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Abstract

HASE is a Hierarchical computer Architecture
design and Simulation Environment which allows for
the rapid development and exploration of computer ar-
chitectures at multiple levels of abstraction, encom-
passing both hardware and software. The user interacts
with HASE via an X-Windows/Motif graphical inter-
face, and one of the main forms of output is an anim-
ation of the design window.

The DASH architecture was designed to prove the
feasibility of building a scaleable high performance ma-
chine with multiple coherent caches and a single ad-
dress space. The HASE simulation therefore concen-
trates on implementing the cache coherency protocols,
and the animator has been used to check that the
simulation conforms to the architecture. Future work
will involve performance checks of the simulator, and
thence possible architectural enhancements.

1. Introduction

HASE [5] is a Hierarchical computer Architecture
design and Simulation Environment which allows for
the rapid development and exploration of computer
architectures at multiple levels of abstraction, encom-
passing both hardware and software. It is intended for
use both as a research tool, allowing “what if?” exper-
iments to be performed on computer architectures, and
as a teaching/demonstration tool. The simulation de-
scribed here was inspired by Hennessey’s video on the
DASH architecture [2], and was therefore designed as a
demonstration system, though the model has potential
to allow research experiments to be performed.

*The HASE project is supported by the UK EPSRC

2. HASE

The ideas for HASE grew from a simulator built for
an MC88000 system [11], written in occam and run on
a Meiko Computing Surface at the Edinburgh Parallel
Computing Centre. However, since the components of
a computer can be treated very naturally as objects,
HASE itself is based on the object oriented simulation
language Sim++ [6] and an object oriented database
management system, ObjectStore [9].

The environment includes a design editor and object
libraries appropriate to each level of abstraction in the
hierarchy, plus instrumentation facilities to assist in the
validation of the model. The system can thus be set
up to return event traces and statistics which provide
information about, for example, synchronisation, com-
munication and memory latencies, cache hit/miss ra-
tios.

The user interacts with HASE through an X-
Windows/Motif graphical interface. Many complex
systems of interacting components can be more easily
understood as pictures rather than words, and in com-
puter architectures the dynamic behaviour of systems
is frequently of interest. HASE therefore allows users
to view the results of simulation runs though animation
of the design window.

HASE is being developed specifically for use in the
ALAMO project (Algorithms, Architectures & Models
of Computation: Simulation Experiments in Parallel
Systems Design), but is also been used in a number of
other projects. The ALAMO project itself involves an
investigation of the use of the H-PRAM model of com-
putation [4] as a bridging model for parallel computa-
tion. Algorithmic skeletons are written in an H-PRAM
notation, compiled on to simulation models of parallel
architectures created in HASE, and the performance
metrics of various hardware architectures investigated.
The goal is to determine the properties of cost-effective
systems based on scalable architectures to provide effi-



cient support of the H-PRAM model.

HASE is also being used to evaluate the performance
of a variety of multiprocessor interconnection networks.
This involves setting up a simulation testbed contain-
ing simple processor models which can generate net-
work activity corresponding to that found in standard
benchmarks used to evaluate real parallel systems, and
instantiating different network models in the testbed.

An example of a different type of project is the
On-Line Teaching System for Computer Architecture.
This project has produced a demonstration to aid stu-
dents in the understanding of computer architecture.
The demonstration involves playing back a pre-run
simulation of the DLX architecture [3] which both an-
imates the diagram of the architecture and displays a
sequence of text windows which explain what is hap-
pening in the simulation. The simulation deals with
hazards, multicycle operations, scoreboarding, etc.

3. The DASH Architecture

The DASH architecture [7, 8] was built in the Com-
puter Systems Laboratory at Stanford University. The
main motivation underlying its inception was a desire
to prove the feasibility of building a scalable high per-
formance machine with multiple coherent caches and a
single address space. The intention was to produce a
parallel architecture offering both ease of programmab-
ility (facilitated by the single-address space) and very
high performance (by using hundreds to thousands of
high performance (low-cost) processors).

The DASH hardware is organised hierarchically as
shown in Figure 1. At the bottom of the hierarchy
there is a set of processing nodes, grouped together
in clusters of four and connected together via a com-
mon bus (the lower level interconnection mechanism).
These buses are in turn connected together by a (dual)
interconnection network. The 4D/340 network inter-
face connects to two independent worm-hole routed
meshes, one used for outgoing memory requests and
the other for inbound replies.

