A polynomial-time approximation algorithm
for the permanent of a matrix
with non-negative entries*

Mark Jerrum? Alistair Sinclair? Eric Vigoda$

June 27, 2003

Abstract

We present a polynomial-time randomized algorithm for estimating
the permanent of an arbitrary n X n matrix with non-negative en-
tries. This algorithm — technically a “fully-polynomial randomized
approximation scheme” — computes an approximation that is, with
high probability, within arbitrarily small specified relative error of the
true value of the permanent.

*This work was partially supported by the EPSRC Research Grant “Sharper Analysis
of Randomised Algorithms: a Computational Approach” and by NSF grants CCR-982095
and ECS-9873086. For most of this work, the third author was with the University of
Edinburgh. Part of the work was done while the first and third authors were guests of
the Forschungsinstitut fiir Mathematik, ETH, Ziirich, Switzerland. A preliminary version
of this paper appeared in Proceedings of the 33rd ACM Symposium on the Theory of
Computing, July 2001, pp. 712-721.

¥School of Informatics, University of Edinburgh, The King’s Buildings, Edinburgh
EH9 3JZ, United Kingdom. Email: mrj@dcs.ed.ac.uk

{Computer Science Division, University of California at Berkeley, Berkeley, CA 94720-
1776, USA. Email: sinclair@cs.berkeley.edu

$Department of Computer Science, University of Chicago, Chicago, IL 60637, USA.
Email: vigoda@cs.uchicago.edu

1 Problem description and history

The permanent of an n X n non-negative matrix A = (a(i,5)) is defined as
per(4) =) [ali, a(@),
[

where the sum is over all permutations o of {1,2,...,n}. When A4 is a
0,1 matrix, we can view it as the adjacency matrix of a bipartite graph
Ga = (V1,Vo, E). Tt is clear that the permanent of A is then equal to the
number of perfect matchings in G 4.

The evaluation of the permanent has attracted the attention of researchers
for almost two centuries, beginning with the memoirs of Binet and Cauchy
in 1812 (see [20] for a comprehensive history). Despite many attempts, an
efficient algorithm for general matrices has proved elusive. Indeed, Ryser’s
algorithm [22] remains the most efficient for computing the permanent ex-
actly, even though it uses as many as ©(n2") arithmetic operations. A no-
table breakthrough was achieved about 40 years ago with the publication of
Kasteleyn’s algorithm for counting perfect matchings in planar graphs [15],
which uses just O(n3) arithmetic operations.

This lack of progress was explained in 1979 by Valiant [26], who proved
that exact computation of the permanent is #P-complete, and hence (under
standard complexity-theoretic assumptions) not possible in polynomial time.
Since then the focus has shifted to efficient approximation algorithms with
precise performance guarantees. Essentially the best one can wish for is a
fully-polynomial randomized approximation scheme (fpras), which provides
an arbitrarily close approximation in time that depends only polynomially
on the input size and the desired error. (For precise definitions of this and
other notions, see the next section.)

Of the several approaches to designing an fpras that have been proposed,
perhaps the most promising has been the “Markov chain Monte Carlo” ap-
proach. This takes as its starting point the observation that the existence
of an fpras for the 0,1 permanent is computationally equivalent to the exis-
tence of a polynomial time algorithm for sampling perfect matchings from
a bipartite graph (almost) uniformly at random [13].

Broder [4] proposed a Markov chain Monte Carlo method for sampling
perfect matchings. This was based on simulation of a Markov chain whose
state space consists of all perfect and “near-perfect” matchings (i.e., match-
ings with two uncovered vertices, or “holes”) in the graph, and whose sta-
tionary distribution is uniform. This approach can be effective only when
the near-perfect matchings do not outnumber the perfect matchings by more

than a polynomial factor. By analyzing the convergence rate of Broder’s
Markov chain, Jerrum and Sinclair [10] showed that the method works in
polynomial time whenever this condition is satisfied. This led to an fpras
for the permanent of several interesting classes of 0,1 matrices, including all
dense matrices and a.e. random matrix.

For the past decade, an fpras for the permanent of arbitrary 0,1 matrices
has resisted the efforts of researchers. There has been similarly little progress
on proving the converse conjecture, that the permanent is hard to approx-
imate in the worst case. Attention has switched to two complementary
questions: how quickly can the permanent be approximated within an arbi-
trarily close multiplicative factor; and what is the best approximation factor
achievable in polynomial time? Jerrum and Vazirani [14], building upon the
work of Jerrum and Sinclair, presented an approximation algorithm whose
running time is exp(O(y/n)), which though substantially better than Ryser’s
exact algorithm is still exponential time. In the complementary direction,
there are several polynomial time algorithms that achieve an approximation
factor of ¢”, for various constants c (see, e.g., [18, 3]). To date the best of
these is due to Barvinok [3], and gives ¢ = 1.31 (see also [5]).

In this paper, we resolve the question of the existence of an fpras for
the permanent of a general 0,1-matrix (and indeed, of a general matrix with
non-negative entries!) in the affirmative. Our algorithm is based on a refine-
ment of the Markov chain Monte Carlo method mentioned above. The key
ingredient is the weighting of near-perfect matchings in the stationary distri-
bution so as to take account of the positions of the holes. With this device,
it is possible to arrange that each hole pattern has equal aggregated weight,
and hence that the perfect matchings are not dominated too much. The
resulting Markov chain is a variant of Broder’s earlier one, with a Metropo-
lis rule that handles the weights. The analysis of the mixing time follows
the earlier argument of Jerrum and Sinclair [10], except that the presence
of the weights necessitates a combinatorially more delicate application of
the path-counting technology introduced in [10]. The computation of the
required hole weights presents an additional challenge which is handled by
starting with the complete graph (in which everything is trivial) and slowly
reducing the presence of matchings containing non-edges of G, computing
the required hole weights as this process evolves.

We conclude this introductory section with a statement of the main result

' As explained later (see §7), we cannot hope to handle matrices with negative entries
as an efficient approximation algorithm for this case would allow one to compute the
permanent of a 0,1 matrix exactly in polynomial time.

of the paper.

Theorem 1 There exists a fully-polynomial randomized approzimation
scheme for the permanent of an arbitrary n X n matriz A with non-negative
entries.

The remainder of the paper is organized as follows. In §2 we summarize the
necessary background concerning the connection between random sampling
and counting, and the Markov chain Monte Carlo method. In §3 we define
the Markov chain we will use and present the overall structure of the al-
gorithm, including the computation of hole weights. In §4 we analyze the
Markov chain and show that it is rapidly mixing; this is the most technical
section of the paper. Section 5 completes the proof of Theorem 1 by detailing
the procedure by which the random matchings produced by Markov chain
simulation are used to estimate the number of perfect matchings in G4, and
hence the permanent of the associated 0,1-matrix A; this material is rou-
tine, but is included for completeness. At this point, the running time of our
fpras as a function of n is 6(n11); in §6 the dependence on n is reduced to
5(n10) by using “warm starts” of the Markov chain.? Finally, in §7 we show
how to extend the algorithm to handle matrices with arbitrary non-negative
entries, and in §8 we observe some applications to constructing an fpras for
various other combinatorial enumeration problems.

2 Random sampling and Markov chains

This section provides basic information on the use of rapidly mixing Markov
chains to sample combinatorial structures, in this instance, perfect match-
ings.

2.1 Random sampling

As stated in the Introduction, our goal is a fully-polynomial randomized
approximation scheme (fpras) for the permanent. This is a randomized al-
gorithm which, when given as input an n X n non-negative matrix A together
with an accuracy parameter € € (0, 1], outputs a number Z (a random vari-
able of the coins tossed by the algorithm) such that?

Prle °Z < per(4) < e°Z] > 3,

2The notation O(-) ignores logarithmic factors, and not merely constants.
3The relative error is usually specified as 14 ¢. We use e** (which differs only slightly
from 1 + ¢) for algebraic convenience.

and which runs in time polynomial in n and e~!. The probability 3/4 can
be increased to 1 — § for any desired § > 0 by outputting the median of
O(log 6—1) independent trials [13].

To construct an fpras, we will follow a well-trodden path via random
sampling. We focus on the 0,1 case; see §7 for an extension to the case
of matrices with general non-negative entries. Recall that when A is a 0,1
matrix, per(A) is equal to the number of perfect matchings in the bipartite
graph G4. Now it is well known — see for example [12] — that for this
and most other natural combinatorial counting problems, an fpras can be
built quite easily from an algorithm that generates the same combinatorial
objects, in this case perfect matchings, (almost) uniformly at random. It will
therefore be sufficient for us to construct a fully-polynomial almost uniform
sampler for perfect matchings, namely a randomized algorithm which, given
as inputs an n x n 0,1 matrix A and a bias parameter ¢ € (0, 1], outputs a
random perfect matching in G4 from a distribution U’ that satisfies

diy (U, U) <6,

where U is the uniform distribution on perfect matchings of G4 and diy,
denotes (total) variation distance.* The algorithm is required to run in time
polynomial in n and log §~!. For completeness, we will flesh out the details
of the reduction to random sampling in §5.

