
Thesis Proposal

Language Interoperability and
Logic Programming Languages

Jonathan Cook, LFCS, July 2001

Abstract

Logic programming languages, such as Prolog, are found to be particularly
appropriate for solving problems involving logical deduction from a set of data.
The .NET framework aims to support language interoperability, so it could
be valuable to find ways of using languages such as Prolog within the .NET
framework. One way in which this could be done is by translating Prolog to
the new language C#, which is closely related to .NET. There already exist
translators which translate Prolog to C and to Java, both languages closely
related to C#. Thus, a translator to C# could be obtained by modifying one
of these existing translators.

1 Motivation

1.1 Language Translation

There are now many programming languages available and so the question arises of
how one should choose a language for solving a particular problem. Often it may be
convenient to use a number of languages in one project, which raises the issue of how
the languages are to work together. Language translation is a helpful technique for
integrating code written in one language into code written in another. If we translate
source code to source code the final program can be written in one language. This
can be easier to compile than the use of tools which allow one language to call
another language.

When a team of programmers is working on a project, some will be more familiar
with some of the languages that are being used than others. Also some programmers
will be required to maintain code written in a language other than one of those
with which they are most familiar. In both these cases it could be helpful for the
programmer to be able to use a tool which translates from a language with which
they are less familiar to one with which they are more familiar. They can then
either use this tool to better understand the code written in another language, or
to abandon the less familiar language altogether and just use the language to which
the code has been translated for the project.

1

For such a tool to be useful, then, ideally it should produce readable, well structured
code so that it can be easily modified by a human. It should understand, and
use where appropriate, common idioms and techniques, which are used by human
programmers. Fully realising this ideal is a long way off, but progress can be made
towards it. Language translation represents a considerable challenge to computer
science, particularly when there is a significant semantic gap between the source and
destination languages. Logic languages and imperative languages are separated by
such a gap.

1.2 C# and the .NET Platform

1.2.1 C#

C#[3] is a relatively new object-oriented programming language which has drawn
on the languages Java[23][16] and C++[28], in an attempt to combine the efficiency
of C++ with the elegance and simplicity of Java. Many features not present in
Java have been added. Some of these features are intended to allow the writing of
efficient code, some are aimed at making it possible to write clearer and more concise
code. The cost of this is that the language is more complex than Java. Below I will
summarise the essential points of C#, see [3] for more details.

Like Java, C# is compiled into an intermediate language[15]. However, whereas the
JVM was originally only intended to run code generated by Java, the intermediate
language used by C# (IL) was designed to support very many languages. Work
has been done on translating other languages to Java byte-code for example MLj
which translates SML to Java byte-code. Whereas Java byte-code is sometimes
interpreted, IL is designed to be always compiled to machine code before being run.

C# shares certain features of Java not found in C++, such as garbage collection,
reflection, thread support (Java’s synchronized keyword), inner classes, and the
ability to add finally clauses to try blocks. Also like Java, arrays and strings are
stored with information about their size and on every access it is checked whether
or not an index is out of range.

C# also has features of C++ not found in Java, such as operator overloading,
namespaces, jumps, enums and pointer arithmetic. Most of these are more restrictive
in C# than they are in C++. Jumps cannot jump into loops. Pointer arithmetic can
only be used in blocks of code marked unsafe. This is not a semantic restriction,
but hopefully such “unsafe” blocks will be used rarely. One will then have the
reassurance that most of the code certainly does not use pointer arithmetic. Also
the garbage collector needs to know that pointers are being used.

With respect to efficiency, in addition to the possibility of using pointers, two types of
array can be defined distinguished by different syntax. Firstly one can use Java style
“jagged arrays”, i.e. every array is an object. new int[3][4][5] creates
1+3+12 arrays. Secondly one can define C++ style rectangular arrays, new int[
3, 4, 5] creates 1 array. In addition, C++ style structs are available which can

2

be used instead of objects in order to obtain more efficient code. One can choose
to allocate both structs and objects either on the stack or on the heap. The struct
concept is an integral part of C#’s type system. The primitive types are all really
structs, although the compiler is able to give them special treatment to avoid a
performance penalty. Also function parameters can be passed by reference.

