
P# Manual for version 1.1.2 [draft]
Jon Cook — August 2003

1 Introduction

P# is a Prolog implementation designed for use with Microsoft’s .NET Framework.
Specifically it translates Prolog to C# source code, allowing interoperation with
C# and hence with other .NET languages. This allows the development of software
which combines Prolog back-ends with C# front-ends. Much of P# is shared with
SICStus Prolog and the tool from which P# is derived, Prolog Cafe (version 0.4.4).
Details of predicates and operators which are shared with SICStus Prolog are not
given, and in these cases the user is referred to the SICStus Prolog documentation.

P# can be downloaded from my web-page: http://www.dcs.ed.ac.uk/home/jjc.

2 Compiling a Prolog program to an executable

You should add Psharp.dll to the Global Assembly Cache (GAC). Having done this
you can run P# by executing the Psharp.exe file. It is possible to run Psharp.exe
without putting Psharp.dll in the GAC, simply by placing the two files in the same
folder. However, putting Psharp.dll in the GAC makes it easier for C# programs
generated by P# to find the DLL (alternatively you can add a reference to some
copy of the DLL when you compile your C# files).

To translate a Prolog source file, called myfile.pl, say, run P# and enter the
command

compile(’myfile’).

then press CTRL-Z to exit P#.

If the compilation was successful there will now be a number of C# files in the
directory. Copy the file Loader.cs into the directory as well. The file Loader.cs
can be downloaded from the P# homepage.

Assuming that your csc (C# compile) command is reachable from the path, and
that you have put your Psharp.dll file in the folder C:\psharp, say, you should
then be able to compile these into a P# application with the following command:

csc /r:"C:\psharp\Psharp.dll" /out:MyProgram.exe *.cs

This generates an executable file which when run will load the P# DLL and start
executing the predicate main/0 in the Prolog file you compiled. To run another
predicate of arity zero, say my_pred you can use the command:

1

MyProgram.exe MyPred

Notice how Prolog predicate names are renamed (if in doubt just look at the class
name in the generated C# file).

To run P# Prolog code from the P# interpreter use the built-in predicates consult/1,
compile/1 and plcomp/1 (see below).

3 Predicates shared with SICStus Prolog

3.1 Interpreter

consult/1, listing/0, debug/0, nodebug/0, trace/0, notrace/0, spy/1, nospy/1,
nospyall/1, leash/1

Note that the support for these predicates is not as extensive as in SICStus Prolog.
A list of files to consult can be typed directly in the terminal e.g.

?- [file1, ’File2’].

however [user]. cannot be used to type in code on the terminal.

3.2 Input of Terms

read/1, read/2

3.3 Output of Terms

display/1, write canonical/1, write canonical/2, write/1, write/2, writeq/1, writeq/2

3.4 Character I/O

nl/0, nl/1, get0/1, get0/2, get/1, get/2, put/1, put/2, skip/1, skip/2, peek char/1,
peek char/2, tab/1, tab/2, ttynl/1, ttyflush/1, ttyget0/1, ttyget/1, ttyput/1,
ttyskip/1, ttytab/1

3.5 Stream I/O

open/3, close/1, current input/1, current output/1, set input/1, set output/1,
flush output/0, flush output/1

2

3.6 Arithmetic

(is)/2, (=:=)/2, (=\=)/2, (<)/2, (>)/2, (=<)/2, (>=)/2

3.7 Comparison of Terms

(==)/2, (\==)/2, (@<)/2, (@>)/2, (@=<)/2, (@>=)/2, (?=)/2, compare/3, sort/2

3.8 Control

otherwise/0, true/0, fail/0, false/0, repeat/0, (,)/2, (;)/2, (->)/2, (\+)/1, (!)/0,
call/1, once/1

3.9 Meta-Logic

var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1, ground/1,
compound/1, callable/1, functor/3, arg/3, (=..)/2, atom chars/2,
number chars/2, name/2

Note that float/1 always fails as floating point numbers are not implemented in the
current version of P#.

3.10 Modification of the Program

asserta/1, assertz/1, assert/1, clause/2, retract/1, retractall/1, abolish/1

3.11 All Solutions

findall/3

3.12 Definite Clause Grammars

’C’/3, expand term/2, (-->)/2

3.13 Miscellaneous predicates shared with SICStus Prolog

copy term/2, (=)/2, length/2, numbervars/2, halt/0, abort/0, statistics/0,
statistics/2, op/3, current op/3

3

4 Predicates shared with Prolog Café

4.1 Operators

See Table I for a summary of P#’s Prolog operators. The extra operators added for
LLP support are included in Table II.