The bulk of this paper will be devoted to the construction of a fully-
polynomial almost uniform sampler for perfect matchings in an arbitrary bi-
partite graph. The sampler will be based on simulation of a suitable Markov
chain, whose state space includes all perfect matchings in the graph G4
and which converges to a stationary distribution that is uniform over these
matchings.

2.2 Markov chains

Consider a Markov chain with finite state space 2 and transition probabili-
ties P. In our application, states are matchings in G 4, and we use M, M’
to denote generic elements of 2. The Markov chain is irreducible if for every
pair of states M, M’ €), there exists a ¢ > 0 such that P*(M,M’) > 0
(i.e., all states communicate); it is aperiodic if ged{t : P{(M,M') > 0} =1
for all M, M' € Q. It is well known from the classical theory that an irre-
ducible, aperiodic Markov chain converges to a unique stationary distribu-
tion m over (0, i.e., PY(M, M') — n(M') as t — oo for all M’ € Q, regardless

4The total variation distance between two distributions , # on a finite set Q is defined
as diy (1, 7) = 5 3, cq |7(x) — 7(2)| = maxsca |7(S) — 7(S)].

Set & « 0/(12n2 + 3).
Repeat T = [(6n2 + 2)In(3/4)] times:
Simulate the Markov chain for 7(§) steps;
output the final state if it belongs to M and halt.

Output an arbitrary perfect matching if all trials fail.
Figure 1: Obtaining an almost uniform sampler from the Markov chain.

of the initial state M. If there exists a probability distribution 7 on 2 which
satisfies the detailed balance conditions for all M, M' € Q, i.e.,

n(M)P(M,M'") = n(M"\P(M',M) =: Q(M, M'),

then the chain is said to be (time-)reversible and 7 is a stationary distribu-
tion.

We are interested in the rate at which a Markov chain converges to
its stationary distribution. To this end, we define the mizing time (from
state M) to be

7(6) = 7;m(6) = min {t : dyy (P*(M,-),7) < 4}

When the Markov chain is used as a random sampler, the mixing time deter-
mines the number of simulation steps needed before a sample is produced.

In this paper, the state space Q of the Markov chain will consist of the
perfect and “near-perfect” matchings (i.e., those that leave only two un-
covered vertices, or “holes”) in the bipartite graph G4 with n + n vertices.
The stationary distribution 7 will be uniform over the set of perfect match-
ings M, and will assign probability 7(M) > 1/(4n? + 1) to M. Thus we
get an almost uniform sampler for perfect matchings by iterating the follow-
ing trial: simulate the chain for 73/(8) steps (where § is a sufficiently small
positive number), starting from some appropriate state M,> and output the
final state if it belongs to M. The details are given in Figure 1.

Lemma 2 The algorithm presented in Figure 1 is an almost uniform sam-
pler for perfect matchings with bias parameter §.

% As we shall, see a state is “appropriate” unless it has exceptionally low probability in
the stationary distribution. Except on a few occasions when we need to call attention to
the particular initial state, we may safely drop the subscript to 7.

Proof. Let & be the distribution of the final state of a single simulation
of the Markov chain; note that the length of simulation is chosen so that
diy (7r,m) < 4. Let S C M be an arbitrary set of perfect matchings, and let
M € M be the perfect matching that is eventually output. (M is a random
variable depending on the random choices made by the algorithm). The
result follows from the chain of inequalities:

Pr(M € 5) > 5 — (1- #(M))"
m(8) -4 oxn(—s
> M) 43 p(—7(M)T)
(S) 26 :
> S wo SR M) = H))
oomS) 2 8
~aM) 3 3

A matching bound Pr(M € S) < #(S)/n(M) + § follows immediately by
considering the complementary set M \ S. (Recall that the total variation
distance diy (7,) between distributions 7 and 7 may be interpreted as the
maximum of |7(S) — #(S)| over all events S.) O

The running time of the random sampler is determined by the mixing
time of the Markov chain. We will derive an upper bound on 7(d) as a
function of n and 6. To satisfy the requirements of a fully-polynomial sam-
pler, this bound must be polynomial in n. (The logarithmic dependence
on 6! is an automatic consequence of the geometric convergence of the
chain.) Accordingly, we shall call the Markov chain rapidly mizing (from
initial state z) if, for any fixed § > 0, 7(J) is bounded above by a polynomial
function of n. Note that in general the size of 2 will be exponential in n, so
rapid mixing requires that the chain be close to stationarity after visiting
only a tiny (random) fraction of its state space.

In order to bound the mixing time we define a multicommodity flow in
the underlying graph of the Markov chain and bound its associated con-
gestion. The graph of interest is Gp = (Q, Ep), where Ep := {(M,M') :
P(M,M') > 0} denotes the set of possible transitions.5 For all ordered
pairs (I, F) € Q2 of “initial” and “final” states, let P; p denote a collec-
tion of simple directed paths in Gp from I to F. In this paper, we call

6Al‘chough Gp is formally a directed graph, its edges occur in anti-parallel pairs, by
time-reversibility.

frr:Prr— R* a flow from I to F if the following holds:

Z frp(p) = w(I)m(F).

pEPI,F

A flow for the entire Markov chain is a collection f = {f;r : I,F € Q} of
individual flows, one for each pair I, F' € 2. Our aim is to design a flow f
which has small congestion o, defined as

o=o(f) = B (1)

where

1
ot = m Z Z fr,r(p) Ipl, (2)

L,FeQ p:tepEPrF

and |p| denotes the length of (i.e., number of edges contained within) the
path p. Here Q(t) = Q(M,M') = n(M)P(M, M"), as defined earlier.

The following bound relating congestion and mixing time is standard; the
version presented here is due to Sinclair [24], building on work of Diaconis
and Stroock [7].

Theorem 3 For an ergodic, reversible Markov chain with self-loop proba-
bilities P(M, M) > 1/2 for all states M, and any initial state My € €,

2o (8) < o (Inm(Mp) ™' +Ind™Y),

Thus to prove rapid mixing it suffices to demonstrate a flow with an
upper bound of the form poly(n) on its congestion for our Markov chain on
matchings. (The term In7(Mp) ! will not cause a problem, since the total
number of states will be at most (n + 1)!, and we will start in a state M
that maximizes m(Mp).)

3 The sampling algorithm

As explained in the previous section, our goal now is to design an efficient
(almost) uniform sampling algorithm for perfect matchings in a bipartite
graph G = G 4. This will, through standard considerations spelled out
in §5, yield an fpras for the permanent of an arbitrary 0,1 matrix, and hence
Theorem 1. The (easy) extension to matrices with arbitrary non-negative
entries is described in §7.

G W@ol

Figure 2: A graph with | M (u,v)|/|M| exponentially large.

o

k hexagons

Let G = (V4, V3, E) be a bipartite graph on n + n vertices. The basis
of our algorithm is a Markov chain MC defined on the collection of perfect
and near-perfect matchings of G. Let M denote the set of perfect match-
ings in G, and let M(u,v) denote the set of near-perfect matchings with
holes only at the vertices u € V7 and v € V,. The state space of MC is
Q:=MuUl,, M(u,v). Previous work [4, 10] considered a Markov chain
with the same state space (2 and transition probabilities designed so that
the stationary distribution was uniform over €2, or assigned slightly higher
weight to each perfect matching than to each near-perfect matching. Rapid
mixing of this chain immediately yields an efficient sampling algorithm pro-
vided perfect matchings have sufficiently large weight; specifically, |M|/|Q]
must be bounded below by a inverse polynomial in n. In [10] it was proved
that this condition — rather surprisingly — is also sufficient to imply that
the Markov chain is rapidly mixing. This led to an fpras for the permanent
of any 0,1 matrix satisfying the above condition, including all dense ma-
trices (having at least n/2 1’s in each row and column), and a.e.” (almost
every) random matrix [10], as well as matrices corresponding to vertex tran-
sitive graphs (including regular lattices, an important case for applications
in statistical physics) [16].

On the other hand, it is not hard to construct graphs in which, for some
pair of holes u, v, the ratio | M(u,v)|/| M| is exponentially large. The graph
depicted in Figure 2, for example, has one perfect matching, but 2¥ match-
ings with holes at u and v. For such graphs, the above approach breaks
down because the perfect matchings have insufficient weight in the station-
ary distribution. To overcome this problem, we will introduce an additional
weight factor that takes account of the holes in near-perfect matchings. We
will define these weights in such a way that any hole pattern (including that
with no holes, i.e., perfect matchings) is equally likely in the stationary dis-
tribution. Since there are only n2+ 1 such patterns, 7 will assign probability
Q(1/n2) in total to perfect matchings.

