There is one library file in the directory lib_prod with the
definition of (non-dependent) cross-product. As well as the basic
definitions there are also theorems giving the -rule
for pairs and the fact that pairing is extensional.
** Module lib_prod Imports lib_eq_basics $prod : (Type)->(Type)->Type(prod) $Pair : {A|Type}{B|Type}A->B->prod A B $prod_elim : {A|Type}{B|Type}{C_prod:(prod A B)->Type} ({a:A}{b:B}C_prod (Pair a b))->{z:prod A B}C_prod z ** Label (!prod!) prod ** Label (!prod elim!) prod_elim ** Label (!prod Pair!) Pair [[A|Type][B|Type][C_prod:(prod A B)->Type] [f_Pair:{a:A}{b:B}C_prod (Pair a b)][a:A][b:B] prod_elim C_prod f_Pair (Pair a b) ==> f_Pair a b] Gen (!prod is Pair!) as prod_is_Pair = ... : {A|Type}{B|Type}(prod A B)->Type Gen (!prod Pair injective!) as prod_Pair_injective = ... : {A|Type}{B|Type}{ix0,iy0|A}{ix1,iy1|B} (Eq (Pair ix0 ix1) (Pair iy0 iy1))->{P|Type} ((Eq ix0 iy0)->(Eq ix1 iy1)->P)->P pair1 = ... : {A:Type}{B:Type}A->B->prod A B prod_rec = ... : {s|Type}{t|Type}{u|Type}(s->t->u)->(prod s t)->u prod_ind = ... : {s|Type}{t|Type}{P:(prod s t)->Prop}({a:s}{b:t}P (Pair a b))-> {p:prod s t}P p Fst = ... : {s|Type}{t|Type}(prod s t)->s Snd = ... : {s|Type}{t|Type}(prod s t)->t prod_eta = ... : {s|Type}{t|Type}{p:prod s t}Eq p (Pair (Fst p) (Snd p)) prod_ext = ... : {s|Type}{t|Type}{p,q:prod s t}(Eq (Fst p) (Fst q))-> (Eq (Snd p) (Snd q))->Eq p q