"thread=main", ArrayDictionary.insertItem(), line=39 bci=18

39 size = items.length + 1;

main[1] eval items

items = null

main[1] quit

Exception in thread "main" java.lang.NullPointerException

6

bdbj

If you want to try out bdbj, my reverse execution debugger, then go to

http://www.dcs.ed.ac.uk/home/jjc/bdbj/bdbj-1.2.1/dl.html

The installation takes up about 5MB. You can get round problems with the source
being too large for your quota by downloading bdbj into /tmp and then using the
command

installbdbj-1.2.1dir /home/<your matric no.>/bdbj

Note that bdbj supports an older version of Java than the version which should be
used for the CS2 course (see http://www.kaffe.org for details), and supports Swing
1.1.1 but not later versions.

7

