
Functional In-place Update with Layered
Datatype Sharing

Michal Konečný

LFCS Edinburgh, Mayfield Rd, Edinburgh EH9 3JZ, UK
mkonecny@inf.ed.ac.uk,

WWW: //homepages.inf.ed.ac.uk/mkonecny

Abstract. Hofmann’s LFPL is a functional language with constructs
which can be interpreted as referring to heap locations. In this view, the
language is suitable for expressing and verifying in-place update algo-
rithms. Correctness of this semantics is achieved by a linear typing. We
introduce a non-linear typing of first-order LFPL programs which is more
permissive than the recent effect-based typing of Aspinall and Hofmann.
The system efficiently infers separation assertions as well as destruction
and re-use effects for individual layers of recursive-type values. Thus it is
suitable for in-place update algorithms with complicated data aliasing.

1 Introduction

First-order LFPL (Linear Functional Programming Language) [1] is a functional
programming language which has a straightforward compositional denotational
semantics and at the same time can be evaluated imperatively without dy-
namic memory allocation. The higher-order version of this language is inter-
esting among other reasons because it captures non-size increasing polynomial
time/space computation with primitive/full recursion [2]. We focus on the first
order version of LFPL in this paper.

For example, in LFPL we can write the following program to append two
lists of elements of type A:

appendA(x, y) = match x with nil ⇒ y

| cons(h, t)@d ⇒ cons(h, appendA(t, y))@d

In the denotational semantics of the program, the attachment @d of cons is
(virtually) ignored in both cases and thus the semantics is list concatenation as
expected. Nevertheless, in the operational semantics @d indicates that the cons-
cell is (or will be) at location d on the heap. Thus the above program appends
the lists in-place, rewriting the first list’s end with a reference to the second list.
This amounts to changing its last cons-cell if the first list is not empty. The other
cons-cells of the first list are overwritten with the same content.

This evaluation strategy can go wrong easily, for example for appendA(x, x)
with a non-empty list x. Such terms might fail to evaluate or evaluate with
incorrect results. We will call a term sound if it evaluates in harmony with its

2 Michal Konečný

denotational semantics independently of the values of its free variables and how
they are represented on the heap.

We also need a finer notion of soundness relative to some extra condition on
the representation of the arguments on the heap. For example, we would like
to declare appendA(x, y) correct under certain condition on how lists x and y
are represented. A necessary and sufficient condition for appendA(x, y) to eval-
uate correctly is that the heap region occupied by the cons-cells of x should be
separated (disjoint) from the whole region of y.

Apart from stating conditions for correctness, we need to mark certain guar-
antees about the heap representation of the result and the change of heap dur-
ing the evaluation. For example, appendA(x, y) preserves the value of y and this
might be crucial for showing the correctness of a bigger term of which this is a
subterm.

LFPL uses linearity to achieve soundness of its terms. This means that LFPL
maintains the “single pointer property”. This implies the precondition that dif-
ferent variables always refer to disjoint regions on the heap.

It is impossible to achieve a full characterisation of semantical correctness
of the first-order LFPL evaluation by a simple typing system. Nevertheless, one
can improve LFPL by relaxing its linearity in order to recognise more of the
correct algorithms. This means losing the single pointer property and considering
sharing. One such system, which we call UAPL, is provided by Aspinall and
Hofmann [3]. It assigns a usage aspect to each variable in the typing context.

UAPL still rejects many correct programs, e.g. those with appendA(x, y)
where the whole regions of x and y are not guaranteed to be disjoint. UAPL
needs this stronger precondition because it cannot distinguish between the cons-
cell (shallow) and data (deep) levels of a list. This paper develops a typing for
the underlying language of LFPL which improves over UAPL in that it can dis-
tinguish between these two levels (and more than that) for arbitrary recursive
types (with no restriction on nesting).

More precisely, we note each place in a type term which may involve a heap
location in the operational representation of the values of the type. For example,
there is one such place within each list type constructor. We give names (ranged
over by ζ) to all such places and mark them in the type (e.g. L[a]()). To each
such place we logically associate a portion of the heap region taken by a value
of the type (e.g. the locations of the cons-cells of a list).

We formulate preconditions and rely-guarantees using assertions about the
portion names given in the types within a typing judgement. The most straight-
forward atomic assertion is ζ1⊗ζ2 which stands for the separation (disjointness)
of two portions ζ1, ζ2 on the heap1. We need other atomic separation assertions
related to the unfolding of a recursive type. For example, we need to express
that a list has its elements separated from each other or that a tree’s skeleton is
laid out without overlapping.

For this reason we give names also to each occurrence of a recursive type
constructor within the types of a typing judgement. For a list or tree constructor

1 A set of such assertions corresponds to a may-alias relation in alias analysis [4]

Functional In-place Update with Layered Datatype Sharing 3

b

e

f

a c

d

Fig. 1. Heap portions in the append program

we will simply reuse the name of the only portion associated with it. Given a
recursive type occurrence name ζR and a portion name ζ which occurs within
the scope of ζR, we will define two assertions ⊗ζ/ζR and ⊗ζ©ζR. The former
one states that the sub-portions of ζ which correspond to the unfoldings of the
type ζR are pairwise disjoint. The latter one is the same but requires disjointness
only for pairs of unfoldings in which one is not a sub-unfolding of the other (see
Def. 4 for details).

