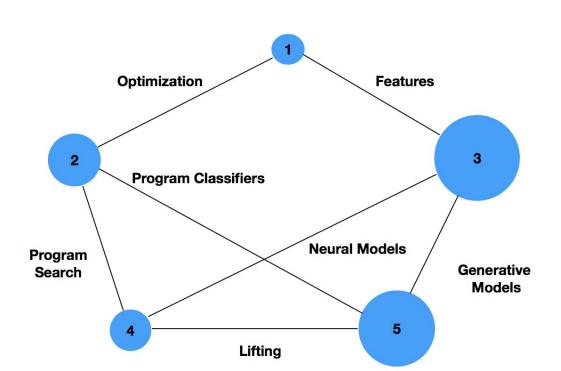
Rethinking Compilation:L3



Overview

- L1: Motivation and survey of auto-tuning/machine learning for compilers
- L2: Program rewriting schemes e-graphs and equality saturation
- This lecture: Program embeddings and Graph Neural Networks
- L4: Program synthesis and neural synthesis
- L5: Neural Machine Translation, Transformers and Large language models

Machine Learning on Code

Loop Unrolling

```
int i, j;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j]*x[j];
```

```
int i, j;

for (i = 0; i < N; i+=4)

for (j = 0; j < N; j++)

y[i] += A[i][j]*x[j];

y[i+1] += A[i+1][j]*x[j];

y[i+2] += A[i+2][j]*x[j];

y[i+3] += A[i+3][j]*x[j];
```

Algorithm Detection

```
int i, j, k;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

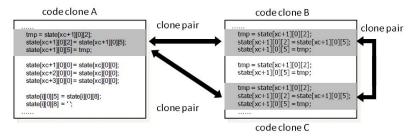
for (k = 0; k < N; k++)

C[i][k] += A[i][j]*B[j][k]
gemm(A, B, C)
```

Vulnerability Detection

```
i = read(STDIN_FILENO, msg, sizeof(msg)-1);
memcpy( username, msg+2, i-2);
```

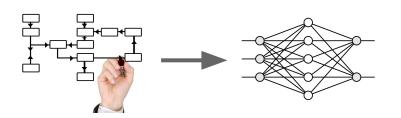
Code Clone Detection



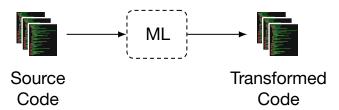
Complex and undecidable problems → Machine Learning techniques

Beyond classic machine learning techniques

Automating feature engineering



More sophisticated models for harder tasks



Dealing with programs represented as complex datastructures

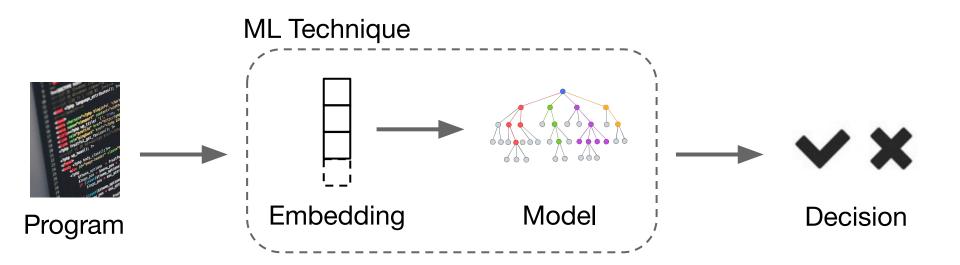
→ Need for better
 ML techniques!
 (this lecture)

Overview

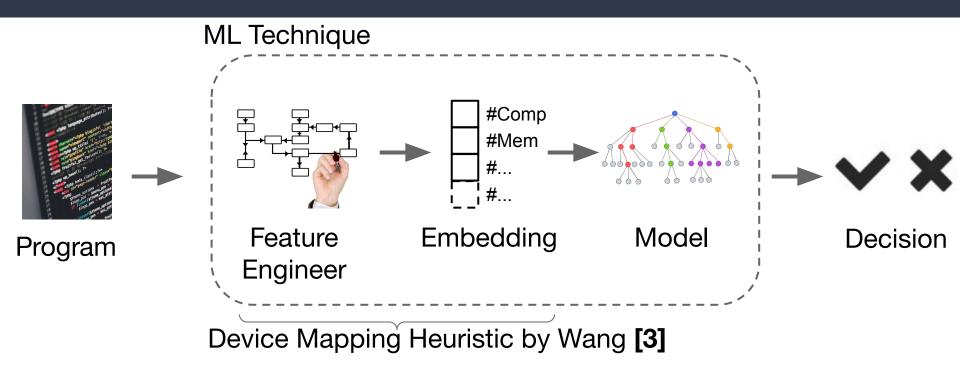
Course content

- Motivation
- Embedding Techniques
 - Feature Engineering
 - Learned Embeddings
- Code Modeling
 - Sequences
 - Graphs
 - Sequences II Transformers
 - Combinations of Sequences & Graphs
 - Interpreters