It will actually prove technically convenient to introduce edge weights
also. Thus for each edge (u,v) € F, we introduce a positive weight A(u,v),

"Le., the proportion of matrices that are covered by the fpras tends to 1 as n — oo.

which we call its activity. We extend the notion of activities to match-
ings M (of any cardinality) by A(M) =][,)em Au,v). Similarly, for a
set of matchings S we define A\(S) = Y ,,c5 A(M).® For our purposes, the
advantage of edge weights is that they allow us to work with the complete
graph on n+n vertices, rather than with an arbitrary graph G = (V1, Vs, E):
we can do this by setting A(e) =1 for e € E, and AMe) = ~ 0 for e ¢ E.
Taking & < 1/n! ensures that the “bogus” matchings have little effect, as
will be described shortly.

We are now ready to specify the desired stationary distribution of our
Markov chain. This will be the distribution 7 over Q defined by n(M)
A(M), where

AM)w(u,v) if M € M(u,v) for some u,v;

A | (3
(M), if M € M.

A(M) = {

and w : V; x V5 — R™ is the weight function for holes to be specified shortly.

To construct a Markov chain having 7 as its stationary distribution,
we use a slight variant of the original chain of [4, 10] augmented with a
Metropolis acceptance rule for the transitions. (The chain has been modified
in order to save a factor of n from its mixing time on the complete bipartite
graph.) The transitions from a matching M are defined as follows:

1. If M € M, choose an edge e = (u,v) uniformly at random from M;
set M' = M \ e.

2. If M € M(u,v), choose z uniformly at random from V; U V5.

(i) if z € {u,v} and (u,v) € E, let M' = M U (u,v);

(ii) if z € Vo, (u,2) € E and (z,2) € M, let M' = M U (u,2) \ (z, 2);
(iii) if z € V1, (2,v) € E and (2,y) € M, let M' = M U (z,v) \ (2,9);
(iv) otherwise, let M’ = M.

3. With probability min{1, A(M")/A(M)} go to M'; otherwise, stay at M.

Thus the non-null transitions are of three types: remowving an edge from
a perfect matching (case 1); adding an edge to a near-perfect matching
(case 2(i)); and ezchanging an edge of a near-perfect matching with another
edge adjacent to one of its holes (cases 2(ii) and 2(iii)).

8Note that if we set A(u, v) equal to the matrix entry a(u,v) for every edge (u,v), then
per(A) is exactly equal to A(M). Thus our definition is natural.

10

The proposal probabilities defined in steps 1 and 2 for selecting the can-
didate matching M’ are symmetric, being 1/n in the case of moves between
perfect and near-perfect matchings, and 1/2n between near-perfect match-
ings. This fact, combined with the Metropolis rule for accepting the move
to M' applied in step 3, ensures that the Markov chain is reversible with
m(M) < A(M) as its stationary distribution. Finally, to satisfy the con-
ditions of Theorem 3 we add a self-loop probability of 1/2 to every state;
i.e., on every step, with probability 1/2 we make a transition as above and
otherwise do nothing.

Next we need to specify the weight function w. Ideally we would like to
take w = w*, where
_ M) (4)
AM(u,v))
for each pair of holes u,v with M(u,v) # 0. (We leave w(u,v) undefined
when M(u,v) = 0.) With this choice of weights, any hole pattern (including
that with no holes) is equally likely under the distribution 7; since there are
at most n? + 1 such patterns, when sampling from the distribution 7 a
perfect matching is generated with probability at least 1/(n? + 1). In the
event, we will not know w* exactly but will content ourselves with weights w
satisfying

w*(u,v) =

w*(u,0)/2 < w(u,v) < 2w (u,v), (5)

with very high probability. This perturbation will reduce the relative weight
of perfect matchings by at most a constant factor.

The main technical result of this paper is the following theorem, which
says that, provided the weight function w satisfies condition (5), the Markov
chain is rapidly mixing. The theorem will be proved in the next section.

Theorem 4 Assuming the weight function w satisfies inequality (5) for all
(u,v) € Vi x Vo with M(u,v) # 0, then the mizing time of the Markov
chain MC is bounded above by Tpr(6) = O(n®(In(1/m(M)) +logd')).

Finally we need to address the issue of computing (approximations to)
the weights w* defined in (4). Since w* encapsulates detailed information
about the set of perfect and near-perfect matchings, we cannot expect to
compute it directly for our desired edge activities A(e). Rather than attempt
this, we instead initialize the edge activities to trivial values, for which the
corresponding w* can be computed easily, and then gradually adjust the
A(e) towards their desired values; at each step of this process, we will be
able to compute (approximations to) the weights w* corresponding to the
new activities.

11

Recall that we work with the complete graph on n 4+ n vertices, and
assign an activity of 1 to all edges e € E (i.e., all edges of our graph G),
and ultimately a very small value 1/n! to all “non-edges” e ¢ E. Since the
weight of an invalid matching (i.e., one that includes a non-edge) is at most
1/n! and there are at most n! possible matchings, the combined weight of
all invalid matchings is at most 1. Assuming the graph has at least one
perfect matching, the invalid matchings merely increase by at most a small
constant factor the probability that a single simulation fails to return a
perfect matching. Thus our “target” activities are Ag(e) =1 for all e € E,
and Ag(e) = 1/n! for all other e.

As noted above, our algorithm begins with activities A whose ideal
weights w* are easy to compute. Since we are working with the com-
plete graph, a natural choice is to set A(e) = 1 for all e. The activities
of edges e € FE will remain at 1 throughout; the activities of non-edges
e ¢ E will converge to their target values Ag(e) = 1/n! in a sequence
of phases, in each of which, for some vertex v, the activities A\(e) for all
non-edges e ¢ E which are incident to v are updated to M(e), where
exp(—1/2)A(e) < XN(e) < exp(1/2)A(e). (In this application, we only ever
need to reduce the activities, and never increase them, but the added gen-
erality costs us nothing.)

We assume at the beginning of the phase that condition (5) is satisfied;
in other words, w(u,v) approximates w*(u,v) within ratio 2 for all pairs
(u,v).? Before updating an activity, we must consolidate our position by
finding, for each pair (u,v), a better approximation to w*(u,v): one that is
within ratio ¢ for some 1 < ¢ < 2. (We shall see later that ¢ = 6/5 suffices
here.) For this purpose we may use the identity

w(u,v) w(M(u,v))
w*(u,v) w(M) (6)

since w(u,v) is known to us and the probabilities on the right hand side
may be estimated to arbitrary precision by taking sample averages. (Recall
that m denotes the stationary distribution of the Markov chain.)

Although we do not know how to sample from 7 exactly, Theorem 4 does
allow us to sample, in polynomial time, from a distribution 7 that is within
variation distance § of 7. We shall see presently that setting § = O(n~2)
suffices in the current situation; certainly, the exact value of § clearly does
not affect the leading term in the mixing time promised by Theorem 4. So
suppose we generate S samples from 7, and for each pair (u,v) € Vi x Vo

9We say that & approzimates x© within ratio r if 71z < € < r.

12

we consider the proportion a(u,v) of samples with hole pair u, v, together
with the proportion « of samples that are perfect matchings. Clearly,

Ea(u,v) = #*(M(u,v)) and Ea=a(M). (7

Naturally, it is always possible that some sample average a(u,v) will be
far from its expectation, so we have to allow for the possibility of failure.
We denote by 7 the (small) failure probability we are prepared to toler-
ate. Provided the sample size S is large enough, a(u,v) (respectively, «)
approximates 7 (M (u,v)) (respectively, #(M)) within ratio ¢!/%, with prob-
ability at least 1 — 7. Furthermore, if § is small enough, #(M(u,v)) (re-
spectively, 7(M)) approximates 7(M(u,v)) (respectively, m(M)) within ra-
tio ¢'/4. Then via (6) we have, with probability at least 1 — (n? + 1)#,
approximations within ratio ¢ to all of the target weights w*(u,v).

It remains to determine bounds on the sample size S and sampling tol-
erance § that make this all work. Condition (5) entails

R 1

Ea(u,v) = #(M(u,v)) > n(M(u,v)) —§ > 1) d.
Assuming § < 1/8(n? + 1), it follows from any of the standard Chernoff
bounds (see, e.g., [2] or [21, Thms 4.1 & 4.2]), that O(n?log(1/%)) samples
from # suffice to estimate Ea(u,v) = #(M(u,v)) within ratio ¢'/* with
probability at least 1 —#. Again using the fact that (M (u,v)) > 1/4(n? +
1), we see that #(M(u,v)) will approximate =(M(u,v)) within ratio ¢'/4
provided § < ¢;/n? where ¢; > 0 is a sufficiently small constant. (Note that
we also satisfy the earlier constraint on ¢ by this setting.) Therefore, taking
¢ = 6/5 and using S = O(n?log(1/%)) samples, we obtain refined estimates
w(u,v) satisfying

Sw*(u,v)/6 < w(u,v) < 6w*(u,v)/5 (8)

with probability 1—(n?+1)7. Plugging § = c¢1/n? into Theorem 4, the num-
ber of steps required to generate each sample is T = O(n logn), provided we
use a starting state that is reasonably likely in the stationary distribution;
and the total time to update all the weights w(u,v) is O(n®log nlog(1/9)).