Now we can express that the elements of a list of the type L[a](L[b](Bool)) do
not share by ⊗b/a and that the skeleton of a tree of the type T

[c]
b (Bool) has no

confluences by ⊗c©c.
The typing for appendA in our new system would be:

x : L[a](A[b]), y : L[c](A[d]); {a⊗b,a⊗c,a⊗d} `
appendA(x, y) : L[e⊆{a,c}](A[f⊆{b,d}]); {a}; ⊗f/e ⇐= {b⊗d,⊗b/a,⊗d/c}

The participating heap portions are illustrated in Fig. 1. Just before ` there is a
precondition demanding that three pairs of argument portions should be sepa-
rated. Whenever this condition holds, the term will evaluate in harmony with the
obvious denotational semantics. The result type has also two portions, named
e and f . The notation with ⊆ indicates the guarantee that the corresponding
result portion is contained within the union of the given argument portions.
Behind the result type is the set of possibly destroyed portions, i.e. {a} in this
case. The last guarantee is a list of implications giving a set of separation pre-
conditions necessary for each basic separation guarantee about the result. The
expression ⊗f/e indicates internal separation between individual elements of the
resulting list which depends on the same property for both argument lists and
the separation of b from d.

The containment and destruction-limitation guarantees in our system play a
role analogous to that of usage aspects in UAPL.

Our motivating example of an algorithm which makes use of the distinction
between shallow and deep levels is an in-place update binary tree reversal pro-
gram pathsA converting an A-labelled binary tree to the list containing for each
leaf the list of node labels as read along the path from the leaf to the root. The

4 Michal Konečný

program can be found in the report version of this paper [5] (as well as many
other details omitted here). Automatically inferred annotation for pathsL(Bool)

can be found in Sect. 6.
In the operational point of view, the program pathsA(t) simply reverses all

the pointers in the structure of the tree t and turns its leaves into cons-cells of
the resulting list. It is important here that leaves are not heap-free and their
locations can be reused. Consequently, any labels on leaves are ignored.

The crucial point in the algorithm is when after recursive calls for the two
branches of a tree, two intermediate result lists are appended. These are lists
whose spines are disjoint but whose data are lists that share among each other
extensively.

2 Underlying language

First, we define the types, terms, typing judgements and denotational semantics
of a language which is a version of LFPL without linearity and with arbitrary
heap-aware recursive types. The types include (nested) recursive types, sums
and products, unit and LFPL-like memory-resource types:

A ::= ♦ ♦A Unit A1 ×A2 A1 + A2 X µX.A

where X ranges over a set of type variables. The type ♦A has the same values
as A but in the operational semantics a value would be represented by a pointer
to a heap location which contains its ordinary type A representation2.

The pre-terms feature function calls which provide for general recursion as
well as pointer manipulation operators:

e ::= x f(x1, . . . , xn) let x = e1 in e2

unit (x1, x2) match x with (x1, x2) ⇒ e

inL (x) inR (x) case x of inL (xL) ⇒ eL|inR (xR) ⇒ eR

foldµX.A (x) unfoldµX.A (x)
x@d loc (x) get (x)

where x, d range over a set of variables and f over a set of function symbols.
The plain typing defines typing judgements of the form Γ ` e : A and is

standard apart from the axiom rules for the new heap-aware term constructors:

[put]

x : A, d : ♦ ` x@d : ♦A

[get]

x : ♦A ` get (x) : A

[loc]

x : ♦A ` loc (x) : ♦

All types in a typing judgement are closed (without free type variables).

2 Operationally viewed, the construction ♦A is analogous to Standard ML reference
type A ref as well as to the pointer type construction (A *) in C. Unlike in SML,
our constructor is transparent to the denotational semantics.

Functional In-place Update with Layered Datatype Sharing 5

Bool = Unit + Unit tt = inL (unit) , ff = inR (unit)

L(A) = nilA = foldL(A) (inL (unit))

µX.Unit + ♦(A×X) cons(h, t)@d = foldL(A) (inR ((h, t)@d))

Tb(A) = leafb(a)@d = foldTb(A) (inL (a@d))

µX.♦A + ♦`
A× (X ×X)

´
nodeb(a, l, r)@d = foldTb(A) (inR ((a, (l, r))@d))

Fig. 2. Shortcut notation for booleans, lists and trees.

A program P is a finite domain partial function from function symbols to
typing judgements (i.e. P (f) = Γf ` ef : Af) which capture the signature
Γf , Af and the definition ef of each symbol f .

We consider the straightforward least fixpoint denotational semantics of types
as sets in which ♦() is ignored and ♦ does not play any significant role either:
J♦K = {¥},

q
♦A

y
= JAK. Denotation of programs JP K and terms JeKη,JP K with

valuation η of free variables in e is defined as usual apart from the pointer-related
constructs which are virtually ignored:

– Jloc (x)Kη,JP K = ¥ – Jx@dKη,JP K = Jget (x)Kη,JP K = JxKη,JP K = η(x)

In examples, we will use a straightforward shortcut notation for booleans, lists
and labelled binary trees as shown in Fig. 2 (elimination terms are omitted).

3 Operational semantics

In order to gain a good intuition for the annotated typing which will follow, let
us first consider the details of the operational semantics to which the annotations
will refer.