Event handling is implemented using delegates, a concept described in [3] as a
“type-safe object-oriented function pointer, which is able to hold multiple methods”.
Certainly this is safer than function pointers in C++, but seems less elegant than
Java’s interfaces. In any case, translating from Prolog may not require any use of
event handling.

Finally various syntactical concepts are added such as properties (getter and setters),
indexers for treating objects as arrays, and syntactic sugar for simple for loops. In
translating from Prolog it might be interesting to see how to detect appropriate
occasions to use these.

1.2.2 .NET

.NET[25] is a framework developed by Microsoft intended to support the interaction
of web services and clients via XML, with a view to enabling these services to be
called across languages and platforms. C# and .NET are related, each being to
some extent designed to work well with the other.

In order to facilitate the writing of web services a framework has been developed
which allows a number of languages to work together by compiling them all down
to a common intermediate language.

If Microsoft are correct in believing that XML Web services will revolutionise the
way users interact with applications, with applications being invoked across the
Internet, then C# may become an important language. Translating Prolog to C#
also provides a means of using Prolog within the .NET framework, as Prolog could
be translated first to C# and then to IL. This would enable us to take advantage of
the close relationship between C# and .NET in a way that would not be possible if
we, for example, used the wamcc (see below) to translate Prolog to IL via C.

1.3 Prolog

Sometimes languages are chosen because they are more efficient in terms of time or
space; but often languages are chosen because it is easier to write correct programs
or because the language is more suited to the problem which is to be solved. In many
cases a great gain in productivity is achieved by using a language better suited to
the purpose of the program. Prolog[10], for instance, is a logic language well suited
to artifical intelligence programming. To write a program, say, to find a means of
winning a simple game can be far more natural in Prolog than other languages. The
same can be said for the problem of writing a program to draw logical, rather than
statistical, conclusions from a set of data.

3

Prolog has features, its use of unification for example, which carry a significant per-
formance penalty. However, ingenious techniques have been conceived for making
it as efficient as possible. In many applications we would be prepared to sacrifice
speed in order to have a clear, concise program. Prolog is not suited to, nor intended
to be used for numerical computation, the most obvious example of a field of com-
puting that requires a fast, efficient language. However sometimes, expert systems
for example, may be required to draw logical inferences from a very large amount
of data; or to solve a problem in which a large number of cases may be considered.
In such cases it would be desirable for Prolog to be faster. Unfortunately attempts
to translate Prolog to languages such as C (see below) have failed to yield programs
which run faster than the corresponding Prolog program run on an efficient Pro-
log interpreter. Other benefits may be gained, though, such as portability and the
ability to easily integrate Prolog with programs written in the faster languages.

1.4 Existing Translators

Many translation systems exist, below I provide brief details of a few. Translation
from ML into Java and C is interesting because as in the case of Prolog these are
examples of translation from higher-order languages to imperative languages.

1.4.1 Translating ML into Java byte-code

MLj[7][8] translates SML to Java byte-code, and thus allows the integration of ML
within a Java program. ML and Java are similar in many ways, including the
strength of typing, store management strategy and exception handling semantics.
However each has many features that the other does not. The approach taken is
to translate the SML into a typed intermediate language, Monadic Intermediate
Language (MIL). Each structure is compiled into a MIL term and these terms are
then combined to form a term for the whole program. This is then transformed
into a low-level code, which then is translated to byte-code. The whole-program
approach to compilation allows significant optimisation to be performed.

1.4.2 Translating ML into C

The paper [31] describes a translator which translates ML of New Jersey code to
C without the use of assembly code, unlike preceding tools. The initial program is
translated into a continuation-passing style, which the authors note, results in code
very similar to a C program.

1.4.3 Translating Java into C

Toba[26] translates Java byte-code into C. It does this in a fairly direct manner. It
does, however, avoid the creation of an explicit operand stack in the resultant C
by taking advantage of Java byte-code’s stack invariant. That is, at any point in

4

the byte-code the number and type of items on the stack is the same regardless of
the path used to get there. Thus it uses local variables for the operand stack slots,
having computed the types of the slots at each point in the byte-code at compile
time.