Overview

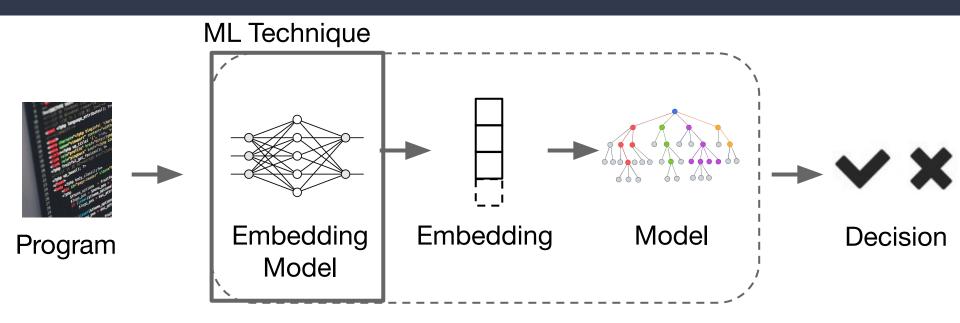


Feature Engineering



Problem: Features not optimal and engineering time-consuming

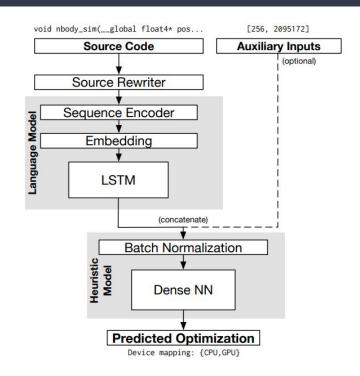
Learned Embeddings



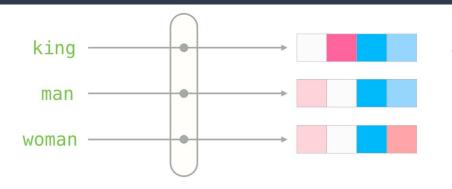
Use models to learn embeddings automatically!

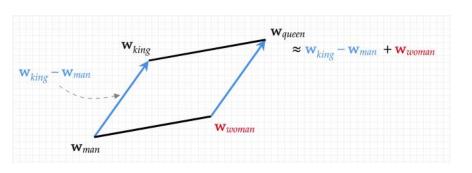
Learned Embeddings

- Pre-compute feature vectors ("Embeddings")
- DeepTune [4]
 - Training on task A with large dataset
 - →Embedding
 - Re-using Language Model of task A for task B, then train on small-scale dataset



Learned Embeddings





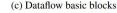
Word2vec [1]

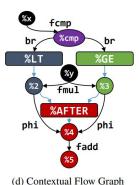
- Self-supervised training with contextual similarity objective: Tokens with similar context should have similar embedding
- Multi-layer Perceptron (MLP)
 model predicts context
- MLP later used for vector lookup

Learned Embeddings

- Word2vec on Code: Inst2vec [2]
 - Pre-train word2vec style embeddings on LLVM IR graphs with contextual similarity objective
 - Predict types of neighbouring nodes in graph
 - Trained on 50 mio. lines of code
 - Significant performance gain vs. no pre-trained embeddings

```
double thres = 5.0;
if (x < thres)
    x = 2.0 * y;
x += 1.0;
           (a) Source code
%cmp = fcmp olt double %x, 5.0
br i1 %cmp, label %LT, label %GE
    = fmul double %v, %v
 %3 = fmul double 2.0, %v
 %4 = phi double [%2,%LT], [%3,%GE]
  %5 = fadd double %4, 1.0
            (b) LLVM IR
```



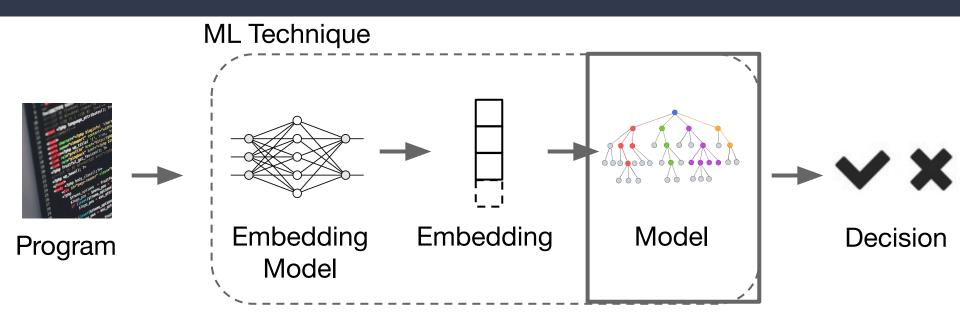


Overview

Course content

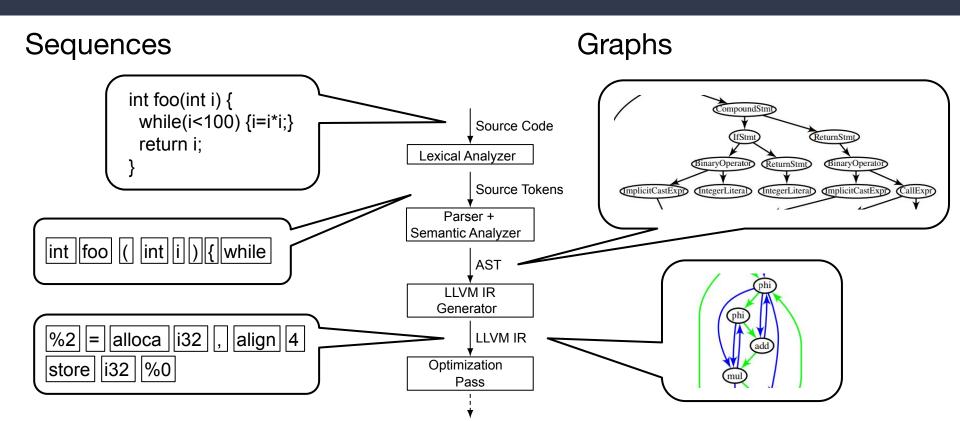
- Motivation
- Embedding Techniques
 - Feature Engineering
 - Learned Embeddings
- Code Modeling
 - Sequences
 - Graphs
 - Sequences II Transformers
 - Combinations of Sequences & Graphs
 - Interpreters

