
An agent-based visualisation architecture

Jonathan Meddes and Eric McKenzie

School of Computer Science, Division of Informatics, The University of Edinburgh,

James Clerk Maxwell Building, The King's Buildings, May�eld Road,

Edinburgh EH9 3JZ. Tel: +44 131 650 5129 Fax: +44 131 667 7209

jmx|ram@dcs.ed.ac.uk

Abstract. Advances in storage technology have led to a dramatic in-

crease in the volume of data stored on computer systems. Using a generic

visualisation framework, we have developed a data classi�cation scheme

that creates an object-orientated data model. This data model is used

in an agent-based visualisation architecture to address the problems of

data management and visual representations. As part of an ongoing re-

search project we have implemented DIME (Distributed Information in

a Multi-agent Environment), a visualisation system based on this ap-

proach. ?

1 Introduction

Computer science is catching up with visualisation, and there is a substantial
motivation for computer science to make the e�ort. We strive to make data
more interpretable via a visual representation but visualisation did not start
with computers. Bertin's seminal work with graphical representations [1] is still
a widely acknowledged guide to good visualisation practice and predates the
widespread introduction of bitmapped displays.

The increased storage capacity of computer systems has allowed application
developers to retain more detailed data. Managers have realised that they can
use this data to have more control of their organisation. From a managers per-
spective, this has the potential to be an information revolution, and can satisfy
their need for enhanced control. Unfortunately, this revolution cannot take place
until the information is readily accessible.

An e�ective visualisation uses computer graphics that allows the user to
understand data. This paper presents an architecture for a novel approach to vi-
sualisation and provides an extensible visualisation system with which to develop
our ideas.

We have based our research around a generic visualisation framework in
which we describe a data classi�cation scheme used to create a data model that
accurately classi�es the data. The organisation of the data model directly inu-
ences the internal operation of our visualisation architecture which is developed
using a technique allowing distributed communication orientated visualisation.
Finally, we describe the implementation of the visualisation system.

? This research is supported by BT Laboratories.



2 Data classi�cation

Data classi�cation is the process of identifying data items, structures and rela-
tionships within a data series. The result is a data model that can be used by
the remaining stages of the visualisation pipeline. Automated systems including
SAGE [7] and ANDD [6] emphasised that automated visualisation can only be
successful if the system understands the data. The accurate classi�cation of data
and relationships using a suitably expressive scheme is crucial to a visualisation
system capable of creating e�ective visualisations. Anomalies introduced at this
stage are propagated down the visualisation pipeline; this has the potential to
introduce spurious visual cues into a visual representation.

Before we describe the main features of our data classi�cation scheme, we
shall identify the desirable properties it should exhibit. The data classi�cation
scheme attempts to create a model that captures the syntax and semantics of the
data. The syntax of data is its raw features that de�ne its structural properties,
whereas the semantics of data is the implied meaning projected by the organ-
isation of individual data items. The data classi�cation scheme has two goals:
(1) consistently encode the data using a set of well-de�ned data types so that
subsequent stages of the pipeline receive the data model in a familiar format;
and (2) capture relationships between data items and allow easy extensions to
the model by introducing additional data items and relationships.

For illustration purposes, we present a subset of our full data classi�cation
scheme that is speci�cally intended for the classi�cation of geographic and topo-
logical based data. An application that generates this type of data is the analysis
of wide-area-network tra�c; cities have a geographic location, network links have
a topological structure and tra�c can be measured using a quantitative value.

The data model created by our scheme uses an object-orientated paradigm;
this is a convenient method of organising the data that simpli�es extending the
data classes. Every data item is represented in our data model by a data object
that is an instantiation of a data class. The basic data classes that are available
to the data model are nominal, quantitative, spatial and relational.

In a nominal data class, each member is a data object that represents a
textual item, e.g., name.

A quantitative class contains members representing numerical values, e.g.,
age. Constrained subclasses provide support for more specialist values such as
currency and percentage.

The spatial data class has members that represent a location in space. In its
basic form the spatial data class is abstract and cannot be instantiated, but the
creation of subclasses provides support for two-dimensional, three-dimensional
and longitudinal/latitudinal co-ordinates.

The relational data class provides the data model with a versatile method of
representing relationships. Instantiation of this class creates a data object con-
taining references to its associated objects; the data class also contains references
to all the classes of objects which are represented in its relations. Subclasses such
as the Complex Data Class (CDC) provide increased specialisation by restrict-
ing the types of relations which can be made. The CDC de�nes a signature
consisting of a collection of data classes. Each instantiation creates a Complex



(b)

Domain

Tuple

Data item

CDC

Classes
Objects

CDO

CDO

CDO

CDO

(a)

Fig. 1. (a) relational table and (b) its data model

Data Object (CDO) and must have exactly the same combination of data classes
de�ning their relationships.