2 Technical Background

2.1 Compilation of Prolog: the WAM

Many of the fastest Prolog interpreters are based on a sophisticated compilation
technique known as the WAM[32][33] (Warren Abstract Machine) named after its
inventor David H. D. Warren. Work has been done on formally verifying that this
compilation technique is correct[27].

Since the invention of the WAM, variations on it have been suggested[17][22]. More
major variants include the VAM[21][20] (Vienna Abstract Machine) and the LLPAM
[29] which compiles an extention of Prolog which is a linear logic language.

The book [9] from 1984 brings together many articles concerning techniques for
implementing Prolog at the time the WAM was proposed, including a Prolog inter-
preter implemented as a very short LISP program.

The book [1] and slides [2] build up the WAM in stages, starting with an abstract
machine M0 which is only capable of determining whether a goal unifies with a given
term. This is then extended to a machine M1, where the program may consist of
more than one fact, with at most one fact per predicate name. The next stage, M2

is capable of compiling Prolog without backtracking, that is we introduce the ability
to express conjunction by having rules of the form

a0 :– a1, ..., an

M3 extends this to Pure Prolog, by adding disjunctive definitions (allowing more
than one rule for each predicate). Hence support for backtracking is added at this
stage. However, this machine still does not support the cut.

Finally support for cut is added, various design optimisations employed, and support
for constants, lists and anonymous variables is added.

Below the construction process is briefly summarised.

2.1.1 M0: Unification

Terms, for example p(Z, h(Z,W), f(W)), are represented on the heap using pointers
to avoid duplication. Each term consists of a cell stating its predicate and arity, for
example p/3 followed by, in this case, 3 cells each pointing to structures representing
the terms Z, h(Z, W) and f(W). A query term is translated into instructions which
build a representation of it, of the form described, on the heap.

5

The program term is translated into instructions in a similar way to the query term
except that the first instruction is for the outermost term, whereas the query term
is built bottom up. When executing the program we can assume that the query
has already been built. The instructions for the program, however, operate in two
different modes: a READ mode and a WRITE mode. We start off in READ mode
with the program term being matched functor for functor against the query term.
When we encounter an unbound variable in the query, we enter the WRITE mode
and the corresponding term in the program is built on the heap. Then the unbound
variable is bound to this newly created term.

The read mode uses a standard unification algorithm (UNION/FIND), which uses
a stack to recursively match the query term against the program term. During this
match at every stage if a binding is not possible then the unification fails, and if it
is, the two heap cells are bound by making an unbound one point to the other.

2.1.2 M1: Allowing Programs with more than One Fact

We now have to solve several unification equations simultaneously. We simply then
have to store the code for each fact in a CODE area, and introduce instructions to
jump to the relevant piece of CODE. We can only have one fact per predicate name,
so we know immediately from the query which piece of code to execute.

2.1.3 M2: Adding Conjunction

Our program is now a set of clauses of the form

a0 :– a1, ..., an

where a0 is referred to as the head, with for each predicate name, at most one clause
whose head has that predicate as its outermost predicate. A query is of the form:

?– g1, ..., gk

The semantics of executing such a query are that leftmost resolution is applied
repeatedly. That is we attempt to unify the leftmost goal (g1) with the head of the
clause in the program which has the same outermost predicate as g1. If this fails,
the entire query fails. If it succeeds we replace g1 in the query with the a1, ..., an

on the right of the program clause we have selected.

We continue to do this until we fail, and the query fails, or we end up with the
empty query which trivially succeeds. In the process of getting to this point all the
relevant bindings will have been made and can be reported to the user.

Consider, for example, the following program:

a(X) :- b(X), c(X).

6

b(1).
c(1).

and the query ?- a(1), a(Y).

The reduction proceeds in the following steps:

?- a(1), a(Y).
b(1), c(1), a(Y). expanding a(1).
c(1), a(Y). expanding b(1).
a(Y). expanding c(1).
b(Y), c(Y). expanding a(Y).
c(Y). expanding b(Y). Y=1
. [success] expanding c(Y). Y=1

Y = 1.

When we execute a query, then, we need code for each clause of the program which
checks whether unification is possible, and if so replaces the head with the body.

