i
.
2
"
@)

Relaxing a Linear Typing
for In-Place Update

Michal Konecny
LFCS, University of Edinburgh

Joint work with
David Aspinall, Martin Hofmann, Robert Atkey

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL 1



Overview: Main Points

e LFPL (Hofmann, 2000)—functional language with heap-aware
types (¢) and operational semantics featuring:
— In-place update
— Non-size-increasing heap usage
- fast execution ( <= no GC, no heap space allocation)
- fits environments with tight fixed memory constraints

¢ In-place update semantics made correct via affine linear typing
(completeness impossible: correctness of terms undecidable)

e Relaxations of linearity for LFPL
— more of the correct terms typed

e Several existing relaxations are examples of a general method

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL 2



A Mini Version of LFPL

First order; Full recursion

Types: A := ¢ |Bool|L(A)

Pre-terms: e == x|letx=ejiney|f(xy,...,xn)
| tt|ff|if x then e, else e,
| nil|cons(xp, x¢, xa)
| match x with nil=e;|cons(xp, x¢, xa)=€;

(Could add N, x, +, recursive types.)
full expressions instead of variables: use let
variables = simpler typing rules

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL



Example: Reverse

reversea(x) = revaux(x, nil)

revauxa(x,y) = match x with
nil=vy
| cons(xp, X, Xq4)=
revaux(xg, CONS(xn, Yy, Xq))

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL

4



Fnil: L(A) (NIL)

CONS
Xn: A, X L(A), xq: O F cons(xy, x¢, xq) : L(A) ( )

ke :B Moxn: A xe:L(A),xqg: OFey: B Nnncr

I'x : L(A) F match x with nil=-e;jcons(xy, x¢, xq)=e2 : B
(LIST-ELIM)

'Fe A 'x:AFe;:B

- (LET)
Fl—letx:e1 inNe,:B

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL 5



Semantics

e Denotational
Standard, ignoring diamond arguments of cons.
[0l = {0}, [Bool] = {ff, tt},
LA ={lar,...,an]|a1,...,a, € [A]}
[cons(h,t,d)] = [[h]|[t]], Inil]l =1, ...
Least fixpoint semantics of recursively defined functions.

e Operational—with in-place update
Not by term reduction. Lists are stored using a heap.
Values of diamond type are pointers into the heap.
Call-by-value evaluation (e; before e, in let x = e; in ey).

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL



Locations hold cons cells:

Location Contents Denotation o
X Y INIL tack
¢;: {(hd=TT.tl=NIL} [t e o iac
ea
6: {hd =NiL,tl = NiL} [[]] 3/. '\‘\EEINIL]NIL} P
G: {hd=0,t0 =20} [t ] bl TT NI
{4: {hd = FF, tl = NIL}  [ff] 04 FF NIL|

more general types — other kinds of values in locations
Heap region of a list representation: all reachable locations.

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL 7



Evaluation Relation

Forall T - e: A, define an evaluation relation
S,oFe~v, o

where
o, ¢’ are heaps—initial and final
v € Val is an operational value (heap ¢’ address, NIL, TT Or FF)
v, 0’ represent a value (called result) from [A]
S: Dom(T") — Val is an environment
S, o represent a tuple of values (called arguments) from [[I']

inductively, e.g.:

S, 0 F cons(xn, x¢, xa) ~ S(xq), 0[S(xa) + {hd = S(xn),tl = S(x4)}]

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL

8



Example: Incorrect

Some terms are not (operationally) correct: [ar, az,...]

1

double : L(A) — L(A) [a1,ar, a3 az,...]

double(x) = match x with
nil=nil
| cons(h, t,d)= let t, = double(t) in
let y = cons(h,t;,d) in
cons(h,y, d)

Solution in original LFPL: linear let

F1 F €1 A rz,XIAl_ eziB DO].’II(F]) ﬂDom(Fz) :®
F1,F2|—Ietx:e1 in e>: B

(LIN-LET)

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL 9



Examples: Correct

Some functions (with obvious meaning) simply defined in LFPL:

isLonger , L(A),L(B) — Bool
maxLista : L(L(A)) — L(A)
reversea : L(A) — L(A)

Correct for every possible representation of arguments on the heap.

M. Kone¢ny, LECS Edinburgh TYPES2002 Relaxing Linearity in LFPL 10



Examples: Conditionally Correct

Correct under some separation conditions, e.g.:

e External separation: append , : L(A),L(A) — L(A)
(arguments must not overlap)

E}@ XIH/WFFI

ok: . 11T [ 17 FF |NIL]

e Internal separation: reverseltemsa : L(L(A)) — L(L(A))
(certain argument components must not overlap)

[ Tol o= "Nt o5 Lo Jnig]

I'é b

ko:

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL 11



Examples: Correct thanks to Extra Guarantees

let x = e in ey result of e; has to meet conditions of e,
— extra guarantees for e; have to be derived, e.g.:

e non-destruction (y not destroyed in e;):

ok: let x = maxList(y) iny
ko: let x = reverse(y) iny

e separation of argument from result (in e;):

ok: let x = second(y, z) in append(x,y)
ko: let x =y in append(x,y)

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL

12



Original LFPL

Guarantees correctness by

e linear typing (e.g.

and the implicit preconditions:

e arguments do not overlap on the heap

e arguments are not internally sharing

Linear typing guarantees that the result is not internally sharing.