Overview

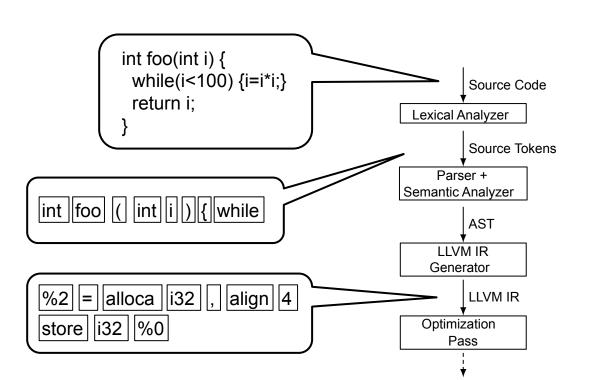


After extracting embeddings, learn models of code

How to represent programs?



Sequence Program Representations

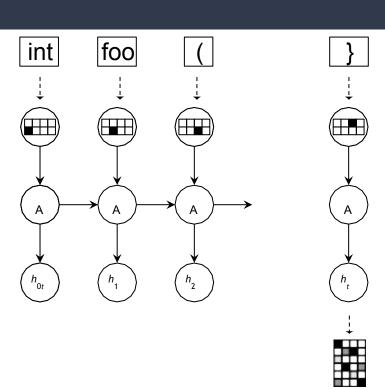


- Program as token sequence
- Different abstraction levels
 - Characters
 - Source language
 - Compiler internal representations (IRs)
- Normalization of identifiers helps generalization

Sequence Models - DeepTune [4]

- Input: Sequence of C tokens
- One-hot encoding of tokens
- Recurrent Neural Network
 - Processes tokens one-by-one
 - Captures sequential dependencies

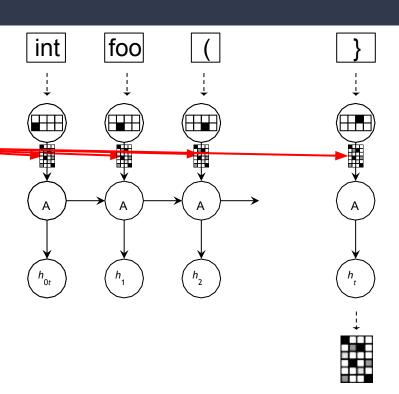
- Output: Hidden states
- Final hidden state used for prediction



Sequence Models – inst2vec [2]

- Input: Sequence of C tokens
- One-hot encoding of tokens
- Lookup of embedding
- Recurrent Neural Network
 - Processes tokens one-by-one
 - Captures sequential dependencies

- Output: Hidden states
- Final hidden state used for prediction



Sequence Models – inst2vec [2]

Table 4: Heterogeneous device mapping results

Architecture	Prediction Accuracy [%]						
	GPU	Grewe et al. [29]	DeepTune [18]	inst2vec	inst2vec-imm		
AMD Tahiti 7970	41.18	73.38	83.68	82.79	88.09		
NVIDIA GTX 970	56.91	72.94	80.29	82.06	86.62		
			Speedup				
	GPU	Grewe et al.	DeepTune	inst2vec	inst2vec-imm		
AMD Tahiti 7970	3.26	2.91	3.34	3.42	3.47		
NVIDIA GTX 970	1.00	1.26	1.41	1.42	1.44		

Table 5: Speedups achieved by coarsening threads

Computing Platform	Magni et al. [46]	DeepTune [18]	DeepTune-TL [18]	inst2vec	inst2vec-imm
AMD Radeon HD 5900	1.21	1.10	1.17	1.37	1.28
AMD Tahiti 7970	1.01	1.05	1.23	1.10	1.18
NVIDIA GTX 480	0.86	1.10	1.14 0.93	1.07	1.11
NVIDIA Tesla K20c	0.94	0.99		1.06	1.00

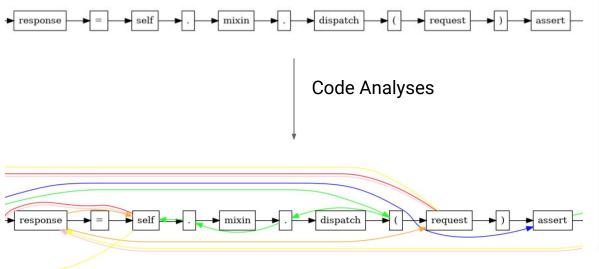
Overview

Course content

- Motivation
- Embedding Techniques
 - Feature Engineering
 - Learned Embeddings
- Code Modeling
 - Sequences
 - Graphs
 - Sequences II Transformers
 - Combinations of Sequences & Graphs
 - Interpreters

