
MLj 0.2 User Guide

Nick Benton, Andrew Kennedy, George Russell
Persimmon IT, Inc.
Cambridge, U.K.

February 28, 1999

Contents

1 Introduction 3
1.1 What does it compile? . 3
1.2 About this document . 3
1.3 Changes for version 0.2 . 4
1.4 Copyright notice for MLj . 4
1.5 Acknowledgements . 4

2 Installation 5
2.1 Components of an MLj system 5
2.2 Choice of platform, JVM and API 6
2.3 Environment . 7

3 Single module applications 7
3.1 Example 1: quicksort . 8
3.2 Exporting classes . 8
3.3 Writing your own text application 9

4 Multiple module applications 10
4.1 Example 2: drawing trees . 10
4.2 Mapping of module identifiers to files 10
4.3 User-defined mapping . 11
4.4 Current directory . 11
4.5 Recompilation . 11

5 Summary of commands 11
5.1 Command syntax . 11
5.2 Command files and command-line operation 12
5.3 Alphabetic listing of commands 12

1

6 Language restrictions 15
6.1 No functors . 15
6.2 Overflow . 16
6.3 Non-uniform datatypes . 16
6.4 Value restriction . 16
6.5 Overloading . 16
6.6 Tail call behaviour . 17

7 Language extensions 18
7.1 Design rationale . 18
7.2 Types . 18

7.2.1 ML base types . 18
7.2.2 Java primitive types . 19
7.2.3 Java class types . 19
7.2.4 Null values . 19
7.2.5 Exporting and importing Java types 19

7.3 Static Java . 20
7.3.1 Packages, subpackages, and classes 20
7.3.2 Import as open . 20
7.3.3 Static fields . 20
7.3.4 Static methods . 21
7.3.5 Exceptions . 22
7.3.6 Exporting structures . 22

7.4 Object-oriented Java . 23
7.4.1 Method invocation and field access 23
7.4.2 Object creation . 23
7.4.3 Casting and class membership 23
7.4.4 Synchronization . 24

7.5 Class and interface declarations 25
7.5.1 Field declarations . 25
7.5.2 Method declarations . 26
7.5.3 Constructor declarations 26
7.5.4 Superclass method invocation 27
7.5.5 Exporting classes . 28
7.5.6 Interfaces . 28
7.5.7 Signatures and signature matching 29

8 The Standard ML Basis Library 29
8.1 Top-level Environment . 29
8.2 General . 31
8.3 Text . 31
8.4 Integer . 31
8.5 Reals . 31
8.6 Lists . 31
8.7 Arrays and Vectors . 31
8.8 IO . 32

2

8.9 System . 32
8.10 Posix . 32

9 Known bugs and omissions 32

1 Introduction

The MLj Compiler is a complete system for Standard ML to Java1 bytecode
compilation. MLj can be operated from the command line or interactively from a
compilation environment. It manages multiple modules automatically; parsing,
type checking, and partially compiling separate SML structures and signatures
as necessary and then linking them together, applying various optimisations
and finally producing a single zip file containing Java classes. This approach to
separate compilation is unusual. No intermediate object files are produced (say,
as separate Java classes) and most of the work in compilation happens after
linking. Of course, this has an adverse effect on the speed of re-compilation,
but it does enable better code to be produced.

1.1 What does it compile?

The current version of MLj compiles a subset of SML ’97 [6], approximately
everything except for functors. There are a few other minor differences docu-
mented in Section 6. It is important to note that MLj compiles only stand-alone
modular applications: the use command is not available and programs consist
of a collection of top-level structures and signatures. In particular there is no
interactive read-eval-print loop; the online example in demos/hal illustrates one
way of overcoming this restriction.

Almost all of the Standard ML Basis Library [1] is implemented. Omissions
and discrepancies are described in Section 8.

Finally, a number of language extensions are provided for interfacing existing
Java classes and for implementing new classes with methods written in SML.
These are discussed in full in Section 7.

1.2 About this document

This guide is aimed at programmers already familiar with SML but not neces-
sarily with any knowledge of Java. The textbook by Paulson [7] is an up-to-date
introduction to SML’97.

Section 2 describes the installation procedure. Then Section 3 introduces the
compilation environment by leading you through the steps required to compile
a single-module text-only application. Techniques required to compile multi-
module programs are discussed in Section 4. Section 5 is a complete reference
to the compiler command language. Section 6 describes the current omissions
from the full Standard ML language. Section 7 describes extensions to Standard

1Java is a trademark of Sun Microsystems

3

ML for interfacing to Java class libraries and for implementing new classes
inside ML. Section 8 lists the elements of the Standard Basis Library that are
implemented and any omissions and discrepancies.

1.3 Changes for version 0.2

Version 0.2 is a snapshot of internal development at Persimmon IT up to Febru-
ary 1999. As such, it has many improvements over the original release but some
changes are not yet complete or may not be robust.

As far as users of MLJ 0.1 are concerned, the major changes are to the
Java extensions to ML. Some features have been superceded and are flagged as
“deprecated” to encourage users to switch to the new syntax. These are the
following: all types and coercions in the structure Java (no longer necessary),
quoted Java class types (the quotes can be omitted), static field and method
access (see described in Section 7.3 for the new approach), non-static field and
method access (see Section 7.4), static field and method declarations (use the
new structure export mechanism), and casts (see Section 7.4.3).

The _classtype construct remains but is likely to change substantially in
future releases, to integrate Java and ML more closely.

The compilation environment remains much the same, except for an exten-
sion to the export and make commands to permit structure exports, and a new
bootclasspath command and associated BOOTCLASSPATH environment variable.

1.4 Copyright notice for MLj

Copyright c©1999 Persimmon IT Inc.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any
warranty ; without even the implied warranty of merchantability or fitness for a
particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program, in a file called COPYING; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

1.5 Acknowledgements

MLjwas developed by Nick Benton, Andrew Kennedy and George Russell at
Persimmon IT Inc. and initially released in May 1998. Development was dis-
continued in February 1999 and a snapshot of development released open-source
under the the Gnu Public License. MLj is available for download from a number
of sites and the original authors continue to take an interest in its development.

4

I would like to thank Dave Halls and Audrey Tan of Persimmon IT for their
help as users of the compiler. Outside Persimmon, I am particularly grateful
to Ian Stark, Bent Thomsen, Lone Thomsen, and Stephen Gilmore for their
suggestions and support.

Andrew Kennedy, February 1999.

2 Installation

2.1 Components of an MLj system

The Standard ML of New Jersey compiler. The MLj compiler was devel-
oped using SML of New Jersey. At present MLj is supplied as source files
only; therefore you need SML/NJ version 110 or above to build an appro-
priate heap image.