To a first approximation we translate

p0(...) :– p1(...), ..., pn(...)

into

get arguments of p0

put arguments of p1

call p1
...

put arguments of pn

call pn

The problem that is encountered is that variables are reused by each successive pi and
so we need to save permanent variables (those which occur in more than one body
goal) in an environment stored in a stack of environments. We add instructions
allocate N and deallocate to make space for the permanent variables at the
beginning of a call and pop it off at the end. Thus the code given above is modified
by adding an allocate at the start and a deallocate at the end.

2.1.4 M3: Adding Disjunction

Now we wish to add backtracking, that is, when a goal fails it may be the case
that there exists another clause in the program with the same predicate that would
succeed. Hence, failure at this point should not cause the entire query to fail. We
should instead backtrack to the last choice-point and continue from there.

7

The choice point contains the argument registers, a pointer to the current environ-
ment, a pointer to the choice point to backtrack to if everything from this choice
point fails, the next clause to try and so forth. In effect, it contains all the data
needed to reconstruct what was going on before the failed attempt at unification
began.

Initially one might think of allocating the choice points on a separate stack to the
environments. We have the problem, however, that environment frames on the
environment stack might end up being popped and then needed again because of
backtracking. This is solved by putting both the environment frames and choice
points onto a single stack. Then the choice points can protect the environments
that preceeded them. Only when all courses of action from a given choice point
have failed, is that choice point popped, and then the environment frames which are
no longer needed can be popped as well. Thus this scheme does not prolong the life
of environment frames for longer than is necessary.

We add three instructions: try-me-else, retry-me-else and trust-me, described
below, and the code for a predicate name becomes:

try-me-else L1

[code for first clause] (as above)
L1: retry-me-else L2

[code for second clause]
...

Lk−1: retry-me-else Lk

[code for penultimate clause]
Lk: trust-me
[code for final clause]

try-me-else L pushes a new choice point frame with its next clause field set to L.
retry-me-else L’ loads the data stored in the choice point back into the relevant
machine variables and changes the next clause field to L’. Finally, trust-me loads
the data in the choice point and then pops it from the stack.

2.1.5 Optimisations

Optimisation is based on three WAM principles. Firstly, heap space should be
used sparingly. Secondly registers should be allocated to minimise unnecessary data
movement and code size. Thirdly special instructions for special situations should
be used where that is more efficient.

Constants and lists enjoy special representations on the heap and special instructions
for putting them there and reading them therefrom. Anonymous variables need no
registers; and multiple anonymous variables in a row can be processed in one go by
a single instruction.

Registers are allocated in a clever way so that some of the instruction instances in
the program become vacuous and can be eliminated.

8

2.1.6 The Cut

We add a backtrack cut register which records the choice point to return to when
backtracking over a cut. Cuts can be classified as shallow cuts where the cut comes
before the first body goal, for example,

h :– !, b1, b2.

and deep cuts, for example,
h :– b1, !, b2.

We have specialised instructions for these two cases.

2.2 Compilation of Prolog to C: the wamcc

The wamcc[11] translates Prolog to C via the WAM. The paper[11] lists as require-
ments for a Prolog compiler: extensibility, portability, efficiency and modularity.
The authors go on to note that emulating the WAM instructions in C is either
inefficient, or if optimised, excessively complex. Hence, they decided to exploit fea-
tures of the C language to go beyond emulation. The main issue addressed is how
branches performed by the WAM are implemented. In a emulator, the program
counter is stored as a variable and modified as appropriate after each instruction.
An emulator is slowed by its reliance on a fetch, decode, execute cycle.

Much of the paper[11] details how four systems, namely Janus, KL1, Erlang and,
wamcc itself, deal with control flow. The reason for this restriction is that the code
for each instruction, setting aside control flow, closely follows that of the original
WAM described above.

Each system has a different way of dealing with the two types of branch. There are
direct branchings, where the location to be jumped to is known when the program is
compiled. In addition, we need indirect branching, where the location to be jumped
to is only known when the program is run on account of it, in the WAM, being
stored in a register. The principal example of an indirect branch is the instruction
which terminates the code written for a given predicate.