We can then update the activity of all non-edges e incident at a common
vertex v by changing A(e) by a multiplicative factor of exp(—1/2). Since a
matching contains at most one edge incident to v, the effect of this updating
on the ideal weight function w* is at most a factor exp(1/2). Thus, since
6exp(1/2)/5 < 2, our estimates w obeying (8) actually satisfy the weaker

13

Initialize A(u,v) < 1 for all (u,v) € Vi x Va.
Initialize w(u,v) < n for all (u,v) € Vi x Va.
While there exists a pair y, z with A(y, z) > Ag(y, z) do:
Take a sample of size S from MC with parameters A\, w,
using a simulation of T steps in each case.
Use the sample to obtain estimates w'(u,v) satisfying
condition (8), for all u, v, with high probability.
Set A(y,v) + max{A(y,v)exp(—1/2), Ag(y,v)}, for all v € V5,
and w(u,v) < w'(u,v) for all u,v.
Output the final weights w(u,v).

Figure 3: The algorithm for approximating the ideal weights.

condition (5) for the new activities as well, so we can proceed with the next
phase. The algorithm is sketched in Figure 3.

Starting from the trivial values A(e) = 1 for all edges e of the complete
bipartite graph, we use the above procedure repeatedly to reduce the activity
of each non-edge e ¢ E down to 1/n!, leaving the activities of all edges e € E
at unity. This entire process requires O(n?logn) phases, since there are n
vertices in V7, and O(logn!) = O(nlogn) phases are required to reduce the
activities of edges incident at each of these vertices to their final values.
We have seen that each phase takes time O(n®lognlog(1/74)). Thus the
overall running time of the algorithm for computing approximate weights is
O(n''(logn)?1og(1/4)). Tt only remains to choose 7.

Recall that 7 is the failure probability on each occasion that we use
a sample mean to estimate an expectation. If we are to achieve overall
failure probability 5 then we must set 7 = O(n/(n*logn)), since there are
O(n*logn) individual estimates to make in total. Thus

Lemma 5 The algorithm of Figure 3 finds approzimations w(-,-) within a
constant ratio of the ideal weights w(-,-) associated with the desired activ-
ities Aq in time O(n'!(logn)?(logn + logn™")), with failure probability 7.

Although it is not a primary aim of this paper to push exponents down
as far as possible, we note that it is possible to reduce the running time
in Lemma 5 from O(n!!) to O(n!'®) using a standard artifice. We have
seen that the number of simulation steps to generate a sample is at most
T = O(n" logn), if we start from, say, a perfect matching My of maximum
activity. However, after generating an initial sample M for a phase, we are

14

only observing the hole pattern of M. Thus the matching M is still random
with respect to its hole pattern. By starting our Markov chain from this
previous sample M, we have what is known as a “warm start,” in which
case generating a sample requires only O(n®) simulation steps. We expand
on this point in §6.

Suppose our aim is to generate one perfect matching from a distribution
that is within variation distance § of uniform. Then we need to set 7 so
that the overall failure probability is strictly less than §, say n = 6/2. At
the conclusion of the initialization algorithm, we have a good approxima-
tion to the ideal weights wg, for our desired activities Ag. We can then
simply simulate the Markov chain with these parameters to generate perfect
matchings from a distribution within variation distance §/2 of uniform. By
Theorem 4 the (expected) additional time required to generate such a sam-
ple is O(n®(nlogn + logd 1)), which is negligible in comparison with the
initialization procedure. (The extra factor n? represents the expected num-
ber of samples before a perfect matching is seen.) If we are interested in the
worst-case time to generate a perfect matching, we can see from Lemma 2
that it will be O(n8(nlogn + logé~!)log §~1). Again, this is dominated by
the initialization procedure. Indeed the domination is so great that we could
generate a sample of 6(n2) perfect matchings in essentially the same time
bound. Again, all time bounds may be reduced by a factor 6(n) by using
warm starts.

4 Analysis of the Markov chain

Our goal in this section is to prove our main technical result on the mixing
time of the Markov chain M, Theorem 4. Following Theorem 3, we can
get an upper bound on the mixing time by defining a flow and bounding
its congestion. To do this, we shall use technology introduced in [10], and
since applied successfully in several other examples. The idea in its basic
form is to define a canonical path v; r from each state I € €) to every other
state F' € , so that no transition carries an undue burden of paths. These
canonical paths then define the flow f; r for all ordered pairs (I, F') by simply
setting f1 p(vr,r) = 7(I)m(F). By upper bounding the maximum number
of such paths that pass through any particular transition, one obtains an
upper bound on the congestion created by such a flow.

In the current application we can significantly reduce the technical com-
plexity of this last step by defining canonical paths only for states I € N :=
Q\M to states in F' € M, i.e., from near-perfect to perfect matchings. Thus

15

only flows from I € N to F € M will be defined directly. Flows from I € M
to F € N can safely be routed along the reversals of the canonical paths,
by time-reversibility. Flows from I to F' with I, F € N will be routed via a
random state M € M using the canonical path 7 ps and the reversal of the
path v ar. Flows with I, F € M will similarly be routed through a random
state M € N. Provided — as is the case here — both A and M have non-
negligible probability, the congestion of the flow thus defined will not be too
much greater than that of the canonical paths. This part of the argument is
given quantitative expression in Lemma 9, towards the end of the section.
First, though, we proceed to define the set I' = {y; r : (I,F) € N x M} of
canonical paths and bound its congestion.

The canonical paths are defined by superimposing I and F'. Since I €
M(y, z) for some (y,z) € V1 x Vs, and F € M we see that I @ F consists of a
collection of alternating cycles together with a single alternating path from
1 to z. We assume that the cycles are ordered in some canonical fashion; for
example, having ordered the vertices, we may take as the first cycle the one
that contains the least vertex in the order, as the second cycle the one that
contains the least vertex amongst those remaining, and so on. Furthermore
we assume that each cycle has a distinguished start vertex (e.g., the least
in the order). The canonical path 7; p from I to F is obtained by first
“unwinding” the path and then “unwinding” the cycles in the canonical
order.

For convenience, denote by ~ the relation between vertices of being
connected by an edge in G. The alternating path y =wvg ~ ... ~ v9p41 = 2
is unwound by: (i) successively, for each 0 < i < k — 1, exchanging the
edge (vg;,v92i+1) for the edge (v2it1,v2i+2); and finally (ii) adding the edge
(vok; Vok+1)-

A cycle vg ~ v1 ~ ... ~ Vo, = v, Where we assume w.l.o.g. that the
edge (vp,v1) belongs to I, is unwound by: (i) removing the edge (vg,v1);
(ii) successively, for each 1 <4 < k — 1, exchanging the edge (vo;_1, v9;) for
the edge (v9;,v2;+1); and finally (iii) adding the edge (vox_1,v9r). (Refer to
Figure 4.)

For each transition ¢ denote by

cp(t) = {(I, F) : y1,r contains ¢ as a transition}

the set of canonical paths using that transition. We define the congestion
of I' as

L
o(T) := m?x{ m (I,F)Z@p(t) w(I)7(F) }, (9)

16

B o \v2 N \w/\
— — — /vs'vﬁ\/ NS

Figure 4: Unwinding a cycle with k = 4.

where L is an upper bound on the length |y7 r| of any canonical path, and ¢
ranges over all transitions. This is consistent with our earlier definition (2)
when each flow f ¢ is supported on the canonical path 7 i, and the canon-
ical paths are restricted to pairs (I, F) € N' x M.

Our main task will be to derive an upper bound on p(I"), which we state
in the next lemma. From this, it will be a straightforward matter to obtain
a flow for all I, F € with a suitable upper bound on its congestion (see
Lemma 9 below) and hence, via Theorem 3, a bound on the mixing time.

Lemma 6 Assuming the weight function w satisfies inequality (5) for all
(u,v) € V1 x Va, then o(T) < 48n*.

In preparation for proving Lemma 6, we establish some combinatorial
inequalities concerning weighted matchings with at most four holes that
will be used in the proof. These inequalities are generalizations of those
used in [16]. Before stating the inequalities, we need to extend our earlier
definitions to matchings with four holes. For distinct vertices u,y € V;
and v,z € Vs, let M(u,v,y,z) denote the set of matchings whose holes are
exactly the vertices u,v,y, z. For M € M(u,v,y, z), let w(M) = w(u,v,y, 2)
where

w(u,v,y,2) = w(u,0,y,2) :== AM)/A(M(u,,y, 2))-

Since the four-hole matchings are merely a tool in our analysis, we can set
w = w* for these hole patterns. We also set A(M) = A(M)w(u,v,y, 2).

