
Typing with Conditions and Guarantees in LFPL

Michal Konečný
LFCS Edinburgh, Mayfield Rd, Edinburgh EH9 3JZ, UK

mkonecny@dcs.ed.ac.uk

October 15, 2002

Abstract

LFPL is a functional language for non-size increasing computation with an opera-
tional semantics that allows in-place update. The semantics is correct for all well-typed
programs thanks to linear restrictions on the typing. Nevertheless, the linear typing is
very strict and rejects many correct, natural in-place update algorithms.

We investigate a general approach to easing the tight linear restrictions of LFPL by
generalising the static analysis used by Aspinall and Hofmann in [Aspinall & Hofmann
2002]. It consists in devising new type systems for the core language of LFPL whose
judgements express sets of rely-guarantee pairs with assertions about the operational
semantics, namely about the heap representation of the arguments and the result. The
method can be applied to other functional languages with heap based operational seman-
tics.

As an example and application of the approach we reformulate the language of [Aspinall
& Hofmann 2002] from this perspective and prove the correctness of some of its crucial
typing rules, show its type inference algorithm and the existence of principal types rela-
tive to the simple LFPL typing. We refer to other languages based on LFPL which fit into
the approach.

1 Introduction

First order LFPL [Hofmann 2000] is an example of a functional programming language
which has a straightforward compositional denotational semantics and at the same time
can be evaluated imperatively without dynamic memory allocation. The higher order ver-
sion of this language is interesting also because it captures non-size increasing polynomial
time/space computation with primitive/full recursion [Hofmann 2002]. We focus on the
first order version of LFPL in this report.

For example, in LFPL we can write the following program to append two lists of elements
of type A:

appendA(x, y) = match x with nilA ⇒ y

| consA(h, t, d) ⇒ consA(h, appendA(t, y), d)

1

In the denotational semantics of the program, the argument d of cons is (virtually) ignored
in both cases and thus the semantics is list concatenation as expected. Nevertheless, the
operational semantics will append the lists in-place, rewriting the first list’s last cons-cell if
the list is not empty. (The other cons-cells of the first list would be overwritten with the same
content). The third argument of cons corresponds to the heap address of the cons-cell in the
operational semantics.

This evaluation strategy can go wrong easily, for example for appendA(x, x) with a non-empty
list x. Such terms might fail to evaluate or evaluate with incorrect results. We will call
a term operationally correct (OC) if it evaluates in harmony with its denotational semantics
independently of the values of its free variables and how they are represented on the heap.

We also need a finer notion of operational correctness relative to some extra condition on
the representation of the arguments on the heap. For example, we would like to declare
appendA(x, y) correct under certain condition on how lists x and y are represented. A suffi-
cient condition for appendA(x, y) being OC is that the heap region occupied by x is separated
(disjoint) from the region of y.

Apart from stating conditions for correctness, we need to mark certain guarantees about the
heap representation of the result and the change of heap during the evaluation. For example,
appendA(x, y) preserves the value of y and this might be crucial to show correctness of a
bigger term of which this is a subterm.

LFPL (Linear Function Programming Language) uses linearity to achieve operational cor-
rectness of its terms. This means that in LFPL a variable cannot be used twice unless the
occurrences are in the two components of a cartesian product or in the two branches of
an if-then-else statement. In addition to this restriction, LFPL maintains the invariant that
different variables refer to disjoint regions on the heap.

The language from [Aspinall & Hofmann 2002] (which we will call UAPL) relaxes the linear-
ity of LFPL by adding an integer i ∈ {1, 2, 3} (called usage aspect) to every variable in a typ-
ing context (x :i A). The aspects indicate whether a variable’s content on the heap might be
destroyed or has to be preserved during evaluation and also, in case it is preserved, whether
the content of the variable may share with the result or has to be separated from it. This idea
is similar to that of use types in linear logic [Guzmán & Hudak 1990] and also to passivity
[O’Hearn et al. 1999] within syntactic control of interference [Reynolds 1978, Reynolds 1989].

It turned out that it was apparently rather hard to prove the correctness of the typing rules
given in [Aspinall & Hofmann 2002]. The paper contains only an outline of a correctness
proof. The details were provided by the present author. In this process, more insight into
the UAPL typing has been attained via a precise interpretation of the usage aspects as ex-
pressing certain conditions and guarantees (i.e. pre- and post-conditions). This development
including a part of the correctness proof is contained in Sect. 3.

Another contribution of this section is a simple iterative algorithm deciding for a simply
typed program whether it can be correctly annotated with usage aspects (UAPL type-checking)
and if so, inferring its strongest correct usage aspects. In particular, every given plainly
typed program either has a strongest correct UAPL annotation or has none.

Before defining and studying UAPL, we present the approach in an abstract setting in Sect. 2.
After UAPL we refer to two of its extensions in Sect. 4.

2

2 Rely-Guarantees about Heap Representation

Before we formalise the main ideas, we fix some notation concerning an unspecified func-
tional typed language L, following [Aspinall & Hofmann 2002]. In Sect. 3 we will instantiate
L as well as all the concepts below with the example of UAPL.

Let e range over the expressions and A over the types of L and assume some typing rules
that define valid typing judgements of the form Γ ` e : A where Γ = x1 : A1, . . . , xn : An is
called a typing context. A pair Γ, A is called a (term) signature.

A program P over L is a map from a finite set of function symbols to typing judgements
that capture the signature and definition of each symbol. The expressions of L within a well-
typed program may contain calls to the functions of P including recursive calls. A tuple of
expressions is given as arguments to a function symbol in accordance with its signature.

Let a denotational semantics JAK for each type A be given. Also let a denotation of programs
JPK and terms JeKη,JPK with a valuation η of variables (including the ones that are free in e)
be defined by a least fixed point as usual.

Lastly, assume that an imperative operational semantics is defined as a 5-ary relation S, σ `
e À v, σ ′ where

• σ, σ ′: Loc ⇀ HVal are heaps,

• S: Var ⇀ SVal is an environment,

• Loc is a set of heap locations (ranged over by `) and

• SVal is a set of stack values (e.g. numerals, tuples) ranged over by v, Loc ⊆ SVal,

• HVal is a set of heap values h (e.g. cons cells) which contain SVal values

• Var is the set of variables of L.

The intuitive meaning of the above relation is: with the environment S and the heap σ the
term e evaluates to v and changes the heap to σ ′.

A basic operational value v may refer to a heap σ and together with the heap represent
a denotational value a ∈ JAK, e.g. a list or a tree. This relationship is formalised by the
relation v σ

A a and extended to tuples by the relation S σ
Γ η.