Data representation. The occurrences of ♦() in types correspond to the intended
heap layout of their values. For example, compare the given type of binary trees
with µX.♦(A + A× (X ×X))

Any binary tree would take the same amount of heap locations according to
both of the types. A representation of a value of the above type is a pointer to
a location with a value of the sum type while a value of the type in Fig. 2 is a
sum value which contains a pointer to either a leaf or to a node. This difference
is irrelevant at this point. It could make a difference later when a heap portion
is assigned to each diamond in the type. The chosen type then allows one to
divide the heap portion taken by a binary tree skeleton into two parts, one with
the leaves and one with the nodes.

Let Loc be a set of locations which model memory addresses on a heap. We
use ` to range over elements of Loc. Let Val be the set of (operational) values
defined as follows:

v ::= unit ` (v1, v2) inl (v) inr (v)

6 Michal Konečný

An environment is a partial mapping S Var ⇀ Val from variables to opera-
tional values. A heap σ Loc ⇀ Val is a partial mapping from heap locations to
operational values.

The way in which a denotational value a of type A is represented by an
operational value v on a heap σ is formalised using a 4-ary relation v σ

A a
defined in the obvious way (see [5]), e.g.

` σ
♦ ¥ v σ

µX.A a if v σ
A[µX.A/X] a ` σ

♦A a if σ(`) σ
A a

Any heap location can be used for values of any type and thus there is no general
bound on the size of a heap location. For a particular program it is desirable
that such a bound could be derived statically. A simple sufficient condition for
this is that all recursive types mentioned in P are bounded. We call a recursive
type µX.A bounded if all occurrences of X in A are within some ♦().

Term evaluation. Using the heap representation of values, define the operational
semantics by a big-step evaluation relation S, σ ` e À v, σ′ which is defined as
usual (see [5]). Folding and unfolding has no operational effect.

The only heap-modifying operation is x@d which overwrites a previously
referenced location:

S, σ ` x@d À S(d), σ[S(d) 7→ S(x)]

Heap regions. Whenever we have v σ
A a, we denote by RA(v, σ) ⊆ Dom(σ) the

straightforwardly defined complete heap region taken by v on the heap.
As we said in the introduction, we will view all recursive types as container

types, i.e. we will view the region taken by a representation of a value of a
recursive type µX.A on the heap as consisting of two parts. Firstly, it is the
“skeleton” layer corresponding to the locations associated with those ♦’s within
A which are not within any deeper recursive type. The data layer then consist of
the locations associated with all the other ♦’s within A. For example, in a value
of the list type

L(L(Bool)) = µX.Unit + ♦
((

µY.Unit + ♦(Bool× Y)
)
×X

)
there are locations holding cons-cells of the top level list corresponding to the
outer-level ♦() and cons-cells of the element lists of the top-level list that cor-
respond to the deeper ♦().

Type addresses. In order to be able to make this distinction, we need to define the
portions of a region RA(v, σ) corresponding to each ♦ in A. Thus we need to give
formal addresses to the occurrences of ♦ in a type A, as well as the occurrences
of recursive types and type variables within them. These addresses are sequences
of the following symbols: L and R selecting sub-terms of sum types, 1 and 2 for
product types, µX for descending into a recursive type binding variable X and
¥ for descending into a boxed type. The address must end with ¥, µX or X

Functional In-place Update with Layered Datatype Sharing 7

denoting an occurrence of a diamond or a box subtype, recursive type binder
and a type variable, respectively. A formal definition can be found in [5].

Let Addr(A) be the set of all such addresses in A and let AddrD(A), AddrR(A)
and AddrXX(A) be its subsets consisting of the addresses which end with ¥, µX

and X, respectively, where X is a given type variable.
For ξ ∈ Addr(A) let Aξ be the subterm of A corresponding to the address ξ.

For example, using the type A = ♦×
(
µY.Unit + ♦Y

)
we get A1¥ = ♦, A2µY

=
µY.Unit + ♦Y and A2µY RY = Y .

Unfolded types. When it holds v σ
A a, we may unfold the recursive types within

A arbitrarily and still yielding a valid type A′ for which it holds v σ
A′ a. More-

over, by such unfoldings we can “cover” any possible shape that a value might
take on the heap. Thus we will define addresses into the infinite full unfolding of
A to help us with the definition of heap portions later (see [5] for a completely
formal definition).

For a closed type A, let Uddr(A) = Addr(A∗) be the set of unfolded addresses
of A where A∗ is the infinite term obtained from A by co-inductively replacing
each type variable by the recursive type which binds it. Analogously, we define
UddrD(A) and UddrR(A) (there are no type variables in A∗).

Moreover, we associate to every unfolded address ξ ∈ Uddr(A) its corre-
sponding non-unfolded address ξF,A ∈ Addr(A) which is a certain postfix of ξ
(see [5] for details).

Assuming v σ
A a, for every unfolded address ξ ∈ UddrD(A) we define

vξ(A, v, σ) ∈ Dom(σ) to be the unique location, if it exists, which we get by
intuitively following the address. If that location does not exist, we let vξ(A, v, σ)
be undefined.

For example, consider a value of the list type µX.Unit + ♦(A×X). All the
unfolded addresses µXR (¥2µX)n ¥ for n ∈ N correspond to one and the same
diamond in the type. If such a list has length m, then for every n < m the address
above can be associated with the heap location that contains the n-th cons-cell
of this list. The rest of the addresses (i.e. for n ≥ m) cannot be associated with
any heap location.

