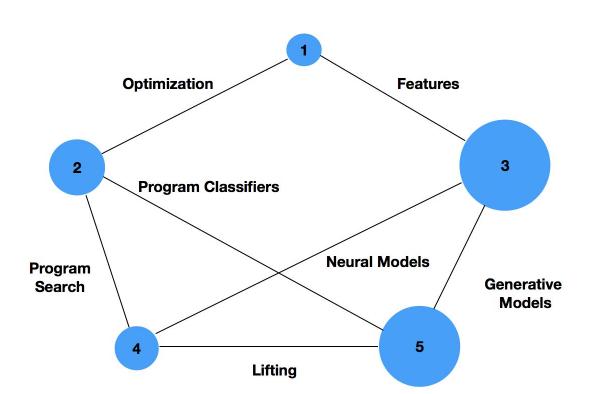
Rethinking Compilation: L4



Agenda

- 1. What is program synthesis?
- 2. Synthesis in compilers context
- 3. Fundamental techniques
- 4. Pruning strategies
- 5. The future
- 6. Bibliography

- Synthesis is NOT:
 - Compilation
 - Machine Learning

According to Solar-Lezama [1]

"Program Synthesis correspond to a class of techniques that are able to generate a program from a collection of artifacts that establish semantic and syntactic requirements for the generated code."

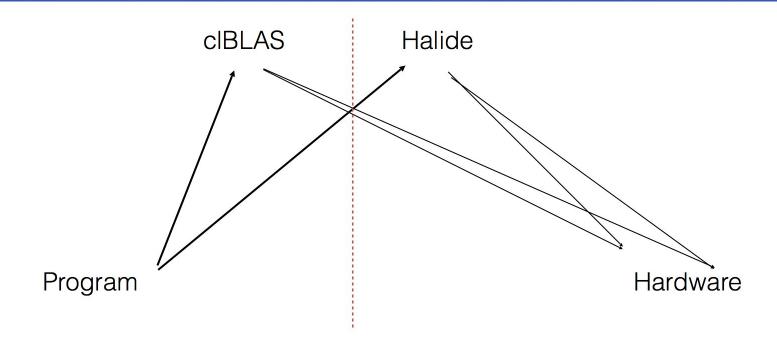
WHERE do we want to automatically generate software?

Program	—————————————————————————————————————
Program	——— OpenCL — Hardware

Hardware

Program → clBLAS — Halide — Halide

LIFT code to API or DSL



Vendor responsibility to map API/DSL to hardware - already the case Our job - automatically lift it to API/DSL enabling hardware utilisation

- WHY IS IT HARD to automatically generate software?
- Writing software:



Demands expertise

Search space is enormous

Hard to ensure correctness

"Program Synthesis correspond to a class of techniques that are able to generate a program from a collection of artifacts that establish semantic and syntactic requirements for the generated code."

Input/Output exs

```
in: [1,2,3,4], [2,5,7,8] out: [5,11,16,20]
```

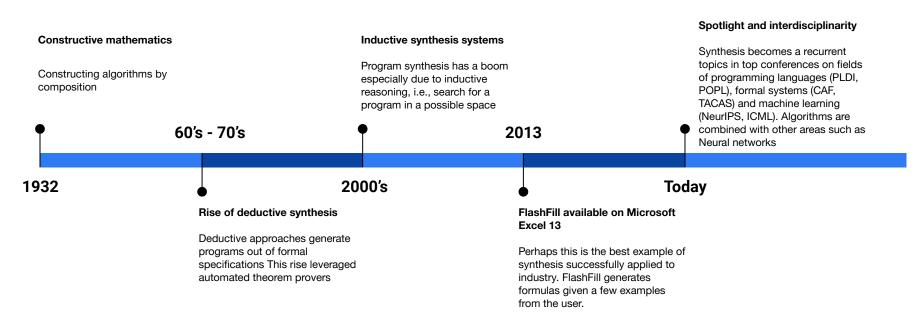
Logic specification

```
post(a, b) \equiv \forall \text{ imin+1} \leq i \leq \text{imax,}

jmin \leq j \leq \text{jmax.}

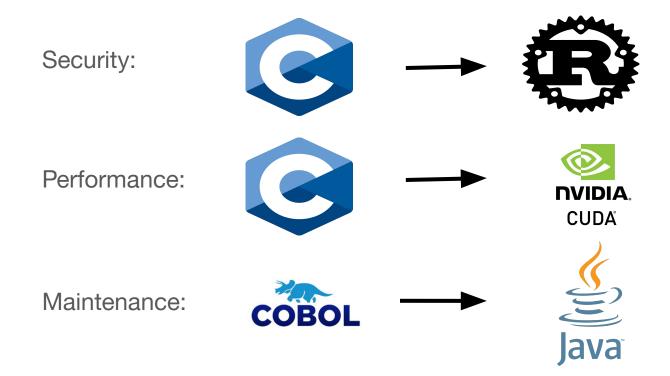
a(i,j) = b(i-1,j) + b(i,j)
```