2.1 General CG-Systems

Definition 2.1. A conditions and guarantees (CG-) system CG for the language L is a mapping
which assigns to each signature Γ, A a pair of sets CondCG(Γ) and GuarCG(A, Γ) whose elements are
of the following form:

• C ∈ CondCG(Γ)—a subset (understood as a predicate) of {(S, σ) (∃η)(S σ
Γ η)}

(I.e. a pre-condition on the heap representation of the arguments.)

3

• G ∈ GuarCG(A, Γ)—a subset of
{
(v, σ ′, S, σ)

∣∣ (∃a, η)(v σ ′

A a ∧ S σ
Γ η)

}
(I.e. a post-condition on the heap representation of the result and its relationship to the repre-
sentation of the arguments.)

We will write S, σ C and v, σ ′, S, σ G for (S, σ) ∈ C and (v, σ ′, S, σ) ∈ G, respectively.

A pair (C,G) ∈ CondCG(Γ)× GuarCG(A, Γ) is called a CG-pair for Γ, A.

The sets of predicates CondCG(Γ) and GuarCG(Γ, A) will be usually considered in the context
of an evaluation S, σ ` e À v, σ ′ where the term e satisfies Γ ` e : A. The predicates are then
applied on the heaps and values from the evaluation relation.

Definition 2.2. A typing judgement Γ ` e : A annotated by a CG-pair C,G for Γ, A (written as
Γ ; C ` e : A; G) is OC if
whenever S, σ ` e À v, σ ′ with S σ

Γ η and S, σ C

then v σ ′

A JeKη,JPK and v, σ ′, S, σ G.

The correct evaluation of e relies on the precondition C which typically is separation be-
tween (parts of) arguments on the heap. Extra guarantees inside G may be of several kinds:

• Separation between parts of the result on the result heap

• Containment of (parts of) the result within the union of the regions of certain (parts of
the) arguments

• Non-destruction of certain (parts of the) arguments

Each of such guarantees may rely on some extra precondition like those in CondCG(Γ).

Each of the predicate sets CondCG(Γ) or GuarCG(Γ, A) is partially ordered by logical implica-
tion, e.g. C 6 C ′ ⇐⇒ (∀S, σ)(S, σ C ⇐= S, σ C ′).

Definition 2.3. Define an order on the set CondCG(Γ) × GuarCG(A, Γ) contra-variantly element-
wise: (C,G) 6 (C ′, G ′) ⇐⇒ C > C ′ and G 6 G ′

Obviously, if a typing judgement annotated with (C ′, G ′) is OC then it is also OC if it is
annotated with (C,G) 6 (C ′, G ′) instead.

2.2 CG-Typing

Fix a CG-system CG for L and use it implicitly for the rest of this section. Having defined the
semantics of CG-pairs, we now outline the way CG-pairs can be used as a part of the typing,
obtaining annotated typing rules which will yield the annotated typing judgements from the
previous section. We will denote by L ′ the language L with the new annotated typing rules.

Definition 2.4. A CG-typing of L consists of

4

• an assignment (Γ, A) 7→ W(Γ, A) ⊆ Cond(Γ)× Guar(A, Γ) of valid CG-pairs for each signa-
ture of L

• the typing rules of L each of which is annotated in the following way:

– Each typing judgement Γi ` ei : Ai in the premises is associated with an unspecified pair
(Ci, Gi) ∈ W(Γi, Ai)

– A side condition on the pairs (Ci, Gi) might be added.

– A procedure is indicated how to derive a pair (C,G) ∈ W(Γ, A) for the concluded typing
judgement solely from the pairs (Ci, Gi) provided that the side condition holds (if any).

• extra trivial typing rules with Γ ` e : A on both sides annotated as above.

Thus rules take the form:

[GEN]
Γ1; C1 ` e1 : A1; G1 · · · Γn; Cn ` en : An; Gn

Γ ; C(C1, G1, . . . , Cn, Gn) ` e[e1, . . . , en] : A; G(C1, G1, . . . , Cn, Gn)

The actual syntax of adding CG-pairs to the rules is left open at the moment. In particular
systems, there may be a more concise way to represent the CG-pairs. For example, see Sect. 3
and 4.

Definition 2.5. A typing rule in a CG-typing is correct if in any instantiation of the rule it holds:
all annotated typing judgements from the premises are OC
=⇒ the concluded annotated typing judgement is OC.

A CG-typing is correct if all its rules are correct.

Let us outline a typical proof that a CG-typing rule of the form [GEN] is correct:

1. Assume that S0, σ0 ` e[e1, . . . , en] À v0, σ
′, S0 σ0

Γ η0 and S0, σ0 C hold.

2. Prove S1, σ0 ` ej1 À v1, σ1, S1 σ0
Γj1

η1 and S1, σ0 Cj1 for some j1 ∈ {1, . . . , n} (given
by the evaluation strategy for e, i.e. ej1 is the first subterm to be evaluated).

3. Deduce v1 σ1
Aj1

Jej1Kη1,JPK and v1, σ1, S1, σ0 Gj1 .

4. Proceed similarly to steps 2 and 3 with other typing judgements in the assumptions
(led by the evaluation strategy for e) introducing a sequence

{
(ji, Si, σi, ηi, vi)

}
0<i6m

with σm = σ ′.

5. Prove v σ ′

A Je[e1, . . . , en]Kη,JPK and v0, σ
′, S0, σ0 G—Q.E.D.

5

2.3 Inference of Annotation

Let us now turn to the type-checking problem which is now a combination of the ordinary
type-checking of L with the inference of annotation. Annotation is inferred in the course of
the type-checking and sometimes a certain branch of the type-checking is barred by a side
condition.

When there is more than one sequence of typing rule applications for a certain term (result-
ing in the same typing judgement) then there may be more than one CG-pair derivable for
the judgement. In such a case, we should be able to take the resulting CG-pair to be the
supremum of the derived pairs in the implication order. This will happen in UAPL because
there is a single strongest derivation despite some non-determinism in the typing rules.

Special attention has to be paid to the typing of recursion via function calls. An annotated
program P would now associate an OC typing judgement Γf; Cf ` ef : Af; Gf to every function
symbol f. The problem is now obvious that (Cf, Gf) cannot be derived by the typing rules
directly due to their potential dependency on (Cf, Gf). These have to be derived as some
fixpoint of their circular definition. Under some conditions, they can be derived iteratively
as the strongest fixpoint as follows: Associate the strongest CG-pair (C0

f , G
0
f) in W(Γf, Af)

with each function symbol f and then derive possibly weaker pairs (C1
f , G

1
f) for them via

the typing of their terms ef. Repeat this with (C1
f , G

1
f) to derive (C2

f , G
2
f) and so on until

(Ck
f , G

k
f) = (Ck+1

f , Gk+1
f) for all f.