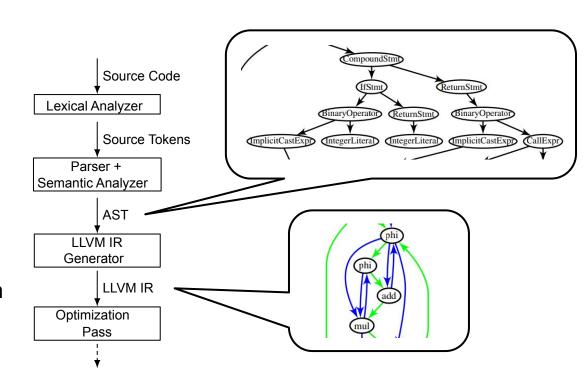
Graph Models

Idea: Learn a model on known code structures



Graph Program Representation

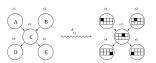
- Represent programs as graphs
- Compiler-internal information represented as edges
 - Control-flow
 - Use-def
- Normalized by construction



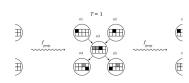
Graph Models

- Graph Neural Networks
 - Input: Nodes, Edges
 - Output: Graph embedding h_G
- Propagation Style
 - Graph-based
- Modeling Capability
 - Relations

Phase 0: Initialization



Phase 1: Message Passing

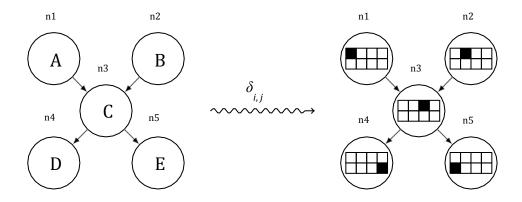


Phase 2: Embedding Aggregation



Graph Models

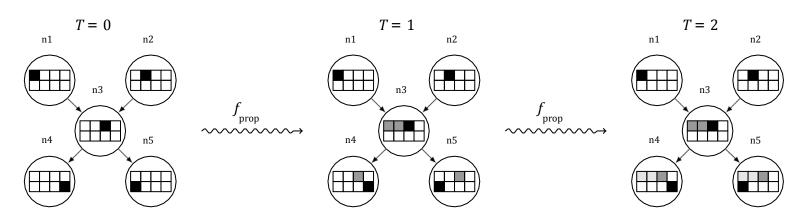
Phase 1: Initialization



- Initialize each node with hidden state
 - One-hot encoded
 - Produced by learned function

Graph Models

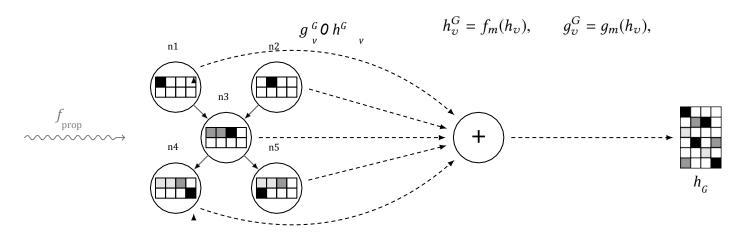
Phase 2: Message Passing



- f_msg forms messages, based on node state
- **f_prop** computes new node state, based on aggregated messages
- f_msg and f_prop are learned functions

Graph Models

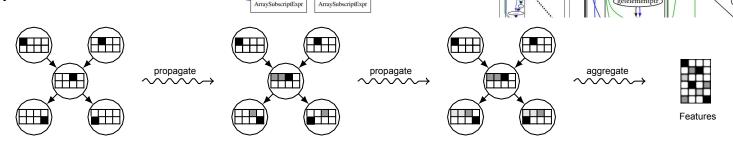
Phase 3: Embedding Aggregation



- Aggregate node embeddings to a graph embedding
- f_m and g_m are learned functions

Graphs – GNNs4Compilers [5]

- Program Representation
 - Clang AST + Use-Def
 - LLVM IR Graphs
- Code Model
 - o GNN



FunctionArg

BinaryOperator

CompoundStmt

IfStmt

BinaryOperator

operator: +

BinaryOperator

operator: =

get_global_id

sext

getelementptr

Function type: void

FunctionArg

ArraySubscriptExpr

FunctionArg

function_name: get_global_id

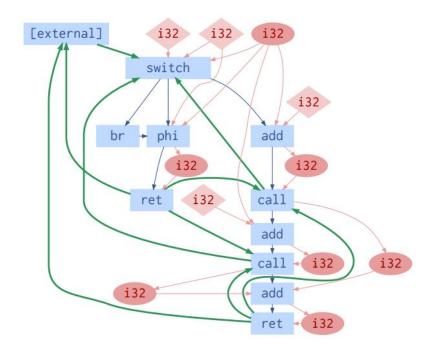
IntegerLiteral

FunctionArg

DeclStmt

Graphs – ProGraML [6]

- Program Representation
 - LLVM IR Graphs
- Embedding
 - Pre-trained inst2vec embeddings
- Code Model
 - GNN



Graphs – ProGraML [6]