Grammar

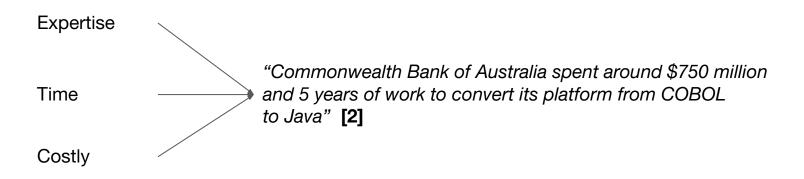


High-level code translation

High-level code translation for:

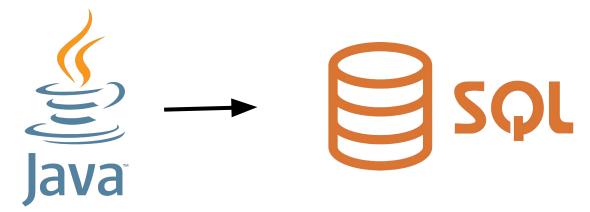


High-level code translation involves



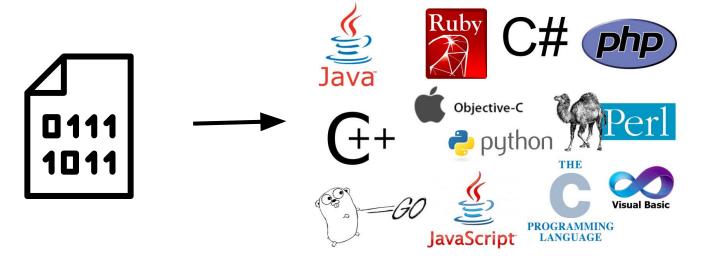
Synthesis can automate tasks

Optimizing Database-Backed Applications with Query Synthesis (PLDI' 2013)
 [3]



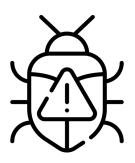
- Synthesis from verification conditions
- Performance obtained

Decompilation

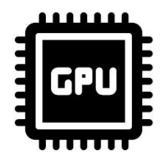


Decompilation:

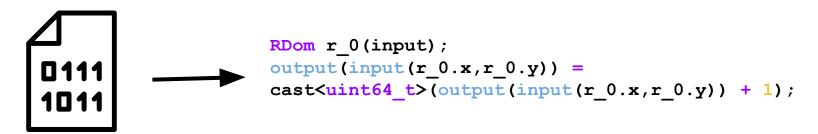
Malware detection:



Port code to new devices:

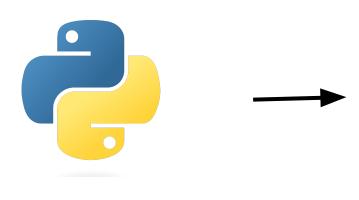


 Helium: Lifting High-Performance Stencil Kernels from Stripped x86 Binaries to Halide DSL Code (PLDI' 2015) [4]



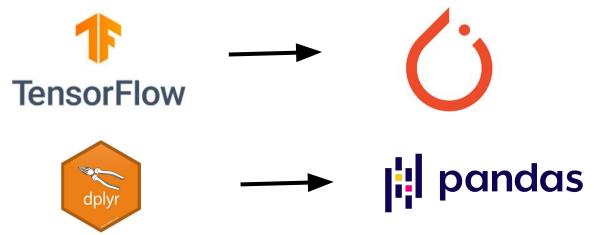
- Synthesis leveraging binary traces
- 75% performance on Adobe PhotoShop