For this iteration to work, the derivation of typing judgements has to be monotone; i.e. when-
ever the function signatures’ annotation is weakened, also the derived annotation is weak-
ened. This is equivalent to all typing rules being monotone in the following sense: In
any pair of instances of the rule differing only in their CG-pairs (W1, . . . , Wn,W versus
W ′

1, . . . , W
′
n,W ′) it holds: (

(∀i)(Wi 6 W ′
i)

)
=⇒ W 6 W ′.

By the term “inferring strongest annotation” we mean deciding whether a given well-typed
program or term in L can be annotated within a given CG-typing and if affirmative also
computing its strongest correct annotation.

Theorem 2.6. If in a CG-typing

• all annotated typing rules are correct and monotone,

• for every signature there is a strongest annotation,

• for every annotated program there is an algorithm inferring strongest annotation for terms
using the signature of the program,

then the iterative process described above infers the strongest annotation for any program P.

6

3 UAPL

We present the language from [Aspinall & Hofmann 2002] as an instance of the framework
from the previous section.

3.1 The Language

The types and terms are in essence those of first-order LFPL [Hofmann 2000]:

A ::= ♦ Bool A1 ×A2 A1 ⊗A2 L(A)

e ::= x let x = e1 in e2 f(x1, . . . , xn)

tt ff if x then e1 else e2

(e1, e2) fst(x) snd(x)

x1 ⊗ x2 match x with x1 ⊗ x2 ⇒ e

nilA consA(xh, xt, xd) match x with nilA ⇒ e1|consA(xh, xt, xd) ⇒ e2

Notice the extensive use of variables instead of expressions in term constructors. All of the
usual, more general, forms of the terms can be simulated by the use of let. The reason for
this restriction is to confine most of the reasoning about sharing and destroying of heap
resources around the let expressions.

The language term constructors tt, ff, fst, snd, ⊗ , nilA, consA are treated as special pre-defined
function symbols and could, therefore, be omitted above. Nevertheless, we keep them in the
grammar to make it more comprehensible.

The plain typing of the terms is standard apart from the rules for lists:

[NIL]

` nilA : L(A)

[CONS]

xh : A, xt : L(A), xd : ♦ ` cons(xh, xt, xd) : L(A)

[MATCH-LIST]
Γ ` e1 : A ′ Γ, xh : A, xt : L(A), xd : ♦ ` e2 : A ′

Γ, x : L(A) ` match x with nilA ⇒ e1|consA(xh, xt, xd) ⇒ e2 : A ′

in which the extra argument of cons is given the LFPL type ♦. This argument does not play
any role in the denotational semantics but is crucially used in the imperative operational
semantics as a heap address.

The denotational semantics is given as hinted in Sect. 2; in particular:

JnilAKη,JPK = [] JconsA(xh, xt, xd)Kη,JPK = η(xh) :: η(xt)

The values stored in environments and in heap locations are the following:

v ::= ` tt ff (v1, v2) nil h ::= {hd = v1, tl = v2}

7

Figure 1: Definition of Evaluation Relation

[VAR]

S, σ ` x À S(x), σ

[FUNC]
S(xi) = vi [xi 7→ vi], σ ` ef À v, σ ′

S, σ ` f(x1, . . . , xn) À v, σ ′

[LET]
S, σ ` e1 À v, σ ′ S[x 7→ v], σ ′ ` e2 À v ′, σ ′′

S, σ ` let x = e1 in e2 À v ′, σ ′′

[TRUE]

S, σ ` tt À tt, σ

[IF-TRUE]
S(x) = tt S, σ ` e1 À v, σ ′

S, σ ` if x then e1 else e2 À v, σ ′

[FALSE]

S, σ ` ff À ff, σ

[IF-FALSE]
S(x) = ff S, σ ` e2 À v, σ ′

S, σ ` if x then e1 else e2 À v, σ ′

[TENSOR-PAIR]
S, σ ` x1 ⊗ x2 À (S(x1), S(x2)) , σ

[TENSOR-ELIM]
S(x) = (v1, v2) S[x1 7→ v1][x2 7→ v2], σ ` e À v, σ ′

S, σ ` match x with x1 ⊗ x2 ⇒ e À v, σ ′

[CARTESIAN-PAIR]
S, σ ` e1 À v1, σ

′ S, σ ′ ` e2 À v2, σ
′′

S, σ ` (e1, e2) À (v1, v2) , σ ′′

[FIRST]
S(x) = (v1, v2)

S, σ ` fst(x) À v1, σ

[SECOND]
S(x) = (v1, v2)

S, σ ` snd(x) À v2, σ

[NIL]
S, σ ` nilA À nil, σ

[CONS]
S, σ ` cons(xh, xt, xd) À S(xd), σ[S(xd) 7→ {hd = S(xh), tl = S(xt)}]

[MATCH-LIST-NIL]
S(x) = nil S, σ ` e1 À v, σ ′

S, σ ` match x with nilA ⇒ e1|consA(xh, xt, xd) ⇒ e2 À v, σ ′

[MATCH-LIST-CONS]
σ(S(x)) = {hd = vh, tl = vt} S[xh 7→ vh, xt 7→ vt, xd 7→ S(x)], σ ` e2 À v, σ ′

S, σ ` match x with nilA ⇒ e1|consA(xh, xt, xd) ⇒ e2 À v, σ ′

8

where ` ranges over the heap locations from Loc. The definition of the evaluation relation
is in Fig. 1. The rules for the heap representation relation v σ

A a are more or less derivable
from the evaluation rules, we quote only the ones for lists here:

nil σ
L(A) []

σ(`) = {hd = v1, tl = v2} v1 σ
A h v2 σ

L(A) t

` σ
L(A) h :: t

An important aspect of the heap representation definition is whether the two parts of a
tensor product are required to be separated from each other on the heap or not. We will
not require it in the default representation relation because there are valid situations when a
tensor product may not be represented as a separated product.

Let v ⊗σ
A a be a relation which differs from v σ

A a only by adding a condition to the tensor
product and cons-cell rules requiring that the components are separated:

v1
⊗

σ
A1

a1 v2
⊗

σ
A2

a2 RA1
(v1, σ) ∩ RA2

(v2, σ) = ∅
(v1, v2)

⊗
σ
A1⊗A2

(a1, a2)

σ(`) = {hd = v1, tl = v2} v1
⊗

σ
A h v2

⊗
σ
L(A) t RA(v1, σ) ∩ RL(A)(v2, σ) = ∅

` ⊗
σ
L(A) h :: t

where RA(v, σ) is the region of the value of type A represented by v on σ, i.e. the set of
locations in σ “reachable” from v.

Values of some types, e.g. Bool×Bool, do not use heap at all. Such types are called heap-free.