Using these basic data classes, a data model that accurately represents the
input data is constructed using the data classi�cation scheme. Figure 1 shows
an external relational database table (a) translated into the classes and objects
of the internal data model (b). In the table, every cell contains a data item,
every item from a column is from a similar domain and the data items from
a row constitute a tuple. In the data model, a data class captures the domain
which is instantiated to describe its data items. A CDC is de�ned to represent
the association between columns in the table. Instantiations create a CDO that
captures the association between the individual data items of a tuple.

The data contained in the data model is merely a collection of data values
and relations. In the absence of further detail describing the contents of the
data model, it is meaningless as a self-contained information source. Data is
transferred into information by the introduction of context. Typically, context
is introduced by the user when they extract data from a model by introducing
environmental inuences from their domain knowledge. To move the data model
from a simple collection of data values and relationships we introduce domain

functions to provide context and replicate the environmental inuences that
dictate how a user changes data to information. In the data model, a domain
function provides a basic service that can manipulate the data by mirroring the
simple processing and reasoning a user performs when they interpret some data.
For example, if we consider the use and capacity of a network link, a typical
user of that data can deduce that the average load of that link is represented by
use/capacity ; a domain function would introduce new load objects to the data
model.

3 Visualisation architecture

The visualisation framework allows us to develop visualisation ideas in an envi-
ronment where we are not constrained by a speci�c visualisation architecture.



If we want to create tangible visual representations, we require a visualisation
architecture to realise the visualisation system. In the remainder of this paper,
we describe a visualisation architecture that demonstrates a novel approach to
implementing the visualisation pipeline.

A visualisation architecture must address (1) how data is stored or repre-
sented within the system, (2) how visual representations of the data are created,
and (3) how the operational requirements of (1) and (2) are co-ordinated. The
visualisation architecture we have adopted is an agent based-system inspired by
behaviours observed in biological systems.

3.1 Principles of an agent based architecture

The simplest way of illustrating the underlying principles behind an agent-based
system is to use a biological example. If we consider a room with no windows or
doors, the room is essentially a box. Although the room is sparse, it does contain
some objects, a telephone, a chair, a blackboard and a stick of chalk.

The room is populated by �ve people; each with a personality that charac-
terises their behaviour. For example, one could posses leadership qualities that
leads them to command others, or have organisational skills that makes them
request actions from others, or might pace around the room. The person ex-
hibiting the latter behaviour is physically constrained by the boundaries of the
room. If they do not rely on the walls to restrict their movement, a cognitive
process must be present that not only makes them move but also controls their
movement.

The inhabitants of the room can communicate using a commonly understood
language. The person making the utterance could decide to communicate with
another individual, a group of people (e.g., all males or some other commonly
accepted group), or broadcast their utterance to everyone. This communication
could transfer information, issue instructions (or orders) or ask and respond to
questions. It would be fair to assume the people in the room would observe
Grice's maxims of communication [4]. The adoption of these rules means that
the people in the room communicate e�ectively and will not attempt to mislead
one another, maliciously or otherwise.

A person's environment is de�ned by the room and the objects within it. The
room is a static boundary that restricts the movement of people and objects.
The chair is a passive object that may be used by the people in the room but
o�ers the bear minimum of interaction. Similarly, the blackboard provides a
service to the people in the room, but could also be used for storage or as a
device to communicate with other people. The telephone is an interesting object;
it provides a service allowing people to communicate outside their immediate
environment and can a�ect the people within the environment when it receives
an incoming call. In this case the telephone is no longer a passive object that
provides a service, it can cause the people in the room to change their behaviour.

A simple example will provide an illustration of the types of communication
that could take place in the room. It demonstrates the principle of co-operation
that is essential for social groups to achieve a common goal. In this example, we
want the names of the people in the room to be written on the blackboard. The



task is initiated by a telephone call that is answered by a person who knows how
to use a receiver; the caller issues an unambiguous instruction to \write every
persons name on the blackboard". The person who answered the call is now
aware of the task that must be achieved and they take a controlling position in
the environment. Luckily, the person who answers the call also has the ability
to write on the blackboard and broadcasts a message to all the other people in
the room asking them to reply with their name. One by one, the other people in
the room reply to the question and as the answers are received they are written
on the blackboard. Finally, the task is completed by adding their own name to
the bottom of the list. This example demonstrates that some tasks can only be
achieved by interaction and co-operation.