The MLj compiler. Build instructions can be found in the INSTALL file; once
built, MLj requires only the SML/NJ run-time system.

An editor. The MLj compiler is not an integrated development environment,
so you will need a text editor which typically you will run concurrently
with the MLj compilation environment.

A Java standard class library. Java application programs are run using a
bytecode interpreter such as java (provided by Sun and third parties)
or Microsoft’s jview. Java applets are run from web browsers. Both
require a collection of standard classes, some of which form part of the Java
language specification (with names java.lang.*) and others providing a
variety of services (such as input/output in java.io.* and GUI support
in java.awt.*).

The MLj compiler needs access to these classes in order to type check and
compile code making use of Java extensions to ML. Because there are so
many classes, they are usually packaged up in some way. MLj will process
the uncompressed zip format directly; for compressed files it requires the
unzip program.

For the JDK from Sun prior to version 1.2, the standard class library is
found in a file called classes.zip in a directory lib. For JDK 1.2 (also
known as “Java 2”), it is found in a file rt.jar in a directory jre/lib. In
the case of Microsoft’s SDK for Java, you may need to run clspack -auto
to create a classes.zip file.

either A Java bytecode interpreter. This is required if you want to run
standalone Java application programs. The interpreter from Sun (which
has been ported by third parties) is called java, and Microsoft supply one
as part of their SDK for Java called jview.

5

Even if you intend to use MLj to write applets only, you may find a stan-
dalone bytecode interpreter useful. Through some trickery it is possible to
run an applet as an application, though of course any interaction with the
web browser cannot be simulated. You can then run the applet directly
within MLj’s compilation environment.

or A Java-enabled web browser. Web browsers run Java applets. These
are simply instances of the Java class java.applet.Applet and can be
created easily with MLj.

Unfortunately some browsers (notably Netscape’s prior to version 4.0)
make it hard for developers: classes are not automatically reloaded when
they have been updated through re-compilation. Even clearing the caches
doesn’t help. So you may find Sun’s appletviewer program or Microsoft’s
jview useful in this case.

On Netscape Navigator version 4.0 and above, you can use Shift-Reload
to force reloading of classes. On Microsoft’s Internet Explorer, use Ctrl-
Refresh.

(optionally) A Java compiler. In addition to using the Java extensions to
ML you can write parts of a program in pure Java which is then called
from ML. For this you will require a Java compiler such as Sun’s javac
or Microsoft’s jvc.

2.2 Choice of platform, JVM and API

The Standard ML Basis Library is pre-compiled into the MLj heap image and
comes in two flavours: one that makes use of features found only in the Java
API version 1.1.1 and above, and another for previous versions. If you have
a bytecode interpreter, you can type java -version to find out which version
you have. Even if this is up-to-date, you may want to compile applets that can
be run from older browsers.

At present, the only parts of the Basis that are implemented differently in the
two versions are the IntInf and Date structures and the functions Real.fmt and
Real.fromString. Programs not making use of these features will produce the
same compiled code in both versions. Note that compiled code from programs
using these features will be larger under the older API.

The quality of currently available JVM implementations varies widely. Many
are buggy – and some, in particular, seem to work well on code compiled from
Java but less reliably on code compiled using MLj. The performance of different
JVMs is also very variable. Do not despair if MLj programs have poor perfor-
mance under a particular JVM, as it is likely that they will run much faster
under a different JVM – and this situation will improve in the future.

For the Pentium, the most robust JVM is currently Symantec’s Just-In-Time
compiler that forms part of Sun’s JDK 1.2. However, be sure to download the
latest update (version 3.10.100), available from the Java Developer Connection,
as this fixes a number of major bugs.

6

Microsoft’s just-in-time JVM implementation, built into Internet Explorer
and supplied with their Java SDK, is also good. Again, download the latest
version (build 3167) from Microsoft’s website. There are still bugs but they
appear to be confined to floating-point arithmetic (affecting an FFT program,
for example).

2.3 Environment

Change your user profile so that the following environment variables are set:

• Extend PATH with the bin directory containing the mlj executables.

• Set BOOTCLASSPATH to a path in which the system classes live, as described
earlier.

The system classes are required both by the compiler (to type-check SML
calls to Java) and by the bytecode interpreter.

• Set MLJJVM to a prefix of the command line that you would type to run
the standalone bytecode interpreter. It must include the name of the
command and the option used to set the class path.

– For Sun’s JDK, set it to java -classpath.

– For Microsoft’s SDK for Java, set it to jview /q /cp.

• Set MLJBIN to the bin directory containing the executables.

• Set NJBIN to the bin directory containing the SML/NJ run-time system
and heap images.

• If any classes in zip or jar files in the class path are compressed, then set
MLJUNZIP to a prefix of the command line that you would type to unzip
an archive with the following options: preserve case of filenames, display
no messages, and pipe the output. If this variable is left unset, it defaults
to unzip -Uqqp.

3 Single module applications
The compiler is invoked by typing mlj at the command line (if you have installed
both Java 1.0 and 1.1 versions but want to use Java 1.0 then type mlj -java10
instead):

$mlj
MLj 0.2 on sparc under solaris with basis library for JDK 1.1
Copyright (C) 1999 Persimmon IT Inc.

MLj comes with ABSOLUTELY NO WARRANTY. It is free software, and you are
welcome to redistribute it under certain conditions.
See COPYING for details.
\

7

3.1 Example 1: quicksort
To test its operation on a demonstration program, type the commands that
follow the \ prompts below:

\ sourcepath demos/sort
\ make Sort
Checking timestamps on source files......done.
Analysing dependencies...

Parsing structure Sort...done.
...done.
Type checking structure Sort...done.
Compiling structure Sort..........done.
Linking modules...done.
Compiling whole program...done.
\ run 30
Before sorting: 92 74 79 60 14 10 27 53 27 95 77 9 56 13 32 52 84 53 4
31 86 58 59 11 45 40 68 99 27 35
After sorting: 4 9 10 11 13 14 27 27 27 31 32 35 40 45 52 53 53 56 58
59 60 68 74 77 79 84 86 92 95 99
\ quit
$

The sourcepath command tells the compiler where to look for SML source files,
which by default have the extensions .sml (for structures) and .sig (for signa-
tures). Note that under Windows, the ‘/’ character is automatically translated
into the more usual ‘\’. Then make tells MLj to compile and link a program
whose single exported Java class is defined by an ML structure Sort, by de-
fault given the class name Sort. The compiler will put the output (a collection
of Java classes including Sort) in a file Sort.zip. Finally run executes the
program with the arguments specified, assuming that the MLJJVM environment
variable has been set up appropriately. The help command lists concisely the
syntax of all MLj commands. For more detail on a particular command you can
type help command.