	Accuracy	Precision	Recall	F_1		Accuracy	Precision	Recall	F_1
Static Mapping	58.8%	0.35	0.59	0.44	Static Mapping	56.9%	0.32	0.57	0.41
DeepTune [23]	71.9%	0.72	0.72	0.72	DeepTune [23]	61.0%	0.69	0.61	0.65
DeepTune _{IR}	73.8%	0.76	0.74	0.75	DeepTune _{IR}	68.4%	0.70	0.68	0.69
NCC [7]	80.3%	0.81	0.80	0.80	NCC [7]	78.5%	0.79	0.79	0.79
ProGraML	86.6%	0.89	0.87	0.88	ProGraML	80.0%	0.81	0.80	0.80

GNNs significantly outperform RNNs (+ inst2vec embeddings)

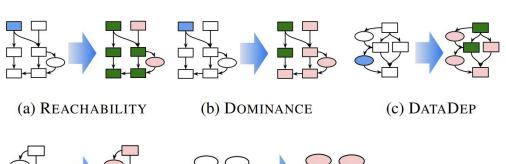
(a) AMD

(b) NVIDIA

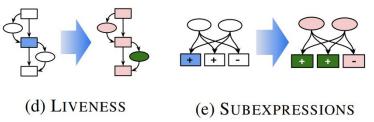
Table 5: Five approaches to predicting heterogeneous device mapping: (a) Static Mapping (b) DeepTune [23], a sequential model using tokenized OpenCL, (c) DeepTune_{IR}, the same model adapted for tokenized LLVM-IR, (d) NCC, which uses pre-trained statement embeddings, and (e) PROGRAML, our approach.

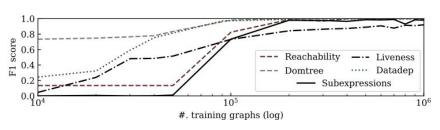
GNNs yield best performance

Graphs - Compiler Analyses [6]



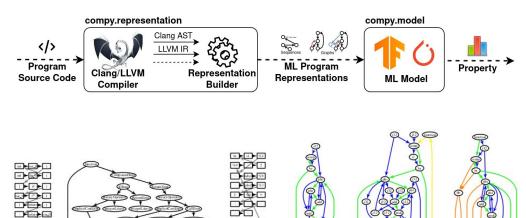
- GNNs can learn classic compiler analyses
- RNNs perform poorly, as they don't represent structure explicitly





Graphs - ComPy-Learn [7]

- Designing own, task-specific code representations, based on Clang/LLVM
- Auto-extracting these from C/C++ code, using just Python
- Learning models of code (RNNs, GNNs) on graph structures
- https://github.com/tud-ccc/compy -learn



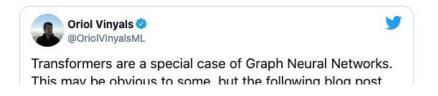
icmp st 32

Overview

Course content

- Motivation
- Embedding Techniques
 - Feature Engineering
 - Learned Embeddings
- Code Modeling
 - Sequences
 - Graphs
 - Sequences II Transformers
 - Combinations of Sequences & Graphs
 - Interpreters

Sequences II - Transformers



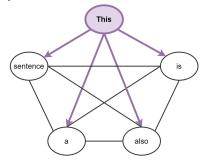
Transformers are GNNs

- on fully-connected graphs
- with learned attention weights

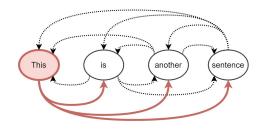
Intuition

 Transformers operate on graphs with "soft edges"

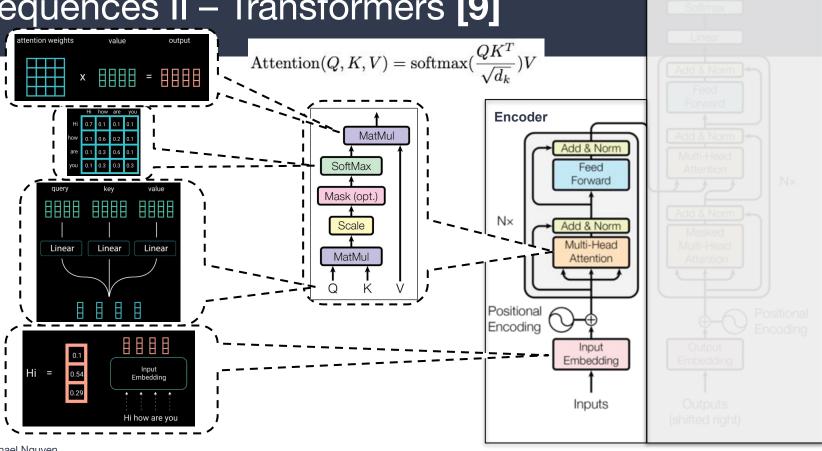
Graph Neural Networks



Transformers



Sequences II – Transformers [9]



Decoder

Figures: Michael Nguyen

Overview

Course content

- Motivation
- Embedding Techniques
 - Feature Engineering
 - Learned Embeddings
- Code Modeling
 - Sequences
 - Graphs
 - Sequences II Transformers
 - Sequences & Graphs
 - Interpreters

RNNs, GNNs and Transformers

	RNNs	GNNs	Transformers		
Propagation Style	Sequential	Graph- based	Graph/Attention- based		
Modeling capabilities	Sequential Dependencies	Relations	Sequential Dependencies & Relations		
Dataset size requirements	+	0	++		
Complementary proportical Combine models?					

