An Integrated Learning Support
Environment for Computer
Architecture

P.S. Coe, F.W. Howell, R. N. Ibbett,
R. McNab and L. M. Williams
Computer Systems Group
Department of Computer Science

University of Edinburgh, Edinburgh, EH9 3JZ, UK
December 17, 1996

Abstract

The Integrated Learning Support Environment (ILSE) for Com-
puter Architecture provides structured on-line access to a large body of
text and diagrams in which the diagrams (a) remain visible on-screen
even when the text is scrolled, (b) may in some cases be animated to
provide a visual demonstration of activities occurring within a com-
puter system. It uses a WWW multi-frame window system, with sep-
arate frames for text, diagrams and navigation control. The animated
diagrams are driven by output from an architecture simulation system
which has been (re-)written in Java. Using Java, live simulations can
be incorporated into the WWW pages and run remotely.

1 Introduction

The idea of creating an Integrated Learning Support Environment (ILSE)
for Computer Architecture was inspired by a lecture given by the author
of the MacFarlane Report [Mac92]. The ILSE aims to provide structured
on-line access to a large body of text and diagrams in which the diagrams
(a) remain visible on-screen even when the text is scrolled, (b) may in some
cases be animated to provide a visual demonstration of activities occurring
within a computer system. An early version of the ILSE used a specially

written program which set up navigation and diagram windows and spawned
a Web browser to display the text. The introduction of a multi-frame window
facility in the html standard [Rag96], however, led to the abandonment of
this system and the creation of a multi-frame Web version instead.

The text of the ILSE for Computer Architecture is based largely on the
textbook “Architecture of High Performance Computers” written by Roland
N. Ibbett and Nigel P. Topham and originally published by Macmillan Educa-
tional Ltd [Top89]. Volume I dealt with uniprocessors and vector processors,
and Volume I with multiprocessors. This book is now out of print, however,
so the copyright has reverted to the authors. Because the original text was
prepared for the publisher using XTEX and since much of the material is still
appropriate to an MSc course module on Concurrent Computer Architecture
being given by one of the authors (RNI), this text was an obvious starting
point for the ILSE.

The animated diagrams are produced using a Java version of HASE
[THH95]. HASE is the Department’s Hierarchical computer Architecture
design and Simulation Environment, originally written in Sim+4. By re-
implementing HASE in Java, working simulation models can be incorporated
into the ILSE, thus allowing students to experiment with them directly. This
contrasts with using a traditional simulation written in a language such as
Simula or C++4, where exporting simulation code requires recompilation and
installation on each different machine.

2 The Window Structure

Each window in the ILSE contains three separate frames (figure 1), a Text
frame, a Figure frame and a Navigation frame.

2.1 The Navigation frame

The purpose of the Navigation frame is to allow structured access to the
large volume of text available as part of the Computer Architecture ILSE.
All links to the text and figures are contained in the navigation files. There
are thus no ‘spaghetti’ links in the Text frame, apart from reference citations
(section 2.4).

Whenever a selection is made in the Navigation {frame, a new navigation
menu is loaded. This then causes the corresponding text and figure to be
loaded (not all sections actually have useful figures, of course, and in these
cases a message to this effect is displayed instead).

N Hetscape: COMPUTER ARCHITECTURE: Instructions and Addresses =] 3
Fle Edit View Go Bookmarks Options Directory Window Help

Location: }jt,bp://www.dcs.Ed.a::.uk/dEpt.71ccal/11527C/InsmctiunE/Eta:(t.btml

What's New?| What's Cnul?| Destinatjnns| Het Seaﬂ:h| People Suftware|

=

Two-address systems: the IBM System/360 and /370 RR Format E

Regier Regiser
Operand Operand 2

The design objectives for the IBM System/380 (introduced in 1964) [1], were very
different from those for the CDC 8600 (described under Three Address Systems)
IBM’s intention was to produce a line of processors (initially six) with compatible
arder codes, but a performance range factar of 50. Furthermare, whereas the CDC Op Code Rz
G600 was intended specifically far scientific and technological work, System/360
machines were required to be configurable for a variety of tasks covering both