4.2 Input of Terms

read token/1, read tokens/2, read with variables/2, readint/1, readline/1,
parse tokens/2

4.3 Reading in Programs

compile(+FileName)
compile(+ListOfFilenames)

Compile a Prolog file or list of Prolog files to C#. The Prolog files are found in
the currently selected directory and the C# files are output in the same directory.
The Filename(s) should not include the .pl suffix. For example, to compile test.pl,
use compile(test). To compile Test.pl, use compile(’Test’). To compile both use
compile([test, ’Test’]).

fcompile(+FileName)
fcompile(+ListOfFilenames)

Same as compile/1.

4

Table I: Prolog operators

1170 xfx :-
1170 xfx -->
1170 fx :-
1170 fx ?-
1150 fx mode [ignored]
1150 fx public [ignored]
1150 fx dynamic
1150 fx multifile [ignored]
1150 fx block [ignored]
1150 fx meta predicate [ignored]
1100 xfy ;
1050 xfy ->
1000 xfy ,
900 fy \+
900 fy spy
900 fy nospy
700 xfx =
700 xfx is
700 xfx =..
700 xfx ==
700 xfx \==
700 xfx @<
700 xfx @>
700 xfx @=<
700 xfx @>=
700 xfx =:=
700 xfx = \=
700 xfx <
700 xfx >
700 xfx =<
700 xfx >=
550 xfy :
500 yfx +
500 yfx -
500 yfx #
500 yfx /\
500 yfx \/
500 fx +
500 fx -
400 yfx *
400 yfx /
400 yfx //
400 yfx <<
400 yfx >>
300 xfx mod
300 xfx ˜
200 xfy ˆ 5

Table II: LLP Operators

1200 fx forall
1190 xfx \
1150 fx resource
1060 xfy &
950 xfy -<>
950 xfy =>
900 fy !

4.4 User defined hash-tables

See the Prolog Café documentation for details of using hash-tables.

open table(+Table)
close table(+Table)
clear table(+Table)
set table(+Table)
current table(?Table)
get term(+Key, ?Term)
get term(+Table, +Key, ?Term)
put term(+Key, ?Term)
put term(+Table, +Key, ?Term)

asserta(+Table, +Clause)
assertz(+Table, +Clause)
assert(+Table, +Clause)
clause(+Table, +Head, ?Body)
retract(+Table, +Clause)
retractall(+Table, +Clause)
abolish(+Table, +Functor/Arity)

4.5 Miscellaneous predicates shared with Prolog Café

version/0

Output the version string.

time(+Goal)

Calls the Goal and outputs a message indicating how long the goal took to execute.

cafeteria/0

Run the Prolog interpreter. The name of this predicate is a hangover from Prolog
Café.

url source(+URL, -Text)

Look up the URL (an atom) and returns the html contents of that location as an

6

atom.

5 Calling C# from Prolog

load assembly(+AssemblyToLoad)

Load a .NET assembly so that the predicate classes defined within it can be called
from Prolog. P# first tries passing the string provided (as an atom) to the C#
method System.Reflection.Assembly.Load(), and if this fails to load an assembly it
then tries System.Reflection.Assembly.LoadWithPartialName().

When the Prolog engine looks for a predicate, it first searches in the P# DLL, if
it is not found there it searches the loaded assemblies starting from the last loaded
assembly and ending at the first loaded assembly. If an assembly which has already
been loaded is loaded again then that assembly is moved to the top of the list so
that it will have priority over all of the others.

cs constructor(+Class(+Args, ...), -CsObjectTerm)

Construct a C# object and return the corresponding C# object term. For example:

cs_constructor(’System.Collections.ArrayList’, AL).

or

cs_constructor(’System.Collections.ArrayList’(10), AL10).

cs method(+Class, +StaticMethod(+Args, ...), -ReturnValue)
cs method(+Object, +Method(+Args, ...), -ReturnValue)

Call a C# method. When you call Prolog from C# and then call back to C#
from the Prolog side you have to call PrologInterface.addCallingAssembly() before
the call. This enables cs method to find the method in the calling assembly. For
example:

PrologInterface sharp = new PrologInterface(true);
sharp.addCallingAssembly();
sharp.setPredicate(...);
sharp.call();

The Prolog looks like, for example:

cs_method(’System.Console’, ’WriteLine’(’Hello World!’), _).
cs_method(’System.Math’, ’Max’(3, 4), M).

cs term(?CsObjectTerm, ?PrologTerm)

7

Convert between C# objects represented as CsObjectTerm’s and Prolog values. It
is often necessary to convert values returned by cs method using this predicate for
example:

cs_method(’System.Math’, ’Max’(3, 4), M) instantiates M to System.Int32(4).
Then call cs_term(Int, M), which instantiates Int to 4.