Just to prove that we really have compiled a self-contained Java program,
from an OS command prompt type

$ java -classpath Sort.zip Sort 20
Before sorting: 77 9 56 13 32 52 84 53 4 31 86 58 59 11 45 40 68 99 27 35
After sorting: 4 9 11 13 27 31 32 35 40 45 52 53 56 58 59 68 77 84 86 99
$

3.2 Exporting classes
If you have unzip installed), you can type "unzip -lU Sort.zip" to peek
at the contents of the output file. (Any operating system command can be
invoked from the compilation environment by enclosing it in quotes). You will
see something like

Archive: Sort.zip

8

Length Date Time Name
-------- ---- ---- ----

1275 02-22-99 18:05 Sort.class
387 02-22-99 18:05 Fa.class
186 02-22-99 18:05 F.class
387 02-22-99 18:05 E.class
276 02-22-99 18:05 Ea.class
243 02-22-99 18:05 Eb.class

1976 02-22-99 18:05 G.class
334 02-22-99 18:05 Re.class
183 02-22-99 18:05 Rd.class
215 02-22-99 18:05 Rc.class
211 02-22-99 18:05 Rb.class
221 02-22-99 18:05 Ra.class

-------- -------
5894 12 files

Most of the classes were generated by MLj to implement ML code, but Sort
is special. The command make Sort is actually shorthand for export Sort
followed by make. At its simplest, export is followed by a comma-separated list
of top-level SML structures, each of which will be exported as a Java class with
the same name. The signature of each structure determines what will appear in
the class. Functions are exported as static Java methods, and other values are
exported as static final Java fields. There are strong restrictions on the types
of functions and values that can be exported, described in detail in Section 7.

The example Sort structure has the following signature:

sig
val main : string option array option -> unit

end

The resulting class has a method main with void return type and single argument
of type java.lang.String[]. This is the pattern required by Java interpreters
for standalone programs.

3.3 Writing your own text application
You can follow the model set by Sort to write your own text applications,
without using any of the Java extensions to ML provided by MLj. Simply write
a top-level structure with the signature given above, and export it as a Java
class. To ease access to command-line arguments, you can use a special Basis
function CommandLine.init as illustrated below:

fun main a = (CommandLine.init a; ...)

The arguments can then be accessed using CommandLine.arguments.

9

4 Multiple module applications

4.1 Example 2: drawing trees
Our second example demonstrates something that is rather hard to do with
typical SML implementations: graphics. Follow the sequence of commands
shown below:

\ sourcepath demos/trees
\ make Main, Applet.TreeApplet
...
Compiling whole program...done.
\ run

A window should appear displaying a randomly-generated tree: try clicking
on the tree to generate and display a fresh one, then close the window. This
demonstration can also be run as a Java applet, either from a browser or using a
viewer such as Sun’s appletviewer. The HTML file demos/trees/index.html
demonstrates this.

To write your own graphical applications it is necessary to understand in
detail the Java extensions to SML. These are described in Section 7.

4.2 Mapping of module identifiers to files

A multiple module MLj program consists of a collection of top-level SML struc-
tures and signatures, each stored in a separate file. In contrast to other com-
pilation managers, MLj does not require the programmer to list explicitly the
files making up a project. Instead, given the location of SML-defined structures
and types to be exported as classes with given names (using export) and a
means of mapping SML signature and structure identifiers onto file names, MLj
determines automatically which files it must compile.

The most straightforward way to operate is to put each structure strid into a
file called strid.sml and each signature sigid into a file called sigid.sig. Users
of Moscow ML will be familiar with this pattern. The compiler then merely
requires a path in which to find these files and a root structure (or structures)
from which to begin its dependency analysis. Our example program illustrates
this technique. All source files are found in the directory demos/trees. A
structure called Applet, stored in the file demos/trees/Applet.sml, and the
structure Main, stored in the file demos/trees/Main.sml, are the two roots.

The structure Main refers to a structure Tree, stored in file trees/Tree.sml,
and so on. All that the programmer has to do is conform to this naming con-
vention and specify a path and export list.

The command

sourcepath directory . . . directory

specifies a list of directories to search for source files. Note that the directory
names are separated by spaces. To display the current path type sourcepath?.

10

4.3 User-defined mapping

Sometimes it may be necessary to put SML entities in files not conforming to
the default naming conventions. In this case, you can define your own mapping
from structure or signature identifier to filename. The commands

structurefrom strid filename , . . . , strid filename

and

signaturefrom sigid filename , . . . , sigid filename

let you do this. If a filename includes a directory, then this overrides the spec-
ified sourcepath. Otherwise, the filename specified will be searched for in the
directories listed by sourcepath.

4.4 Current directory

Relative path and file names in MLj are interpreted in the directory which is
current at the time they are accessed. Usually this means at make time. You
can change the current directory by typing cd directory and query its current
value with cd?. So if you set up paths and structure mappings and then change
directory, any relative directory or file names will be interpreted relative to this
new current directory when make is invoked.

4.5 Recompilation

When a source file is changed and make is invoked, MLj will recompile that file
and, if necessary, any other files that depend on it. This propagation will only
happen if the result of elaborating the entity has changed (in essence, its type).
In addition to the usual software engineering concerns, this is one more reason
to hide the internals of a module by an SML signature. If a recompiled structure
matches an unchanged signature then no modules which depend on it will be
recompiled.

At present MLj does not keep intermediate results beyond the end of a
session. So if you exit to the command-line and then return to an MLj session,
files will be re-parsed, type-checked and partially compiled even if they have
not changed. A future release of the compiler will introduce persistence of
intermediate results across sessions.

5 Summary of commands

5.1 Command syntax

In general a command consists of a alphabetic keyword optionally followed by
a list of arguments separated by spaces. The case of keywords is ignored. Ar-
guments containing spaces or the symbols ‘+’, ‘,’ or ‘?’ must be enclosed in
quotes as these symbols are used in the syntax of certain commands.

11

Many commands change the value of some setting such as a path or filename.
For these the current setting can be queried by typing the command followed by
‘?’. For example, log? displays the filename currently used for logging compiler
messages.

Certain commands set the value of a list which is searched from left to right
for files (in the case of classpath and sourcepath) or some other entity (signa-
ture identifiers in signaturefrom and structure identifiers in structurefrom).
All of these commands have the general syntax

command [+] args [+]

The form command args simply replaces the current value of the list by args.
The form command + args appends args to the end of the list; hence they will
be searched last. The form command args + prepends args to the front of the
list; hence they will be searched first.