scientific and data processing applications. The former are dominated by
floating-point operations, where fast access to intermediate values requires the FX Format

provision of one or more registers close to the arithmetic unit(s) in the central Regrser

processor. Data processing applications, on the other hand, frequently involve the Operand

movement (and fairly simple manipulation) of long strings of data, and direct S ez Dpernd 2 =
two-address storage to storage operations are much more appropriate than
operations invalving three store addresses or operations involving the use of ‘ Op Code ‘ Rl | 2 ‘ B2 ‘ 02
intermediate values held in registers. Furthermare, in machines at the low El 4 4 q 12
performance end of the range, logical registers are normally implemented within main
storage, and the extra store accesses reguired for these registers would actually RS Format

slow down this type of operation. [— Reaser
Qperand® operand 3

Store addressing is itself 2 major problem in the design of a compatible range of
computers; to guote from [BM, in turn quoting from DEC [2], [3]

i DR 2

‘ Op Code ‘ Rl | lic] ‘ B2 ‘ 02
“There is anly one mistake..that is difficult to recover fram - not g T T T =
providing enough address bits. >

In the design of the IBM Systems/360 large models were seen ta require storage
capacities of the order of millions of characters, whereas small models required short 5l Format

addresses in order to minimise code space requirements and instruction access time Irrdize

This problem was overcome by the use of index registers to supply base addresses ORI = cddres Operu
covering the entire 24-hit address space, and small displacement addresses within Op Core 2 ‘ Bl ‘ o1
instructions. This can be seen in the figure, which shows the five basic instruction - T

NAVIGATION:
& |ntroduction 55 Format
® Three-address systems
® Two-address systems
® One-address systems
® Zero-address systems
® The hUS instruction set
® Comparing instruction formats —
® RISC systems / IBM System/360 Instruction Formats]

sl [=1

Lemgth' Lengch 2
T \ - e RS E 2 —=

Op Code | u | 12 ‘ E1 ‘ o1 | g2 | D2 ‘
] T T T 2 T

— | =1

Figure 1: An example WWW window from the ILSE

2.2 The Text frame

The text is structured hierarchically, i.e. it is divided up into ‘chapters’,
corresponding to book chapters, and each chapter is divided into sections
and sometimes subsections. Clicking on a chapter heading in the Navigation
frame brings in the Navigation menu for that chapter, together with the
introductory text in the Text frame and the contents list in the Figures
frame.

Where sections are divided into subsections, the format of the Navigation
frame changes again when the section is selected. Each navigation menu
contains links allowing movement back up the hierarchy.

For administrative convenience each chapter is held in a different subdir-
ectory in the filestore. In order to maintain referential consistency among
frames when moving between chapters, the frame structure has to be taken
down and reloaded at each change.

2.3 The Figure frame

The prime purpose of the Figure frame is to display the diagram which
accompanies the text in the Text frame. The idea is that by not embedding
the figure in the text, it remains visible even when the text is scrolled.

A few, and hopefully an increasing number of figures are active, i.e. they
contain visual demonstrations of some the activity taking place within a
computer system (section 4).

The Figure frame is also used to display contents pages at the start of a
section, and for references.

2.4 The References

Clicking on a reference citation in the text brings up a page which overlays
the Figure frame. This page can be dismissed, so as to bring back the ori-
ginal diagram associated with that text. (For consistency of operation, this
happens even when there is no figure for the section concerned.)

The reference pages can include hypertext links, e.g. to manufacturers’
home pages. Clicking on one of these references spawns a separate instanti-
ation of the browser, through which the referenced document can be viewed
without leaving the ILSE.