Lemma 7 Let G be as above, and let u,y,y € Vi and v,z,2" € V5 be
distinct vertices. Suppose that u ~v. Then

(i) Alu, 0)A(M(u,v)) < A(M);
(ii) Alu, V)A(M(u,v,y,2)) < A(M(y,2));
(i) A(u, v)A(M(u, 2))A(M(y,v)) < AM)AM(y,2)); and

17

(i) A, V)AM(u, 2,5, 2)AM(y,v)) < MM, 2))AMM(y, 2))
+AM(Y, 2)) MM (y,).

Proof. The mapping from M (u,v,y,2) to M(y,z), or from M(u,v) to M,
defined by M — M U {(u,v)} is injective, and preserves activities modulo a
factor A(u,v); this observation dispenses with (i) and (ii).

Part (iii) is essentially a degenerate version of (iv), so we’ll deal with the
latter first. Our basic strategy is to define an injective map

M(u, 2,y 2') x M(y,v) = (M(y',2) x M(y,2)) U(M(y',2) x M(y,2))

that preserves activities. Suppose M, ;. . € M(u,z,y',7') and My, €
M(y,v), and consider the superposition of M, , . ,», M, and the single
edge (u,v). Observe that M, ,, » © My, @ {(u,v)} decomposes into a
collection of cycles together with either: a pair of even-length paths, one
joining y to 3’ and the other joining z to z’; or a pair of odd-length paths, one
joining y to z (respectively 2') and the other joining ¢’ to 2’ (respectively z).1°

First, consider the case of a pair of even-length paths. Let II be the path
that joins z to 2/, and let IT = {eg, e1,...,e9; 1} be an enumeration of the
edges of I, starting at z. Note that II is necessarily the path that contains
the edge {u,v}. (The edges ey and eg;_1 come from the same matching,
M, ,. Parity dictates that II cannot be a single alternating path, so it must
be composed of two such, joined by the edge {u,v}.) Denote by IIj the
k even edges of II, and by II; the £ odd edges. Finally define a mapping
from M(u, z,y',2") x M(y,v) to M(y',2") x M(y, z) by (My 4 o1, My) —
(Myl’zl, My,z)a where Myl’zl = Mu,z,y’,z’UHO\Hl and My,z = My,vUﬂl\Ho.

Now consider the case of odd-length paths. Let II be the path with
one endpoint at y. (Note that this must be the path that contains the
edge {u,v}.) The other endpoint of II may be either z or z’; we’ll assume
the former, as the other case is symmetrical. Let II = {eg,e1,...,ea} be
an enumeration of the edges of this path (the direction is immaterial) and
denote by IIy the k 4+ 1 even edges, and by II; the k odd edges. Finally
define a mapping from M(u, z,y',2") x M(y,v) to M(y',2") x M(y, z) by
(Mu,z,y’,z’aMy,v) —> (Myf,zl,My,z), where My = My, 0 Ul \ II; and
My, := My, UII; \ Ip. (If the path II joins y to 2’ then, using the same
construction, we end up with a pair of matchings from M(y', z) x M(y, 2').)

Note that this mapping is injective, since we may uniquely recover the
pair (My ;4 21, My o) from (M, 1, My). To see this, observe that M, ,» @

101t is at this point that we rely crucially on the bipartiteness of G. If G is non-bipartite,
we may end up with an even-length path, an odd-length path and an odd-length cycle
containing » and v, and the proof cannot proceed.

18

M, , decomposes into a number of cycles, together with either a pair of odd-
length paths or a pair of even-length paths. These paths are exactly those
paths considered in the forward map. There is only one way to apportion
edges from these paths (with edge (u,v) removed) between M, ,, » and
M, . Moreover, the mapping preserves activities modulo a factor A(u,v).
Part (iii) is similar to (iv), but simpler. There is only one path, which is
of odd length and joins y and z. The construction from part (iii) does not
refer to the path ending at ¢/, and can be applied to this situation too. The
result is a pair of matchings from M x M(y, z), as required. O

Corollary 8 Let G be as above, and let u,y,y" € Vi and v,z,2' € V3 be
distinct vertices. Suppose u ~ v, and also y' ~ z' whenever the latter pair
appears. Then, provided in each case that the left hand side of the inequality
is defined:

(i) w*(u,v) > A(u,v);
(i) w*(u,v,y,z) > AMu,v)w*(y, 2);
(15i) w*(u, z)w*(y,v) > AMu,v)w*(y, z); and
(i) 2w*(u,2',y, 2)w*(y',v) > Au,v) Ay, 2)w*(y, 2).
Proof. Inequalities (i), (ii) and (iii) follow directly from the correspondingly
labelled inequalities in Lemma 7, and the definition of w*.

Inequality (iv) can be verified as follows. From inequality (iv) in Lemma 7,
we know that either

2w (u, 2, y, 2)w* (y',v) 2 A, v)w” (y, 2)w" (¥,) (10)
or
2w (u, 2, y, 2)w* (y',v) > Au, v)w” (y, 2")w (¥, 2). (11)

(We have swapped the roles of the primed and unprimed vertices, which
have the same status as far as Lemma 7 is concerned.) In the first instance,
inequality (iv) of the current lemma follows from inequalities (10) and (i);
in the second, from (11) and (iii). O

Armed with Corollary 8, we can now turn to the proof of our main
lemma.

Proof of Lemma 6. Recall that transitions are defined by a two-step proce-
dure: a move is first proposed, and then either accepted or rejected according

19

to the Metropolis rule. Each of the possible proposals is made with probabil-
ity at least 1/4n. (The proposal involves either selecting one of the n edges
or 2n vertices u.a.r.; however, with probability % we do not even get as far
as making a proposal.) Thus for any pair of states M, M’ such that the
probability of transition from M to M’ is non-zero, we have

P(M, M') > % min { ’/‘&((ﬁ')) , 1} ,

or

min{A(M), A(M")} < dn A(M)P(M, M'). (12)

Define Q' := QUUU,U’%Z M(u,v,y, z), where, as usual, u, y range over V;
and v,z over V5. Also define, for any collection S of matchings, A(S) :=
Y mes AM(M). Provided u,v,y, 2 is a realizable four-hole pattern, i.e., pro-
vided M(u,v,y, z) is non-empty, A(M(u,v,y,z)) = A(M); this is a conse-
quence of setting w(u,v,y, z) to the ideal weight w*(u,v,y, z) for all four-
hole patterns. Likewise, $A(M) < A(M(u,v)) < 2A(M), provided u,v
is a realizable two-hole pattern; this is a consequence of inequality (5).
Moreover, it is a combinatorial fact that the number of realizable four-hole
patterns exceeds the number of realizable two-hole patterns by at most a
factor 3(n—1)?. (Each realizable four-hole pattern contains at least two real-
izable two-hole patterns, while each realizable two-hole pattern is contained
in at most (n — 1)? four-hole patterns.) It follows from these considerations
that A(Q)/A(Q) < n?.

Recall n(M) = A(M)/A(2). We will show that for any transition ¢ =
(M, M') and any pair of states I,F € cp(t), we can define an encoding
m(I,F) € ' such that 7, : cp(t) — Q' is an injection (i.e., (I, F) can be
recovered uniquely from ¢ and (I, F)), and

ADA(F) < 8min{A(M), A(M')}A(m(I, F)). (13)
In the light of (12), this inequality would imply
AA(F) < 32n A(M)P(M,M")A(n(1, F)). (14)

Summing inequality (14) over (I, F') € cp(t), where ¢t = (M, M') is a most

TN LN LN /

. s TN N

I M M F nouy(L, F)

Figure 5: A canonical path through transition M — M’ and its encoding.

congested transition, we get
L
MF%=665 Y, wDx(F)
(I,F)ecp(t)

AQ)L A(D)A(F)
~ AMP(M, M) >

(I,F)ecp(t)

g% S A1)
(1,F)€cp(t)
48n2A(QY)
- A9
< 48n*, (15)

where we have used the following observations: canonical paths have maxi-
mum length 3n/2 (the worst case being the unwinding of a cycle of length
four), n; is an injection, and A(Q') < n?A(Q). Note that (15) is indeed the
sought-for bound on o(T).

We now proceed to define the encoding 7; and show that it has the
required properties, specifically that it is injective and satisfies (13). Recall
that there are three stages to the unwinding of an alternating cycle: (i) the
initial transition creates a pair of holes; (ii) the intermediate transitions
swap edges to move one of the holes round the cycle; and (iii) the final
transition adds an edge to plug the two holes. For an intermediate transition
t = (M, M') in the unwinding of an alternating cycle, the encoding is

n([,F) =18 F @& MUM)\{(v,v)}

(Refer to Figure 5, where just a single alternating cycle is viewed in isola-
tion.) In all other cases (initial or final transitions in the unwinding of an
alternating cycle, or any transition in the unwinding of the unique alternat-
ing path), the encoding is

mw(I,F)=I1&F & (MuUM).