Api migration



- Maintenance
- Usability

SOAR: A Synthesis Approach for Data Science API Refactoring (ICSE' 2021)
 [5]

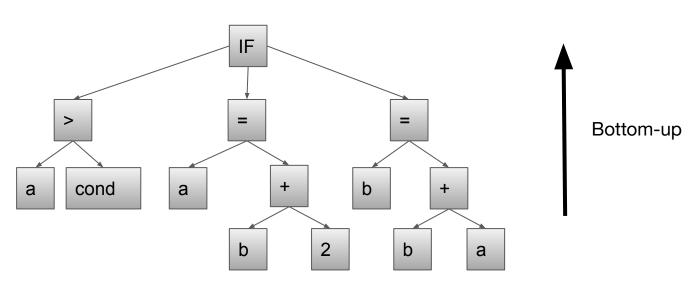


Synthesis with NLP

Fundamental techniques

- Bottom-up search
 - Starts from small constructs
 - Combine them into larger programs

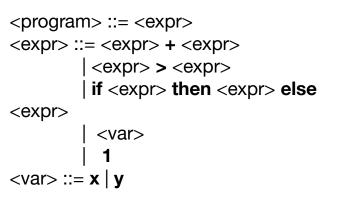
```
if(a > cond) {
   a = b + 2
}else{
   b = b + a
}
```

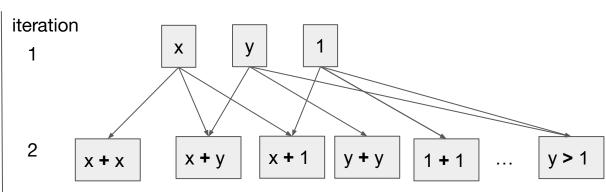


```
Algorithm Bottom-up Enumerative Synthesis
 1: function BOTTOM-UP(grammar, specification)
       c\_list \leftarrow \text{TERMINALS}(grammar)
       while true do
           for r \in RULES(grammar) do
 4:
              c\_list \leftarrow \text{EXPAND}(c\_list, r)
 5:
           end for
           c\_list \leftarrow \text{ELIM\_EQUIVALENTS}(c\_list)
           for c \in c_list do
               if IS\_CORRECT(c, specification) then
9:
                  return c
10:
               end if
11:
           end for
12:
       end while
13:
14: end function
```

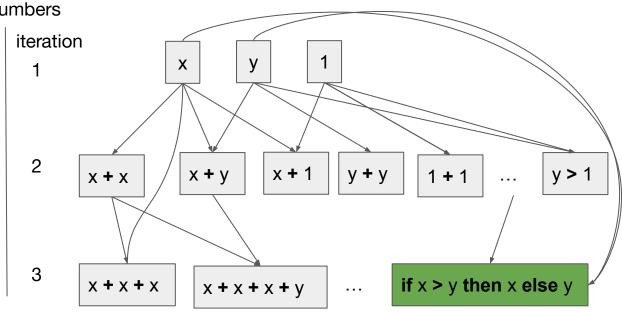
• Find the maximum of two numbers

Find the maximum of two numbers





Find the maximum of two numbers



Pros

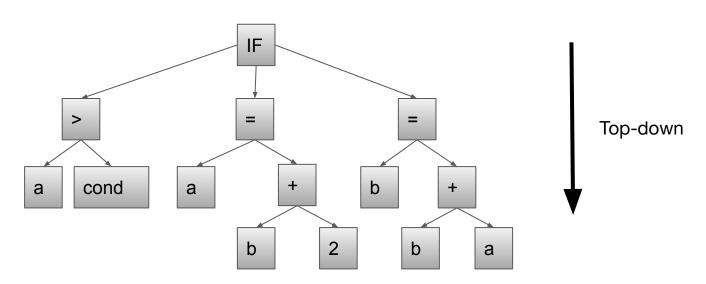
- Simple
- Explores small programs first
- Black-box language building

Cons

- Scalability
- Poor performance for synthesizing constants

- Top-down search
 - Starts from high-level constructs
 - Fill the holes in temporary candidates

```
if(a > cond) {
    a = b + 2
}else{
    b = b + a
}
```