2.2.1 Janus, KL1 and Erlang

In Janus, normal C branching with the goto statement is used. However ANSI C
does not support an indirect version of the goto statement, and goto cannot jump
outside of the current function call. Thus Janus compiles a Prolog program into a
single C function using a huge switch statement. The resultant enormous C function
takes a long time to compile. The nature of Prolog, where queries are entered and
compiled on-the-fly, means that a long compilation time is not acceptable.

In KL1 the program is sliced into several functions, with each predicate compiled
into a separate function and branchings implemented as function calls. We might
consider a scheme which resembles the use of continuations, in that the functions

9

never return, each calls another function before returning. However this can lead to
stack overflow. The solution to this is to use a supervisor function of the form

fct_supervisor() {
while(PC)

(*PC)();
}

This calls each function, which changes the value of PC to the appropriate contin-
uation, and then returns. The supervisor then calls the next function. The authors
of the paper feel that this would be the best solution if one wished to avoid anything
beyond ANSI C.

The third system, Erlang, exploits a feature of gcc, that allows us to store a label
in a pointer, and to jump to the location contained in that pointer. We again
compile each predicate into a separate C function, and we maintain a global table
of addresses to jump to. This approach has a number of disadvantages: all variables
used must be global for instance, as there is no space reserved for local variables on
the C stack.

2.2.2 The wamcc

The wamcc translates a WAM branch into a native code jump, by using the asm
directive in C. The compiler is fooled into thinking that the label is an external
function by declaring a prototype for it. The example given in the paper is for the
program:

p:- q, r.
q.

The WAM code for this program is

p: allocate
call(q)
deallocate
execute(r)

q: proceed

and this becomes:

void label_p();
...other prototypes for labels...

#define Direct_Goto(lab) lab()

10

#define Indirect_Goto(p_lab) (*p_lab)()

void fct_p() {
asm("label_p");
push(CP);
CP = label_p1;
Direct_Goto(label_q);

}

void fct_p1() {
asm("label_p1");
pop(CP);
Direct_Goto(label_r);

}

void fct_q() {
asm("label_q");
Indirect_Goto(CP);

}

Hence first fct p() is called as the function for the clause p :- q, r. This tries
the goal q, making a note to jump to code to try the goal r afterwards by putting
the label label p1 into the continuation pointer.

2.2.3 Summary

Thus, much of the work aimed at translating into C has been directed towards the
production of code which is a fast as possible by exploiting the ability in C to get
very close to the machine level.

To some extent, the translation of each predicate into a separate function makes the
code more readable and natural.

C# on the other hand, should certainly not allow these horrific tricks. It is hoped
that there will be other ways to exploit C#’s features to produce fast indirect jump-
ing without resorting to deceiving the compiler. There may be some scope for
ingenuity in doing this. My aim, is however, more towards readable code than
speed.

2.3 Compilation of Prolog to Java

The papers [4][5][6] describe a system, called Prolog Café which translates LLP to
Java via the LLPAM. LLP is a linear logic[12][13] programming language which is
a superset of Prolog. In LLP it is possible to specify that assumptions can only be
used once, in fact that is the default. Thus the language is resource-conscious and
ideally suited to many problems which are based on the consumption of resources.

11

The example given in the paper is of tiling a board with dominoes. Each square of
the board can only be covered by half of one of the dominoes.

Prolog Café is an extension of jProlog[19] which uses a continuation passing style
compilation referred to as binarization and detailed in [30]. A commercial system,
called MINERVA[24], which compiles Prolog to Java is also available.

2.3.1 Representing Terms

Each term is an object, which is an instance of one of the classes: VariableTerm, In-
tegerTerm, SymbolTerm, ListTerm, StructureTerm. These classes are all subclasses
of an abstract class called Term which declares methods for unification and testing
for equality of two terms amongst other things.

Hence the inheritance mechanism of Java is exploited to allow us to have functions
which takes terms as an argument, without knowing what type of terms they are.

2.3.2 Representing Predicates

Like terms, each predicate is an instance of the Predicate class. This has fields for
the stack (of VariableTerm’s); for a Predicate representing the goal to try next (we
use a continuation style); and, the code which “executes” the predicate.