5.2 Command files and command-line operation

A sequence of compiler commands can be collected together in a file name.mlj
and then executed simply by typing name (assuming that name does not clash
with one of the built-in commands). Inside name.mlj the commands must
be separated by newlines, except in the case of export, structurefrom and
signaturefrom which can be spread over several lines provided that the splits
occur following the ‘,’ character which separates bindings.

It is also possible to execute compiler commands directly from the com-
mand line, either before entering the compilation environment (to set options
such as classpath, for example) or without entering the environment at all.
The method is simple: just precede the commands with hypens (à la Unix com-
mand options), ending with -quit if you do not want to enter the compilation
environment. For example,

$ mlj -sourcepath demos/trees -make Main, Applet.TreeApplet -quit

will compile our graphical example to produce a file Main.zip.
There is one command-line option that is not available from within the

environment. If you have installed both Java 1.0 and 1.1 versions, then just
typing mlj will default to Java 1.1. If the first option passed to the compiler is
-java10 then this default is overridden and Java 1.0 used instead.

5.3 Alphabetic listing of commands

bootclasspath [+] directory . . . directory [+]
Set, append to, or prepend to the list of directories, zip and jar files in
which the compiler first looks for classes imported by SML programs. In
contrast to classpath, this path is not passed as an argument to the Java
interpreter invoked with run.

Upon startup, the MLj compiler sets bootclasspath to the value of the
environment variable BOOTCLASSPATH.

12

cd directory
Change the current directory.

classpath [+] directory . . . directory [+]
Set, append to, or prepend to the list of directories, zip and jar files in
which the compiler looks for classes imported by SML programs, after it
has searched bootclasspath. The class path is also passed to the Java
interpreter invoked with run.

Upon startup, the MLj compiler sets classpath to the value of the envi-
ronment variable MLJCLASSPATH.

export [+] longid [classname] , . . . , longid [classname] [+]
Specify SML-defined classes that are to be exported with given names.

If longid is a simple structure identifier, then that structure is exported
as a class with the name given; if the name is omitted, it defaults to the
structure name itself. Each binding listed in the signature of the structure
must be exportable as defined in the separate manual.

If longid is a fully qualified identifier, it refers to a type defined using
the _classtype construct, exported as a class with the name given; if the
name is omitted it defaults to the type name itself (so Applet.TreeApplet
is exported as a class TreeApplet). All class types listed must be ex-
portable as defined in the separate manual.

The list of classes specified by this command is the only information that
the compiler uses to determine which structures and signatures to compile:
they form the ‘root’ for its dependency analysis of your program.

help
List the commands available in the compilation environment.

help command
Display a more detailed description of the command specified.

help signature sigid
Display the types and values defined in an SML signature in a similar style
to the help structure command described below.

help structure strid
Display the types and values available in a given SML structure. The
structure must already have been compiled successfully, either belonging
to the Basis Library (in which case it is precompiled and forms part of the
MLj system) or accessible from the current project.

Note that the types of value identifiers displayed cannot be used to form
a signature against which the specified structure could be matched (that
is, you cannot write strid : 〈result of help〉). This anomaly will be fixed
in a future version of the compiler.

13

help class classid
Display a _classtype signature for the external class given.

help class classid +
Display a _classtype signature for the external class given, including any
fields or methods that it inherits from its superclass and superinterfaces.

jvm OS-command
Set the operating system command that is used by run to execute stan-
dalone applications inside the compilation environment. It must include
the option tag that is used to set the class path. For Sun’s JDK it should
be set to java -classpath is appropriate, and for Microsoft’s SDK for
Java, jview /q /cp can be used. The run command appends to this the
classes listed in classpath, the zip file specified by target, the name
of the class containing a main method, and finally the specified argu-
ments. If you want to set other options (for example, to set the stack size)
then these must precede the class path tag. For example, setting jvm to
java -oss1000000 -classpath would provide a larger stack.

Upon startup, the MLj compiler sets jvm to the value of the environment
variable MLJJVM if it exists; otherwise, it defaults to java -classpath.

log filename
Instruct MLj to copy messages produced by make to a file, including ad-
ditional diagnostic information in the case of a compiler bug.

The default behaviour is to produce no log.

log
Turn off logging.

make
Parse, type check and compile the current program whose ‘root’ structures
are determined by the export command.

make args
Shorthand for export args followed by make.

on switch and off switch
Turn a compiler switch on or off. Currently available compiler switches
are as follows:

• exnlocs: exception location information (default: off). If enabled,
the make command will insert appropriate code into the output so
that when ML exceptions appear at top level the Java interpreter
reports the SML structure and line number where the exception was
raised. This assumes that the Java interpreter invokes the toString
method on uncaught exceptions. If not, you can do it yourself:

(your program) handle e =>
(print (valOf(e.#toString ())); raise e)

14

• valuewarning: non-generalised type variable warnings (default: on).
These are displayed whenever SML’s value restriction prevents the
generalisation of a type in a val binding (see Section 6.4 for more
details).

quit
End the MLj session.

run [arg . . . arg]
Execute a program that has been compiled successfully.

If exactly one of the structures exported by the export command has an
appropriate method main then the standalone Java interpreter is run to
invoke main with the arguments specified.

Otherwise, the program is not run. A future extension would permit the
execution of applets using an applet viewer.

The command used to execute the Java interpreter can be set using jvm.

signaturefrom [+] sigid filename , . . . , sigid filename [+]
Override the default sigid.sig signature-to-filename mapping for specified
signature identifiers.

sourcepath [+] directory . . . directory [+]
Set, append to or prepend to the list of directories in which the compiler
looks for SML structures and signatures.

structurefrom [+] strid filename , . . . , strid filename [+]
Override the default strid.sml structure-to-filename mapping for specified
structure identifiers.

target filename
Specify where the (zipped) classes output by the compiler output are to
be stored.

target
Return target to its default setting. Classes are saved in a file strid.zip
where strid is the name of the first SML structure listed by export.

"OS-command"
Execute the operating system command enclosed in quotes.

6 Language restrictions

6.1 No functors

The current version of MLj does not implement functors or sharing constraints
in signatures. However, all other features of the module system are available
(substructures, the where construct new to SML ’97, and so on). Functors will
be added in a future release.

15

6.2 Overflow

The Standard ML Basis library requires certain arithmetic operations to raise an
Overflow exception when the result is not representable (e.g. Int.+, Int.*);
the same operations in Java wrap around without raising an exception. A
correct implementation in Java bytecodes of these Basis operations would have
a performance unacceptable in most applications, so it was decided to diverge
from the standard and to raise no exception. If there is sufficient interest, a
future release may include a special version of the Basis in which Overflow
is raised. Even so, this would probably best be used to track down bugs (for
instance, turning an infinite loop into an uncaught exception) and not relied on
for production code.