+ClassOrInstance : +MethodCall [new in P#]

The colon operator combines cs method/3 with cs term/2. It is used as follows:

’System.Math’:’Max’(3, 4, Int) instantiates Int to 4.

or

Object:’Method’(Arg1, Arg2, ReturnValue).

cs get field(+ClassOrInstance, +Field, -Value)

Get the value of a C# field. For example:

cs_get_field(’System.Int32’, ’MaxValue’, MV).

Instead of a class a variable instantiated to a C# object term can be used as the
first argument.

cs set field(+ClassOrInstance, +Field, +Value)

Set the value of a C# field.

cs object(?X)

Succeeds if X is a C# object term.

6 Miscellaneous predicates new in P#

plcomp(+File)

Compile the given Prolog file to C# and then compile the C# internally so that
the predicates defined in the Prolog file can be called thereafter in the interpreter
session.

plcomp(+File, +Output)

Same as plcomp/1 except that an executable file with the given Output name is
generated as well.

plcs(+File)

Same as compile/1, except that only one file may be given.

8

7 Concurrency

Note that concurrency features will not work for interpreted code (code loaded by
consult/1 or by entering a list at the prompt). To run concurrent code from the
interpreter internally compile the Prolog file using plcomp/1.

7.1 Forking threads and message passing

wait for/1, fork/1, fork/2, stop/1

In order to be able to create new threads, we add a primitive called fork/1. The
fork predicate takes a structure as an argument and then forks a new thread which
evaluates the structure.

A fork/2 primitive is also available, which forks the first argument and returns a
Prolog representation of a C# object representing the new thread. This object can
then be returned to the C# part of the program where it can be used to stop that
thread. A predicate, named stop/1 is provided, which can be used to stop a thread
from the Prolog side. The predicate stop/1 does not work correctly in P# 1.1.2
and earlier.

Having called fork with a structure containing an uninstantiated variable, anywhere
in the syntax tree of the structure, a thread can use that variable to interact with
the newly forked thread.

7.2 Communication between threads

The wait_for predicate takes as an argument a variable which is shared with an
already forked thread. It then waits until one of the threads instantiates that variable
and succeeds with the given instantiation. Except for this the instances of variables
on different threads do not interact.

Consider the following program:

a(2, 7).

and(Y) :-
fork(a(1, Y)),
fork(a(2, Y)),
fork(a(3, Y)),
wait_for(Y).

Three threads are forked, each calling the predicate a/2 with different values of
the first argument. Only the second will instantiate Y, the second argument to 7.
wait_for(Y) will wait until this happens and then and/1 will succeed with Y = 7.
It is also acceptable for a forked thread to wait for the thread which forked it or for

9

forked threads to fork more threads.

The following example shows that forking integrates with backtracking.
alpha(’a’). guess(Z) :-
alpha(’b’). alpha(X),
alpha(’c’). fork(correct(X, Z)),
alpha(’d’). fail.

guess(Z) :-
correct(X, Y) :- wait_for(Z).

\+ var(X), % prevent cheating
X = ’c’,
Y = X.

The guess/1 predicate knows that the correct answer is ’a’, ’b’, ’c’ or ’d’.
However it can only find out which by calling correct(X, Y) with the correct letter
as X, in which case Y is instantiated to that letter. The guess/1 predicate forks a
thread for each letter and waits for one of them to succeed. The variable Z correctly
retains its concurrent information on backtracking, as it comes into existence as
soon as guess(Z) is called.

The following example is similar to the last, except that tail-recursion is used instead
of backtracking. The user enters a square integer between 0 and 202. The program
forks 21 threads to try each of the possible square roots, and then waits for one of
them to signal that the answer has been found.

sqroot(S, R) :-
sqroot_threads(S, R, 0),
wait_for(R).

sqroot_threads(S, R, 21) :-
!.

sqroot_threads(S, R, N) :-
fork((S =:= N * N, R = N)),
N1 is N + 1,
sqroot_threads(S, R, N1).

Note that the double brackets in the fork are necessary as the fork takes only one
argument, which in this case is a structure with functor ,/2. This provides a way
of writing the code to be forked “in-line”.