DASH clusters are based upon a modified version
of the Silicon Graphics POWER Station 4D /340 [1], a
block diagram for which is given in figure 2. The major
components shown are:

e Four MIPS R3000 processors each running
at 33MHz (Figure 3). Each processor has two
levels of cache memory. The first level has
a 64 KByte instruction cache and 64 KByte
write-through data cache; the second is a 256
KByte write-back cache. Both caches are dir-
ect mapped with 16-byte cache lines. The first
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Figure 1. DASH Prototype Interconnection
Hierarchy.
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Figure 2. The SGI 4D/340 Hardware Configur-
ation.

level caches match the processor speed (33MHz)
whilst the second level cache matches the bus

speed (16MHz).

e The MPbus, common to all four processors and
utilising a snoopy-based cache coherency pro-
tocol. The MPbus is pipelined but does not sup-
port split transactions.

e An I/O interface for general purpose device

handling.

¢ Memory shared between the processors and
forming part of the global address space.

3.1. Cache Coherence Protocols

The DASH architecture uses a two-level cache co-
herence protocol, a snoopy bus protocol at the in-
tracluster level and a directory based system at the
intercluster level. Each cache holding a copy of some
physical memory block also contains information re-
garding the block’s usage, throughout the system.
A block may be Invalid, Exclusive-Unmodified,
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Figure 3. The MIPS R3000 Cache Design.

Shared-Unmodified or Exclusive-Modified. The
cache controller in each node monitors the bus, examin-
ing memory requests from all other caches. Depending
on the nature of these requests, the snooping caches
update their contents according to a MESI! (Tllinois
variant) cache coherency protocol [10, 12], which uses
a write-invalidate update scheme. The MESI protocol
allows cache-to-cache transfers; thus if a local processor
requests data from a remote cluster, and this data is
held in an unmodified state in another local cache, the
transfer of data can be made locally rather than in-
volving a remote memory request (along with its asso-
ciated delay). In effect the local caches form a compos-
ite cache for remote memory locations.

Snoopy based protocols do not scale well to large
numbers of processors, however, because all caches
must be connected via a common bus. Any message
placed onto a bus takes the form of a broadcast, and
all processors must share the finite bus bandwidth, thus
limiting the scalability of the system. The DASH ar-
chitecture overcomes this limitation by interconnect-
ing a number of buses via a mesh interconnection net-
work, but has to use a directory based cache coherency
scheme at this higher level.

Directory-based protocols revolve around the use of
a single directory which keeps information regarding
the status of every block in main memory. This in-
formation is maintained via the use of presence bits.

! The MESI acronym is derived form the possible states of a
cache line (i.e. Modified, Exclusive, Shareable or Invalid.)

For every block there is one presence bit for every cache
in the system; this bit is set if the corresponding cache
currently holds a copy of the block. In addition to the
presence bits, each directory entry also contains state
bits which reflect whether or not main memory is con-
sistent with cache memory values for a given block.

Obviously the directory itself can form a central bot-
tleneck within the system. However the directory can
be distributed across the interconnection network al-
lowing different requests to go to different sections of
the directory, thus reducing contention. The status of
any single memory block is found at one unique loca-
tion within the distributed directory. For this reason
a distributed directory mechanism scales better than
one based on bus-snooping for large numbers of pro-
cessors. One disadvantage of a directory based system
is the amount of storage required for the directory (one
entry per memory block). In a snoopy scheme storage
is only required for those blocks present in the cache.

The DASH prototype employs a custom-built dir-
ectory controller and network interface to connect the
4D/340s to the interconnection network. The directory
controller forms part of the distributed directory. As
the MPbus does not support split transactions, a bus
retry mechanism is also used to allow remote memory
accesses to take place whilst local memory accesses are
being processed. This is because of the relatively long
time taken for a remote memory access to be satisfied.

Figure 4 summarises the cache coherency methods
used within the DASH hardware hierarchy.
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Figure 4. DASH Prototype Cache Coherency
Mechanisms.

4. Simulation Design & Implementation

The DASH architecture is modelled in HASE as a
three-level entity hierarchy as shown in Figures 5 and
6. Figure 5 shows a cluster viewed at the highest level
of abstraction and then expanded to show its internal
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Figure 5. High and Medium Levels of Architectural Abstraction.

structure at the medium level of abstraction (a dotted
line surrounding a group of entities indicates that it
is made up of a collection of entities which have been
grouped together to form a single icon at a higher level
of abstraction). In Figure 6 the cluster is further ex-
panded to show the internal structure of the processing
nodes, bus and directory-related logic. Figure 12 is an
actual HASE display showing all three levels.