Portions and subportions. Now we are ready to “collect” all the locations that
correspond to a given occurrence of a diamond in a type. We will also define a
bit more subtle sub-collection of these locations—those which are limited to a
certain sub-value. The sub-value is given by an unfolded address of a recursive
type which is then forbidden to unfold any more.

Definition 1. Whenever v σ
A a and ξ ∈ AddrD(A), we define the portion of

the region RA(v, σ) corresponding to the unfolded type address ξ as the set

P ξ
A(v, σ) =

{
vξ′(A, v, σ) ξ′ ∈ UddrD(A), (ξ′)F,A = ξ

}

8 Michal Konečný

For an unfolded address ξRξ ∈ UddrD(A) with AξR
= µX.A′, its subportion

along ξR is the set

P
ξRξ/ξR

A (v, σ) ={
vξRξ′(A, v, σ) ξRξ′ ∈ UddrD(A), ξ′ has no µX , (ξRξ′)F,A = (ξRξ)F,A

}
where A′ is assumed not to contain a bound type variable named X.

Different heap portions of a value may overlap with each other in some cases.

4 Annotations

We will add several kinds of annotations to every typing judgement Γ ` e : A
as shown on an example in the Introduction. We will use ζ to range over names
(e.g. a,b, . . .) from a set Nm.

Types. We first need to formalise a type labelled at its diamond and rec-type ad-
dresses. We define two syntactical constructions of annotated types, one suitable
for generic treatment of the whole type and one suitable for accessing specific
labels in a specific annotated type.

An annotated type is an expression A
h

fD
fR

i
where A is a type and

fD AddrD(A) → T, fR AddrR(A) → T

are functions. Another syntax for the same annotated type involves placing all
the images of fD and fR at appropriate places withing the type A (see [5]).

For example, annotated versions of the list and tree types are listed below
together with their shortcut notation incorporating a simplification enforcing
the use of the same names at certain addresses:

L[ζ](A) = µX(ζ).Unit + ♦[ζ](A×X)

T
[ζ]
b (A) = µX(ζ).♦[ζ]A + ♦[ζ](A×X ×X)

where A stands for an annotated type in this case.
Let α() be the obvious polymorphic forgetful mapping from annotated to

plain types. All the notions defined for plain types, in particular Addr(A) and
Aξ, extend by analogy to annotated types.

Definition 2 (Types annotated with portion names and containment).
Let BType and EType be the sets of all annotated types of the form A[δ

ρ] and
A

h
(δ,γ)

ρ

i
, respectively where

δ AddrD(A) → Nm, ρ AddrR(A) → Nm, γ AddrD(A) → ℘(Nm).

In the other syntax for A
h

(δ,γ)
ρ

i
, a pair (ζ, {ζ1, ζ2, . . .}) from the image of (δ, γ)

will be usually written as [ζ⊆{ζ1, ζ2, . . .}]. For E = A
h

(δ,γ)
ρ

i
∈ EType let

ND(E) = Ran(δ), NR(E) = Ran(ρ), NC(E) =
⋃

ξ∈AddrD(A)
γ(ξ)

and also N(E) = ND(E) ∪NR(E). All these but NC() apply to B ∈ BType too.

Functional In-place Update with Layered Datatype Sharing 9

From now on, whenever using the symbol B or E (with sub- or super-scripts)
let us implicitly assume that it stands for a type from BType or EType, re-
spectively. In plain words, ND(B) and NR(B) are the sets of the names of all
the diamonds and recursive type constructors, respectively, within B. For any
ξ ∈ AddrD(B) ∪ AddrR(B), let ζB

ξ denote the name from Nm at the top of Bξ

(i.e. the image of δ or ρ). We will often leave the superscript B out from ζB
ξ .

Analogously define ζE
ξ .

Definition 3 (Syntax of separation assertions).
For any type B ∈ BType let BasicSep(B) be the least set containing the following
basic separation assertions:

⊥ ∈ BasicSep(B)
ξ1, ξ2 ∈ AddrD(B)

ζξ1⊗ζξ2 ∈ BasicSep(B)

ξR ∈ AddrR(B), ξD ∈ AddrD(B), ξR v ξD

⊗ζξD
©ζξR

∈ BasicSep(B), ⊗ζξD
/ζξR

∈ BasicSep(B)

Let ⊗ζ be a shortcut for ⊗ζ©ζ.
Separation assertions C ∈ Sep(B) are sets of basic separation assertions.
Sets BasicSep(E) and Sep(E) are defined analogously.