7.3 Queueing of multiple solutions

It may be that the programmer wishes to use a concurrent variable more than once,
indeed if he or she cannot, then some algorithms will require unnatural implemen-
tations.

10

If a bound concurrent variable is later unbound by backtracking, and then bound
again to the same or a different value, then that new binding is enqueued on the
queue of messages to be consumed.

Thus, a producer can give multiple bindings to a concurrent variable, possibly com-
posing a set of solutions; and a consumer can repeatedly call wait_for to take each
binding.

The wait_for predicate can be called repeatedly by using the usual repeat/0 pred-
icate, however wait_for also creates a choice-point and will yield the next solution
on backtracking.

The following code creates two threads, a producer and a consumer. The producer
generates integer values from 0 up to 10 and the consumer consumes each produced
value, doubles it and outputs the corresponding result. The producer uses a pred-
icate pulse/2 which makes a binding and then undoes it straight away. The first
clause of pulse makes the binding, and then fails. This failure causes backtracking
to the last choice-point, which undoes the binding we made in the first clause and
then executes the second clause which succeeds. Thus, the predicate call succeeds
having made no lasting binding. This allows us to imperatively give successive bind-
ings to the same variable.

main :- prod(X) :-
fork(prod(X)), enum(X, 0).
cons(X).

enum(_, 11) :-
cons(X) :- !.

wait_for(X), enum(X, N) :-
X2 is X * 2, pulse(X, N),
write(X2), N1 is N + 1,
nl, enum(X, N1).
fail.

cons(X). pulse(X, N) :-
X = N,
fail.

pulse(_, _).

When it is detected that all of those threads which have a copy of a concurrent
variable are waiting for that variable, then all of those calls to wait_for fail. Thus,
in the example above both of the threads eventually terminate, and in the square
root example above, if the user asks for the root of a non-square integer the query
will fail. If all of the forked threads with a variable succeed or fail having sent
no message then a call to wait_for on the remaining thread will fail. However,
care must be exercised. If we had defined main to fork both the producer and the
consumer, then the main thread running under the interpreter would still have a
copy of the variable X although it would never use it. This would stop the consumer
thread from terminating. It is still possible to fork both threads by forking a thread

11

which itself first forks the producer thread and then runs the consumer code. In
this case the variable X is introduced on the consumer thread, not the interpreter
thread.

7.4 The Global Table

global table/1, global assert/1, global asserta/1, global assertz/1,
global retract/1, global retractall/1, global abolish/1, global call/1

Each forked thread is equipped with a private database which it can use in the
normal way. In addition we provide a global database, which is shared between all
the threads. Accesses are automatically protected by a mutex. The database can be
modified by primitives global_assert/1, global_retract/1 and so on. To query
the database a global_call/1 predicate is provided.

Since the set of assertions in the global table for a variable are specific to that
variable, the assertions for different variables do not interfere with one another.

7.5 Monitors

lock/1, unlock/1

Our system includes two further primitives to ensure mutual exclusion among exe-
cuting threads, namely, lock/1 and unlock/1. Both of these take as an argument
any Prolog term, and respectively acquire or release a monitor lock on the C# object
representing that term.

backtrackable lock/1

A backtrackable_lock/1 predicate is also provided. The effect of calling backtrackable_lock
is that everything deeper down the proof tree forms a critical region.

The P# runtime system keeps track of each lock and unlock operation and maintains
a variable which stores the current depth of locking. When the P# Prolog thread
terminates all of its locks are automatically released. This mirrors the semantics
of the C# lock keyword, where a finally clause releases the monitor when the
critical region is exited. Thus, if the thread is aborted, all of its locks are released.

7.6 Interoperation with C#

The locks dealt with by lock and unlock are C# locks (on C# objects). Similarly
fork initializes and starts a new C# thread, unification calls the PulseAll() method
on an object and wait_for calls the Wait() method on an object, although they
do far more besides this.

A C# program which calls a P# Prolog predicate may wrap such a call with a fork.
Any variables passed to the predicate then become concurrent, allowing communi-
cation between the C# code and the P# Prolog before the Prolog terminates.

12

A P# Prolog predicate can call a C# method in the following way:

’System.Console’:’WriteLine’(’Hello World!’, _).

The middle argument consists of the method name and any actual arguments. These
C# arguments may include uninstantiated variables, in which case the C# will be
passed a VariableTerm object. Thus, a concurrent variable can be passed from the
P# Prolog side to the C# side. This time the use of :/2 should be wrapped in a
fork, for example:

run_cs_method(In, Out, ObjectToCall) :-
fork(ObjectToCall:’CsThreadStart’(In, Out)).

