In this section we define the predicate ``Even'', and prove some theorems characterising it.
** Module lib_nat_Even Imports lib_nat
Even = ... : nat->Prop
ev1 = ... : Even zero
ev2 = ... : {n:nat}(Even n)->Even (suc (suc n))
Even_elim_nondep = ... :
{T:nat->Prop}(T zero)->({n:nat}(T n)->T (suc (suc n)))->{n:nat}
(Even n)->T n
Even_inv = ... :
{n:nat}(Even n)->
(Eq n zero \/ Ex ([x:nat](Eq n (suc (suc x)) /\ Even x)))
Even_inv' = ... : {n:nat}(Even (suc (suc n)))->Even n