6.3 Non-uniform datatypes

The MLj compiler imposes the restriction that occurrences of parameterised
datatypes within their own definition are applied to the same type arguments
as the definition. In any case datatypes such as

datatype ’a Weird = Empty | Weird of (’a*’a) Weird

are of limited use in the absence of polymorphic recursion.
MLj also insists that datatype and exception declarations contain no free

type variables (as with fn x:’a => let exception E of ’a in ...).
These restrictions will be lifted in a future release of the compiler.

6.4 Value restriction

The definition of SML ’97 specifies that the types of variables in bindings of the
form

val pat = exp

are generalised to allow polymorphism only when exp is a syntactic value (non-
expansive expression [6, Section 4.7]). MLj makes the further restriction that
generalisation can only occur if pat is non-refutable, that is, a match will always
succeed and not raise the Bind exception. (An example of a refutable binding
is val [x] = nil::nil). This restriction is also applied by SML/NJ version
110 and it can be argued that it is an omission from the Definition (indeed, the
restriction is included in a recent type-theoretic recasting of the semantics of
SML ’97 [5]).

MLj also prevents generalisation when pat contains ref patterns. This sec-
ond restriction will be lifted in a future release.

6.5 Overloading

MLj implements overloading of constants and operators for all the types re-
quired by the Basis Definition, except that integer constants cannot have type

16

LargeInt.int. Use LargeInt.fromInt or LargeInt.fromString to construct
values of this type. This omission will be removed in a future release.

MLj resolves default types for overloaded constants and operators at each
val or fun binding. This is a smaller context than that used by other imple-
mentations but is permitted by the Definition [6, Appendix E]. The following
typechecks under SML/NJ and Moscow ML but not under MLj because x is
assumed to have the default type int at the binding of sqr.

fun g (x,y) =
let

fun sqr x = x*x
in

sqr (x+2.0) + y
end

For maximum compatibility with other implementations a future version of MLj
will use the largest context permitted.

6.6 Tail call behaviour

Although not part of the Definition of Standard ML, it is commonly assumed
by functional programmers that the implementation of a tail call (where the
result of one function is given by a call to another function) will re-use the stack
frame of the calling function for the callee. In particular, a purely tail-calling
recursive function can consume constant store.

MLj attempts to inline function calls or to translate them into goto byte-
codes where it can. However, for the remaining cases there is no obligation on
the part of the bytecode interpreter to implement tail calls properly (though it is
explicitly permitted in the Java language specification [2, §15.11.4.6]). Most cur-
rent interpreters and JIT compilers do not optimise tail calls.2 (The Microsoft
JIT optimises single-recursion static tail calls but these can be implemented us-
ing goto anyway). If this situation persists then it will be necessary to change
the code output by MLj in this respect.

2The reason this is not completely straightforward for Java is that some SecurityManagers
make use of the call chain. Tail call elimination is only allowable (roughly) between classes
having the same class loader.

17

ML type Java type
int int
real double
char char
bool boolean
string java.lang.String
exn java.lang.Exception
array []
Int8.int byte
Int16.int short
Int64.int long
Real32.real float
IntInf.int java.math.BigInteger
Date.date java.util.Calendar

Table 1: ML and Java types

7 Language extensions

In this section we discuss the extensions to the Standard ML language that
facilitate access to Java libraries and allow the creation of new libraries written
using ML.

7.1 Design rationale

The main principle is simplicity. The syntax used to access Java classes and
to create new ones has been designed to be as lightweight as possible so that
one can use it without even thinking “foreign call”. To attain simplicity many
ML concepts have been matched up with Java ones (for example, identifying
packages with structures and subpackages with substructures) but only where
it makes sense semantically (for example, static methods are like ML functions
but non-static methods are not).

A secondary aim has been to facilitate the translation of Java code into ML.
However, there are certain aspects of Java that cannot be simulated easily in
ML (for example, the protected modifier). These limitations may be removed
in a future revision but for the moment the priority is to make the interface
simple.

7.2 Types

7.2.1 ML base types

Many ML base types are defined to be equivalent to Java types, as shown in
Table 1. This permits passing values to and from Java without the need for
coercions.

18

7.2.2 Java primitive types

A primitive Java type is one of the following: int, bool, char, real, Int8.int,
Int16.int, Int64.int and Real32.real.

7.2.3 Java class types

There are two kinds of class types:

• external class types including those corresponding to ML base types such
as string and exn;

• internal class types introduced by the _classtype construct described in
Section 7.5.

External Java class types can be referred to using the same syntax as in
the Java language, so for example java.lang.StringBuffer is a Java string
buffer [3, §1.17] and java.awt.Color is a Java colour [4, §1.9]. This is possible
because of the interpretation of Java packages as structures, and subpackages
as substructures, as explained in Section 7.3.

7.2.4 Null values

Java class and array types, known collectively as Java reference types, are more
refined than in the Java language, as they do not admit null as a value. This
allows the compiler to assume, for example, that a field access operation cannot
raise a NullPointerException. If ty is such a reference type, then values of
type ty option are instances of the class or array (expressed as SOME exp for
exp of type ty) and the Java value null (expressed as NONE).

7.2.5 Exporting and importing Java types

Whilst the non-option Java class or array types are useful within ML code
that manipulates Java values, when a Java value reaches real Java code the
information about presence or absence of null values is lost.

Suppose that we want to export an ML value to the Java world. This is
possible only if the value has an exportable type, defined to be:

• A primitive Java type; or

• A Java class type; or

• A type ty array where ty is an exportable type; or

• A type ty option where ty is a Java class type; or

• A type ty array option where ty is an exportable type.

When a value is imported from the Java world stronger conditions are im-
posed because for class and array types the null value can always be passed
into ML. Therefore an importable type is defined to be:

19

Java notion ML notion
package structure
subpackage substructure
class name type identifier
importing a package opening a structure
static final field value binding
static non-final field value binding with ref type
static method function binding
void type unit type
multiple arguments single tuple argument
exception class exception

Table 2: Analogies between ML and Java

• A primitive Java type; or

• A type ty option where ty is a Java class type; or

• A type ty array option where ty is an importable type.

7.3 Static Java

To simplify access to Java classes, static fields and static methods, we make the
analogies shown in Table 2. We consider each in turn.

7.3.1 Packages, subpackages, and classes

Top-level packages in the Java world are seen as a collection of top-level struc-
tures, and subpackages are substructures. Then classes are simply type identi-
fiers inside structures. For example, the Java type java.lang.Integer is seen
as an ML type identifier Integer inside a substructure lang inside a top-level
structure java.