Lemma 3.1. For every evaluation S, σ ` e À v, σ ′ with the representation of arguments S σ
Γ η

and result v σ ′

A a, it holds that:

1. Dom(σ) = Dom(σ ′)

2. RA(v, σ ′) ⊆ RΓ (S, σ)

3. ∀` ∈ Dom(σ) \ RΓ (S, σ), σ(`) = σ ′(`)

This lemma can be proved easily by induction on the structure of e from the definition of
evaluation relation and region.

3.2 Usage Aspects

The syntax of annotated typing judgements is:

x1 :i1 A1, . . . , xn :in An ` e : A

where each ij, called usage aspect, is from the set {1, 2, 3}. The usage aspects can be informally
interpreted as follows:

9

Figure 2: UAPL typing rules

[DROP]
Γ, x :i A ` e : A ′ j 6 i

Γ, x :j A ` e : A ′

[RAISE]
Γ ` e : A A heap-free

Γ 3 ` e : A

[WEAK]
Γ ` e : A ′

Γ, x :3 A ` e : A ′

[LET]

Γ1 ` e1 : A Γ2, x :i A ` e2 : A ′ Either ∀z ∈ |Γ1| ∩ |Γ2|.Γ1[z] = 3,

or i = 3,∀z ∈ |Γ1| ∩ |Γ2|.Γ1[z], Γ2[z] > 2

Γ i
1 ∧ Γ2 ` let x = e1 in e2 : A ′

[IF]
Γ1 ` e1 : A Γ2 ` e2 : A

Γ1 ∧ Γ2, x :3 Bool ` if x then e1 else e2 : A

[×-INTRO]
Γ1 ` e1 : A1 Γ2 ` e2 : A2 ∀z ∈ |Γ1| ∩ |Γ2|.Γ1[z], Γ2[z] > 2

Γ1 ∧ Γ2 ` (e1, e2) : A1 ×A2

[⊗-ELIM]
Γ, x1 :i1 A1, x2 :i2 A2 ` e : A ′ i = min(i1, i2)

Γ, x :i A1 ⊗A2 ` match x with x1 ⊗ x2 ⇒ e : A ′

[LIST-ELIM]
Γ1 ` e1 : A ′ Γ2, h :ih A, t :it L(A), d :id ♦ ` e2 : A ′

Γ1 ∧ Γ2, x :min(ih,it,id) L(A) ` match x with nilA ⇒ e1|consA(h, t, d) ⇒ e2 : A ′

• 1: condition: argument is separated from all the others
condition: arguments’ tensor products are separated products
guarantee: none (argument could be even destroyed)

• 2: condition: argument separated from others with aspect 1 or 2

condition: arguments’ tensor products are separated products
guarantee: argument preserved during evaluation

• 3: condition: argument separated from others with aspect 1

guarantee: argument preserved and separated from the result apart from its
portions shared with arguments of aspect 2

This is not the full story as some rules will require an alternative interpretation of the usage
aspects to be OC. We will formalise their meaning as a CG-pair in Subsect. 3.3.

UAPL typing rules (apart from the obvious rule for function calls) are shown in Fig. 2 and
the annotated typing judgements of the predefined functions in Fig. 3.

The notation Γ [x] stands for the aspect of x in Γ and Γ i stands for the context which arises
from Γ by changing any usage aspect 2 in Γ to i. The joined context Γ1 ∧ Γ2 is defined when

10

Figure 3: Usage aspects of predefined functions

` tt, ff : Bool x :2 A1 ×A2 ` fst(x) : A1 x :2 A1 ×A2 ` snd(x) : A2

x1 :2 A1, x2 :2 A2 ` x1 ⊗ x2 : A1 ⊗A2

` nilA : L(A) h :2 A, t :2 L(A), d :1 ♦ ` consA(h, t, d) : L(A)

Table 1: Usage Aspects as a CG-pair

Condition Guarantee ⇐= Rely

pres(|Γ |2,3) ⇐=

sep(|Γ |1 , |Γ |) ∧ tens(|Γ |1) rg(r) ⊆ rg(|Γ |1,2) ⇐=

tens(r) ⇐= sep(|Γ |2 , |Γ |2) ∧ tens(|Γ |2)

the contexts are compatible (i.e. Γ1(x) = Γ2(x) for every x ∈ |Γ1| ∩ |Γ2| where |Γ | is the set of
all variables in Γ) and annotations are calculated as the minimum where the contexts Γ1, Γ2

overlap:
∀x ∈ |Γ1| ∩ |Γ2|.(Γ1 ∧ Γ2)[x] = min(Γ1[x], Γ2[x]).

The rules [DROP] and [RAISE] would be trivial without the usage aspects. These rules intro-
duce nondeterminism to the type-checking by allowing the annotation to be weakened at
any time and strengthened at certain situations. As we will show that all the rules are mono-
tone (Prop. 3.3) and stable under strengthening of premises (Prop. 3.4), there is a determinis-
tic type-checking strategy yielding the strongest annotation for each OC typing judgement.
It consists of giving [RAISE] priority over all other rules and the opposite for [DROP]: use it
only if needed to make premises match each other. Thus Thm. 2.6 will apply to UAPL.

3.3 Correctness

Let us now formalise the meaning of usage aspects in typing judgements as sets of CG-
pairs. Fix an annotated typing judgement Γ ` e : A and a matching operational judgement
S, σ ` e À v, σ ′.

The CG-pair (denoted WΓ = (CΓ , GΓ)) that the usage aspects represent is summarised in
Tab. 1 using the following notation (sep stands for separation, pres for preservation and tens
for tensor product separation):

11

|Γ |i,j = |Γ |i ∪ |Γ |j , |Γ |i =
{
x ∈ |Γ |

∣∣ Γ [x] = i
}

sep(x, y) ≡ rg(x) ∩ rg(y) = ∅, sep(T, T ′) ≡
∧

x∈T,x ′∈T ′,x 6=x ′ sep(x, x ′)

rg(x) = RΓ(x)(S(x), σ),

tens(x) ≡ (∃a)
(
S(x) ⊗

σ
Γ(x) a

)
, tens(T) =

∧
x∈T tens(x)

pres(x) ≡ (∀` ∈ rg(x))
(
σ(`) = σ ′(`)

)
, pres(T) =

∧
x∈T pres(x)

The symbol r is treated as a special variable representing the result on the heap σ ′, i.e. S(r) =

v, Γ(r) = A and in relation to r the heap σ ′ is used instead of σ.

This CG-pair can be decomposed into two weaker but simpler CG-pairs that are equivalent
together to the original CG-pair. In the first one, the rely precondition of the third guarantee
moved to the condition while in the second one the third guarantee is removed.