A processing node consists simply of the two data
caches and a MIPS address generation box, i.e. rather
than attempt to simulate the MIPS instruction set
and run programs to generate cache addresses, the
processor simply emits a sequence of addresses (with
read/write status) held in a notional memory.

4.1. Processor Caches

The primary cache is direct-mapped and operates a
write-through policy. Aside from these DASH-dictated
attributes, the demonstration cache was designed to
allow the user to redefine the entity’s other operational
parameters. For example, the cache entity allows the
user to specify the size of the cache (in 16-byte lines)
and the delay associated with a cache access.

The primary cache unit has four communication
ports (two out, two in) and an on-screen display which
changes its text value according to the outcome of the
most recent access.

The data structure central to the operation of this
entity is a HASE memory array which represents the
cache memory contents via a C++ based array of
structs. This structure specifies storage for valid, mod-
ified and shared bits as well as the cache entry tag and
stored values.

This cache line format is shared with the secondary
cache unit (described below); the only difference in use

is that the primary cache need never use the shared
bit. On receipt of an incoming packet, a table lookup
is performed and validity bit and tag checks are made.
If a hit occurs a delay is initiated before sending the
result back to the MIPS entity. On a miss the packet is
referred (after the miss delay) to the secondary cache.

Throughout the simulation the state of the cache (a
value from an enumerated type) is recorded in the out-
put trace file. These values are used in the construction
of timing diagrams which show the state of the cache
with respect to simulation time.

The secondary level processor cache is identical in
terms of its caching operation to the primary cache.
Once again the user can define cache size and latency
through the use of entity parameters. However, this
unit also hosts the snoopy-bus cache coherency logic
and as such is one of the most complicated units in the
cluster implementation. The operation of the snooping
mechanism is explained below alongside the operation
of the MPbus arbiter and its associated communication
protocols.

4.2. The Node Entity

The node entity consists of the MIPS address gen-
eration unit and its associated primary and secondary
level caches. The node entity provides an abstraction
from the processor cache level, shown as a single entity
on the screen, and from which addresses which have
‘missed’ at both cache levels (or values being sent to
memory as a consequence of a write-back) can be ob-
served being issued across the MPbus during animation

(Section 5).
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Figure 6. Lowest Level of Architectural Abstraction.

4.3. I nter-entity Communication

Entities in HASE communicate by sending to, and
receiving from, ports which are connected by links.
When defining a simulation in HASE it is necessary to
associate a packet type with a link. The packet format
is designed to reflect the communication task in hand.

For example, a node-level packet is the most basic of
the three formats used in the DASH simulation. It is
designed to carry address requests from the MIPS ad-
dress generator through the processor caches and on to
the MPbus. The packet contains three fields represent-
ing the requested address, the read/write classification
(also used to pass a variety of control/polling inform-
ation between the secondary level cache and MPbus
arbiter) and the instruction/data classification.

Two other packet formats are used within the DASH
simulation; these can generally be classified as support-
ing intra-cluster level transactions (between the 4 pro-
cessors of the cluster) and inter-cluster level transac-
tions (where the processors involved in the transaction
are from different DASH clusters).

4.4, The MPbus

The MPbus is one of the most complex entities in
the simulation. It is responsible for displaying a large

amount of state information detailing the on-going op-
eration of the snoopy-bus protocol as well as carrying
out the conventional tasks of bus arbitration, address
and data transfer.

The bus is implemented as a set of entities, each re-
sponsible for some part of the bus functionality. These
divisions follow the pipelined operation of the bus. This
not only gives the user of the simulation a better in-
sight into the bus mechanisms used within DASH but
also acts as a demonstration of the pipelining principle.
The MPbus entity is thus composed of three lower level
entities, as shown in Figure 7.

A bus transaction has a latency of at least seven
bus cycles? (one cycle for arbitration, three for ad-
dress transfer and four for data transfer). The MPbus
classifies each transaction as belonging to one of three
types: a cache transaction, a DMA transaction or an
I/O transaction. The present DASH simulation model
only models cache-based transactions.

4.4.1. MPbus Arbitration Entity

Arbitration of the MPbus is performed on a fair, round-
robin basis, in a single bus cycle. The protocol is shown
in Figure 8.