This distributed computation, co-operation and communication which is ev-
ident in the biological example above demonstrates exactly the principles which
underpin an agent-based system. In such a system, every person and object is
represented as an agent. Agents in the environment have a similar existence
to the people in the room; they are autonomous entities but are capable of
communication. Through communication, agents can arrange co-operation to
achieve common goals. Agents can co-exist in an environment that has a simi-
lar constraining e�ect to the room. The environment also provides a transport
mechanism for inter-agent communication; this is analogous to the longitudinal
sound waves that are transmitted through the air of the room.

We have used this distributed model of computation to create DIME (Dis-
tributed Information in a Multi-agent Environment), a visualisation system that
moves away from a heavyweight constraint based optimisation algorithm to-
wards a lightweight distributed system that empowers individual data items.
The agent environment is populated directly from the data model created by
the data classi�cation scheme. The object-orientated nature of the data model
easily translates into the agent environment by allowing every data object and
class to be represented as an agent. Using this approach provides a convenient
method of organising the data within the visualisation system; it also allows the
responsibility for creating a visual representation of the data to be devolved to
the individual data items and their associates.

Question
Answer

P
1

P
n

P
2

A
ge

nt
 c

om
m

un
ic

at
io

n
in

te
rf

ac
e

action()

vote(property)

Enivornment
communication

systemInstruction

Information

Property communication

Property communication

Fig. 2. Architecture of an individual DIME agent with properties (P1 to Pn) and the

communication interface with the agent environment.



3.2 DIME agent environment

Using an agent-based philosophy, DIME supports agents operating within an
agent environment. We �rst describe the construction of an agent before de-
scribing the operation of multiple agents within the environment; the discussion
of our system is presented with a minimum of implementation detail.

DIME agent: Figure 2 shows the structure of an agent which is characterised
by the properties it holds (P1 to Pn). Typically an agent is assigned numer-
ous properties and the interaction between the properties dictates its overall
behaviour. Properties can be broadly cast into two types, (1) a value property
stores details about the agent, and (2) a behaviour property directly describes
how the agent behaves within the environment.

The internal operation of an agent is controlled by its property communication

interface. This is responsible for controlling the individual properties of an agent,
organising the updates of each property via a voting mechanism, inter-property
communication, and providing access to the agent communication interface for
inter-agent communication. When an agent is introduced into the environment,
it is activated to perform its tasks. Once activated, an agent uses a round-
robin algorithm allowing each property to optionally perform some action. The
combined e�ect of these actions allows agents to complete their goals. The action
of each property is de�ned within its action method which is invoked each time
it is the property's turn to do some work. This method allows the property to
make changes to the character (or state) of the agent by updating or adding
properties. Properties in control of the agent are co-operative and operate in
a fair and reasonable manner; this is particularly important when a property
needs to update the values of other properties in the agent. As a safeguard to an
agent being dominated by a minority of properties, we use a voting mechanism
in an attempt to reach a consensus on the evolution of the agent. The voting
mechanism allows all other properties to cast a vote on their support for the
agent to adopt the new property value. The support a property can express
for new values ranges from de�nitely reject to de�nitely accept, with a neutral
position being taken by a property with no interest in the vote. If the outcome
of the vote is marginal, a random function makes the casting vote.

The operation of an agent is clearly illustrated by a simple example; we
limit our consideration to a single agent de�ned to randomly move around a
limited area and only consider its directly relevant properties. This behaviour
is expressed using three properties, (1) the position property stores the agents
current position in its environment; (2) the boundary property represents the
limits of the agents movement; and (3) the random movement property de�nes
the agents behaviour in its environment. Only the random movement property
has an action method, the other two characterise the agent but have a passive
role in its behaviour. When the random movement property wishes to move the
agent, it uses the inter-property communication interface to request the current
position of the agent; this is the value of the position property. It can then make
a change to the position to represent a random movement in the environment.
Before this change can be adopted, a vote must take place involving the position



and the boundary properties. The position property has no preference in the
outcome of the vote and returns a neutral verdict. The boundary property must
investigate the proposed change in detail. If the proposed position is outside the
boundary, it rejects the change; otherwise, it votes to accept the change and the
property communication interface will permit the new value to be adopted.