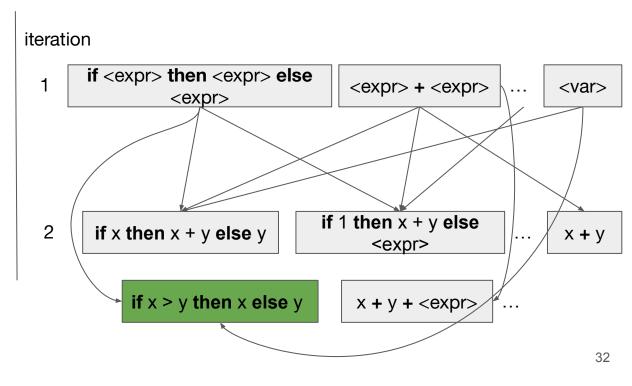
```
Algorithm Top-down Enumerative Synthesis
 1: function TOP-DOWN(grammar, specification)
        c\_list \leftarrow \emptyset
 2:
        r_list \leftarrow \text{RULES}(grammar)
        while true do
           for r \in r\_list do
               for t \in \text{TERMINALS}(qrammar) do
 6:
                   if r can expand to t then
                       c\_list \leftarrow \text{EXPAND}(c\_list, t)
                   end if
 9:
               end for
10:
               for r' \in RULES(grammar) do
11:
                   if r can expand to r' then
12:
                       r\_list \leftarrow \text{EXPAND}(r\_list, r')
13:
                   end if
14:
               end for
15:
            end for
16:
            c\_list \leftarrow \text{ELIM\_EQUIVALENTS}(c\_list)
17:
            for c \in c\_list do
18:
               if IS\_CORRECT(c, specification) then
19:
                   return c
20:
               end if
21:
            end for
22:
        end while
24: end function
```

Find the maximum of two numbers

iteration

```
if <expr> then <expr> else <expr> = <expr
```

Find the maximum of two numbers



Pros

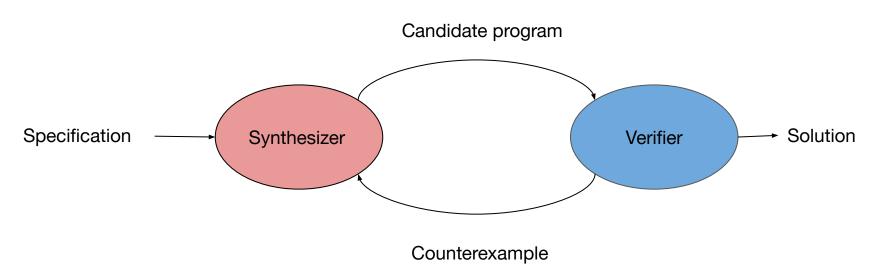
- Efficient with a good initial guess
- Effective when dealing with recursion

Cons

- It is hard to execute temporary programs
- Scalability

Fundamental techniques - CEGIS

- Counterexample Guided Inductive Synthesis [6]
- Synthesizer + Verifier
- Feedback to synthesizer



Fundamental techniques - Verification conditions

- Convert a program into a logical statement:
 - \circ \forall x.Q(x) => program is correct
- Verification conditions (vc's) can be used to synthesize programs
- Given a verification condition, the goal is to synthesize a predicate that makes such a verification valid
- Usually, VC's contain a loop invariant
- A loop invariant is a formula that must hold in every iteration of a loop

Fundamental techniques - Verification conditions

- Verified Lifting of Stencil Computations (PLDI' 2015) [7]
- The goal is to synthesize a verification condition that summarizes the computation above.

```
procedure sten(imin,imax,jmin,jmax,a,b)
  real (kind=8), dimension(imin:imax,jmin:jmax) :: a
  real (kind=8), dimension(imin:imax,jmin:jmax) :: b
  do j=jmin,jmax
    t = b(imin, j)
    do i=imin+1,imax
    q = b(i,j)
    a(i,j) = q + t
    t = q
    enddo
  enddo
end procedure (a)
```

- Verification condition is formed by:
 - Pre-condition
 - Loop invariant
 - Pos-condition

Such that:

- \circ \forall s.pre(s) -> invariant(s)
- ∀ s.invariant(s) ^ cond(s) -> invariant(body(s))
- \circ \forall s.invariant(s) $\land \neg$ cond(s) -> post(s)