Definition 4 (Meaning of separation assertions).
We say that a valid representation v σ

A a satisfies an assertion C ∈ Sep(B)
(written as v σ

B;C a) where α(B) = A, if:

– ⊥ /∈ C
– for every ζξ1⊗ζξ2 ∈ C it holds P ξ1

A (v, σ) ∩ P ξ2
A (v, σ) = ∅

– for every ⊗ζξ©ζξR
∈ C with AξR

= µX.A′ and ξ = ξRξ′ (implying Aξ = A′
ξ′)

it holds

∀ξ1, ξ2 ∈ UddrR(A), ξ1
F,A = ξ2

F,A = ξR, ξ1 6v ξ2, ξ2 6v ξ1
:::::::::::::::

=⇒ P
ξ1ξ′/ξR

A (v, σ) ∩ P
ξ2ξ′/ξR

A (v, σ) = ∅

– for every ⊗ζξ/ζξR
∈ C with AξR

= µX.A′ and ξ = ξRξ′ it holds

∀ξ1, ξ2 ∈ UddrR(A), ξ1
F,A = ξ2

F,A = ξR, ξ1 6= ξ2
::::::

=⇒ P
ξ1ξ′/ξR

A (v, σ) ∩ P
ξ2ξ′/ξR

A (v, σ) = ∅

The definition follows the informal description of separation assertions in the
Introduction. The assertions ⊗ζ ′/ζ and ⊗ζ ′©ζ correspond to internal separation
along and across a recursive type (see Fig. 3).

For a list L[ζ](A), the assertions ⊗ζ ′©ζ (and ⊗ζ in particular) are void (be-
cause among any two unfolded addresses of cons-cells one is a prefix of the other)
and thus trivially true in any context. We will therefore ignore them from now
on. Assertions ζ⊗ζ ′ for the type L[ζ](A) are not always tautological and will be
kept explicitly in the Sep(B) sets.

10 Michal Konečný

⊗b/a:

a

bb

b b

b

⊗b©a:

a

bb

b b

b

Fig. 3. Separation along and across a recursive type

Typing judgements. Before tackling the annotation of typing judgements, we
need to extend some type-related notions to (annotated) typing contexts viewed
as tuples of (annotated) types. We put Addr(Γ) =

{
xξ ξ ∈ Addr(Γ (x))

}
and

also define regions, name sets, separation assertions and a heap representation
of value tuples and their portions and subportions related to typing contexts in
a straightforward manner.

Definition 5 (Syntax of typing judgements).
The set of annotated typing judgements ZJudg is defined as follows:

Γ = x1 : B1, . . . , xn : Bn C ∈ Sep(Γ)
E ∈ EType, NC(E) ⊆ ND(Γ) D ⊆ ND(Γ) G ∈ BasicSep(E) → Sep(Γ)

(Γ ;C ` e : E;D;G) ∈ ZJudg

We will represent a concrete guarantee function G by a series of statements
s ⇐= G(s) one for each s ∈ Dom(G)\{⊥} with G(s) 6= ∅. We will always assume
that a guarantee function G maps ⊥ (i.e. false) to itself.

Definition 6 (Meaning of typing judgements).
A typing judgement Γ ;C ` e : E;D;G is sound if whenever it holds S σ

Γ ;C η
(separation preconditions) and S, σ ` e À v, σ′ then it holds

– (correctness and internal separation guarantees) v σ′

E;CG
JeKη,JP K where

CG =
{
s ∈ BasicSep(E) S σ

Γ ;G(s) η
}

– (containment guarantees) for each ξ ∈ AddrD(E) with [ζξ⊆γ(ξ)]
P ξ

E(v, σ′) ⊆
⋃

ζxξ′∈γ(ξ) P xξ′

Γ (S, σ)
– (preservation guarantees) for each xξ ∈ AddrD(Γ) it holds

σ|P = σ′|P where P = P xξ
Γ (S, σ) \

⋃
ζx′ξ′∈D P x′ξ′

Γ (S, σ)

Consider the typing judgement for a predictably defined function which
negates the first boolean (if existent) of every element in a list of lists of booleans:

x : L[a](L[b](Bool)); {a⊗b,⊗b/a} `
negheadlist(x) : L[c⊆{a}](L[d⊆{b}](Bool)); {a,b}; c⊗d ⇐= {a⊗b}

⊗d/c ⇐= {⊗b/a}

Functional In-place Update with Layered Datatype Sharing 11

The precondition means that the elements of the list cannot overlap on the
heap with each other. With our system, this is the only way to guarantee the
correctness, i.e. that no boolean on the heap would be negated more than once.

One might argue that, in fact, only portion b gets modified and portion
a does not change at all. This is true and follows from the fact that lists in
portion b are modified in-place and moreover their resulting cons-cells occupy
exactly the same positions as the original ones. Nevertheless, we have no means
of expressing such a condition in our assertion language and when deriving the
annotation in a purely compositional manner we have to assume that the lists
could have been modified in a way which would change their reference location
and thus modify portion a too.

5 Typing rules

For the complete set of annotated typing rules see [5]. In this paper we show only
some representative cases which are listed in Fig. 4. For illustration, consider the
following instantiation of the fairly complex typing rule [fold] for binary trees
labelled with diamonds:

x : ♦[a]
(
♦[b]

)
+ ♦[c]

(
♦[d] × T

[e]
b (♦[f])× T

[g]
b (♦[h])

)
; ∅ `

foldTb(♦) (x) : T
[i⊆{a,c,e,g}]
b (♦[j⊆{b,d,f ,h}]); ∅;

i⊗j ⇐= {a, c, e,g}⊗{b,d, f ,h} ⊗j©i ⇐= {f⊗h}
⊗j/i ⇐= {f⊗h} ∪ {b,d}⊗{f ,h} ⊗i ⇐= {e⊗g}