DIME environment: Agents do not directly have access to other agents in-
ternal properties and all contact must be channelled through the agent commu-
nication interface. This interface provides the necessary functionality to direct
messages to individual agents, groups of agents (e.g., all the agents in a class or
associated by a relationship agent) or all agents within the environment. Using
this communication interface, agents can pass properties to one another using the
following styles of communication, (1) instruction messages pass instructions to
an agent which must be followed; (2) information messages inform other agents
of a property value; and (3) question messages request information from an agent
which are responded to using an answer message. Messages are routed by the
environment communication system and stored until required by the agents.

The agent environment supports the introduction of domain knowledge via
domain functions. These specialist agents have two roles, (1) to search for com-
binations of data agents that can be used to create new agents; and (2) to
co-ordinate groups of agents. In the latter role, domain function agents act as a
proxy for other agents in the environment. In this guise, the agents for whom it is
acting as a proxy are assigned a proxy property; this refers all action and voting
to the proxy agent. This mechanism is available to an agent that co-ordinates
groups of agents when a substantial inuence on their conduct is required.

The structure of the data model provides a natural organisation of the data
within the visualisation system. Agents have a more complete understanding of
the data than any other entity and can create visual representations of them-
selves using a special agent providing an agent display window. Agents that wish
to be represented must posses the visible property; this is responsible for com-
municating visual information about the agent to the agent display window and
encapsulates all the visual information about how to render the agent. This in-
formation is received from other properties and can be inuenced directly or
indirectly by other agents in the environment. Specialist properties can provide
the agent with additional knowledge of a suitable visual representation for the
data it represents. For example, a Gestalt property gives an agent knowledge
about Gestalt principles [5] of appropriate organisation. Another property could
provide the agent with knowledge of colour perception [2]. Using such properties,
the agents have an improved knowledge of a suitable representation for the data.

Agents can collaborate to represent themselves as one visual item in the
agent display window. The data model provides several inherent organisational
features that are retained within the agent environment. The class agents and
their associated data members provide two extreme levels of abstraction. At
the most detailed level, agents can provide a visual representation in the agent
display window or alternatively the data agents can provide a high level abstrac-
tion of the data. A CDO provides an orthogonal dimension of abstraction where



related data items provide an associated concept. In a data model created by
the data classi�cation scheme the highest level of abstraction is a complex data
class. A CDC agent is an abstract view derived from a table representing all the
class agents, data agents and CDO's. The autonomous but collaborative nature
of agents allows them to negotiate suitable visual representations for the natural
structures present in the data they represent.

4 Current work and future plans

The agent visualisation architecture has formed the basis for DIME, an ongoing
research project implemented using Java and the Java 3D API which has al-
lowed the rapid development of prototype agents and provides a stable platform
to introduce additional functionality. DIME provides an interface to the agent
environment allowing a user to browse the agent class hierarchy and expand indi-
vidual classes to study its data agent instantiations. Properties of agents can be
investigated and where necessary the characteristics of an agent can be changed
by removing, adding or changing its properties. Visible agents are rendered in
the agent environment window by the agent rendering system.

At present visualisations in DIME use graphical style sheets (GSS) [3]. A
GSS speci�es the properties that should be assigned to the agents for an ef-
fective visual representation of the data they represent. A future enhancement
will introduce dynamic property allocation by introducing user pro�le agents
that characterise a user. Such agents are assigned the task of identifying data
that is relevant to the user; the agents representing this data are given greater
prominence in the visual representation.

A long term goal for the development of DIME is to create a system capable
of acting as a data repository. Our ambition is for the data management to be
controlled by agents encouraging a long-term data management strategy rather
than a system for short-term visualisation.

References

1. Bertin, J.: Graphics and graphic information processing. Walter de Gruyter, Berlin,

1981.

2. Healey, C.: Choosing e�ective colours for data visualisation. IEEE Visualisation

1996.

3. Felciano, R., Altman, R.: Graphical Style Sheets: Towards Reusable Representations

of Biomedical Graphics. Conference on Human Factors in Computer Systems 1998

(to appear).

4. Grice, H.: Logic and Conversation. In Cole P and Morgan J eds. Syntax and Se-

mantics: Speech Acts. 3 (1975) 41-58. New York: Academic Press.

5. Ko�ka, K.: Principles of Gestalt Psychology. London New York: Kegan Paul, Trench,

Trubner, : Harcourt, Brace. 1935.

6. Marks, J.: A Formal Speci�cation Scheme for Network Diagrams That facilitates

Automated Design. Journal of Visual Languages and Computing. 2 (1991) 395-414

7. Roth, S., Mattis, J.: Data Characterization For Intelligent Graphics Presentation.

CHI'90 Proceedings.