7.3.2 Import as open

The analogue to the Java import package.* construct is ML’s open declaration;
for example, open java.lang is roughly equivalent to java.lang.*. We also
allow classes to be opened, giving unqualified access to static fields and methods
(see later). Also, subpackages become visible as structures: after opening java
it is possible to use lang.Integer to refer to the java.lang.Integer class.

7.3.3 Static fields

Static fields have little to do with object-oriented programming, so they are
viewed as ML value bindings. Final fields really are treated as simple values,
for example:

20

local open java.awt
in
(* Note: this will be a Color option because it could be null... *)
val redopt = Color.red

(* ...though in fact, we’re pretty sure that it’s not! *)
val red = valOf redopt

end

val neginf = java.lang.Double.NEGATIVE_INFINITY

Unfortunately, mutability for non-final fields in Java does not precisely cor-
respond to ML’s ref type; instead, it is closer to C’s notion of lvalue. Still, it is
possible to treat non-final fields as first-class refs by wrapping them inside ob-
jects that have appropriate read, write and equality test methods. At present,
this isn’t implemented properly and it is safest to dereference or assign to a
non-final field immediately. Suppose some class MyClass has an integer field x:

fun increment () =
let val oldx = ! MyClass.x
in
MyClass.x := oldx + 1

end

7.3.4 Static methods

As with fields, static methods have little to do with object-oriented program-
ming, so they are viewed as ML value bindings of function type.

Void methods are interpreted as having unit result type; methods of no
arguments have unit argument type. Methods with multiple arguments have
a tuple argument type. There’s one glitch: overloading. At present, method
invocation must be written as an explicit function application, with an explicit
tuple used for multiple arguments and an explicit unit value for methods with no
arguments. MLj will attempt to resolve any overloading ambiguities and reject
a program that it considers ambiguous. Because of the rather adhoc nature of
its “attempt to resolve”, seemingly unambiguous programs will sometimes be
rejected. In this situation, insert a type constraint as close as possible to the
function application.

Like Java, MLj will automatically apply upcasts (from a class to a superclass
or superinterface) to arguments, and uses the same rules to pick the ‘most
specific’ method where it is overloaded. In addition, it will automatically coerce
arguments from type ty option to type ty where ty is a Java reference type.
The example getClass below illustrates this.

(* Implement cosine using Java’s own function *)
(* in java.lang.Math *)
local open java.lang
in
(* Type constraint necessary because abs is overloaded *)
fun abs (x : real) = Math.abs x

21

(* Notice use of unit type *)
val t = System.currentTimeMillis ()

(* Notice how argument is coerced from string to string option *)
(* Result must be coerced explicitly *)
fun getClass (s : string) =

case Class.forName (s) of
NONE => raise Fail ("No such class: " ˆ s)

| SOME c => c
end

A future version of MLj will permit static methods to be used in a first-class
way, provided that overloading has been resolved.

7.3.5 Exceptions

Java exception classes can be bound to Standard ML exception identifiers using
ML’s existing exception declaration construct. For example:

exception IllegalArgExn = java.lang.IllegalArgumentException

(* Catch any exception that subclasses IllegalArgExn *)
fun test x = (do_some_java x)

handle (e as IllegalArgExn) => do_something e

(* This exception cannot carry a string *)
fun fail () = raise IllegalArgExn

To be more precise, if the right hand side of the exception declaration is not a
valid ML exception, then it is interpreted as a type expression denoting a class
type that subclasses java.lang.Exception (which itself is equivalent to exn).

7.3.6 Exporting structures

The previous sections have explained how the static members of external Java
classes can be accessed from ML. What about the converse: creating new Java
classes inside ML? For static members, this is very straightforward. Any top-
level Standard ML structure can be exported as a Java class, by interpreting its
signature in the following way:

• Value bindings with function type are exported as static methods with
the same name, provided that the function’s argument type is unit (in-
terpreted as void), a single importable type, or a tuple of importable
types (interpreted as multiple arguments), and the result is either unit or
a single exportable type.

• Value bindings with exportable types are exported as static final fields
with the same name.

22

7.4 Object-oriented Java

We now get to the real object-oriented meat of the Java language.

7.4.1 Method invocation and field access

To deal with non-static method invocation and non-static field access, we intro-
duce some new syntax:

exp.#id

Here exp is an expression (usually parenthesised unless a simple identifier) and
id is a Java field or method name. The type of the expression exp must be a
Java class; if not, MLj will reject the whole expression as badly typed.

The types of fields and methods are interpreted as for static methods. For
example:

(* Static method invocation: string to Integer *)
val myInt = java.lang.Integer.getInteger("37")

(* Non-static method invocation: Integer to string (option) *)
val stropt = myInt.#toString ()

(* Non-static non-final field access; parentheses necessary *)
val x = ! (myObj.#x)

(* Non-static final field access *)
val y = myObj.#y

MLj uses the same rules as Java to resolve overloading and to apply coercions,
with the addition of the option coercions already mentioned. In particular,
objects inherit fields and methods from their superclass and superinterfaces.

7.4.2 Object creation

Syntax (if n = 1 the parentheses can be omitted):

_new ty (exp1,. . .,expn)

The _new construct corresponds to Java’s class instance creation expressions
[2, §15.8]. The type tyarg must resolve to a class type. This class is searched
for accessible constructor methods using the same matching rules as for method
invocations. The result of the whole expression has type tyarg so cannot be
null. Here is an example:

fun generator i =
_new java.util.Random.Generator (Int64.fromInt i)

7.4.3 Casting and class membership

A new syntax is introduced (borrowed from O’Caml) to denote casting up or
down between Java classes:

exp :> ty

23

Examples:
(* Treat a string as an object; type constraint is necessary *)
fun stringToObject (x : string) = x :> java.lang.Object

(* We know this is object is actually a string *)
(* If it’s not, then ClassCastException gets raised *)
fun objectToString (x : java.lang.Object) = x :> string

To test an object for membership of a class, we introduce a _instanceof
construct analogous to Java’s construct with the same name:

_instanceof ty exp

The type ty must resolve to a Java reference type, and the expression exp must
have a Java reference type. The whole expression has type bool. Examples:

fun test (x : java.lang.Object) =
if _instanceof java.lang.String x
then "it’s a string"
else "it’s not a string"

7.4.4 Synchronization

A construct for synchronization on an object is provided, analogous to that
found in Java:

(_synchronized exp) exp

The first expression must have a Java class type or an ML ref type. Example:
(* Atomic increment operation *)
fun inc (x : int ref) =
(_synchronize x)
(x := !x + 1)

24

7.5 Class and interface declarations

The syntax of declarations is extended in two ways: 3

• The new _classtype construct permits the definition of Java classes
whose methods are written in ML and whose methods and fields may
have ML types.