We shall call the first simpler CG-pair the primary interpretation and the other one the sec-
ondary interpretation of the usage aspects. Notice that the primary interpretation corre-
sponds to the intuitive interpretation of the usage aspects as given earlier.

Let the notation Γ 6 Γ ′ mean that the annotated contexts Γ, Γ ′ do not differ apart from their
usage aspects and Γ [x] 6 Γ ′[x] for each x ∈ |Γ |.

Lemma 3.2. If Γ 6 Γ ′ then WΓ 6 WΓ ′ (i.e. CΓ > CΓ ′ and GΓ 6 GΓ ′).

As a result of this lemma, there is a strongest annotation for each typing judgement, namely
the one with aspect 3 at all the arguments. The last ingredients to be able to apply Theorem 1
to UAPL are monotonicity, stability under strengthening of premises and correctness of the
rules and of the annotation of the predefined functions in Fig 3. These will be the content of
the following four propositions.

Proposition 3.3. The UAPL typing rules are monotone.

Proof. For each rule, assume its OC instance using the notation from Fig. 2. Then take the
same premises with some collection of usage aspects which are not higher than the original
ones. Use primed notation for new usage aspects and annotated contexts. Then construct
the new conclusion to make a new instance of the rule (if possible). Since the rules are just
annotated versions of valid ordinary typing rules, the conclusions will differ only in the
usage aspects. For each rule we have to show that the new conclusion is weaker or equal to
the old one. We show it here for a few rules only:

[DROP]. Γ ′, x :min(i ′,j) A is weaker than Γ, x :j A.

[RAISE]. (Γ ′)3 6 Γ 3

[LET]. (Γ ′1)
i ′

∧ Γ ′2 is weaker than Γ i
1 ∧ Γ2 because (Γ ′1)

i ′
6 (Γ ′1)

i 6 Γ i
1.

[×-INTRO]. Γ ′1 ∧ Γ ′2 6 Γ1 ∧ Γ2

[⊗-ELIM]. Γ ′, x :min(i ′
1,i ′

2) A1 ⊗A2 6 Γ, x :min(i1,i2) A1 ⊗A2 £

Proposition 3.4. The UAPL typing rules are stable under strengthening of premises, i.e. if certain
premises enable a rule, then the same premises with stronger usage aspects also enable the rule.

12

Proof. This is trivial for all rules but [DROP], [×-INTRO] and [LET] as these are the only ones
having side conditions that depend on the annotation of premises. Raising the i in [DROP]
keeps the side condition valid. The [×-INTRO] side-condition is clearly stable under raising
the usage aspects and so is the [LET] side condition as 3 is the highest usage aspect. £

Proposition 3.5. The UAPL typing rules are OC.

Proof. [DROP]. The correctness of this rule follows from the earlier observation that lowering
a usage aspect results in weakening the corresponding CG-pair.

[RAISE]. Assume S, σ ` e À v, σ ′ with S σ
Γ η and that each region rg(x) is separated from all

others and the tensor products of x are separated whenever Γ [x] = 1. Thus the condition of
the premise is met and using its correctness we get v σ ′

A JeKη,JPK and pres(|Γ |2,3). The latter
implies pres(

∣∣Γ 3
∣∣
2,3

) and as the result is heap-free, we have rg(r) = ∅ and consequently it
trivially holds tens(r) and rg(r) ⊆ rg(

∣∣Γ 3
∣∣
1,2

).

[WEAK]. Assume Sx, σ ` e À v, σ ′, Sx σ
Γx

ηx and Sx, σ CΓx where Sx = S[x 7→ vx],
ηx = η[x 7→ ax] and Γx = Γ, x :3 A. Then clearly it holds S, σ ` e À v, σ ′, S σ

Γ η

and S, σ CΓ which allows us to use the premise. The guarantee v, σ ′, S, σ GΓ implies
v, σ ′, Sx, σ GΓx because its only part involving x is pres(x) which holds due to Lemma 3.2
(3) and sep(|Γ |1 , {x}).

[LET]. The skeleton of this proof for the primary interpretation is in Tab. 2. Each line of
the table contains a statement preceded by its name and followed by a list of references
to statements and definitions from which it has been be derived. The statements whose
names end with i1 are valid under the condition that i = 1, etc. A proof of the secondary
interpretation can be obtained from the first proof by minor modifications as indicated in
the table.

[IF]. Put Γ := Γ1 ∧ Γ2, x :3 Bool and assume S σ
Γ η as well as S, σ CΓ . Also assume

Si, σ ` ei À vi, σi where Si := S||Γi| for i = 1, 2. Clearly Si σ
Γi

ηi where ηi := η||Γi| and by
Lemma 3.2 we get also Si, σ CΓi

.

If S(x) = tt, set j = 1, otherwise j = 2, so that S, σ ` e À vj, σj where e = if x then e1 else e2.
Using the correctness of the premise for ej we get vj

σj

A JeKη,JPK and vj, σj, S, σ GΓj
. The first

guarantee rg(r) ⊆ rg(|Γ |1,2) follows from |Γj|1,2 ⊆ |Γ |1,2. The second one, pres(|Γ |2,3), follows
from pres(|Γj|2,3), sep(|Γj|1 , |Γ |2,3) and Lemma 3.1 (3). Finally, if sep(|Γ |2 , |Γ |2) and tens(|Γ |2),
then the same precondition holds for Γj because |Γj|2 ⊆ |Γ |1,2 and thus we get tens(r) from
GΓj

.

[×-INTRO]. Assume S, σ ` (e1, e2) À v, σ ′′ which implies S, σ ` e1 À v1, σ
′, S, σ ′ ` e2 À

v2, σ
′′ and v = (v1, v2). Further assume S σ

Γ η and S, σ CΓ where Γ = Γ1 ∧ Γ2. We get
Si σ

Γi
ηi where where Si := S||Γi| and ηi := η||Γi| and from Lemma 3.2 also Si, σ CΓi

for
i = 1, 2. Applying the hypothesis that the first premise is OC, we get v1 σ ′

A1
Je1Kη,JPK and

v1, σ
′, S1, σ GΓ1

, especially pres(|Γ1|2,3).

Now we can conclude that S2 σ ′

Γ2
η2 using sep(|Γ1|1 , |Γ |), Lemma 3.1 (3) and the side condi-

tion that Γ2 does not contain any variable which has aspect 1 in Γ1. This and S, σ CΓ2
yields

S, σ ′ CΓ2
. Thus we can use the hypothesis of correctness for the second premise to obtain

v2 σ ′′

A2
Je2Kη,JPK and v2, σ

′′, S2, σ
′ GΓ2

.

