

Relaxing a Linear Typing for In-Place Update

Michal Konečný LFCS, University of Edinburgh

Joint work with David Aspinall, Martin Hofmann, Robert Atkey

Overview: Main Points

- LFPL (Hofmann, 2000)—functional language with heap-aware types (◊) and operational semantics featuring:
 - In-place update
 - Non-size-increasing heap usage
 - fast execution (← no GC, no heap space allocation)
 - fits environments with tight fixed memory constraints
- In-place update semantics made correct via affine linear typing (completeness impossible: correctness of terms undecidable)
- Relaxations of linearity for LFPL
 more of the correct terms typed
- Several existing relaxations are examples of a general method

A Mini Version of LFPL

First order; Full recursion

Types:
$$A ::= \Diamond |Bool| L(A)$$

Pre-terms:
$$e ::= x \mid \text{let } x = e_1 \text{ in } e_2 \mid f(x_1, \dots, x_n)$$

$$\mid tt \mid ff \mid \text{if } x \text{ then } e_1 \text{ else } e_2$$

$$\mid nil \mid cons(x_h, x_t, \mathbf{x_d})$$

$$\mid match \ x \text{ with } nil \Rightarrow e_1 \mid cons(x_h, x_t, \mathbf{x_d}) \Rightarrow e_2$$

(Could add N, \times , +, recursive types.) full expressions instead of variables: use let variables \implies simpler typing rules

Example: Reverse

$$reverse_A(x) = revaux_A(x, nil)$$
 $revaux_A(x, y) = match \ x \ with$
 $nil \Rightarrow y$
 $| cons(x_h, x_t, x_d) \Rightarrow$
 $revaux(x_t, cons(x_h, y, x_d))$

Unconstrained Typing: Examples (Diamond Trading)

$$\frac{}{\vdash \mathsf{nil} : \mathsf{L}(\mathsf{A})}$$
 (NIL)

$$\frac{}{x_h:A,x_t:L(A),x_d:\Diamond\vdash cons(x_h,x_t,x_d):L(A)}$$
 (CONS)

$$\frac{\Gamma_{1} \vdash e_{1} : B \qquad \Gamma_{2}, x_{h} : A, x_{t} : L(A), \textbf{x}_{\textbf{d}} : \lozenge \vdash e_{2} : B \qquad \Gamma_{1}, \Gamma_{2} \subseteq \Gamma}{\Gamma, x : L(A) \vdash \text{match } x \text{ with nil} \Rightarrow e_{1} | \text{cons}(x_{h}, x_{t}, \textbf{x}_{\textbf{d}}) \Rightarrow e_{2} : B}$$
 (LIST-ELIM)

$$\frac{\Gamma \vdash e_1 : A \qquad \Gamma, x : A \vdash e_2 : B}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : B}$$
 (LET)

Denotational

Standard, ignoring diamond arguments of cons.

$$\begin{split} & \llbracket \lozenge \rrbracket = \{0\}, \, \llbracket \text{Bool} \rrbracket = \{\text{ff, tt}\}, \\ & \llbracket \text{L}(A) \rrbracket = \{[\alpha_1, \ldots, \alpha_n] \mid \alpha_1, \ldots, \alpha_n \in \llbracket A \rrbracket \} \\ & \llbracket \text{cons}(\textbf{h}, \textbf{t}, \textbf{d}) \rrbracket = [\llbracket \textbf{h} \rrbracket | \llbracket \textbf{t} \rrbracket], \, \llbracket \text{nil} \rrbracket = \llbracket , \ldots \end{split}$$

Least fixpoint semantics of recursively defined functions.

• Operational—with in-place update

Not by term reduction. Lists are stored using a *heap*.

Values of diamond type are *pointers* into the heap.

Call-by-value evaluation (e_1 before e_2 in let $x = e_1$ in e_2).

Locations hold cons cells:

Location	Contents	Denotation		
ℓ_1 :	$\{hd = TT, tl = NIL\}$	[tt]	x y NIL	stack
•	$\{hd = NIL, tl = NIL\}$		ℓ_3 ℓ_2 $NILNIL$	heap
ℓ_3 :	$\{hd=\ell_1,tl=\ell_2\}$	[[tt], []]	l ₁ TT NIL	
ℓ_4 :	$\{hd = FF, tl = NIL\}$	[ff]	ℓ_4 FF NIL	

more general types \implies other kinds of values in locations Heap region of a list representation: all reachable locations.