• The new _interfacetype construct permits the definition of Java inter-
faces from inside ML. This is really just a convenient way of avoiding the
Java language (and compiler) if interfaces are required.

Both forms of declaration may only appear at the level of structure declarations,
that is, whereever a structure declaration can appear.

These declarations can also appear as specifications in SML signatures, with
additional syntactic and semantic restrictions as explained below. The syntax
of class declarations is as follows:

〈classmods〉 _classtype tycon 〈_extends ty〉
〈_implements ty1, . . .,tyn〉
{ classitem1 . . . classitemm }

The _classtype construct introduces a new class type tycon whose fields and
methods are defined using ML types and expressions. It has similar functionality
to the Java language class construct but can only be used to define non-static
fields and methods; if you want to export static fields and methods then use the
“structure-as-class” idea described in the previous section.

The superclass of the new class is specified by the class type ty (if not
present then java.lang.Object is assumed), its superinterfaces by the interface
types ty1, . . . , tyn, and its fields, methods and constructors by the declarations
appearing between braces.

The optional classmods is a sequence of distinct modifiers chosen from _abstract,
_final and _public, whose meaning is the same as in the Java language.

7.5.1 Field declarations

Syntax:
classitem ::= 〈fldmods〉 _field id : ty

This declares a non-static field id with type ty.
The optional fldmods is a sequence of distinct modifiers chosen from _final,

_transient, _volatile, _public, _private and _protected, whose meaning
is the same as in the Java language.

Examples:
3This aspect of the extensions to ML syntax is subject to change in future versions of MLj;

probably it will have something of the flavour of O’Caml

25

_classtype C
{
(* A pair of integers stored in a Java instance variable *)
_private _field pair : int*int

(* The assignment to pair is obligatory *)
_private _constructor (x : int, y : int)

{ _super(); pair = (x,y) }
}

7.5.2 Method declarations

Syntax:

classitem ::= 〈methmods〉 _method id (〈id1 :〉 ty1, . . .,〈idn :〉 tyn)
〈: ty〉 〈= exp〉

This declares a method id whose arguments are id1, . . . , idn with types ty1, . . . , tyn,
optional result type ty and optional body exp. A result type of unit is con-
verted into void, the Java equivalent; alternatively, if ty is omitted then void
is assumed.

Explicit argument types are required in order to type check simultaneous
method declarations in the presence of Java’s overloading and overriding.

The optional methmods is a sequence of distinct modifiers chosen from
_abstract, _final, _public, _private, _protected and _synchronized, whose
meaning is the same as in the Java language.

An abstract method must not have a body exp; for a non-abstract method,
the body must be present.

Inside the method the identifier this refers to the object with which it was
invoked and has the type of the defining class.

Example:
_classtype C
{
_private _field pair : int*int

(* Override the instance method from Object; notice return type *)
_public _method toString () : string option =
let val (x,y) = ! (this.#pair)
in

SOME ("(" ˆ Int.toString x ˆ "," ˆ Int.toString y ˆ ")")
end

}

7.5.3 Constructor declarations

Syntax:

classitem ::= 〈conmods〉 _constructor (〈id1 :〉 ty1, . . .,〈idn :〉 tyn)
{ inits } 〈= exp〉

26

where:
inits ::= _this args

| _super args 〈; fldinits〉

fldinits ::= id = exp 〈; fldinits〉

This declares a constructor for the class with optional modifiers conmods, ar-
guments id1, . . . , idn with types ty1, . . . , tyn, an initialiser block inits and an
optional body exp.

The constructor first specifies whether it invokes another constructor in the
same class (expressed as _this args) or a superclass constructor (expressed as
_super args). This is similar to the Java language syntax for explicit constructor
invocations [2, §8.6.5].

In addition, MLj requires that constructors initialise the fields. For fields
with importable Java type this is not necessary: they will be initialised to
the default value associated with that type [2, §4.5.4]. For all other fields,
it is necessary to list their initial values explicitly in fldinits. Inside the field
initialisers the keywords _super refers to the created object when considered to
be an instance of its superclass.

Inside the body both _super and _this are available, as for methods.
Examples:

_classtype C
{
_private _field pair : int*int
_private _field obj : java.lang.Object option

(* obj gets default initial value of null *)
_private _constructor (x : int, y : int)

{ _super(); pair = (x,y) }

(* Call existing constructor with default value for pair;
set object field; print diagnostic message in body *)

_public _constructor (obj : java.lang.Object)
{ _this(5,6); obj = SOME obj } = print "constructor called"

}

7.5.4 Superclass method invocation

Within a non-static method body one often wants to invoke a method from
the superclass, bypassing any overriding of the method in the enclosing class
definition. In Java, one uses the keyword super but this is given different
semantics for field access and method invocation. In MLj we take a different
approach and introduce a special syntax for superclass method invocation:

exp.##id

Example:

27

_classtype D _extends C
{
_field z : int

(* Firstly invoke the superclass method *)
_public _method toString () : string option =
SOME (valOf (this.##toString ()) ˆ

" and z = " ˆ Int.toString (this.#z))
}

7.5.5 Exporting classes

From the compilation envoronment the command export specifies external
names for classes defined using the _classtype construct. To safeguard against
run-time errors such as NullPointerException or the faking of ML values in
Java code, MLj restricts such classes in the following ways.

• For any field not declared private, it must:

– either be declared final and have an exportable type;

– or have an importable type.

Rationale: non-private final fields cannot be updated but can be accessed
from Java code, so therefore should contain only Java values. Non-final
fields can also be updated, so should explicitly be allowed to take null
values.

• For any method or constructor not declared private, its arguments must
have importable types, and it must:

– either be declared final and have an exportable return type;
– or have an importable return type.

Rationale: non-private methods can be invoked from Java code with ar-
bitrary Java values, so the types of their arguments should be Java types
that explicitly permit null values. Likewise the return type must be a Java
type. Non-final methods can be overridden by Java-defined methods that
sometimes return null values so their type must reflect this; final methods
cannot be overridden.

There are no restrictions on the fields and methods of classes not listed by
export: because their names are chosen by the compiler, it is assumed that
external Java code cannot access them.

7.5.6 Interfaces

Syntax:

〈classmods〉 _interfacetype tycon 〈_extends ty1, . . .,tyn〉
{ intitem1 . . . intitemm }

28

The _interfacetype construct introduces a new interface type tycon whose
methods are declared using ML types. It has similar functionality to the Java
language interface construct except that fields cannot be declared.

The superinterfaces of the new interface are specified by the interface types
ty1, . . . , tyn, and its methods by the declarations appearing between braces.

The modifiers classmods are more restrictive than for class types: only
_abstract and _public are permitted. In fact, _abstract is superfluous be-
cause interfaces are implicitly abstract.