No indication whether arguments could be preserved are considered.
(Which actually enforces linearity.)

Problem:
isLonger , 5(x,y) needs to return reconstructed copies of its arguments

M. Kone¢ny, LECS Edinburgh TYPES2002 Relaxing Linearity in LFPL 13



Relaxing Linearity

Motivation: typecheck more correct algorithms

Goal: Find weaker restrictions so that:

e external sharing is sometimes permitted

e “readonly” use is recognised

Method: explicit conditions and guarantees about heap layout.
Plan:

e Review two concrete existing relaxations.

e Discuss a new one.

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL

14



LFPL with Usage Aspects

A variant by (Aspinall, Hofmann 2002), call it UAPL

One usage aspect € {1, 2,3} assigned to each argument.

Both conditions and guarantees are expressed via these aspects.

Informal meaning:

— 1: argument maybe destroyed
— 2: argument possibly overlapping with the result
— 3: argument separated from the result

M. Kone¢ny, LECS Edinburgh TYPES2002 Relaxing Linearity in LFPL 15



Example UAPL Rules

(CONS)

xn 2 A xe 2 L(A), xq:' O F cons(xn, x¢, xq) : L(A

LA Fe : A A»,©O x:'*AlFe,:B Vz.d(1, Alz], Aslz])
re,AiAAFletx=ejine,: B

(LET)

where ¢ (1, Aq[z], A[z]) evaluates according to the table:

i 1 2 3
ap\EE 1T 2 3 1 23 1 2 3
1 X X X X X X X X X
2 X X X X X XX
3 VvV VYV VYV

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL 16



Usage Aspects as Conditions and Guarantees

e 3 -

G:

O o000 000

x:VL(A),y > L(A) F append , (x,y) : L(A)
x > L(A),y > L(B)F isLongerA‘B(x,y) : Bool

argument separated from all the others

list elements are separated on the heap

. no guarantee (argument could be even destroyed)
argument separated from all the others

list elements are separated on the heap

. argument preserved

argument separated from arguments with aspect 1 or 2
argument preserved and separated from result

G: list elements separated in the result

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL 17



LFPL with Explicit Sharing

A variant by Robert Atkey (2002), work in progress, call it ESPL.
Syntax of typing judgement + (C, G):

N-e:A,S,D
where [" contains assumptions x : (A, Sy)

S« € Dom(I"): arguments which x is allowed to share with
S € Dom(T"): arguments allowed to share with result (aspect 2)
D € Dom(T"): arguments allowed to be destroyed (aspect 1)

Examples:
x : (L(N),{x}),y : (L(N),{y}) F- append\(x,y) : L(N),{y},{x}

rl—e1:A)S1)D1 r[\DhXH(A)S])]l_eZ:B)SZ)DZ
'Eletx =ejine;: B, S, \ {x},(D;UD;)\ {x}

(LET)

M. Kone¢ny, LECS Edinburgh TYPES2002 Relaxing Linearity in LFPL 18



Comparison

UAPL can be embedded into ESPL
= UAPL is weaker than ESPL

ESPL produces more kinds of internal sharing (Atkey 2002):

let x = append(z,y) in
cons(x, cons(y, cons(x, nil, d3), d>), dq)

UAPL requires that x and y not share (aspect 2)

ESPL has simpler rules

UAPL is more suitable for extending to higher order
<= information is kept per-argument only

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL 19



Computing with Internally Shared Structures

Neither language typechecks reverse(x) allowing x to share internally:

revauxa(x,y) = match x with
nil=vy
| cons(h,t,d)=
revauxa(t,cons(h,y, d))

d,y cannot share =— x,y cannot share

Refined: d,y cannot share — x,y cannot share control structure
can share on element level

Need to distinguish deep and shallow regions of values on the heap.

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL 20



Conclusion

The general C-G approach helps to

e easily compare and extend the various LFPL variants
o formulate simpler proofs of correctness

e implement automatic derivation of product types
Further work:

e Implement compiler for ESPL — C,JVM
e Extend UAPL to higher order

e Define LFPL distinguishing deep and shallow levels

M. Kone¢ny, LFCS Edinburgh TYPES2002  Relaxing Linearity in LFPL

21



	1:Title
	2:Overview: Main Points
	3:A Mini Version of LFPL
	4:Example: Reverse
	5:Unconstrained Typing: Examples (Diamond Trading)
	6:Semantics
	7:Heap
	8:Evaluation Relation
	9:Example: Incorrect
	10:Examples: Correct
	11:Examples: Conditionally Correct
	12:Examples: Correct thanks to Extra Guarantees
	13:Original LFPL
	14:Relaxing Linearity
	15:LFPL with Usage Aspects
	16:Example UAPL Rules
	17:Usage Aspects as Conditions and Guarantees
	18:LFPL with Explicit Sharing
	19:Comparison
	20:Computing with Internally Shared Structures
	21:Conclusion