A predicate f/n is compiled into a class called PRED f n, which is a subclass of
Predicate. This contains a function for each clause, compiled as follows: first the
head is compiled, then the body is compiled in continuation form, i.e. with each
goal of the body calling the next.

Thus the Prolog code:

p :- q, r.
p.

yields roughly the following Java code:

public class PRED_p_0 extends Predicate {
public PRED_p_0() { }
public PRED_p_0(Predicate cont) { this.cont = cont; }
public void init(Term[] args) { }

/* p:- q, r. */
private boolean clause1() {

Predicate v1 = new PRED_r_0(cont);
Predicate v2 = new PRED_q_0(v1);
v2.exec();
return false;

}

12

/* p:- true. */
private boolean clause2() {

cont.exec();
return false;

}

public void exec() {
if(clause1()) return;
if(clause2()) return;

}
}

A more recent version uses the continuation style of KL1, with supervisor functions,
in order to avoid stack overflows. In this style, instead of returning nothing, exec()
returns the continuation.

2.3.3 Dealing with Resources

Thus far, I have described how Prolog Café deals with Prolog. However, as men-
tioned above, it actually translates a linear logic programming language into Java.
It has, therefore, to deal with the creation and consumption of resources.

Resource formulae are compiled into closures, each containing a reference to the
bindings of free variables (resource formulae without free variables can be treated
as normal), and a pointer to the code. In Java, these closures are represented as
objects.

A resource table is created, which contains an array of objects, each representing
a primitive resource. Each primitive resource consists, amongst other things, of a
consumption level and closure. Resources are added to the table by the use of the
operators ⇒ and (, and removed when we backtrack.

A register, L, is added to store the current consumption level. At some point in the
proof tree, only resources with consumption level equal to the current value of L may
be consumed. When creating a new resource, if it is an exponential resource (may be
consumed as many times as you wish) then the value 0 is stored in the consumption
level field. Otherwise it is allocated an initial consumption level equal to the current
value of L. It is also necessary to store deadline information, indicating the point by
which a given resource must have been used. These issues are dealt with in detail
in [18].

2.3.4 Summary

This technique of compilation, with its use of classes, makes intelligent use of Java’s
object-oriented features, and appears to be a good starting point for a translator to
C#. Also, it adopts the continuation style strategy used by some of the translators

13

to C mentioned above. To implement the strategy used by the wamcc for branchings
in Java is, though, inconceivable.

3 Proposed Contribution

3.1 General Discussion

The intended principal contribution of the proposed work is to implement a compiler
which will compile Prolog source code into C# source code. This compiler will
probably be obtained by modifying an existing compiler. Hopefully such an approach
will minimise the amount of mundane and technically uninteresting work which is
normally a major part of the implementation of a compiler.

The intended content of the thesis is mainly twofold. Firstly there will be a devel-
opment of the theory of Prolog translation to the extent required to translate into
C#. Secondly there will be a discussion of the implementation with details of the
design decisions made and how they relate to the theory developed.

Above I have discussed two very different ways of translating Prolog, one non-object-
oriented and one object-oriented. One of the major design decisions is which of these
to opt for. Taking into account a desire for readability above speed it seems likely
that the object-oriented nature of C# will be exploited. The work will, however,
attempt to combine the exploitation of C’s efficiency found in the wamcc with the
exploitation of Java’s object-oriented model found in translators which translate to
Java. The starting point will probably be an existing translator to Java. This will
be modified to use the extra features that C# provides where appropriate.

It is hoped that the use of object-orientation will yield more readable code than that
produced by wamcc; and that the use of C#’s features taken from C++ will yield
more efficiently executable code than translators to Java can produce.

Translating a linear logic programming language to C# seems a good idea for two
reasons. The languages tend to be supersets of Prolog, so expressiveness is gained,
and nothing lost apart from perhaps a loss of performance. Also the problem is
more technically interesting than that of compiling just Prolog to C#. The Prolog
language is rife with interesting extensions and there should be some scope for
interesting work in finding ways of implementing some of these in C#.

The possible original contributions comprise novel extentions to the WAM to exploit
features in the C# language, and novel techniques employed to obtain more readable
code. It is expected that more progress will be made in the former direction than
the latter which seems far more challenging.