21

It is not hard to check that C' = n,(I, F') is always a matching in Q (this is the
reason that the edge (vg,v1) is removed in the first case above), and that 7, is
an injection. To see this for the first case, note that I @ F' may be recovered
from the identity I & F = (C U {(vg,v1)}) & (M U M'); the apportioning of
edges between I and F' can then be deduced from the canonical ordering of
the cycles and the particular edges swapped by transition . The remaining
edges, namely those in the intersection I N F', are determined by I N F =
M N M'NC. The second case is similar, but without the need to reinstate
the edge (vg,v1).!! Tt therefore remains only to verify inequality (13) for
our encoding 7.

For the remainder of the proof, let y,z denote the holes of I, i.e., I €
M(y, z) where y € V1 and z € V,. Consider first the case where t = (M, M")
is the initial transition in the unwinding of an alternating cycle, where M =
M' U {(vg,v1)}. Since I,C € M(y,z), M,F € M and M' € M(vg,v1),
inequality (13) simplifies to

MIDA(F) < 8min{A\(M), \(M")w(vg,v1)} A(C).-
The inequality in this form can be seen to follow from the identity
MDAF) = AM)X(C) = MM')X(vo, v1)A(C),

using inequality (i) of Corollary 8, together with inequality (5). (There is a
factor 4 to spare: this is not the critical case.) The situation is symmetric
for the final transition in the unwinding of an alternating cycle.

Consider now an intermediate transition ¢ = (M, M') in the unwind-
ing of an alternating cycle, say one that exchanges edge (vo;,v2;+1) with
(v2i—1,v2;). In this case we have I € M(y,z), F € M, M € M(vg,v2;-1),
M' € M(vg,v2;41) and C € M(vg;, 1,9y, 2). Since

)\(I))\(F) = A(M)/\(C)A(’UQZ',Ugi_l)A(’Uo,’m)
= MM)AN(C)A(v2i, v2i41)A(vo, v1),

inequality (13) becomes

w(y,2) < Smin{w(vo,’vm—ﬂ w(vo, V2i4+1) } w(vo;,v1, Y, 2)

A2, v2i-1) " Mv2i, v2i41) A(vo, v1)

1We have implicitly assumed here that we know whether it is a path or a cycle that is
currently being processed. In fact, it is not automatic that we can distinguish these two
possibilities just by looking at M, M’ and C. However, by choosing the start points for
cycles and paths carefully, the two cases can be disambiguated: just choose the start point
of cycles first, and then use the freedom in the choice of endpoint of the path to avoid the
potential ambiguity.

22

This inequality can be verified by reference to Corollary 8: specifically, it
follows from inequality (iv) in the general case ¢ # 1, and by a paired
application of inequalities (ii) and (i) in the special case i = 1, when vertices
v1 and v9;_; coincide. Note that the constant 8 = 23 is determined by this
case (and a succeeding one), and arises from the need to apply inequality (5)
twice, combined with the factor 2 in (iv).

We now turn to the unique alternating path. Consider any transition
t = (M, M') in the unwinding of the alternating path, except for the final
one; such a transition exchanges edge (vy;,v9;4+1) for (ve;to,v2i+1). Observe
that I € M(y,z), F € M, M € M(vy,z), M' € M(vait2,2) and C €
M(y,02i+1). Moreover,)\(I))\(F) =)\(M))\(C))\(Ugi,UQi+1) =)\(MI)/\(C) X
A(v2i42,v2i+1). In inequality (13) we are left with

w(vo;, 2) w(v2i42, 2) }w(y vsie1)
b 7 b

w(y, z) < 8min ,
(v:2) {)\('U%a'UZH—l) AMv2it2, V2it1)

which holds by inequality (iii) of Corollary 8 in the general case, and by
inequality (i) in the special case i = 0 when vy; and y coincide.

The final case is the last transition ¢ = (M, M') in the unwinding
of an alternating path, where M’ = M U {(vo,2)}. Note that I,C €
M(y,z), F,M' € M, M € M(vag,z) and MI)A(F) = MM")A(C) =
A(M)XNC)A(vgk, z). Plugging these into inequality (13) leaves us with

[w(vog, 2) }
1<8miny ——,1;,
n {)\(’ng,Z)

which follows from inequality (i) of Corollary 8.
We have thus shown that the encoding 7; satisfies inequality (13) in all
cases. This completes the proof of Lemma 6. O

Recall that our aim is the design of a flow fr r for all I, F' € 2 with small
congestion. The canonical paths I' we have defined provide an obvious way
of routing flow from a near-perfect matching I to perfect matching F. We
now show how to extend this flow to all pairs of states with only a modest
increase in congestion. The following lemma is similar in spirit to one used
by Schweinsberg [23].

Lemma 9 Denoting by N := Q\ M the set of near-perfect matchings, there
exists a flow f in MC with congestion

o < 244 (200 + 5D o),

where o(f) is as defined in (1).

23

Proof. Our aim is to route flow between arbitrary pairs of states I, F' along
composite paths obtained by concatenating canonical paths from I". First
some notation. For a pair of simple paths p; and po such that the final
vertex of p; matches the initial vertex of po, let p; o po denote the simple
path resulting from concatenating p; and ps and removing any cycles. Also
define p to be the reversal of path p.

The flow frr from I to F' is determined by the location of the initial
and final states I and F'. There are four cases:

e If] € N and F € M then use the direct path from I'. That is
Pr.r ={v1,r}, and frrp(p) = 7(I)w(F) for the unique path p € Pr p.

e If] € M and F € N then use the reversal of the path yp s from T'.
That is Prr = {F1,r}, and frr(p) = 7(I)w(F) for the unique path
pE 'P[’F.

e If T € N and F € N then route flow through a random state X € M.
So Pr,r = {px : X € M}, where px = vr,x o Vrx, and frr(px) =
7([)w(F)m(X)/m(M). (We regard the paths in P; r as being labelled
by the intermediate state X, so that two elements of Pr r are distin-
guishable even if they happen to be equal as paths.)

e If] € M and F € M then route flow through a random state X € N.

So Pr.r = {px : X € N}, where px = Jx,1 o vx,r, and frr(px) =
m([)m(F)m(X)/7(N).

It is immediate in all cases that > f1,r(p) = w(I)7(F), where the sum is
over all p € Py F.

Let t = (M, M') be a most congested transition under the flow f just
defined, and recall that Q(t) = 7(M)P(M,M'). Then

1
o(f) = m Z Z fr,r(p) |pl.

I,LFEQ p: tepePr,

Decompose ¢(f) into contributions from each of the above four types of
paths, by writing

o(f) = o(fx.m) + o(fmn) + o(fnn) + o(frm)s

where)
o(fx.m) = 0@ Z Z fr,e(p) Ipl;

IeN ,FeEM p:tepePrr

24

etc.

Recall that cp(t) denotes the set of pairs (I,F) € N x M such that
the canonical path from I to F passes along ¢. Letting L be the maximum
length of any canonical path in T,

L
o(favm) < m Z Z fr,r(p)

IeEN,FEM p:tepePrr

= o(I).

Likewise, by time reversibility, o(fa,n7) < o(I'). Furthermore,

o) <= S S el

Q(t) IEN ,FEN p:tepePr p

2L
< w Z Z Z fr.r(p)

IEN,FEN XeM p:t€p=v1 x°VF,x

2L m(Dm(F)m(X
c2f s g D

Q) (I,X)ecp(t) FEN (M)

m(Dw(F)m(X)
+ _—
(F,X%:p(t) g/ m(M)
47(N)

=M o(T).

Likewise,

o(fmm) <) o(T).

Putting the four inequalities together, the claimed bound on congestion
follows. O

Our main result, Theorem 4 of the previous section, now follows imme-
diately:

Proof of Theorem 4. The theorem follows from Lemma 6, Lemma 9, Theo-
rem 3, and the fact that 7(N)/7(M) = O(n?). O

25

It is perhaps worth remarking, for the benefit of those familiar with Dia-
conis and Saloff-Coste’s comparison argument [6], that the proof of Lemma 9
could be viewed as comparing the Markov chain MC against the random
walk in a complete bipartite graph.

5 Using samples to estimate the permanent

For convenience, we adopt the graph-theoretic view of the permanent of a
0, 1-matrix as the number of perfect matchings in an associated bipartite
graph G. From Lemma 2 and Theorem 4 we know how to sample perfect
matchings from an almost uniform distribution. Now, Broder [4] has demon-
strated how an almost uniform sampler for perfect matchings in a bipartite
graph may be converted into an fpras. Indeed, our Theorem 1 (the existence
of an fpras for the permanent of a 0,1-matrix) follows from Lemma 2 and
Theorem 4 via Broder’s Corollary 5. Nevertheless, with a view to making
the article self contained, and at the same time deriving an explicit upper
bound on running time, we present in this section an explicit proof of Theo-
rem 1. Our proposed method for estimating the number of perfect matchings
in G given an efficient sampling procedure is entirely standard (see, e.g., [9,
§3.2]), but we are able to curb the running time by tailoring the method to
our particular situation.