3 Text Conversion

In principle a WTEX-to-html conversion program was all that should have
been needed to convert the original BTEX source to html. However, this
proved not to be quite so simple in practice for a number of reasons. For
example, the source text included indexing commands, labels and citations
which could not be handled properly by the converter. A utility was there-
fore written and used to strip these out by pre-processing each of the files.
Furthermore, the available converter was designed to work in the context of
a single frame window, with in-line diagrams. For the original textbook the
publisher had produced the diagrams manually, and the figure commands in
the I’'TEX source simply left space for the printer to paste them in. Thus the
figure commands also had to be edited out.

Some of the figures themselves had subsequently been reproduced for the
lecture course using the idraw utility, and most of the rest have since been
reproduced in this same way. The resulting .ps files have been converted to
.gif format for use in the ILSE.

A further problem with the converter was that although it was designed to
operate with quite large and highly structured IWTEX documents, experience

with conversion of the HASE user manual showed that the naming convention
used for the resulting .html files does not make for easy navigation and,
furthermore, the diagrams can get out of sequence. Rectifying this situation
can be very tedious. The ILSE text was therefore split manually into a set
of individual files, one per section/subsection of the original text, and each
file converted separately.

Conversion of the references has been done by hand. The method of
displaying the references in the ILSE (i.e. as individual collections associated
with individual text frames) meant that no simple automatic convertor would
have been useful.

Some pages are difficult to convert to .html format, e.g. because they
contain Greek characters or complex equations. There are two possibilities
here. One is to produce a conventional .dvi file from the BTEX source and
convert it to postscript format. When the .html file for the relevant text
frame is loaded it spawns an external postscript viewer, and the html text
contains a message informing the user that will happen. The second is to
convert the postscript file to a .gif file, and display this instead of a .html file
in the text frame. The relative advantages and disadvantages of these two
methods are still being investigated.

4 Creating Animated Diagrams

The animated diagrams are driven by output from the Department’s Hier-
archical Architecture design and Simulation Environment (HASE). HASE
allows for the rapid development and exploration of computer architectures
at multiple levels of abstraction, encompassing both hardware and software.
One of the distinguishing features of the HASE environment is its support
for animated diagrams of simulation models. In order to make use of this
feature in the WWW environment, a version of HASE has been written in
Java. This allows the simulations to be run remotely and the animation to
be displayed using a Web browser such as Netscape.

The main aim of producing a Java based simulator was to allow inclusion
of live simulation models into Web documentation.

The animation facilities are illustrated in figure 2, which demonstrates
cache associativity. The CPU is at the top, the cache in the middle and the
main memory at the bottom. The cache consists of a controller and eight
cache frames. Each frame can hold a piece of data from memory, with an
associated address tag.

Text boxes and buttons allow the user to control the simulation and
change initial parameters. Entities and ports have their own icons loaded

N Hetscape: COMPUTER ARCHITECTURE: Introduction Hi=] =

File Edit View Go Bookmarks Options Directory Window Help
Qo oo iy | G| e 2 O
Back Eorerd Home Feload | Ireges Cipen Print Find Sl

Location: IEhttp: ffww. deg . ed. ac.uk/dept local /ilse-C/ Java/cache-start. htnl

YWhat's New?| What's CDDI?| Destinatiunsl Net Search| Peuple| Suftware|

. 5 £|
Cache Memory Simulation Memory requests: | [5

This animated simolation demonstrates cache associathbaty. Cache associativity: —
The diagram shows a simple cache, with the CPU at the top, the 4 way
cache in the middle and the main memoxy at the bottom. The
cache consists of a contoller and eight cache lines. Each frame
can hold a piece of data from memory, with an associated
address tag.

When the CPU needs a data item from memory, the
corresponding address is sent to the cache controller. The
controller then probes its lines, in parallel, to see if any of their
tags match the address. If a match is found then the data in that Hitz =0
frame is sent back to the CPU, otherwise the data has to be Hit ratio = 0
fetched from main memory. When an access o main memory
occurs, the cache is updated with the value, nsing an empty
frame if possible. If there are no empty lines in the cache one is
picked from those probed using a replacement algorithm
(randorn in this sirnlation).