3.2 Specific Tasks

The following are some specific tasks which could form part of the work.

14

• Modification of a linear logic language to Java translator to produce C# classes
rather than Java classes. This will involve modifications to account for the different
object-orientation features provided by C#.

• Finding a scheme for direct and indirect branching in C# which is as fast as
possible. Considering the importance placed on this issue in the existing literature,
it is conceivable that a paper could result from this, if a suitably novel scheme is
found.

• Investigating the relative merits of using structs instead of objects; and of allocat-
ing those structs or objects on the stack or on the heap.

• Investigating the use of operator overloading to produce more concise code, but
only if it makes sense and is still readable. For example, it could be used to express
the fact that two terms unify concisely.

• Implementing some extensions of Prolog in C#. For example, adding support for
concurrency by taking advantage of the good support in Java and C# for multi-
threading. Current work on translation to Java has focused on linear logic, so there
is scope for new work on other extensions of Prolog. GNU Prolog[14], already
implements many extensions to the language, which could be considered.

• Investigating the relative merits of retaining support for linear logic.

3.3 Timetable

I plan to start the second year by investigating the internals of Prolog Café. Prolog
Café is written in Java (the run-time system) and Prolog (the actual translator).
The translator itself is 2,500 lines of SICStus Prolog.

Having done so, I would hope to obtain at least a näıve translator to C# and
hopefully one which is to some extent optimised to match C# by the end of that
year.

Time permitting after that, I would like to consider further optimisations, and/or
extensions to Prolog. This can only be done after a working translator has been
obtained.

Ideally work would be done on producing more readable code, which may be quite
theoretical in nature. However, very little progress might be made on this aspect
of the project due to its ambitious nature. I nevertheless hope that some advance
might be made in this direction. This part of the project should guide the design
decisions made during implementation, perhaps from an early stage.

3.4 Thesis Chapters

Below, I summarise an estimate of the chapter structure of the thesis and what each
chapter may contain.

15

• Introduction : introduction to language translation issues

• Language Interoperability : survey of existing language translation and .NET

• Prolog and Linear Logic

• Prolog Café

• Producing Näıve C# : minimal modifications of Prolog Café to produce C#
instead of Java

• Optimising the Design : indirect jumps

• Producing More Readable Code

• Implementing Concurrent Prolog

• Implementing other Prolog Extensions

• Conclusion

References

[1] Aı̈t-Kaci, H., (1999) Warren’s Abstract Machine: A Tutorial Reconstruction.
MIT Press (out of print) Available from http://www.isg.sfu.ca/~hak

[2] Aı̈t-Kaci, H., (1991) Warren’s Abstract Machine: A Tutorial Recon-
struction. Slides for ICLP’91 Pre-Conference Tutorial. Available from
http://www.isg.sfu.ca/~hak

[3] Albahrari, B. A Comparative Overview of C#. Available from
http://genamics.com/developer/csharp comparative.htm

[4] Banbara, M., Tamura, N., (1999) Translating a Linear Logic Programming
Language into Java. In Proceedings of ICLP’99 Workshop, 1999.

[5] Banbara, M., Tamura, N., (1997) Java Implementation of a Linear Logic Pro-
gramming Language. In Proceedings of the 10th Exhibition and Symposium on
Industrial Applications of Prolog, pp. 56-63.

[6] Banbara, M., Tamura, N., (1998) Compiling Resources in a Linear Logic Pro-
gramming Language. In Proceedings of Post-JICSLP’98 Workshop on Paral-
lelism and Implementation Technology for Logic Programming Languages.

[7] Benton, N., Kennedy, A., (1999) Interlanguage Working Without Tears: Blend-
ing SML with Java In ICFP’99, pp. 126–137.

[8] Benton, N., Kennedy, A., Russel, G., (1998) Compiling Standard ML to Java
Bytecodes. In Proceedings of the 3rd ACM SIGPLAN Conference on Functional
Programming, September 1998, Baltimore.

16

[9] Campell, J.A., (1984) Implementations of PROLOG. Ellis Horwood.