13

Table 2: Correctness of [LET]
Implicit conditions: (. . . i1) ∼(i = 1), (. . . i12) ∼(i ∈ {1, 2}), etc.
Secondary interpretation: remove text in and rename:
(C1i12) 7→(C1i1) , (C1i3) 7→(C1i23) , (G1i12) 7→(G1i1) , (G1i3) 7→(G1i23) .

(OC1,2) Γ1 ` e1 : A is OC, Γ2, x :i A ` e2 : A ′ is OC assume

(Op) S, σ ` let x = e1 in e2 À v, σ ′′ assume

(Op1,2) S, σ ` e1 À vx, σ
′ S[x 7→ vx], σ

′ ` e2 À v, σ ′′ Op,À

(HA) S σ
Γ η (Γ := Γ i

1 ∧ Γ2) assume

(1-23) |Γ1|1 ∪ |Γ2|1 ⊆ |Γ |1 |Γ |2,3 ⊆ |Γ1|2,3 ∪ |Γ2|2,3 Γ = Γ i
1 ∧ Γ2

(C) S, σ sep(|Γ |1 , |Γ |) ∧ sep(|Γ |2 , |Γ |2) ∧ tens(|Γ |1,2) assume

(HA1) S1 σ
Γ1

η1 (S1 := S||Γ1|, η1 := η||Γ1|) HA

(C1i12) S1, σ sep(|Γ1|1 , |Γ1|) ∧ sep(|Γ1|2 , |Γ1|2) ∧ tens(|Γ1|1,2) C,Γ i
1

(C1i3) S1, σ sep(|Γ1|1 , |Γ1|) ∧ tens(|Γ1|1) C,Γ i
1

(HR1) vx σ ′

A a (a := Je1Kη1,JPK) OC1

(G1i12) vx, σ
′, S1, σ pres(|Γ1|2,3) ∧ rg(r) ⊆ rg(|Γ1|1,2) ∧ tens(r) OC1

(G1i3) vx, σ
′, S1, σ pres(|Γ1|2,3) ∧ rg(r) ⊆ rg(|Γ1|1,2) OC1

(HA2p) S2 σ
Γ2

η2 (S2 := S||Γ2|, η2 := η||Γ2|) HA

(HA2g) S2 σ ′

Γ2
η2 HA2p,C,1-23,G1

(HA2) Sx σ ′

Γx
ηx (Sx := S2[x 7→ vx], ηx := η2[x 7→ a],

Γx := Γ2, x :i A)
HA2g,HR1

(C2g) S2, σ
′ sep(|Γ2|1 , |Γ2|) ∧ sep(|Γ2|2 , |Γ2|2) ∧ tens(|Γ2|1,2) C,G1

(C2xi1) Sx, σ
′ sep(x, |Γ2|) ∧ tens(x) C,G1i12,Γ i

1,sidecond

(C2xi2) Sx, σ
′ sep(x, |Γ2|1,2) ∧ tens(x) C,G1i12,Γ i

1 ∧ Γ2,sidecond

(C2xi3) Sx, σ
′ sep(x, |Γ2|1) C,sidecond

(C2) Sx, σ
′ sep(|Γx|1 , |Γx|) ∧ sep(|Γx|2 , |Γx|2) ∧ tens(|Γx|1,2) C2g,C2x

(HR2) v σ ′′

A ′ Je2Kηx,JPK OC2

(G2) v, σ ′′, Sx, σ
′ pres(|Γx|2,3) ∧ rg(r) ⊆ rg(|Γx|1,2) ∧ tens(r) OC2

(HR) v σ ′′

A ′ Jlet x = e1 in e2Kη,JPK HR2,ηx,denot.sem.

(S23) S, σ sep(|Γ2|2,3 , |Γ1|1) S, σ ′ sep(|Γ1|2,3 , |Γ2|1) 1-23,C

(Si1) |Γ |2,3 ∩ |Γ1| ⊆ |Γ1|3 , S1, σ sep(|Γ1|3 , |Γ1|2) Γ = Γ i
1 ∧ Γ2,C

(P) v, σ ′′, S, σ pres(|Γ |2,3) G1,G2,S23,Si1

(Ri12) rg(r) ⊆ rg(|Γx|1,2) ⊆ rg(|Γ2|1,2) ∪ rg(|Γ1|1,2) = rg(|Γ |1,2) G2,G1

(Ri3) rg(r) ⊆ rg(|Γx|1,2) = rg(|Γ2|1,2) ⊆ rg(|Γ |1,2) G2

(G) v, σ ′′, S, σ pres(|Γ |2,3) ∧ rg(r) ⊆ rg(|Γ |1,2) ∧ tens(r) P,R,G2

(OC) Γ ` let x = e1 in e2 : A ′ is OC Op,HA,C,HR,G

14

Since RA1
(v1, σ

′) ⊆ RΓ1
(S||Γ1|, σ) (Lemma 3.1, point 2), the region RA1

(v1, σ
′) has not been

modified by the evaluation of e2 thanks to the condition that all variables with aspect 1 in Γ2

have regions disjoint from all others. Thus we also have v1 σ ′′

A1
Je1Kη,JPK and v1, σ

′′, S1, σ

GΓ1
. Now we can deduce (v1, v2) = v σ ′′

A1×A2
J(e1, e2)Kη,JPK.

From vi, σ
′′, Si, σ GΓi

it is easy to deduce pres(|Γ |2,3) and rg(r) ⊆ rg(|Γ |1,2) using |Γ |2,3 ⊆
|Γ1|2,3 ∪ |Γ2|2,3 and |Γ1|1,2 ∪ |Γ2|1,2 ⊆ |Γ |1,2.

When sep(|Γ |2 , |Γ |2) and tens(|Γ |2) hold on σ then the same holds for Γ1 and Γ2 on their respec-
tive heaps σ and σ ′. Thus v1 and v2 are represented on σ ′′ with separated tensor products.
As there is no tensor product between v1 and v2, we get tens(r).

[⊗-ELIM]. Assume S, σ ` e ′ À v, σ ′ where e ′ := match x with x1 ⊗ x2 ⇒ e which implies
S(x) = (v1, v2) and S ′′, σ ` e À v, σ ′ where S ′′ := S[x1 7→ v1][x2 7→ v2]. Further assume
S σ

Γ ′ η where Γ ′ := Γ, x :i A1 ⊗A2. Put Γ ′′ := Γ, x1 :i1 A1, x2 :i2 A2.

Assuming S, σ CΓ ′ , we aim at proving S ′′, σ CΓ ′′ . Basic conditions confined within |Γ |

translate directly from CΓ ′ to CΓ ′′ . Since i 6 i1, i2, any separation required in CΓ ′′ between
x1 or x2 and some variable y ∈ |Γ | follows from the separation between x and y in CΓ ′ . Also,
tens(x1) or tens(x2) in CΓ ′′ implies that tens(x) is in CΓ ′ . Finally, if sep(x1, x2) is in CΓ ′′ then
i = 1 which implies that tens(x) is in CΓ ′ which is sufficient for sep(x1, x2) to hold.