- A pre-condition can be obtained by syntax-guided algorithms
 - Pre-condition (outermost loop)

$$I_j(\mathsf{a},\mathsf{b},\mathsf{jmin})$$

- Loop invariant and post-condition must be synthesized
- Verified lifting uses CEGIS with a SMT solver as verifier to find the last two
- Invariant:

Post-condition (outermost loop):

$$invariant(a,b,j) \equiv j \leq jmax + 1 \land \forall imin+1 \leq i \leq imax, jmin \leq j' < j.$$

$$a(i,j') = b(i-1,j') + b(i,j')$$
(c)

$$\begin{array}{c} post(a,b) \equiv \forall \, \text{imin+1} \leq i \leq \text{imax}, \, \text{jmin} \leq j \leq \text{jmax}. \\ a(i,j) = b(i-1,j) + b(i,j) \end{array} \tag{b}$$

 Once loop invariant and post-condition are synthesized, SMT proves that the VC holds

The VC is then translated to the target language

```
int main() {
   ImageParam b(type_of<double>(),2);
   Func func; Var i, j;
   func(i,j) = b(i-1,j) + b(i,j);
   func.compile_to_file("ex1", b);
   return 0; }
   (d)
```

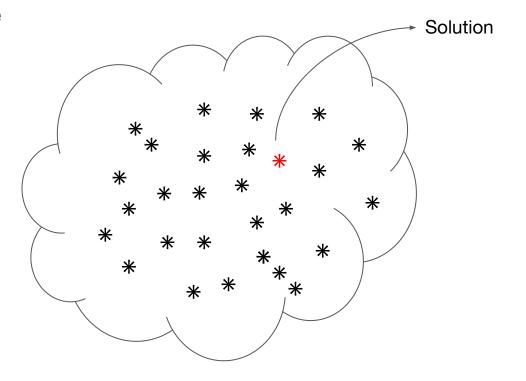
Synthesized code is faster:

Benchmark	Kernel	Halide Speedup	icc Before Speedup	icc After Speedup	Halide GPU Speedup	Halide GPU Speedup (no transfer)	
	akl81	7.44	1.73	4.53	4.09	10.88	
	ak183	4.57	0.95	0.95	3.29	8.27	
	ak184	4.51	0.71	0.94	2.94	7.88	
	ak185	4.05	0.95	0.77	2.68	6.85	
	akl86	4.04	0.97	0.79	2.27	6.00	
	ackl95	4.19	1.00	1.00	1.94	7.47	
	amkl100	3.84	0.93	0.89	1.57	6.72	
	amkl101	3.64	1.01	1.00	1.52	5.44	
	amkl103	3.42	0.93	0.93	1.99	6.77	
	amkl105	3.37	0.98	0.98	1.50	5.17	
	amkl107	3.95	0.94	0.96	2.31	8.71	
	amkl97	4.19	1.00	1.01	1.96	6.98	

- Limitations of verified lifting:
 - Conditional statements
 - Loop invariables that increase non-monotonically
 - Demands a lot of user specification