?Detailed timing diagrams for the MPbus can be found in [7]
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a. Poll Masters: At the start of a bus arbitration
cycle the arbiter polls all bus masters to see if
any require service.

b. Masters Receive Poll: On receipt of the poll
packet masters wishing to claim the bus return a
packet containing a read/write field value of Y
(or N if they do not).

c. Arbiter Receives Votes: The arbiter counts
the number of Yes votes returned. If no masters
require service the arbitration delay (1 cycle) is
simulated before starting to poll again. However
if one or more masters requires service the arbiter
selects and grants access to one of them via a
function grant bus() (a round-robin method of
allocation applies).

d. Master Receives Permission: On receipt of
the permission packet the master sends the ad-
dress request to the arbiter. The arbitration cycle
now starts again.

The simulation actually performs all of the above
polling phases in zero simulation time units. Only
when the poll outcome is known is simulation time in-
cremented to reflect the arbitration delay. This use of
‘zero time’ polling proved to be a useful mechanism
throughout the creation of the DASH simulation.

Another major role played by the MPbus arbiter en-
tity is that of co-ordinator for the snoopy-bus protocol
(collating snoop data and presenting it in a meaningful
format to the user).

The snoopy-bus protocol used in the DASH simula-
tion is identical to that of the actual architecture, the
MESI Illinois protocol as outlined in [10]. The flow-
charts of Figure 9 detail the general strategy for reads
and writes in the DASH system.

A cache line may be in one of four states:

a. Imvalid: Block does not contain valid data.

b. Exclusive-Unmodified: (Excl-Unmod) No
other cache has this block. Therefore the data
in the block is consistent with main memory.

¢. Shared-Unmodified: (Shared-Unmod) Some
other caches may have this block. Data in this
block is once again consistent with main memory.

d. Exclusive-Modified: (Excl-Mod) No other
cache has this block. Data in the block has been
modified locally and is therefore inconsistent with
main memory.

Figure 9 shows the use of cache-to-cache transfers
within the protocol. Although cache-to-cache transfers
do nothing to reduce the latency of local memory, they
do allow sharing of data from remote clusters between
processor caches. This means that the set of local sec-
ondary level processor caches act as a composite cache
for remote memory.

In the HASE simulation of DASH the flowcharts in
Figure 9 are implemented as part of the secondary pro-
cessor caches as in the real system. However the bus
arbiter entity is also involved in the coherency mechan-
ism. The protocol supporting the MESI snooping pro-
tocol in the DASH simulation (also executed in ‘zero-
time’) is as follows:

a. Reception of Read/Write Request: The
processor which was granted the bus at the last
arbitration phase transmits its address request to
the bus arbiter entity.

b. Broadcast of Request: The arbiter receives
the read/write request and immediately broad-
casts the message back on the bus (in the simu-
lation the broadcast is implemented as four sep-
arate messages, one per processor).

c. Execute MESI algorithm: On receipt of
the snoop-probe the secondary caches look up
the appropriate line in their caches and ex-
ecute the MESI algorithm. This updates the
shared/modified bits according to the address in
the received packet. The results of this snooping
operation are then transmitted back to the bus
arbiter.
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Figure 8. MPbus Arbitration Protocol.

d. Collate Results The arbiter gathers the re-
sponse packets and generates a textual descrip-
tion of the snoop outcome which is displayed via
a ‘snoop panel’ on the arbiter’s icon (c.f. Fig-
ure 12). This panel has four information sources
which provide details regarding the bus master
most recently granted bus access (an arrow in-
dicates the current master), current access classi-
fication (read, write or write-back), result source
(either cluster memory or another cache) and a
four-line display which gives a summary of the
snoop activity in each of the second level caches.

The stages in the snooping operation can be seen in
Figure 10.

The protocol must also deal with cache line invalid-
ations when the bus arbiter receives a write request.
The address to be written is broadcast with an in-
validation signal to all caches ezcept the one making
the write. Caches receiving the invalidate packet check
their contents for a match of address with the reques-
ted invalidation. If a match is found the caches reset
the appropriate valid bit (Figure 11).

4.4.2. MPbus Address Transfer Entity

This entity is responsible for simulating the 4 bus-cycle
delay in the address transfer stage of the actual ar-
chitecture and for routing on-going requests to either
cluster memory or another cache.

