Motivation for Providing an Entity Description

Language in HASE.

Lawrence Williams
Department of Computer Science
University of Edinburgh

April 1996.

1 Introduction

This document aims to follow up the author’s initial PhD project proposal [1] for
exploring (semi)automatic model abstraction techniques within the HASE sys-
tem. This document is primarily concerned with highlighting the current require-
ment for an entity description language (EDL) within the HASE environment and
outlining a plan for the provision of such a language.

2 Short Term Strategy

As mentioned in [1] the first stage of development will be to:

“Verify that simulations written (i.e. hand crafted) and run at two
different abstract levels can produce the same results at the higher
level as would be obtained by running the full simulation at the lower
level.”

3 Immediate Work

In order to start this development process a number of concerns regarding the
current HASE system need to be addressed.

3.1 Current Simulation Development Paths

The development paths employed by HASE users when creating a new architec-
tural simulation model currently fall into one of two categories' — either a high

!These two approaches are discussed in some detail in [2].

1



level GUI based design technique or a low-level C++ input to the HASE system.
Each of these approaches offers advantages and disadvantages with respect to
the other. These can be summarised as follows:

1. GUI based Approach: By using the on-screen editor provided within
HASE the user can manipulate icons representing simulation entities. Re-
lationships between entities can be identified by connecting on-screen icons
together with communication port links. These tasks of design layout are
handled well by such a high level interactive interface as it removes the
need for tedious trial and error programming when specifying a design’s
on-screen appearance and allows a design to be conceptualised by consider-
ing the components of a ‘picture’ rather than some detailed code fragment.

However other tasks are not well served by the GUI approach. For instance
when entering information regarding link or state parameters or to be used
in a simulation, a labourious process of menu manipulation must be adhered
to (e.g. five or six menu commands to complete the addition of a simple
integer value into a link parameter’s structure).

Another major disadvantage of this GUI based approach is that as the
experiment is created as a permanent entity only in terms of an ObjectStore
database there is no means of re-creating the experiment should database
integrity be breached (something which is a frequent occurrence given the
constantly evolving nature of the HASE system).

2. C++ file based approach: This technique involves writing a detailed
(low-level) C4++ file which is linked into the HASE object code via a re-
compilation of HASE itself (hardly elegant!).

However even though this technique requires a detailed understanding of
HASEFE’s internal structures in order to describe an experiment it does offer
various advantages over the GUI based approach. These include:

e The ability to re-create a simulation should the experimental database
be damaged in any way.

o Allowing C++ constructs such as loops to be employed when creating
multiple instances of entities.

e Providing a terse, simple and text based input for specifying link,
global and state parameters.

Of course this technique has limitations when compared to the GUI based
approach when we consider the ease with which a design layout is specified
with the former technique.



It is clear to see that each of the currently employed development techniques
have benefits to offer to the HASE design process. It is therefore logical to search
for a compromise in which the best features of each approach can be employed.
Ideally we would like a development path offering the following:

o Flexible design layout facilities.

e Robustness in the face of database failure (perhaps this questions the need
for an experimental database at all).

Simple entry of non-graphical elements of a design.

High level construction facilities (e.g. entity creation loops)

A specification not requiring a detailed understanding of HASE’s internal
data structures.

4 Proposed Solution

It is proposed that an Entity Description Language (EDL) be added to the current
HASE architecture. This high level language will allow the user of HASE to
describe in a few lines of code the defining attributes of experimental entities
(ports, communication, internal data structures etc.).

The move towards a code based method of input to HASE also aims to elim-
inate much of the labourious work currently involved in adding/modifying exper-
imental globals, parameters and link definitions via the HASE GUI.

It is envisaged that the flexibility currently offered by the GUI based approach
in aiding experimental design (e.g. entitiy layout, direct manipulation/examination
of experimental objects etc.) will be retained and that layout and on-screen ma-
nipulation of objects will not be a concern of the EDL (although obviously an
interaction of the two is necassary at somepoint within the HASE architecture).

It is hoped that the EDL will bring together both of the currently adopted
design techniques into some form of middle ground as well as offering an Ob-
jectStore independant development path which will in turn mean that HASE
can be offered without ObjectStore license restrictions to users at sites outside

Edinburgh.

5 Summary of Immediate Action

In the short term it is envisaged that the current HASE release will undergo the
following modifications:



e The removal of ObjectStore code dependance from HASE to allow the
existance of a licence free version of HASE (Work already in progress by

Paul Coe).

e The implementation (via use of lex and yacc) of an EDL to allow the
rapid development of experimental descriptions (Work to be undertaken by
Lawrence Williams).

e Conversion of some existing HASE experiements to EDL format descrip-
tions for test purposes.

References

[1] L. Williams. Aiding model abstraction in a hierarchical architecture simula-
tion environment. PhD. Proposal, February 1996.

[2] Lawrence Williams. Simulating dash in hase. Master’s thesis, University of
Edinburgh, Dept. Computer Science., 1995.