For all $\Gamma \vdash e : A$, define an evaluation relation

$$S, \sigma \vdash e \leadsto \nu, \sigma'$$

where

 σ, σ' are heaps—initial and final

 $v \in Val$ is an operational value (heap σ' address, NIL, TT or FF)

 v, σ' represent a value (called result) from [A]

S: $Dom(\Gamma) \rightarrow Val$ is an *environment*

S, σ *represent* a tuple of values (called *arguments*) from $[\Gamma]$ inductively, e.g.:

$$\overline{S, \sigma \vdash \mathsf{cons}(x_h, x_t, \textcolor{red}{x_d}) \leadsto S(\textcolor{red}{x_d}), \sigma\big[S(\textcolor{red}{x_d}) \mapsto \{\mathsf{hd} = S(x_h), \mathsf{tl} = S(x_t)\}\big]}$$

Example: Incorrect

Some terms are not (operationally) correct:

$$[a_1, a_2, \dots] \downarrow$$

$$[a_1, a_1, a_2, a_2, \dots]$$

$$double(x) = match x with$$

 $nil \Rightarrow nil$

$$| cons(h, t, d) \Rightarrow let t_2 = double(t) in$$

 $let y = cons(h, t_2, d) in$

$$\mathsf{cons}(\mathtt{h},\mathtt{y},\textcolor{red}{\textbf{d}})$$

Solution in original LFPL: linear let

 $double : L(A) \rightarrow L(A)$

$$\frac{\Gamma_1 \vdash e_1 : A \qquad \Gamma_2, x : A \vdash e_2 : B \qquad \mathsf{Dom}(\Gamma_1) \cap \mathsf{Dom}(\Gamma_2) = \emptyset}{\Gamma_1, \Gamma_2 \vdash \mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 : B}$$
 (LIN-LET)

Examples: Correct

Some functions (with obvious meaning) simply defined in LFPL:

$$\begin{split} \mathit{isLonger}_{A,B} : \mathsf{L}(A), \mathsf{L}(B) &\to \mathsf{Bool} \\ \mathit{maxList}_A : \mathsf{L}(\mathsf{L}(A)) &\to \mathsf{L}(A) \\ \mathit{reverse}_A : \mathsf{L}(A) &\to \mathsf{L}(A) \end{split} \qquad \text{\tiny (see above)}$$

Correct for every possible representation of arguments on the heap.

Examples: Conditionally Correct

Correct under some separation conditions, e.g.:

 External separation: append_A: L(A), L(A) → L(A) (arguments must not overlap)

Internal separation: reverseItems_A: L(L(A)) → L(L(A))
 (certain argument components must not overlap)

Examples: Correct thanks to Extra Guarantees

let $x = e_1$ in e_2 : result of e_1 has to meet conditions of e_2 \implies extra *guarantees* for e_1 have to be derived, e.g.:

• non-destruction (y not destroyed in e_1):

ok: let
$$x = maxList(y)$$
 in y
ko: let $x = reverse(y)$ in y

<u>separation</u> of argument <u>from result</u> (in e₁):

```
ok: let x = second(y, z) in append(x, y)
```

ko: let x = y in append(x, y)

Guarantees correctness by

• linear typing (e.g. LIN-LET)

and the implicit preconditions:

- arguments do not overlap on the heap
- arguments are not internally sharing

Linear typing *guarantees* that the result is not internally sharing.

No indication whether arguments could be preserved are considered. (Which actually enforces linearity.)

Problem:

 $\overline{isLonger}_{AB}(x,y)$ needs to return reconstructed copies of its arguments

Relaxing Linearity

Motivation: typecheck more correct algorithms

Goal: Find weaker restrictions so that:

- external sharing is sometimes permitted
- "readonly" use is recognised

Method: explicit conditions and guarantees about heap layout.

Plan:

- Review two concrete existing relaxations.
- Discuss a new one.