• Problem: large search space

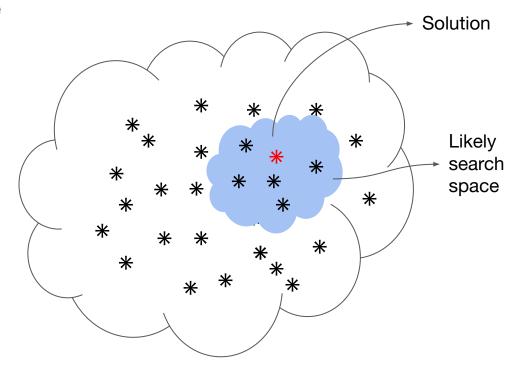
• Brute force is unfeasible



Solution: pruning search space

Several techniques

- Focus on 3:
 - Type-directed
 - Sketch
 - Neural guidance

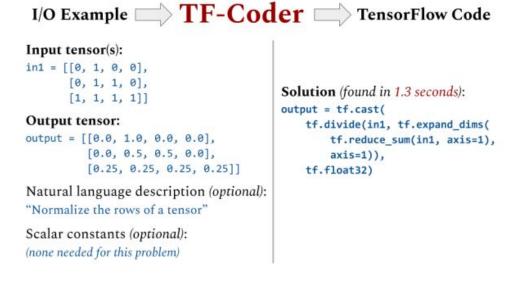


Type-directed synthesis

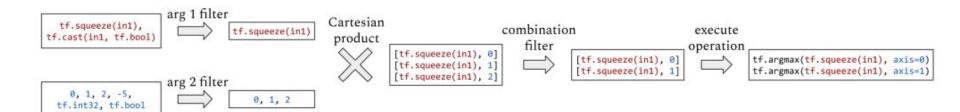
Use type checking to discard candidates

Synthesis looks for compatible programs

 TF-Coder: Program Synthesis for Tensor Manipulations (ACM Transactions on Programming Languages 2021) [8]



- Determine the arguments of TensorFlow API calls
- Type mismatch and compatibility among arguments themselves



Sketch

- Provide a draft of solution
 - Given by user
 - Learnt some preprocessing step

• Synthesizer needs to fill the draft

Program synthesis by sketching. [9]

- Sketch basics:
 - Unknown constants
 - Test harness
 - Generator functions

- Program synthesis by sketching. [9]
- Consider the problem of transposing a 5x5 matrix
- Sketch:

```
int[25] transpose5x5(int[25] mat){
    int[25] out;
    for(int i=0; i<5; ++i) for(int j=0; j<5; ++j){
        out[ ??*i + ??*j + ??] = mat[??*i + ??*j + ??];
    }
    return out;
}</pre>
```

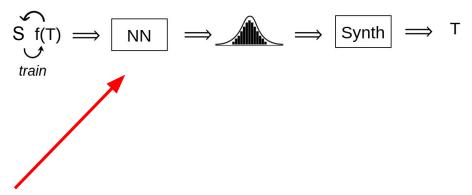
- Expression ??*i + ??*j + ?? is repeated twice
- Generator encompasses the set of possible linear algebra expressions involving i and j

```
generator int legen(int i, int j){
       return ??*i + ??*j + ??;
int[25] transpose5x5(int[25] mat){
        int[25] out;
        for(int i=0; i<5; ++i) for(int j=0; j<5; ++j){
                out[ legen(i,j) ] = mat[ legen(i,j) ];
        return mat;
```

 Each call to the generator will resolve to a different expression, resulting in a correct implementation

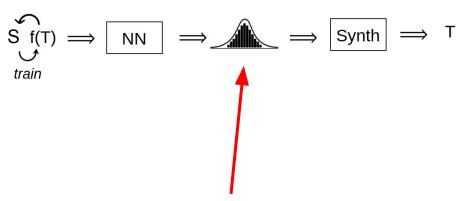
```
int[25] transpose5x5(int[25] mat){
    int[25] out;
    for(int i=0; i<5; ++i) for(int j=0; j<5; ++j){
        out[ 5*i + j ] = mat[ i + 5*j ];
    }
    return mat;
}</pre>
```

Neural-guided synthesis



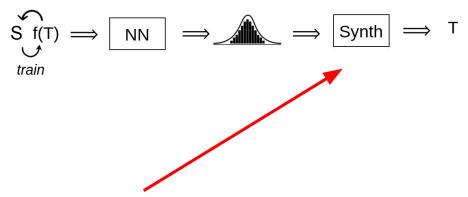
Use of neural networks to help synthesis

Neural-guided synthesis



- Neural network outputs a probability distribution
- Indicates likelihood of tokens in target language

Neural-guided synthesis



Distribution leads the search

Deepcoder: Learn to Write Programs (ICLR 2017) [10]

Maps IO examples to program properties

```
      a \leftarrow [int]
      An input-output example:

      b \leftarrow FILTER (<0) a
      Input:

      c \leftarrow MAP (*4) b
      [-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]

      d \leftarrow SORT c
      Output:

      e \leftarrow REVERSE d
      [-12, -20, -32, -36, -68]
```

```
An input-output example:
 a \leftarrow [int]
b \leftarrow FILTER (<0) a
                         Input:
                        [-17, -3, 4, 11, 0, -5, -9, 13, 6, 6, -8, 11]
 c \leftarrow MAP (*4) b
 d \leftarrow SORT c
                       Output:
 e \leftarrow REVERSE d
                         [-12, -20, -32, -36, -68]
                                                                 MIN MAX COUNT
 (*2)
(/2)
(/2)
(*2)
(*3)
(*3)
(/3)
(/4)
(/4)
(>0)
(>0)
HEAD
(>0)
HEAD
HEAD
HEAD
CAST
MAP
FILTER
SORT
TAKE
DROP
ACCESS
ZIPWITH
SCANL1
```

- Deepcoder uses Depth-First Search
- Extends programs based on the probabilities
- Speedup on search

Table 1: Search speedups on programs of length T=3 due to using neural network predictions.