In the [func] rule we assume an annotated program P with P (f) = Γf ;Cf `
ef : Bf ;Df ;Gf where Γf contains exactly the variables y1, . . . , ynf

in this order.
Given a result type E, we define the minimal default guarantee GM(E) for

E as [ζ1⊗ζ2 ⇐= Z1⊗DZ2]ζ1⊗ζ2∈BasicSep(E) where [ζ1⊆Z1] and [ζ2⊆Z2] are anno-
tations in E and ⊗D is one of the following two similar operations:

Z1⊗Z2 = {ζ1⊗ζ2 ζ1 ∈ Z1, ζ2 ∈ Z2}
Z1⊗DZ2 = {ζ1⊗ζ2 ζ1 ∈ Z1, ζ2 ∈ Z2, ζ1 6= ζ2}

The difference is significant only in the [unfold] rule where every portion is
being split into several pieces some pairs of which might be disjoint depending
on the internal separation preconditions.

Several rules use a “copied” type E ∈ EY(B) for (part of) the result type
which declares the one-to-one containment of E portions within corresponding
B portions. With it go its default guarantees GY(E,B) which state that every
basic separation assertion of E relies on the corresponding assertion for B.

In [fold], we construct the result type by a point-wise union of types which
differ only in their containment sets. In several places also various rely-guarantee
functions are merged via a point-wise union of images.

The notation Γ1 ∧ Γ2 stands for the merge of the context Γ1, Γ2. The use of
this notation contains the implicit condition that every variable that appears in

12 Michal Konečný

[func]

Γ = Γf [x1/y1, . . . , xnf /ynf]

Γ ; Cf ` f(x1, . . . , xnf) : Ef ; Df ; Gf

[rename]

Γ ; C ` e : E; D; G τ N(Γ) → Nm

Γ [τ]; C[τ] ` e : E[τ]; D[τ]; G[τ]

[let]

Γ1; C1 ` e1 : A
h

δ,γ
ρ

i
; D1; G1 Γ2, x : A

h
δ
ρ

i
; C2 ` e2 : E; D2; G2

Γ1 ∧ Γ2; C1 ∪ T (C2) ∪
`
D1⊗ND(Γ2)

´
`

let x = e1 in e2 : E[γ/δ]; D1 ∪D2[γ/δ]; T ◦G2

where T = C 7→
`
(C \ BSx)[γ/δ]

´
∪G1

`
C ∩ BSx

´
and BSx = BasicSep(A

h
δ
ρ

i
).

[put]

E ∈ EY(♦[ζ]B)

x : B, d : ♦[ζ]; {ζ}⊗ND(B) ` x@d : E; {ζ}; GY(E, ♦[ζ]B)

[get]

E ∈ EY(B)

x : ♦[ζ]B; ∅ ` get (x) : E; ∅; GY(E, B)

[loc]

x : ♦[ζ]B; ∅ ` loc (x) : ♦[ζ′⊆{ζ}]; ∅; ∅

[pair]

E ∈ EY(B1 ×B2)

x1 : B1, x2 : B2; ∅ ` (x1, x2) : E; ∅; GY(E, B1 ×B2)

[pair-elim]

Γ, x1 : B1, x2 : B2; C ` e : E; D; G

Γ, x : B1 ×B2; C ` match x with (x1, x2) ⇒ e : E; D; G

[fold]

B = (A[µX.A/X])
h

δ
ρ

i
B′ = A

»
δ|AddrD(A)
ρ|AddrR(A)

–
E = E′ ∪

S
ξX∈AddrXX (A) EξµX

E′ ∈ EY(B′) Eξ ∈ EY(Bξ)

x : B; ∅ ` foldµX.A (x) : E; ∅; GM(E) ∪G ∪G′ ∪G′′

where
G = GY(E′, B′) ∪

S
ξX∈AddrXX (A) GY(EξµX

, BξµX
)

G′ =
ˆ
⊗ζξ©ζµX

⇐=
˘
ζxξ′ξ⊗ζxξ′′ξ ξ′X, ξ′′X ∈ AddrXX(A)

¯˜
ξ∈AddrD(A)

and

G′′ =
ˆ
⊗ζξ/ζµX

⇐= ditto ∪
˘
ζxξ′ξ⊗ζxξ ξ′X ∈ AddrXX(A)

¯˜
ξ∈AddrD(A)

[unfold]

E ∈ EY(B[µX(ζ).B/X])

x : µX(ζ).B; ∅ ` unfoldµX.α(B) (x) : E; ∅; GY(E, B[µX(ζ).B/X]) ∪G′ ∪G′′

where
G′ = [ζxξ′ξ⊗ζxξ′′ξ ⇐= {⊗ζξ©ζµX

}]
ξ∈AddrD(A),ξ′X,ξ′′X∈AddrXX (A)

and

G′′ =
h
ζxξ′µξ

⊗ζxξ ⇐= {⊗ζξ/ζµX
}

i
ξ∈AddrD(A),ξ′X∈AddrXX (A)

Fig. 4. Example annotated typing rules

Functional In-place Update with Layered Datatype Sharing 13

both contexts has the same type and portion name annotations in both of them.
To be able to apply rules that contain Γ1 ∧ Γ2 as intended, we might need to
apply the [rename] rule first.

When δ AddrD(A) → Nm and γ AddrD(A) → ℘(Nm), then we derive a
set-valued substitution γ/δ Nm ⇀ ℘(Nm) as ζ 7→ γ(δ−1(ζ)). This is used in the
[let] rule.