When the arbiter has finished its cycle of operations
(i.e. it has simulated the processing delay of 1 bus
cycle) it needs to send the requested address/status to

the address transfer unit. This must only be done if the
address transfer unit is idle. A simple handshake pro-
tocol is used to test the status of the address transfer
entity. After the handshake phase the address trans-
fer unit decides whither the address request is bound,
advances simulation time by the appropriate delay and
finally transmits the request packet.

4.4.3. MPbus Data Transfer Entity

The data transfer entity returns request results to the
issuing processor after they have been processed. The
same handshake protocol used between the arbiter and
address transfer entities is used to co-ordinate incoming
and outgoing packets. This entity takes its input from
the cluster memory unit or address transfer unit (the
latter indicating that the data has come via a cache-
to-cache transfer). The operational delay of the data
transfer phase is now simulated. Finally, on examining
the input data packet, the destination node is identi-
fied and the data forwarded appropriately. The data
transfer cycle now restarts.

4.5, Cluster Memory

The cluster memory is relatively simple in design.
Because the simulation is only concerned with model-
ling the effects of read/writes throughout the system
(and not the contents of memory locations) no actual
storage needs to be modelled other than that present in
the processor caches (and in these only addresses need
be stored). Therefore a memory unit cycle consists of
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receiving an in-bound request, displaying read/write
information on-screen and finally transmitting the res-
ult packet back onto the MPbus.

5. Running a Simulation

Once the architectural design is complete, the user
issues commands via the HASE pull-down menus (c.f.
Figure 12) to initiate compilation. In order to drive
the DASH simulator the user provides input trace files
for each MIPS entity consisting of sequences of address,
read/write and instruction/data triples. The appropri-
ate file name is included in the definition of each entity
and during compilation, HASE effectively loads these
traces into the processors. For the DASH simulator,
input traces were manually generated to test each fea-
ture of the protocols, and the animator used to check
for correct operation.

During the simulation run HASE generates an out-
put trace file which details all events occuring within
the DASH simulation model. The HASE system then
allows the user to examine the simulation results via
various forms of output. The most powerful of these is
an on-screen animation of the simulated architecture.

The Animator uses the event sequence held in the
event trace file to provide the user with a visual dis-

play of activity in the system. It allows the data flow-
ing between simulation entities to be visualised in a
variety of ways, e.g. through moving icons showing in-
dividual communication transactions taking place over
links joining entities, or changes to the contents of a
cache memory unit when address requests are issued
or results received. The important benefit of the An-
imator is that it lets the user check that the model
produces correct results.

Manipulation of the animation of the architecture
is handled through an on-screen Animation Control-
ler where time, speed and message display are handled
as well as the standard ‘tape’ functions of PLAY, RE-
WIND and STOP.

Using this facility, the operation of the DASH cache
coherency protocols has been thoroughly checked. To
test each aspect of the protocols, appropriate series of
read and write requests were loaded into the processors,
the simulation run, and the results observed on screen
during play back. In each case the results conform to
the specifications given in the original papers.

An alternative post-simulation analysis tool avail-
able in HASE is the timing diagram, which displays
the state of entities with respect to simulation time.
The enumerated parameters of each entity are treated
as the state, and different colours/patterns are alloc-
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Figure 11. Invalidation Mechanism Used in DASH Simulation.

ated for each different state. Time measurements may
be taken with two measuring bars and marked regions
may be expanded to show finer detail. These facilties
will be of use in the DASH simulator once realistic time
delays have been incorporated into the model.

The output trace file can also be processed to allow
statistics to be derived which measure system operation
(e.g. cache hit/miss rates).

6. Conclusions

HASE has proved an effective tool for the creation of
a simulation model of a real architecture, and the anim-
ator has allowed visual verification of many operational
features of the original DASH architecture. These
features include the write-back/write-though policies
found in the different levels of processor cache and
the MESI Illinois snoopy-bus protocol used to main-

tain intra-cluster cache coherency. This visual insight
into the operation of the architecture is complemented
by HASE timing diagrams which let the user see how
an entity’s state changes with respect to a given period
of simulation time.

The existing HASE simulation model of DASH also
has potential for use as a research tool to investig-
ate possible performance enhancements to the original
system. This requires the development of an accur-
ate mapping between HASE simulation time units and
actual DASH timing characteristics, and the use of
more realistic address traces. It is already possible,
for example, to convert Dinero trace files to a HASE
compatible format in order to provide large scale input
for more realistic simulations aimed at monitoring per-
formance of the DASH model over a large number of
simulation events.
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