So suppose G is a bipartite graph on n + n vertices and that we want to
estimate the number of perfect matchings in G within ratio e*¢, for some
specified € > 0. Recall that the initialization procedure of §3 converges to
suitable hole-weights w(-,-) through a sequence of phases. In phase i, a
number of samples are obtained using Markov chain simulation with edge-
activities \;_1(+,-) (say) and corresponding hole-weights w;_1(-,-). At the
beginning, before phase 1, Ag is the constant function 1, and w(u,v) = n
for every hole-pair u,v. Between one phase and the next, the weights and
activities change by small factors; ultimately, after the final phase r, the
activity A(u,v) is 1 if (u,v) is an edge of G, and a very small value otherwise.
The number of phases is 7 = O(n?logn).

Let A; be the weight function associated with the pair (\;, w;) through
definition (3). The quantity A;(Q2) = 37 ,,cq Ai(M) is a “partition function”
for weighted matchings after the ith phase. Initially, Ag(Q) = (n? + 1)n!;
while, at termination, A, () is roughly n? + 1 times the number of perfect
matchings in G. Considering the “telescoping product”

Al (Q) A2(Q) Ar Q2

Al = 2@ @) * @ A @ i

26

we see that we may obtain a rough estimate for the number of perfect
matchings in G by estimating in turn each of the ratios A;41(Q2)/A;(Q2). We
now explain how this is done.

Assume that the initialization procedure runs successfully, so that (5)
holds at every phase. (We shall absorb the small failure probability of the
initialization phase into the overall failure probability of the fpras.) Observe
that the rule for updating the activities from A; to A;41, together with the
constraints on the weights w; and w;;1 specified in (5), ensure

41—6 < A&%}%) < de, forall M €. (17)
Thus we are in good shape to estimate the various ratios in (16) by Monte
Carlo sampling. The final task is to improve this rough estimate to a more
accurate one.
Let m; denote the stationary distribution of the Markov chain used in
phase i + 1, so that m;(M) = A;(M)/A;(R2). Let Z; denote the r.v. which is
the outcome of the following experiment:

By running the Markov chain M(C of §3 with parameters A = A;
and § = ¢/80e%r, obtain a sample matching M from a distribution
that is within variation distance £/80er of m;.

Return A1 (M)/A;(M).

If we had sampled M from the exact stationary distribution ; instead of
an approximation, then the resulting modified r.v. Z; would have satisfied

/ Ai(M) Air (M) A1 (Q)
=D 0@ LOD C A©)

As it is, noting the particular choice for § and bounds (17), and using the
fact that e /4 <1 — %m <1+ %:1: <eltfor0<z< 1, we must settle for

£\ Airi(©)
£ <EZ <
47~) nQ) S

e\ Airi(©)
eXp(P(4r) Q)
Now suppose s independent trials are conducted for each % using the above
experiment, and denote by Z; the sample mean of the results. Then E Z; =
E Z; (obviously), and

exp (—Z) ﬁggg; <E(ZoZy...Z,1) <exp (Z)

27

For s sufficiently large, [], Z; will be close to [[; E Z; with high proba-
bility. With a view to quantifying “sufficiently large”, observe that in the
light of (17),

Var [71] < E

(EZ)? ™ s
Thus taking s = O(re~2) we get

Var(Zo ... Zy_1] 1:[1 EZ

]

(E Z;)?

EZo... Zr1]))? +4

— VarZ
— 1+ ——) -
s (E Z;)

So, by Chebyshev’s inequality,

Pr [e*5/4JE(ZO...ZT_1) <Zo...Zooy <EEZy. . Zy)] > ==, (19)

assuming the constant implicit in the setting s = ©(re~2) is chosen appro-
priately. Combining inequalities (18) and (19) with the fact that A¢(Q2) =
(n? 4+ 1)n! we obtain

Pr[e™/2A,(9) < (0 +)0t Zo.... Zoy < e2A,(Q)] > % (20)
Denote by Mg C M the set of perfect matchings in the graph G. In-
equality (20) provides an effective estimator for A, (f2), already yielding a
rough estimate for |[Mg|. The final step is to improve the accuracy of this
estimate to within ratio e™®, as required. Observe that A,(M) = 1 for any
matching M € Mg, so that A,(Mg) is equal to the number of perfect
matchings in G. Consider the following experiment:

By running the Markov chain MC' of §3 with parameters A = A,
and § = £/80¢?, obtain a sample matching M from a distribution
that is within variation distance £/80e? of ;.

Return 1 if M € Mg, and 0 otherwise.

28

The outcome of this experiment is a random variable that we denote by Y.
If M had been sampled from the exact stationary distribution =, then its
expectation would have been A, (M¢g)/A(f2); as it is, we have

exp(6) % <EY <exp (Z) Ar(Mg)

4

A ()
Let Y denote the sample mean of s’ = O(n?%¢~?) independent trials of the
above experiment. Since EY = EY = Q(n~2), Chebyshev’s inequality gives

- - .1
Prle “*EY <Y <e¢MEY] > -,

as before. Combining this with (20), we get

Pr [|Ma| < (n? + DtV ZoZ, ... Zy 1 < €| M| > %
All this was under the assumption that the initialization procedure suc-
ceeded. But provided we arrange for the failure probability of initialization
to be at most 1/12, it will be seen that (n? + 1)n!Y ZoZ;...Z,_1 is an
estimator for the permanent that meets the specification of an fpras.

In total the above procedure requires rs+s’ = O(e~2n*(logn)?) samples;
by Theorem 4, O(n” logn) time is sufficient to generate each sample. (Since
there is no point in setting € = o(1/n!), the logd~! term in Theorem 4 can
never dominate.) The running time is thus O(e 2n'!(logn)®). Note that
this is sufficient to absorb the cost of the initialization procedure as well,
which by Lemma 5 is O(n!!(logn)3).

6 Reducing the running time
by using “warm starts”

In this article, we have concentrated on simplicity of presentation, rather
than squeezing the degree of the polynomial bounding the running time.
However, a fairly simple (and standard) observation allows us to reduce the
dependence on 7 from O(n!'') — which was the situation at the end of the
previous section — to O(n'0).

The observation is this. We use Markov chain simulation to generate
samples from a distribution close to the stationary distribution. These sam-
ples are used to estimate the expectation E f of some function f : Q — R*.
The estimator for E f is naturally enough the mean of f over the sample.

29

By restarting the Markov chain MC before generating each sample, we en-
sure that the samples are independent. This allows the performance of the
estimator to be analysed using classical Chebyshev and Chernoff bounds.
The down-side is that we must wait the full mixing time of MC between
samples.

However, it is known that once a Markov chain has reached near-stationarity
it is possible to draw samples at a faster rate than that indicated by the mix-
ing time; this “resampling time” is proportional to the inverse spectral gap
of the Markov chain. Although the samples are no longer independent, they
are as good as independent for many purposes. In particular, there exist
versions of the Chernoff and Chebyshev bounds that are adapted to exactly
this setting. Versions of the Chernoff bound that fit our application (specif-
ically estimating the expectations in identities (7) have been presented by
Gillman [8, Thm 2.1] and Lezaud [17, Thm 1.1, Remark 3]; a version of the
Chebyshev bound (that we used twice in §5) by Aldous [1].

The appropriate versions of Chernoff and Chebyshev bounds have slight
differences in their hypotheses. For the estimates requiring Chernoff bounds
we use every matching visited on the sample path, whereas for those es-
timates requiring Chebyshev bounds we only use samples spaced by the
resampling time. Doing both simultaneously presents no contradiction.

Now the inverse spectral gap is bounded by the congestion p (see [24,
Thm 5]), which in the case of MC is O(n%), by Lemmas 6 and 9. In contrast,
the mixing time of MC is O(n” logn). Thus, provided we consume at least
O(nlogn) samples (which is always the case for us) we can use the higher
resampling rate and save a factor O(nlogn) in the running time. This
observation reduces all running times quoted in earlier sections by a similar
factor; in particular, the running time of the approximation algorithm for
the permanent in §5 comes down to O(n'?).

7 Arbitrary weights

Our algorithm easily extends to compute the permanent of an arbitrary
matrix A with non-negative entries. Let amax = max;ja(i,j) and amin =
min; j a(i,j). Assuming per(A) > 0, then it is clear that per(A) > (amin)"-
Rounding zero entries a(%,7) to (amin)"/n!, the algorithm follows as de-
scribed in Figure 6.