Each interface item intitem is a method declaration with the syntax shown
below:

intitem ::= 〈methmods〉 _method id (〈id1 :〉 ty1, . . .,〈idn :〉 tyn) 〈: ty〉

Interface method declarations are like abstract methods in class types, but more
restrictive: the only modifiers that are permitted are _abstract (again super-
fluous) and _public.

7.5.7 Signatures and signature matching

Class type and interface type declarations can appear in signatures, with the
following restrictions:

• Methods must not have bodies and constructors must have neither ini-
tialisers nor bodies.

• Private fields, methods and constructors must not appear (rationale: they
are not accessible outside the class definition).

• Methods that override a method in the superclass or superinterfaces must
not appear (rationale: the superclass and superinterfaces imply their ex-
istence somewhere in the inheritance hierarchy so nothing is gained by
redeclaring them).

When matching a class (interface) type in a structure against a class (inter-
face) type in a signature all parts of the declaration must match exactly, modulo
the restrictions listed above.

8 The Standard ML Basis Library

The following sections correspond to those listed on the Basis Library web page
[1]. A summary is shown in Table 3.

8.1 Top-level Environment

All types and values in the top-level environment are implemented as specified,
except for use.

29

Structure Omissions and discrepancies
top-level no use
Array none
Bool none
BoolVector,BoolArray none
Char=WideChar Char.maxOrd = 65535
CharVector=WideCharVector,CharArray none
CommandLine
Date none
General none
IEEEReal setRoundingMode only accepts TO_NEAREST
Int8,Int16, Int=Int32,FixedInt=Int64 ˜, *, +, -, div, quot, abs don’t raise Overflow
Int{N }Vector,Int{N } Array none
LargeInt=InfInf none
IO none
List none
ListPair none
Option none
OS none
OS.FileSys no chDir, isLink, modTime, readLink, realPath,

setTime, tmpName, access with A_EXEC
OS.Path none
OS.Process getEnv accesses Java properties
Real=Real64=LargeReal no fromDecimal, toDecimal
RealVector,RealArray none
String=WideString none
Substring=WideSubstring none
TextIO no openAppend or StreamIO and related functions
Time none
Timer only wall-clock time is measured
Vector none
Word8,Word=Word32, LargeWord=Word64 none
Word{N }Vector,Word{N} Array none

Table 3: Basis structures implemented in MLj

30

8.2 General

The structures General, Option and Bool are implemented in full. The struc-
ture SML90 is not implemented.

8.3 Text

The structures Char, String and Substring are implemented in full. Contra-
dicting the Basis definition, the value of Char.maxOrd is not 255, but 65535.
Also, the structure Char is identical to WideChar, structure String is identical
to WideString and structure Substring is identical to WideSubstring.

8.4 Integer

Structures Int8, Int16, Int32 and Int64 implement 8-bit, 16-bit, 32-bit and
64-bit signed integers respectively. The structure Int is synonymous with Int32,
and FixedInt with Int64.

In all structures with signature INTEGER, the functions ˜, *, div, quot, +,
- and abs do not raise Overflow when the result is not representable, instead
‘wrapping round’ in an unspecified manner. The functions fromLarge, toInt,
fromInt, fromString and scan do raise Overflow when appropriate.

The structure IntInf (synonym LargeInt) implements infinite precision
integers.

The structures Word8, Word32 and Word64 implement 8-bit, 32-bit and 64-bit
unsigned integers respectively. The structure Word is synonymous with Word32,
and LargeWord with Word64.

Structures with signature PACK_WORD are not yet implemented.

8.5 Reals

The structure Real64 (synonyms Real and LargeReal) is almost completely
implemented, with the exception of the functions fromDecimal and toDecimal.

The structure IEEEReal is implemented except for setRoundingMode, which
raises a NotImplemented exception for modes other than TO_NEAREST.

Structures with signature PACK_REAL are not yet implemented.

8.6 Lists

Structures List and ListPair are implemented in full.

8.7 Arrays and Vectors

Structures Array and Vector are implemented in full. All appropriate monomor-
phic vectors and arrays are implemented in full. The structure CharVector is
identical to WideCharVector.

Two-dimensional arrays will be introduced in a future release.

31

8.8 IO

The structure IO is implemented in full. The structure TextIO is mostly imple-
mented with the exception of TextIO.openAppend, the substructure StreamIO
and functions involving its types. Thus no low-level I/O is implemented. No
other structure (or functor!) is yet implemented.

8.9 System

The top-level functions in structure OS are implemented.
The OS.Process structure is implemented in full, with the type status

bound to int and values success and failure bound to 0 and 1 respec-
tively. The function OS.Process.system can be used to execute arbitrary
operating system commands, but at present there is no way of accessing the
standard input, output and error streams associated with such a process. The
OS.Process.getEnv function provides access to Java properties, as defined in
the Java API [3, §1.18.8] and Language Specification [2, §20.18.7]. If you want
to pass in Unix or Windows environment variables as properties then use the
-D option under the java interpreter.

The OS.FileSys structure is partially implemented, with the following omis-
sions: chDir, isLink, readLink, realPath, modTime, setTime and tmpName.
Calling access with A_EXEC will raise an exception.

The OS.Path structure is implemented in full.
No other System structures are implemented.

8.10 Posix

The Posix structure is not implemented; Java is available on non-Posix plat-
forms so this structure is not relevant.

9 Known bugs and omissions

• No warning is given for redundant matches, and incorrect warnings are
sometimes issued for nonexhaustive patterns that are actually exhaustive.

• The restrictions on datatypes and exceptions as described in Section 6.3
are not enforced properly.

• The composition of conversion functions is not implemented efficiently as
suggested by the basis (e.g. Int64.fromLarge o Int32.toLarge).

• The conversion functions WordX .fromString and WordX .scan do not
raise Overflow.

32

References

[1] E. R. Gansner and J. H. Reppy, editors. The Standard ML Basis Library
reference manual. In preparation, but currently at
http://www.cs.bell-labs.com/˜jhr/sml/basis/.

[2] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

[3] J. Gosling and F. Yellin. The Java Application Programming Interface,
Volume 1: Core Packages. Addison-Wesley, 1996.

[4] J. Gosling and F. Yellin. The Java Application Programming Interface,
Volume 2: Window Toolkit and Applets. Addison-Wesley, 1996.

[5] R. Harper and C. Stone. A type-theoretic account of Standard ML 1996 (ver-
sion 2). Technical Report CMU-CS-96-136R, School of Computer Science,
Cargnegie Mellon University, September 1996.

[6] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Stan-
dard ML (Revised). MIT Press, Cambridge, Mass., 1997.

[7] L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, second edition, 1996.

33