[10] Clocksin, W. F., (1997) Clause and Effect. Springer-Verlag Berlin and Heidel-
berg GmbH & Co. KG

[11] Codognet, P., Diaz, D., wamcc: Compiling Prolog to C. In PLILP’95.

[12] Girard, J.-Y. (1987) Linear Logic. Theoretical Computer Science, 50: 1–102.

[13] Girard, J.-Y. (1995) Linear Logic: Its Syntax and Semantics. In Girard, J.-
Y., Lafont, Y. and Regnier, L., editors, Advances in Linear Logic. pp. 1–42.
Cambridge University Press.

[14] GNU Prolog home page. http://pauillac.inria.fr/~diaz/gnu-prolog/

[15] Gordon, A.D., Syme, D. (2001) Typing a Multi-Language Intermediate Code.
The 28th ACM Symposium on Principles of Programming Languages.

[16] Gosling, J., Joy, B., Steele, G., Brancha, G., (2000) The Java Language Speci-
fication, Second Edition. Addison Wesley.

[17] Hans, W. (1992) A Complete Indexing Scheme for WAM-Based Abstract Ma-
chines. In Proceedings of the 4th International Symposium, PLILP ’92, August
1992, Leuven, Belgium. LNCS 631 pp.232–244.

[18] Hodas, J. H., Watkins, K., Tamura, N., and Kang, K.-S. (1998) Efficient Im-
plementation of a Linear Logic Programming Language. In Proceedings of the
1998 Joint International Conference and Symposium on Logic Programming.

[19] jprolog home page. http://www.cs.kuleuven.ac.be/~bmd/PrologInJava/

[20] Krall, A., Berger, T. (1992) Fast Prolog with a VAM 1p based Prolog Compiler
In Proceedings of the 4th International Symposium, PLILP ’92, August 1992,
Leuven, Belgium. LNCS 631 pp.245–259.

[21] Krall, A., Neumerkel, U. (1990) The Vienna Abstract Machine. In PLILP’90.

[22] Li, X. (1996) Program Sharing: A New Implementation Approach for Prolog. In
Proceedings of the 8th International Symposium, PLILP ’96, September 1996,
Aachen, Germany. LNCS 1140 pp. 259–273.

[23] Lindholm, T. and Yellin, F. (1999) The Java Virtual Machine Specification,
Second Edition. Addison Wesley Longman Inc.

[24] MINERVA home page: http://www.ifcomputer.com/MINERVA/home en.html

[25] The Microsoft Developer .NET home page. http://msdn.microsoft.com/net

[26] Proebsting, T.A., Townsend, G., Bridges, P., Hartman, J.H., Newsham, T.,
Watterson, S. A. (1997) Toba: Java For Applications—A Way Ahead of Time
(WAT) Compiler. Technical Report, Dept. of Computer Science, University of
Arizona, Tucson.

17

[27] Pusch, C., (1996) Verification of Compiler Correctness for the WAM. In Pro-
ceedings of the 29th International Conference, TPHOLs’96, August 1996,
Turku, Finland. LNCS 1125 pp.347–361.

[28] Stroustrup, B., (2000) The C++ Programming Language, Special Edition. Ad-
dison Wesley.

[29] Tamura, N., and Kaneda, Y. (1996) Extension of WAM for a linear logic pro-
gramming language. In Ida, T., Ohori, A. and Takeichi, M. editors, Second
Fuji International Workshop on Functional and Logic Programming. pp. 33-50.
World Scientific.

[30] Tarau, P. and Boyer. M. (1990) Elementary Logic Programs. In Deransart, P.
and Maluszyński, J., editors, Proceedings of Programming Language Imple-
mentation and Logic Programming, LNCS 456, 159–173, Springer.

[31] Tarditi, D., Lee, P., Acharya, A. (1992) No Assembly Required: Compiling
Standard ML to C. ACM Letters on Programming Languages and Systems
2(1) 161–177.

[32] Warren, D. H. D, (1983) An Abstract Prolog Instruction Set. Technical note
309, SRI International, Menlo Park, CA, October 1983.

[33] Warren, D. H. D, (1988) Implementation of Prolog. Lecture notes, Tutorial
No. 3, 5th International Conference and Symposium on Logic Programming,
Seattle, WA, August 1988.

18