By the correctness of the premise we get v σ ′

A ′ JeKη[x1 7→a1,x2 7→a2],JPK and v, σ ′, S ′′, σ GΓ ′′

where (a1, a2) = η(x). By the definition of denotational semantics we get

v σ ′

A ′ Jmatch x with x1 ⊗ x2 ⇒ eKη,JPK.

It remains to prove v, σ ′, S, σ GΓ ′ . Again, conditions confined to Γ and the result translate
from GΓ ′′ trivially. If GΓ ′ contains pres(x) then GΓ ′′ has to contain both pres(x1) and pres(x2)

by i1, i2 > i. Similarly, we get rg(r) ⊆ rg(|Γ ′′|1,2) ⊆ rg(|Γ ′|1,2).

The guarantee tens(r) in GΓ ′ is equivalent to tens(r) in GΓ ′′ . From the rely-precondition of
tens(r) in GΓ ′ we can deduce the same for GΓ ′′ analogously to deducing CΓ ′′ from CΓ ′ above.

[LIST-ELIM]. A proof of correctness for this rule can be obtained by a straightforward combi-
nation and adaptation of the proves for [IF] and [⊗-ELIM] treating consA(h, t, d) as a ternary
tensor product. £

Proposition 3.6. The predefined functions are correctly annotated in Fig. 3.

Proof. All the functions but consA clearly evaluate according to their denotational semantics
even without the need to consider the preconditions. consA(h, t, d) also evaluates correctly
thanks to the precondition sep({d} , {h, t}) (h, t are preserved while overwriting d).

All the functions but consA trivially satisfy the guarantee pres(|Γ |2,3) since their evaluation
does not change the heap at all. consA(h, t, d) overwrites only the location S(d) which is by
the precondition separated from |Γ |2,3 = {h, t}.

All the functions construct their arguments only using the regions of arguments with usage
aspects 1 or 2, hence rg(r) ⊆ rg(|Γ |1,2).

The tens(r) guarantee is valid trivially for the constants tt, ff, nilA as they are heap-free. For
fst, snd, ⊗ , consA, it holds tens(r) if all their arguments with aspect 2 have separated tensor

15

products and the components of the tensor product and the cons cell are separated which is
exactly what the rely-precondition demands. £

4 Other Languages

4.1 Explicit Sharing Programming Language (ESPL)

During the research that led to this report other typings for LFPL extending that of UAPL
were designed. Namely, Robert Atkey formulated a typing for LFPL, called ESPL [Atkey
2002a], that adds explicit information about sharing among arguments in addition to the us-
age aspects.

The syntax of a typing judgement in ESPL is Γ ` e : A, S,D where

• Γ contains assumptions of the form x : (Ax, Sx)

• Sx lists arguments that x is allowed to share with

• S lists arguments which may share with the result (UAPL aspect 2)

• D lists arguments which may get destroyed (UAPL aspect 1)

For example, append can be typed in ESPL as follows:

x : (L(A), ∅), y : (L(A), ∅) ` append(x, y) : L(A), {y} , {x}

The usage aspects are encoded using a different method. More importantly, they retain only
their meaning as a guarantee. Separation pre-condition is expressed independently via a
symmetrical anti-reflexive relation on the context which is encoded in the judgement via the
Sx sets. This gives more flexibility to the typing despite maintaining the invariant:

(1) y ∈ Sx =⇒ ((x ∈ S =⇒ y ∈ S) ∧ (x ∈ D =⇒ y ∈ D))

(I.e. arguments with different usage aspects cannot share.)

Using this intuitive explanation, the annotation can be expressed as the following CG-pair:

condition:
∧

(x,Sx)∈Γ sep(x, |Γ | \ Sx) ∧ tens(x)

guarantee: pres(|Γ | \ D) ∧ sep(r, |Γ | \ (S ∪D)) ∧ tens(r)

The invariant (1) allows Atkey to formulate the following typing rule for let:

[ESPL-LET]
Γ ` e1 : A, S1, D1 Γ [\D1, x 7→ (A, S1)] ` e2 : B, S2, D2

Γ ` let x = e1 in e2 : B, S2 \ {x}, (D1 ∪D2) \ {x}

which is much simpler and easier to prove correct than UAPL’s [LET].

16

The extra flexibility leads to even more of the correct terms being type-checked but results in
a more complex annotation inference algorithm. The complexity of type-checking seems to
be inherent and caused by the fact that some typing judgements do not have any strongest
correct annotation but a set of several maximal ones. For example, x : A,y : A ′ ` x : A can
be annotated in two incomparable ways:

x : (A, ∅), y : (A ′, ∅) ` x : A, {x}, ∅
x : (A, {y}), y : (A ′, {x}) ` x : A, {x, y}, ∅

Maybe this problem can be alleviated by a more clever interpretation of the annotation
which would make the second judgement weaker than the first one.

4.2 Language with Deep Sharing (DEEL)

Another first-order LFPL typing that follows the trend is the one of [Konečný 2002] which we
shall call DEEL. It is based on a more complex annotation method in which not an argument
as a whole is annotated but each argument contains none to many annotations depending
on the complexity of its type. Thus assertions can be made about portions of each argument
corresponding to certain type subterms within a typing judgement. This allows the type-
checking to recognise as correct, among other things, an append(x, y) in which lists x and y

share on the level of its deeper data but are separated on the level of the top cons-cells:

x : L[1](L[2](Bool)), y : L[3](L[4](Bool));

{1⊗2, 1⊗3, 1⊗4} `
append(x, y)

: L[5⊆{1,3}](L[6⊆{2,4}](Bool)); {1};

5⊗6 ⇐= {1⊗2, 1⊗4, 2⊗3, 3⊗4}

⊗6/5 ⇐= {2⊗4,⊗2/1,⊗4/3}

Each argument has two portions according to their types. The argument portion names
are 1, 2, 3, 4. Just before ` there is a pre-condition demanding that three pairs of argument
portions be separated. The result type has also two portions, named 5 and 6. The notation
with ⊆ indicates the guarantee that the corresponding result portion is contained within the
union of the given argument portions. Behind the result type is the set of possibly destroyed
portions in the style of ESPL. The last guarantee is a list of implications giving a set of sep-
aration pre-conditions necessary for each basic separation guarantee about the result1. The
expression ⊗6/5 indicates internal separation between individual elements of the resulting
list which depends on the same property for both argument lists and the separation of 2

from 4.