LFPL with Usage Aspects

- A variant by (Aspinall, Hofmann 2002), call it <u>UAPL</u>
- One usage aspect ∈ {1, 2, 3} assigned to each argument.
- Both conditions and guarantees are expressed via these aspects.
- Informal meaning:
 - 1: argument maybe destroyed
 - 2: argument possibly overlapping with the result
 - 3: argument separated from the result

Example UAPL Rules

$$\overline{x_h :^2 A, x_t :^2 L(A), x_d :^1 \lozenge \vdash cons(x_h, x_t, \mathbf{x_d}) : L(A)}$$
 (CONS)

$$\frac{\Gamma, \Delta_1 \vdash e_1 : A \qquad \Delta_2, \Theta, x :^{\mathbf{i}} A \vdash e_2 : B \qquad \forall z. \varphi(\mathbf{i}, \Delta_1[z], \Delta_2[z])}{\Gamma^{\mathbf{i}}, \Theta, \Delta_1^{\mathbf{i}} \land \Delta_2 \vdash \mathsf{let} \ x = e_1 \ \mathsf{in} \ e_2 : B} \tag{LET)}$$

where $\phi(i, \Delta_1[z], \Delta_2[z])$ evaluates according to the table:

i		1			2			3	
$\Delta_{1}\left[z ight]ackslash\Delta_{2}\left[z ight]$	1	2	3	1	2	3	1	2	3
1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
2	X	X	X	X	X	X	X		
3				$\sqrt{}$		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$

Usage Aspects as Conditions and Guarantees

Examples:

$$x : {}^{1}L(A), y : {}^{2}L(A) \vdash append_{A}(x, y) : L(A)$$

 $x : {}^{3}L(A), y : {}^{3}L(B) \vdash isLonger_{A,B}(x, y) : Bool$

- 1: C: argument separated from all the others
 - C: list elements are separated on the heap
 - G: no guarantee (argument could be even destroyed)
- 2: C: argument separated from all the others
 - C: list elements are separated on the heap
 - G: argument preserved
- 3: C: argument separated from arguments with aspect 1 or 2
 - G: argument preserved and separated from result
- G: list elements separated in the result

LFPL with Explicit Sharing

A variant by Robert Atkey (2002), work in progress, call it *ESPL*.

Syntax of typing judgement + (C, G):

$$\Gamma \vdash e : A, S, D$$

where Γ contains assumptions $\chi:(A_x,S_x)$

 $S_x \subset Dom(\Gamma)$: arguments which x is allowed to share with

 $S \subseteq Dom(\Gamma)$: arguments allowed to share with result (aspect 2)

 $D \subset Dom(\Gamma)$: arguments allowed to be destroyed (aspect 1)

Examples:

$$x : (L(N),\{x\}), y : (L(N),\{y\}) \vdash append_{N}(x,y) : L(N),\{y\},\{x\}$$

$$\frac{\Gamma \vdash e_{1} : A, S_{1}, D_{1} \qquad \Gamma[\setminus D_{1}, x \mapsto (A, S_{1})] \vdash e_{2} : B, S_{2}, D_{2}}{\Gamma \vdash let \ x = e_{1} \text{ in } e_{2} : B, S_{2} \setminus \{x\}, (D_{1} \cup D_{2}) \setminus \{x\}} \qquad \text{(LET)}$$

Comparison

- UAPL can be embedded into ESPL
 - ⇒ UAPL is weaker than ESPL
- ESPL produces more kinds of internal sharing (Atkey 2002):

$$let \ \mathbf{x} = append(z, \mathbf{y}) \ in \\ cons(\mathbf{x}, cons(\mathbf{y}, cons(\mathbf{x}, nil, d_3), d_2), d_1)$$

UAPL requires that x and y not share (aspect 2)

- ESPL has simpler rules
- UAPL is more suitable for extending to higher order
 information is kept per-argument only

Computing with Internally Shared Structures

Neither language typechecks reverse(x) allowing x to share internally:

```
\begin{split} \textit{revaux}_A(x,y) &= \mathsf{match} \, \frac{x}{x} \, \mathsf{with} \\ &\quad \mathsf{nil} {\Rightarrow} y \\ &\quad | \, \mathsf{cons}(h,t, \textcolor{red}{d}) {\Rightarrow} \\ &\quad \textit{revaux}_A(t, \mathsf{cons}(h, \textcolor{red}{y}, \textcolor{red}{d})) \end{split}
```

d, y cannot share $\Longrightarrow x, y$ cannot share

<u>Refined</u>: d, y cannot share $\implies x, y$ cannot share *control structure* can share *on element level*

Need to distinguish *deep and shallow* regions of values on the heap.

The general C-G approach helps to

- easily compare and extend the various LFPL variants
- formulate simpler proofs of correctness
- implement automatic derivation of product types

Further work:

- Implement compiler for ESPL → C,JVM
- Extend UAPL to higher order
- Define LFPL distinguishing deep and shallow levels