MIOT0 =

The degree of associatvity controls how the cache controller
probes the cache lines. A fully sesocészive cache, in which all
the lines are built as a single piece of hardware, is both
expensive and slow and set assocative caches are frequently =
used instead. direct mepped caches n which only one line is
pIObe—d U.si.ng an index fmemory_address_requested %
somber_of_lines), 15 the cheapest form of cache to buald bur
can suffer from performance problems. Initalizing

Accesses =0

The default decree of accociativins o the madel chowrm have |] Layout | Fun |

NAVIGATION: Speed: 50 =1 [~

® Betnm to Storage Hierarchies
» Retwrn to Contents

Tl ' . =21

Figure 2: An example cache simulation

from .gif files. The icons can be changed to represent the current state of
the entity, and other entity parameters can be displayed as text. Messages
passing between entities are displayed as squares which travel along the con-
necting lines, the number attached to the square is the message tag.

A larger scale simulation is shown in figure 3 which shows an omega
network. The size of the network can be set using the controls at the top,
and the workload can also be varied.

These examples were constructed using a general purpose simulation
toolkit based on the simjava simulation library extensions to Java and the
simanim animation package.

Applet Viewer: Omega.class i =]

Applet
Messages:II!S
Switch sizer 8 |
workload: &1l to all =
Show messages: I
0 i i
==, =, —Eq
0 Ju} i}
=, =, _B\(/i..

Inidalising
Layout | Run | taunn | i |

Speed: 50 I\JJ =
applet started

Figure 3: An example network simulation

4.1 simjava - The Simulation Library

Java incorporates the language features necessary for simulation, notably
objects and threads. Current Java implementations compile down to an
intermediate byte code, which is interpreted. Thus the main disadvantage of
using Java (as opposed to a C4++ based simulator) is the longer simulation
run times. This penalty is quantified in section 4.3.

SIM++, a discrete event simulation library for C4++ written by Jade
Simulations Inc [Jad92] has been used for computer architecture simulations
as part of the HASE project for several years. To allow simulations to be run
on architectures not supported by Jade (such as Linux and the Cray T3D),
the library was reimplemented using C++ and standard threading libraries,
to produce a new library called HASE++ [How96]. HASE++ was used as
the basis for the Java simulator [McN96].

A simjava simulation is a collection of Java objects (Sim_entities) each
of which runs in parallel in its own lightweight thread. The Sim_system
object controls all the threads, advances the simulation time and maintains

the event queues.
Entities communicate and synchronise by passing Sim_event objects. The
primitives of the language are:

e sim schedule(Sim port port, double delay, int tag, Object
data) sends a message to the entity connected to the port after simu-
lation time delay with the given tag and data.

¢ simwait(Sim event ev) waits for an event sent using sim_schedule.
e sim hold(double t) blocks for t simulation time units.

e sim trace(int level, String msg) adds a line to the trace file.

This simulation model has been used for modelling hardware and for
modelling parallel software.

Figure 4 shows how the Java simulator may be linked with existing C++
based tools.

Java

’ C++
JavaSim - HASE++

Tracefile
JavaAnim HASE
: Animator

Figure 4: Linking Java simulations with HASE++ simulations

Because there is a standard trace file format, traces produced from a
HASE++ simulation may be read into a Java display, and vice-versa. Thus
the Java simulation environment may be used for displaying results from a
long running HASE++ simulation.

4.2 simanim - The Animation Package

simjava itself is a simulation library; it produces a trace file as its output.
User animations are constructed using the simanim package, a toolkit for

building animations. simanim provides two methods which are designed to
be overridden by the user to build the animation display for the application:

e anim_init() is extended to add buttons, controls and parameter fields
to the display.

e anim _layout() is extended to position the entity icons and join ports.