Notice that, unlike in other extensions of LFPL, there is no side condition
in [let]. Instead, the illegal cases yield an inconsistent assertion set C, i.e. one
containing ⊥ or ζ⊗ζ for some portion name ζ. Similarly, when an additional
separation guarantee s is unachievable, its rely-assertion G(s) would contain an
unsatisfiable basic separation assertion.

6 Correctness and inference

A typing rule is sound if whenever all the premises of an instance of the rule are
sound, then so is the conclusion. Assuming that all the typing judgements P (f)
are sound, it is possible to prove that all the typing rules in our system as listed
in [5] are correct. The proofs are conceptually simple but technical due to the
complexity of the annotations. See the report for a sample proof of correctness
for [let].

Given a well-typed and well-annotated program P , for every term e over P
we can perform the inference of its unannotated type deterministically as usual
but we can also infer its annotation at the same time. Moreover, we can derive an
annotation which does not reuse any name for two different portions or recursive
type constructors. Such a derivable annotation of e is unique modulo renaming
of portions and recursive type constructors.

Given an unannotated well-typed program P , we can infer its strongest deriv-
able annotation by iteratively inferring weaker and weaker annotations start-
ing from the strongest annotation: Cf = ∅, Ef = Af [,ξ 7→∅], Df = ∅ and
Gf = [s ⇐= ∅] for all f in the program.

We have studied this process in a more abstract setting in [6] and showed that
it will always terminate with the strongest derivable annotation for P provided
that all the typing rules are monotone. In [5] we have outlined the proof that
our rules are monotone.

Example The following is the strongest correct annotated judgement for the
binary tree reversal algorithm mentioned in the Introduction:

x : T
[a]
b (L[b](Bool)); {a⊗b,⊗a} `

pathsL(Bool)(x) : L[c⊆{a}](L[d⊆{a}](L[e⊆{b}](Bool))); {a};
c⊗d ⇐= {⊗a} c⊗e ⇐= {a⊗b} d⊗e ⇐= {a⊗b}
⊗d/c ⇐= {⊥,⊗a} ⊗e/c ⇐= {⊥,⊗b/a} ⊗e/d ⇐= {⊗b/a}

Due to the lack of parametric polymorphism, the example cannot involve types
with an unbound variable. Therefore we have substituted a simple non-heap-free
type L(Bool) in place of the usual type meta-variable A.

14 Michal Konečný

The annotation of paths tells us about the function that in order to work
correctly, it needs the input tree to have non-overlapping skeleton (⊗a) disjoint
from the labels (a⊗b). The cons-cells of the result list (c) as well as the cons-cells
of the lists in it (d) are constructed solely from the skeleton of the argument
tree (c⊆{a}, d⊆{a}) which is also the only argument portion being destroyed.
Thus the labels are preserved.

Notice that the elements of the result list cannot be guaranteed to be sepa-
rated from each other (⊗d/c) under any preconditions (indicated by ⊥). Conse-
quently, the same holds for the labels when viewed from the result lists’ cons-cells
(⊗e/c). Labels viewed from the individual elements’ cons-cells can be guaran-
teed to be separated from each other (⊗e/d) provided that the labels of the
argument tree are separated from each other (⊗b/a).

7 Conclusion

We have enhanced the typing system of [3] following the natural idea that data
and skeleton should be treated separately. This lead to a, perhaps surprisingly,
complicated system of annotations. Despite using complex notation, the system
provides efficient annotation inference.

A possible direct application of various extensions of LFPL including ours
is to generate complex efficient imperative algorithms automatically from easy-
to-verify functional programs. At the same time, a formal proof of correctness
or permissible resource consumption could be generated fairly easily. For some
problem areas the present language might not be sufficiently expressive. It should
be possible, though, to adapt the annotation system in this paper to other lan-
guage features including higher order functions and other kinds of resource-aware
typings than that of LFPL.

For example, it could be used for functional languages without the ♦ types
that have a fairly straightforward heap-based evaluation strategy. Recently Hof-
mann, Jost [7, 8] and Kirlı developed a statical analysis of memory consumption
in a ♦-free version of LFPL with implicit memory allocation and deallocation.
Combining the present system with the above is a subject of current research.

There is an implementation of the present typing system adapted to a lan-
guage with ML-style datatypes as an add-on to an LFPL compiler by Robert
Atkey. The compiler can be tested through a web interface [9]. It was used to
generate the examples in this paper. To make the typing more practicable, a faily
sophisticted system for generating helpful error messages is under development.

Related work. The theory of Shapely types by Jay [10] treats certain types as
containers explicitly. Thus the idea to treat differently the skeleton (i.e. shape)
and data layers of data types is common to both this and Jay’s work. Neverthe-
less, the tools and the purpose of shape theory are very different from ours and
do not seem to be applicable to the present system. Shape theory is formulated
in categorical terms and studies mainly shape polymorphism and statical shape
analysis on the semantical level. In contrast, we develop a statical analysis of
non-interference in a particular operational semantics with in-place update.

Functional In-place Update with Layered Datatype Sharing 15

The idea to indicate the level of boxing for representing values of recursive
types using a “boxing” type constructor (♦() in our case) has been also used by
Shao [11] using the notation Boxed(). This idea appears often in the context of
the strongly-typed intermediate language for compilation of functional languages
FLINT [12].