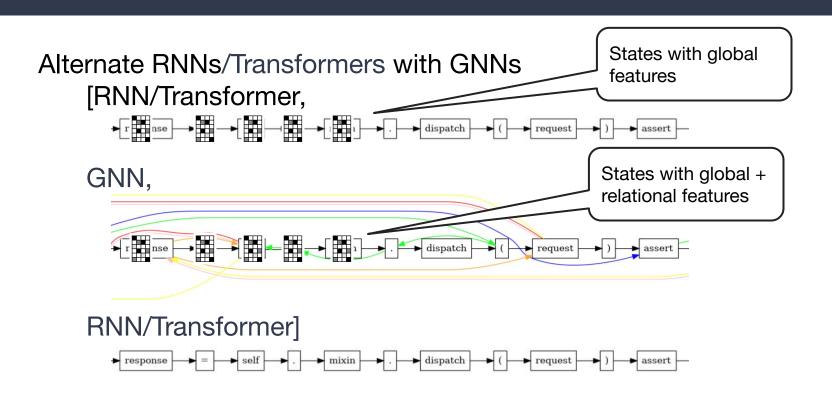
Complementary properties! → Combine models?

Overview

Course content

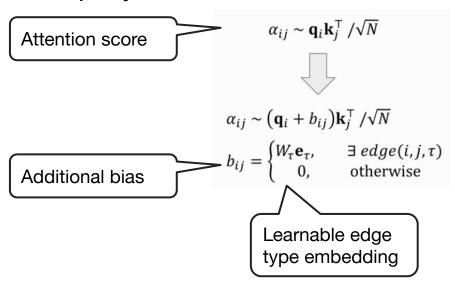
- Motivation
- Embedding Techniques
 - Feature Engineering
 - Learned Embeddings
- Code Modeling
 - Sequences
 - Graphs
 - Sequences II Transformers
 - Combinations of Sequences & Graphs
 - Interpreters

Sequences & Graphs - Sandwich Models [10]



Sequences & Graphs – "GREAT" Model [10]

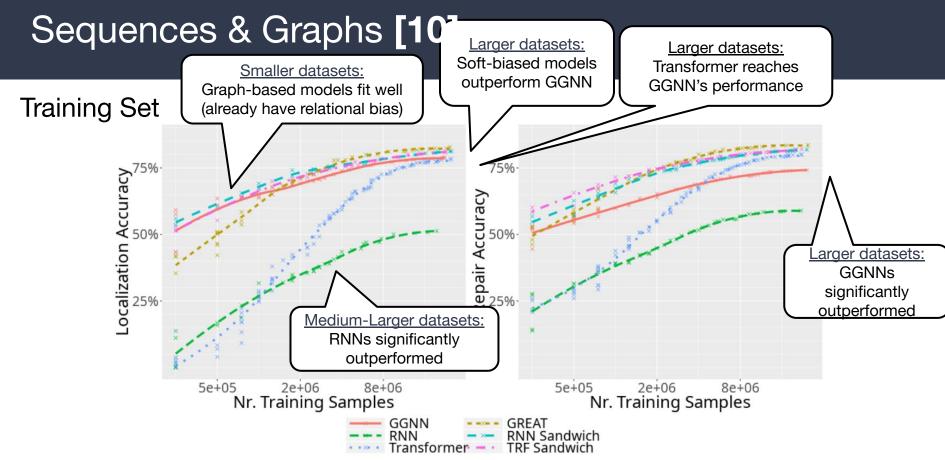
Bias query of attention mechanism to relations



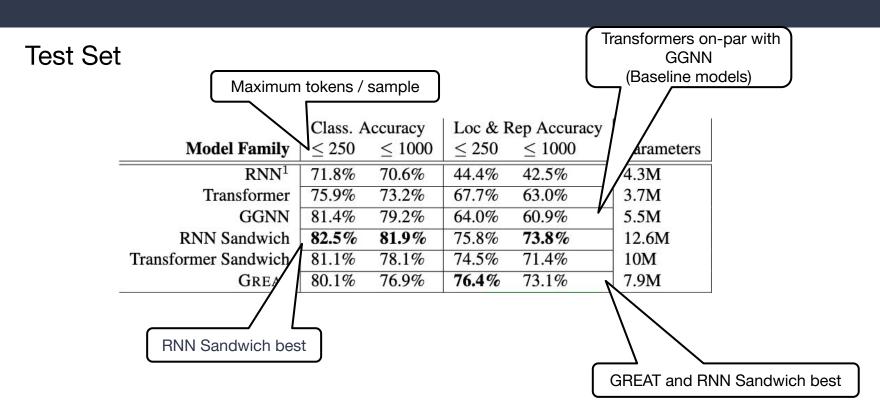
```
def validate_sources(sources):
  object_name = get_content(sources, 'obj')
  subject_name = get_content(sources, 'subj')
  result = Result()
  result.objects.append(object_name)
  result.subjects.append(object_name)
  return result
```

"Soft" relational bias

- Free to attend to any token, even ones that are not in explicit in input data structure (including global information)



Sequences & Graphs [10]



Overview

Course content

- Motivation
- Embedding Techniques
 - Feature Engineering
 - Learned Embeddings
- Code Modeling
 - Sequences
 - Graphs
 - Sequences II Transformers
 - Combinations of Sequences & Graphs
 - Interpreters