Timeout needed to solve	DFS		Enumeration		λ^2			Sketch		Beam		
	20%	40%	60%	20%	40%	60%	20%	40%	60%	20%	40%	20%
Baseline	41ms	126ms	314ms	80ms	335ms	861ms	18.9s	49.6s	84.2s	$>10^{3}s$	$>10^{3}s$	$>10^{3}s$
DeepCoder	2.7ms	33ms	110ms	1.3ms	6.1ms	27ms	0.23s	0.52s	13.5s	2.13s	455s	292s
Speedup	$15.2 \times$	$3.9 \times$	$2.9 \times$	$62.2 \times$	$54.6 \times$	$31.5 \times$	$80.4 \times$	94.6×	$6.2 \times$	${>}467\times$	$\mathbf{>}2.2\times$	$>$ 3.4 \times

- Limitations of neural-guided synthesis
 - Performance of synthesizer depends on the model
 - Therefore, it depends on the quality of training data
 - Languages targeted are still domain-specific/small
 - Need to find the most relevant features

The future

The future

- Sketching = how to find the best initial sketch?
- Machine Learning + Synthesis
- Loop invariants
- How to strength verification?
- How to generate good specifications (IO)?

Summary

- Program synthesis emerge as a technique to generate programs automatically with more control to the user
- As computers evolve, the inductive approach has risen as the main synthesis method
- Formal verification and machine learning incorporated into synthesis
- Challenges for the future include finding the best starting point and handle more complex languages and domains

Overview

- L1: Motivation and brief survey of auto-tuning/machine learning for compilers
- L2: Program rewriting schemes e-graphs and equality saturation
- L3: Program embeddings and Graph Neural Networks
- This lecture: Program synthesis and neural synthesis
- Next L5: Neural Machine Translation, Transformers and Large language models

Bibliography

Survey:

• GULWANI, Sumit et al: **Program synthesis**. Foundations and Trends® in Programming Languages, v. 4, n. 1-2, p. 1-119, 2017.

Papers

- 1. Armando Solar-Lezama: Introduction to Program Synthesis. Lecture Notes. 2018
- 2. Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, Guillaume Lample: **Unsupervised Translation of Programming Languages**. NeurlPS 2020
- 3. Alvin Cheung, Armando Solar-Lezama, Samuel Madden: **Optimizing Database-Backed Applications with Query Synthesis**. PLDI 2013
- 4. Charith Mendis, Jeffrey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan Ragan-Kelley, Sylvain Paris, Qin Zhao, Saman P. Amarasinghe: **Helium: lifting high-performance stencil kernels from stripped x86 binaries to halide DSL code**. PLDI 2015
- 5. Ansong Ni, Daniel Ramos, Aidan Z. H. Yang, Inês Lynce, Vasco M. Manquinho, Ruben Martins, Claire Le Goues: **SOAR: A Synthesis Approach for Data Science API Refactoring**. ICSE 2021
- 6. Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia, Vijay A. Saraswat: **Combinatorial sketching for finite programs**. ASPLOS 2006

Bibliography

- 7. Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, Armando Solar-Lezama: **Verified lifting of stencil computations**. PLDI 2016
- 8. Kensen Shi, David Bieber, Rishabh Singh: **TF-Coder: Program Synthesis for Tensor Manipulations**. ACM Trans. Program. Lang. Syst. 44(2): 10:1-10:36 (2022)
- 9. Armando Solar-Lezama: **Program Synthesis By Sketching**. Ph.D. Thesis. University of California, Berkeley 2008
- 10. Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, Daniel Tarlow: **DeepCoder: Learning to Write Programs.** ICLR 2017