The use of pre- and postconditions for certifying in-place update with sharing
is not new. Recent work includes Alias types [13, 14] which have been designed
to express when heap is manipulated type-safely in a typed assembly language.
Alias types express properties about heap layout and could be considered as
representations of our assertions. Unfortunately, they cannot express that two
heap location variables may have the same value. In an alias type, two different
location variables always take different values.

Separation Logic [15] may serve a similar purpose as alias types but is also
applicable to higher-level languages. The logic is in Hoare style where postcon-
ditions cannot refer to the original state and cannot therefore capture effects. If
the logic is adapted so that it can refer to the original state, we believe that it is
expressive enough to encode our assertions. To find a natural way of doing this
is a promising ongoing research.

Our system bears some resemblance to the Region inference of Tofte and
Talpin [16]. They also associate regions with types and infer certain effects made
on these regions. One major difference is that they also infer where deallocation
of regions should take place. This means that they derive special annotation
in terms which influences their evaluation. An analogy to this in the context of
LFPL might be the inference of diamond typed arguments (@d) within programs
mentioned above. Another major difference is that the regions of Tofte and
Talpin are mutually disjoint and cannot be explicitly overwritten.

The usage aspects of UAPL which are subsumed in the present system are
similar to use types in linear logic [17] and also to passivity [18] within syntactic
control of interference [19, 20]. These aspects can be also viewed as effects (in the
sense of [21]) somewhat similar to get and put of [16]. Our system can be viewed
as inferring a combination of effects on finely specified regions and separation
assertions in the style of Reynolds.

Acknowledgements. This research has been supported by the EPSRC grant
GR/N28436/01 and by the EC Fifth Framework Programme project Mobile
Resource Guarantees. The author is grateful to David Aspinall, Robert Atkey
and Martin Hofmann for discussion and comments on this work.

References

1. Hofmann, M.: A type system for bounded space and functional in-place update.
Nordic Journal of Computing 7 (2000) 258–289

2. Hofmann, M.: The strength of non size-increasing computation. In: 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’02). (2002) 260–269

3. Aspinall, D., Hofmann, M.: Another type system for in-place update. In Métayer,
D.L., ed.: Programming Languages and Systems, Proceedings of 11th European

16 Michal Konečný

Symposium on Programming, Springer-Verlag (2002) 36–52 Lecture Notes in Com-
puter Science 2305.

4. Appel, A.W.: Modern Compiler Implementation in Java. Cambridge University
Press (1998)

5. Konečný, M.: LFPL with types for deep sharing. Technical Report EDI-INF-RR-
157, LFCS, Division of Informatics, University of Edinburgh (2002)

6. Konečný, M.: Typing with conditions and guarantees for functional in-place up-
date. In: TYPES 2002 Workshop, Nijmegen, Proceedings. (2003) to appear.

7. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: 30th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’03). (2003) 185–197

8. Jost, S.: Static prediction of dynamic space usage of linear functional pro-
grams. Master’s thesis, Technische Universität Darmstadt, Fachbereich Mathe-
matik (2002)

9. Atkey, R., Konečný, M.: A prototype LFPL compiler (frontend DEEL).
An interface available at: http://www.dcs.ed.ac.uk/home/resbnd/prototypes/
by Robert Atkey/deel/ (2003)

10. Jay, C.B.: A semantics for shape. Science of Computer Programming 25 (1995)
251–283

11. Shao, Z.: Flexible representation analysis. In: Proc. 1997 ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP’97), Amsterdam, The
Netherlands (1997) 85–98

12. League, C., Shao, Z.: Formal semantics of the FLINT intermediate language. Tech-
nical Report Yale-CS-TR-1171, Department of Computer Science, Yale University
(1998)

13. Smith, F., Walker, D., Morrisett, G.: Alias types. In Smolka, G., ed.: 9th Euro-
pean Symposium on Programming (ESOP’2000), Springer-Verlag (2000) 366–381
Lecture Notes in Computer Science 1782.

14. Walker, D., Morrisett, G.: Alias types for recursive data structures. In: Types in
Compilation 2000. (2001) 177–206 Lecture Notes in Computer Science 2071.

15. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures.
In: Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science
(LICS’02), Copenhagen, Denmark (2002) 55–74

16. Tofte, M., Talpin, J.P.: Region-based memory management. Information and
Computation 132 (1997) 109–176

17. Guzmán, J.C., Hudak, P.: Single-threaded polymorphic lambda calculus. In: Pro-
ceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science.
(1990) 333–343

18. O’Hearn, P.W., Power, A.J., Takeyama, M., Tennent, R.D.: Syntactic control of
interference revisited. Theoretical Computer Science 228 (1999) 211–252

19. Reynolds, J.C.: Syntactic control of interference. In: Proceedings of the 5th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL), ACM Press (1978) 39–46

20. Reynolds, J.C.: Syntactic control of interference, part 2. In Ausiello, G., Dezani-
Ciancaglini, M., Rocca, S.R.D., eds.: Automata, Languages and Programming,
16th International Colloquium, Springer-Verlag (1989) 704–722 Lecture Notes in
Computer Science 372.

21. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proceedings of
the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, ACM Press (1988) 47–57