Interpretation – Instruction Pointer Attention GNN [11]

\overline{n}	Source Control flow graph
0 1 2 3	v0 = 407 if v0 % 10 < 3: v0 += 4 else:
5	v0 -= 2 <exit></exit>

 Idea: Following the principle of an interpreter

\overline{n}	Source	ce Control flow graph		
	v0 = 407 if v0 % 10 < 3:			
2	v0 += 4 else:			
4	v0 -= 2 <exit></exit>			

$$h_t = ext{RNN}\left(h_{t-1}, ext{Embed}\left(x_{n_{t-1}}
ight)
ight)$$

 h_t : Hidden State

 n_t : Instruction Pointer

 $x_{n_t}:$ Statement at n_t

$$n_t = t$$

- RNN is a natural fit for execution
 - Statement-by-statement
- Problem: Branches / Non-linear control flow

\overline{n}	Source	Control flow graph	Line-by-Line RNN	Trace RNN
0	v0 = 407	•	•	•
1	if v0 % 10 < 3: v0 += 4			/
3	else:			
4 5	v0 -= 2 <exit></exit>			

$$h_t = ext{RNN}\left(h_{t-1}, ext{Embed}\left(x_{n_{t-1}}
ight)
ight)$$

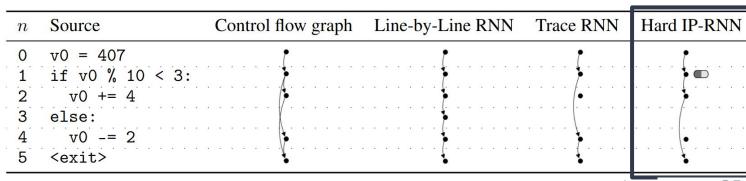
 h_t : Hidden State

 n_t : Instruction Pointer

 $x_{n_t}:$ Statement at n_t

$$n_t = t$$
 $n_t = n_t^*$

- RNN on execution trace (→ Trace RNN)
- Problem: Not static as execution trace requires execution



$$h_t = ext{RNN}\left(h_{t-1}, ext{Embed}\left(x_{n_{t-1}}
ight)
ight)$$

 h_t : Hidden State

 n_t : Instruction Pointer

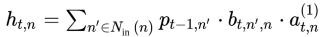
 $x_{n_t}:$ Statement at n_t

$$n_t = t \qquad n_t = n_t^* \quad \overline{n_t = N_{ ext{out}}(n_{t-1}) \mid j} \ _{ ext{where } j = ext{argmax Dense}(h_t)}$$

- Predict what branch to take with a Neural Network and update IP accordingly
- Problem: Not differentiable (model makes discrete decisions)

Interpretation – Instruction Pointer Attention GNN [11]

\overline{n}	Source	Control flow graph	Line-by-Line RNN	Trace RNN	Hard IP-RNN	IPA-GNN	GGNN
0	v0 = 407					[•
1	if v0 % 10 < 3:			,	•)
2	v0 += 4			•		/	, ()
3	else:					((
4	v0 -= 2				• • • • • • • • • • • • • • • • • • • •	/	🖟
	<exit></exit>	<u> </u>	``	•	``	•	•



 h_t : Hidden State

 $a_{t,n}^{(1)}:$ State proposal

 $b_{t,n',n}$: Branch decision

 $p_{t,n}:$ Soft instruction pointer

- Soft branch decision (distribution over current statements branches)
- Soft instruction pointer (distribution over all edges)
- → Supports Branches, Differentiable

Interpretation – Instruction Pointer Attention GNN [11]

 $h_{t,n} = \sum_{n' \in N_{ ext{in}}\,(n)} p_{t-1,n'} \cdot b_{t,n',n} \cdot a_{t,n}^{(1)}$

 h_t : Hidden State

 $a_{t,n}^{(1)}$: State proposal

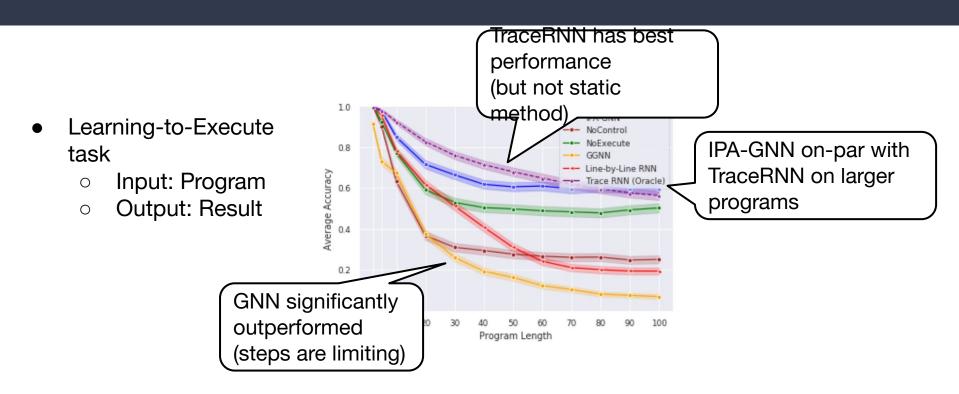
 $b_{t,n',n}$: Branch decision

 $p_{t,n}:$ Soft instruction pointer

$$a_{t,n}^{(1)} = ext{RNN}\left(h_{t-1,n}, ext{Embed}\left(x_n
ight)
ight) \ b_{t,n,n_1}, b_{t,n,n_2} = ext{softmax}\left(ext{Dense}\left(a_{t,n}^{(1)}
ight)
ight)$$

$$p_{t,n} = \sum_{n' \in N_{ ext{in}}\left(n
ight)} p_{t-1,n'} \cdot b_{t,n',n}$$