The following example shows how a simple animated entity is created.
The example is an entity which keeps a count of the number of messages
which arrive at its port, and displays the count on screen. Its icon is provided
by a file bucket . gif painted using a bitmap editor. The constructor (public
Bucket (...)) sets the (x,y) position of the icon, adds the port to the side,
and adds the displayed parameter Count. The simulation behaviour is defined
by the body() method. This is an infinite loop which waits for an event,
updates the count and writes the trace line. The result is shown in figure 5.

class Bucket extends Sim_entity {
int count = 0;
Sim_port in;
public Bucket(String name, int x, int y, int side) {
super(name, "bucket", x, y);
count = 0;
in = new Sim_port("in", "port", side, 10); add_port(in);
add_param(new Anim_param("Count", Anim_param.NAME_VALUE,
"o, -10, -5));
}
public void body() {
Sim_event ev=null;
while(true) {
sim_wait(ev);
sim_hol1d(0.01);
count++;
sim_trace(l, "P "+4count);
¥
}
¥

As well as displaying the values of entity states as text on screen, it is
possible to use the state to select different icons, as in figure 6, which shows
the two possible states of the entities used in the omega network shown in
figure 3.

Figure 5: A simple animated entity

8=5/\ B3

Figure 6: Icons representing the states of network switching elements.

4.3 Performance of simjava

To compare the performance of the Java and C++ versions of the library,
a simple simulation was written in both languages and the execution time
measured. The Java version was run as a stand-alone application, as a Nets-
cape applet on a Sun SPARCstation 5 under Solaris, and as a Netscape applet
on a Pentium 133 under Windows N'T. The simulation contains two entities
which pass 200 messages between them, a simple example for comparative
purposes. The results are shown in table 1.

‘ Platform ‘ Average execution time over 5 runs ‘
Solaris C++ 1538 ms
Solaris Stand-alone Java 12910 ms
Solaris Netscape 11214 ms
Windows NT Netscape 9341 ms

Table 1: Simulation execution times

The results show that the simulation ran around ten times faster under
C++, and the stand-alone Java and Netscape were roughly equal. In practice
performance of the Netscape versions appears to be acceptable to users.

5 Conclusion

Taking a book from the printed page to the screen is not trivial, and many
issues arise from the change of format. The first is the problem of mov-

ing about the text; this has to be designed carefully in order to avoid the
spaghetti links of unstructured text on the Web.

simjava, a java based simulation package was used for transforming dia-
grams from static pictures into working models. Although it has been used
here purely for demonstrating computer architectures, it is a powerful and
complete simulation language in its own right, useful for communicating com-
plex ideas between designers.

Future plans for simjava include implementing more Java modules for
displaying graphs and timing diagrams, and providing 3D models using
VRML-2.

Currently the ILSE is being used by MSc students studying Concurrent
Computer Architecture at the University of Edinburgh, and their feedback
will be evaluated early in 1997. Access to the ILSE is currently restric-
ted to our own departmental users, though a sampler can be viewed at
http://www.dcs.ed.ac.uk/rni/ilse-index.html.

Acknowledgements

The HASE project is supported by the UK EPSRC as part of grant GR/J43295.

References

[How96] F.W. Howell. HASE++: a discrete event simulation library.
http://www.dcs.ed.ac.uk/home/fwh/hase++/hase++.html, Feb
1996.

[IHH95] R.N. Ibbett, P.E. Heywood, and F.W. Howell. HASE: A Flex-
ible Toolset for Computer Architects. The Computer Journal,
38(10):755-764, 1995.

[Jad92] Jade Simulations International Corp., Calgary, Canada. SIM++
User Manual, 1992.

[Mac92] A.J.G. MacFarlane. Working party report: Teaching and learning
in an expanding higher education system. Available from COSHEP,
St Andrew House, 141 West Nile Street, Glasgow, UK, 1992.

[McN96] R. McNab. SimJava: a discrete event simulation library for Java.
http://www.dcs.ed.ac.uk/home/hase/simjava/simjava-1.0,

July 1996.

[Rag96] Dave Raggert. HTML 3.2: reference specification.
http://www.w3.org/pub/WWW/TR/PR-htm132-961105, Nov
1996.

[Top89] R.N. Ibbett & N.P. Topham. Architecture of High Performance
Computers. Macmillan Educational, UK, 1989.