The language extends UAPL and ESPL in that it type-checks more of the correct LFPL terms.
At the same time it has a very simple inference algorithm due to having no annotation-only
rules which would make the type-checking non-deterministic (like [DROP] and [RAISE] in

1The system is not aware of the fact that 5 cannot share with 6 because a more complex list type might allow
sharing between its control structure and elements.

17

UAPL). This algorithm has been implemented and tested by the author. The above example
has been generated by the program too.

5 Conclusion

We have extracted and made explicit the abstract ideas that were behind the original design
of UAPL and thus managed to reformulate the usage aspects in a way in which it is manage-
able to prove its correctness2 and to work out an annotation inference algorithm. We have
also recalled ESPL from this perspective and given some hints for its further study inspired
by this view. Furthermore, we previewed the new language DEEL which has been formed
as a result of this study.

We conjecture that also αλ-calculus [O’Hearn 2002] which arises from the logic of Bunched
Implications [O’Hearn & Pym 1999] can be interpreted in the present approach similarly to
ESPL but without considering preservation guarantees. This is very interesting among other
reasons because αλ-calculus is a higher order language.

The present approach might be beneficial in extending also UAPL to higher order. A suitable
extension of the imperative operational semantics with explicit allocation of closures has
been suggested in [Atkey 2002a] and [Atkey 2002b]. The leading idea is that every function
type constructor in the judgement has to be treated like a typing judgement (featuring its
captured context) and thus should be annotated with a subset of CG-pairs for this context.

For example, one could perhaps abstract away from the captured context and treat it as a
single unit with one usage aspect, resulting in having two usage aspects per function type
constructor, e.g.:

x :j A i→j A ′, y :i A ` xy : A ′

This is an area of further research. Nevertheless, it seems that the complex annotation
resulting from higher order types will have so intricate dependencies that type-checking
will become very hard. For example, the typing judgement above would be valid for any
i, j ∈ {1, 2, 3}.

The use of pre- and post-conditions for certifying in-place update with sharing is not new.
Recent work includes Alias types [Walker & Morrisett 2000, Walker & Morrisett 2001] which
have been designed to express when heap is manipulated type-safely in a typed assembly
language (TAL). Alias types express properties about heap layout and could be considered
as representations of our assertions. Unfortunately, they cannot express that two heap lo-
cation variables may have the same value. In an alias type, two different location variables
always take different values.

Separation Logic [Reynolds 2002] may serve a similar purpose as alias types but for higher
level imperative languages. We believe that it is expressive enough to encode the UAPL,
ESPL and DEEL assertions but the encoding might not be very natural.

There are plenty more studies related to certifying in-place update which we cannot possibly
2Admittedly, the proof is still fairly complex and it might be worth formalising it in a proof assistant to be

able to keep careful track of all the details.

18

cover here.

The novelty of LFPL and its extensions is that one can write in them certified in-place update
algorithms that evaluate in accordance with a simple functional denotational semantics. The
new resource type ♦ makes in-place update explicit in a functional setting. In UAPL, ESPL
and DEEL any constructor argument of type ♦ is given a “destroyed” aspect. Thus by dis-
tinguishing different ways in which the resources are used the typing is made more flexible.
UAPL and DEEL moreover keep a deterministic type-checking via usage aspect annotation
inference thus liberating a programmer from writing any usage aspects in their program sig-
natures. A complementary aid is given to an LFPL programmer by an automatic inference
of constructor arguments of type ♦ [Jost 2002].

Acknowledgements. This research has been supported by the EPSRC grant GR/N28436/01.
The author is grateful to David Aspinall and Robert Atkey for discussion and comments on
this work.

References

Aspinall, D. & Hofmann, M. [2002], Another type system for in-place update, in D. L.
Métayer, ed., ‘Programming Languages and Systems, Proceedings of 11th European
Symposium on Programming’, Springer-Verlag, pp. 36–52. Lecture Notes in Computer
Science 2305.

Atkey, R. [2002a], LFPL with explicit sharing and destruction. An unpublished draft.

Atkey, R. [2002b], Type systems with explicit sharing. Thesis Proposal.

Guzmán, J. C. & Hudak, P. [1990], Single-threaded polymorphic lambda calculus, in ‘Pro-
ceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science’, pp. 333–
343.

Hofmann, M. [2000], ‘A type system for bounded space and functional in-place update’,
Nordic Journal of Computing 7(4), 258–289.
URL: citeseer.nj.nec.com/hofmann00type.html

Hofmann, M. [2002], The strength of non size-increasing computation, in ‘Proceedings of
17th Annual IEEE Symposium on Logic in Computer Science’.

Jost, S. [2002], Static prediction of dynamic space usage of linear functional programs, Mas-
ter’s thesis, Technische Universität Darmstadt, Fachbereich Mathematik.

Konečný, M. [2002], LFPL with types for deep sharing, Technical Report EDI-INF-RR-?,
LFCS, Division of Informatics, University of Edinburgh.

O’Hearn, P. & Pym, D. [1999], ‘The logic of bunched implications’, Bulletin of Symbolic Logic
5(2), 215–243.

O’Hearn, P. W. [2002], On bunched typing. To Appear in the Journal of Functional Program-
ming.

19

O’Hearn, P. W., Power, A. J., Takeyama, M. & Tennent, R. D. [1999], ‘Syntactic control of
interference revisited’, Theoretical Computer Science 228, 211–252.

Reynolds, J. C. [1978], Syntactic control of interference, in ‘Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages’, ACM Press,
pp. 39–46.

Reynolds, J. C. [1989], Syntactic control of interference, part 2, in G. Ausiello, M. Dezani-
Ciancaglini & S. R. D. Rocca, eds, ‘Automata, Languages and Programming, 16th In-
ternational Colloquium’, Springer-Verlag, pp. 704–722. Lecture Notes in Computer
Science 372.

Reynolds, J. C. [2002], Separation logic: A logic for shared mutable data structures, in ‘Pro-
ceedings of 17th Annual IEEE Symposium on Logic in Computer Science’.

Walker, D. & Morrisett, G. [2000], Alias types, in ‘ESOP 2000’, pp. 366–381. Lecture Notes in
Computer Science 1782.

Walker, D. & Morrisett, G. [2001], Alias types for recursive data structures, in ‘Types in
Compilation 2000’, pp. 177–206. Lecture Notes in Computer Science 2071.

20

	1 Introduction
	2 Rely-Guarantees about Heap Representation
	2.1 General CG-Systems
	2.2 CG-Typing
	2.3 Inference of Annotation

	3 UAPL
	3.1 The Language
	3.2 Usage Aspects
	3.3 Correctness

	4 Other Languages
	4.1 Explicit Sharing Programming Language (ESPL)
	4.2 Language with Deep Sharing (DEEL)

	5 Conclusion