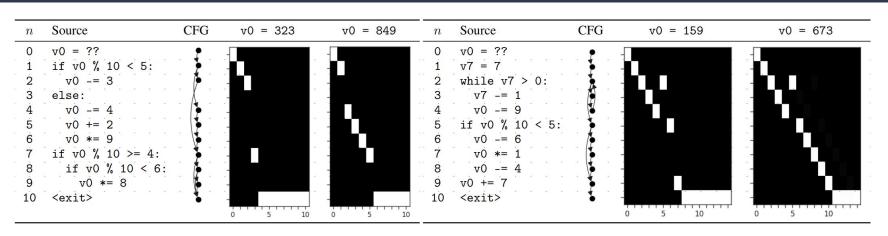
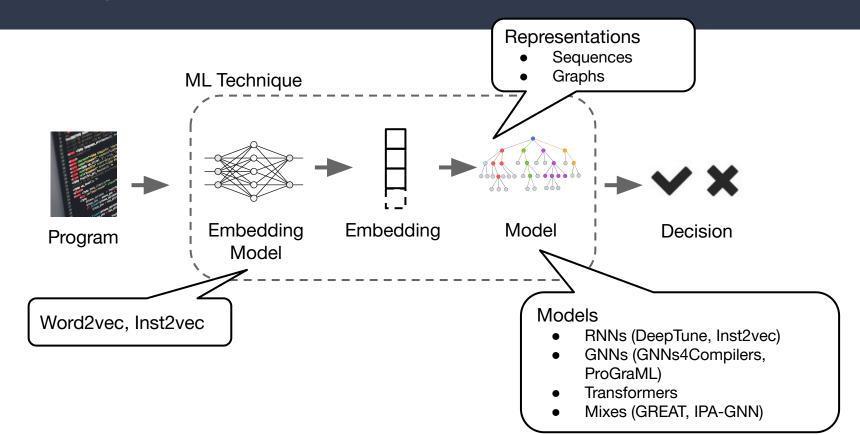


Figure 5: Instruction Pointer Attention. Intensity plots show the soft instruction pointer $p_{t,n}$ at each step of the IPA-GNN on two programs, each with two distinct initial values for v0.

IPA-GNN learns instruction pointer mechanism itself

Summary



Overview

- L1: Motivation and survey of auto-tuning/machine learning for compilers
- L2: Program rewriting schemes e-graphs and equality saturation
- L3: Program embeddings and Graph Neural Networks
- L4: Program synthesis and neural synthesis
- L5: Neural Machine Translation, Transformers and Large language models

Bibliography

Surveys

- 1. Wang, Zheng, and Michael O'Boyle. "Machine learning in compiler optimization." Proceedings of the IEEE 106, no. 11 (2018): 1879-1901.
- 2. Allamanis, Miltiadis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. "A survey of machine learning for big code and naturalness." ACM Computing Surveys (CSUR) 51, no. 4 (2018): 1-37.

Papers

- 1. Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).
- 2. Ben-Nun, Tal, Alice Shoshana Jakobovits, and Torsten Hoefler. "Neural code comprehension: A learnable representation of code semantics." Advances in Neural Information Processing Systems 31 (2018).
- 3. Wang, Zheng, Dominik Grewe, and Michael FP O'Boyle. "Automatic and portable mapping of data parallel programs to opencl for gpu-based heterogeneous systems." ACM Transactions on Architecture and Code Optimization (TACO) 11, no. 4 (2014): 1-26.
- 4. Cummins, Chris, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. "End-to-end deep learning of optimization heuristics." In 2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT), pp. 219-232. IEEE, 2017.

Bibliography

- 5. Brauckmann, Alexander, Andrés Goens, Sebastian Ertel, and Jeronimo Castrillon. "Compiler-based graph representations for deep learning models of code." In Proceedings of the 29th International Conference on Compiler Construction, pp. 201-211. 2020.
- 6. Cummins, Chris, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, and Hugh Leather. "Programl: Graph-based deep learning for program optimization and analysis." arXiv preprint arXiv:2003.10536 (2020).
- 7. Brauckmann, Alexander, Andrés Goens, and Jeronimo Castrillon. "ComPy-Learn: A toolbox for exploring machine learning representations for compilers." In 2020 Forum for Specification and Design Languages (FDL), pp. 1-4. IEEE, 2020.
- 8. Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural information processing systems 30 (2017): 5998-6008.
- 9. Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural information processing systems 30 (2017): 5998-6008.

Bibliography

- 10. Hellendoorn, Vincent Josua, Petros Maniatis, Rishabh Singh, Charles Sutton, and David Bieber. "Global relational models of source code." (2020).
- 11. Bieber, David, Charles Sutton, Hugo Larochelle, and Daniel Tarlow. "Learning to execute programs with instruction pointer attention graph neural networks." Advances in Neural Information Processing Systems 33 (2020): 8626-8637.