This would be matched on the C# side by code of the following form:

public object CsThreadStart(VariableTerm vt) {
...

// send message
vt.Send(new IntegerTerm(7));

// or await a message
int msg = (int)(vt.Receive().toCsObject());

...
return ...

}

The Send() and Receive() C# methods use a temporary P# engine to respec-
tively perform a unification and execute the wait_for predicate. Each undoes any
existing binding of the concurrent variable that it is given first, and thus may be
called repeatedly from the C# code. Such repetition must, however, be matched by
backtracking on the P# side.

7.7 Miscellaneous Concurrency Predicates

sleep(+TimeInMillis)

Sleep for the specified time period.

zap queue(+VariableWhoseQueueShouldBeZapped)

Clear the queue of produced terms waiting to be consumed for a given concurrent
variable.

wait for one/1

Do not use this predicate.

13

8 Calling Prolog from C#

8.1 Imports

This section details how Prolog can be called from C#. The C# code which calls
Prolog must contain the following imports:

using JJC.Psharp.Lang;
using JJC.Psharp.Predicates;

and if linear logic is used, also the following:

using JJC.Psharp.Lang.Resource;
using JJC.Psharp.Resources;

You should compile your C# together with the C# files generated from Prolog by
P#.

8.2 Creating a Prolog Interface

When you wish to call Prolog, you first need to create a Prolog Interface. Do this
as follows:

PrologInterface sharp = new PrologInterface(true);

or

PrologInterface sharp = new PrologInterface(
<input stream as a JJC.Psharp.Lang.PushbackReader>,
<output stream as a System.IO.TextWriter>,
<error output stream as a System.IO.TextWriter>,
true).

The second form sets the current input, current output and current error streams.
To let the Prolog use the C# console use the following command:

PrologInterface sharp = new PrologInterface(
new PushbackReader(System.Console.In),
System.Console.Out,
System.Console.Err,
true);

The Boolean final argument should always be true. This ensures that the engine
exits correctly. Do not use

14

PrologInterface sharp = new PrologInterface();

as this may result in threads failing to exit and your program may hang.

You must create a new PrologInterface object for each call into Prolog.

8.3 Adding the calling assembly

The next thing that you program should do, if you wish the Prolog to call back to
C# is to add the calling assembly. Do this as follows:

sharp.addCallingAssembly();

8.4 Calling a Predicate

Suppose that you wish to call a predicate called lives in/2 with semantics lives in(
Person, City) and you wish to obtain all solutions to the query

lives_in(Person, ’Edinburgh’).

You would do this as follows:

VariableTerm person = new VariableTerm();
PrologInterface sharp = new PrologInterface(true);
sharp.addCallingAssembly(); // not necessary in this case
sharp.setPredicate(new LivesIn_2(

person,
SymbolTerm.makeSymbol("Edinburgh"),
new ReturnCs(sharp)));

// call predicate to obtain all solutions
for(bool r = sharp.call(); r; r = sharp.redo()) {

Console.Write("Name:");
Console.WriteLine(person.dereference());

}

If you only wanted one solution, instead of the for loop, you could just use sharp.call().

See the Prolog Café documentation for details of how to manipulate other Prolog
terms from the C# side, such as ListTerms.

The data conversions between Prolog and C# are analogous to those for Prolog Café
version 0.4.4, see Table III.

15

Table III: Data Conversions
Prolog datatype C# datatype
atom (SymbolTerm) string (System.String)
integer (IntegerTerm) int (System.Int32)
(flat) list (ListTerm) object[] (System.Object[])
C# object term (CsObjectTerm) object (System.Object)
variable (VariableTerm) JJC.Psharp.Lang.VariableTerm
structure (StructureTerm) JJC.Psharp.Lang.StructureTerm

Useful URLs

P# homepage (Jon Cook’s homepage): http://www.dcs.ed.ac.uk/home/jjc

Downloading P# 1.1.2: http://www.dcs.ed.ac.uk/home/jjc/psharp/psharp-1.
1.2/dlpsharp.html

Prolog Café: http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/index-jp.html

Prolog Café documentation: http://kaminari.scitec.kobe-u.ac.jp/PrologCafe/
PrologCafe061/doc/

SICStus Prolog manual: http://www.sics.se/sicstus/docs/3.7.1/html/sicstus_
toc.html

16