The running time of this algorithm is polynomial in 7 and log(amax/@min)-
For completeness, we provide a strongly polynomial time algorithm, i.e., one
whose running time is polynomial in n and independent of amax and amin,

30

Initialize A(u,v) < amax for all (u,v) € V1 x Va.
Initialize w(u,v) < namax for all (u,v) € Vi x V3.
While there exists a pair y, z with A(y, z) > a(y, z) do:
Take a sample of size S from MC with parameters \, w,
using a simulation of T steps in each case.
Use the sample to obtain estimates w'(u,v) satisfying
condition (8), for all u, v, with high probability.
Set A(y,v) + max{\(y,v)exp(—1/2), a(y,v)}, for all v € V3,
and w(u,v) < w'(u,v) for all u,v.
Output the final weights w(u,v).

Figure 6: The algorithm for non-negative entries.

assuming arithmetic operations are treated as unit cost. The algorithm of
Linial, Samorodnitsky and Wigderson [18] converts, in strongly polynomial
time, the original matrix A into a nearly doubly stochastic matrix B such
that 1 > per(B) > exp(—n — o(n)) and per(B) = aper(A) where « is an
easily computable scaling factor. Thus it suffices to consider the computa-
tion of per(B), in which case we can afford to round up any entries smaller
than (say) n~2" to n~2". The analysis for the 0,1-case now applies with the
same running time.

Finally, note that we cannot realistically hope to handle matrices which
contain negative entries. One way to appreciate this is to consider what
happens if we replace matrix entry a(1,1) by a(1,1) — 8 where 8 is a
parameter that can be varied. Call the resulting matrix Ag. Note that
per(Ag) = per(A) — Bper(Ai,1), where A;; denotes the submatrix of A
obtained by deleting the first row and column. On input Ag, an approxi-
mation scheme would have at least to identify correctly the sign of per(Ag);
then the root of per(A) — B per(Ai,1) = 0 could be located by binary search
and a very close approximation (accurate to within a polynomial number
of digits) to per(A)/per(A; 1) found. The permanent of A itself could then
be computed to similar accuracy (and therefore exactly!) by recursion on
the submatrix A 1, giving us a polynomial time randomized algorithm that
with high probability computes per(A) exactly. It is important to note here
that the cost of binary search scales linearly with the number of significant
digits requested, while that of an fpras scales exponentially.

31

8 Other applications

Several other interesting counting problems are reducible (via approximation-
preserving reductions) to the 0,1 permanent. These were not accessible by
the earlier approximation algorithms for restricted cases of the permanent
because the reductions yield a matrix A whose corresponding graph G4
may have a disproportionate number of near-perfect matchings. We close
the paper with two such examples.

The first example makes use of a reduction due to Tutte [25]. A perfect
matching in a graph G may be viewed as a spanning'? subgraph of G, all
of whose vertices have degree 1. More generally, we may consider spanning
subgraphs whose vertices all have specified degrees, not necessarily 1. The
construction of Tutte reduces an instance of this more general problem to the
special case of perfect matchings. Jerrum and Sinclair [11] exploited the fact
that this reduction preserves the number of solutions (modulo a constant
factor) to approximate the number of degree constrained subgraphs of a
graph in a certain restricted setting. Combining the same reduction with
Theorem 1 yields the following unconditional result.

Corollary 10 For an arbitrary bipartite graph G, there exists an fpras for
computing the number of labelled subgraphs of G with a specified degree se-
quence.

As a special case, of course, we obtain an fpras for the number of labelled
bipartite graphs with specified degree sequence.'3

The second example concerns the notion of a 0,1-flow.'* Consider a
directed graph 8 = (?, E)), where the in-degree (respectively, out-degree)
of a vertex v € V is denoted by d_(v) (respectively, d;(v)). A 0,1-flow is
defined as a subset of edges E' C ﬁ such that in the resulting subgraph
(7,]53), d_(v) = dy(v) for all v € V. Counting the number of 0, 1-flows
in 8 is reducible to counting perfect matchings in an undirected bipartite
graph. Specifically, let G = (V, E) be the graph with the following vertex

12 A subgraph of G is spanning if it includes all the vertices of G; note that a spanning
subgraph is not necessarily connected.

13Note that this special case is not known to be #P-complete, and hence may conceiv-
ably be solvable ezactly in polynomial time. It seems likely, however, that an fpras is the
best that can be achieved.

14This notion should not be confused with the notion of flow we used earlier in the
analysis of the Markov chain.

32

and edge sets:

= {h”,mm, 1 Vi, g with v;0] vV € ﬁ}
u {ui,...,ui_(vl) : Vi with v; € 7},
E = {(hi,j,mi,j), (mi,j,tij) Vi, j with 570, € B }
U { u’-c : Vi, j, k satisfying u yhij € 7}
U { tjq) @ Vi, j, k satisfying uz,tj i € 7}

_>
A 0,1-flow E' in 8 corresponds to a perfect matching M in G in the
followmg manner. For each ;0] v;v; € E' add the edge (h;j, m; ;) to M, while

for each v;v’ V] € B\E’ add the edge (m; j,t; ;) to M. Now for v; € ? observe
that the set of vertices {h; ;};U{t; .}, consists of exactly d_(v;) unmatched
vertices. There are d_(v;)! ways of pairing these unmatched vertices with the

set of vertices {uf}. Thus the flow E' corresponds to I1,c7 d-(v)! perfect
matchings of G, and it is clear that each perfect matching of G is obtained
in this way from exactly one flow. This implies the following corollary.

Corollary 11 For an arbitrary directed graph 8, there exists an fpras for
counting the number of 0, 1-flows.

Suppose the directed graph 8 has a fixed source s and sink ¢. After
adding a simple gadget from ¢ to s we can estimate the number of mazimum
0,1-flows from s to t of given value by estimating the number of 0, 1-flows
in the resulting graph.

Finally, we note that the “six-point ice model” on an undirected graph G
may be viewed as a 0,1-flow on an appropriate orientation of G, giving
us an alternative approach to the problem of estimating ice configurations
considered by Mihail and Winkler [19].

References

[1] David Aldous, On the Markov chain simulation method for uniform com-
binatorial distributions and simulated annealing, Probability in the En-
gineering and Informational Sciences 1 (1987), 33-46.

[2] Noga Alon and Joel Spencer, The Probabilistic Method, John Wiley,
1992.

33

[3] Alexander Barvinok, Polynomial time algorithms to approximate per-
manents and mixed discriminants within a simply exponential factor,
Random Structures and Algorithms 14 (1999), 29-61.

[4] Andrei Z. Broder, How hard is it to marry at random? (On the ap-
proximation of the permanent), Proceedings of the 18th Annual ACM
Symposium on Theory of Computing (STOC), ACM Press, 1986, 50-58.
Erratum in Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, 1988, p. 551.

[6] Steve Chien, Lars Rasmussen and Alistair Sinclair, Clifford algebras
and approximating the permanent, Proceedings of the 34th Annual ACM
Symposium on Theory of Computing, ACM Press, 2002, 222-231.

[6] Persi Diaconis and Laurent Saloff-Coste, Comparison theorems for re-
versible Markov chains, The Annals of Applied Probability 3 (1993),
696-730.

[7] Persi Diaconis and Daniel Stroock, Geometric bounds for eigenvalues of
Markov chains, The Annals of Applied Probability 1 (1991), 36-61.

[8] David Gillman, A Chernoff bound for random walks on expander graphs,
SIAM Journal on Computing 27 (1998), 1203-1220.

[9] Mark Jerrum, Counting, Sampling and Integrating: algorithms and com-
plexity, Lectures in Mathematics — ETH Zirich, Birkhauser, Basel, 2003.

[10] Mark Jerrum and Alistair Sinclair, Approximating the permanent,
SIAM Journal on Computing 18 (1989), 1149-1178.

[11] Mark Jerrum and Alistair Sinclair, Fast uniform generation of regular
graphs, Theoretical Computer Science 73 (1990), 91-100.

[12] Mark Jerrum and Alistair Sinclair, The Markov chain Monte Carlo
method: an approach to approximate counting and integration. In Ap-

prozimation Algorithms for NP-hard Problems (Dorit Hochbaum, ed.),
PWS Publishing, 1996, 482 520.

[13] Mark Jerrum, Leslie Valiant and Vijay Vazirani, Random generation of
combinatorial structures from a uniform distribution, Theoretical Com-
puter Science 43 (1986), 169-188.

[14] Mark Jerrum and Umesh Vazirani, A mildly exponential approximation
algorithm for the permanent, Algorithmica 16 (1996), 392-401.

34

[15] P. W. Kasteleyn, The statistics of dimers on a lattice, I., The number
of dimer arrangements on a quadratic lattice, Physica 27 (1961), 1664
1672.

[16] Claire Kenyon, Dana Randall and Alistair Sinclair, Approximating the
number of dimer coverings of a lattice, Journal of Statistical Physics 83
(1996), 637-659.

[17] Pascal Lezaud, Chernoff-type bounds for finite Markov chains, Annals
of Applied Probability 8 (1998), 849-867.

[18] Nathan Linial, Alex Samorodnitsky and Avi Wigderson, A determin-
istic strongly polynomial algorithm for matrix scaling and approximate
permanents, Combinatorica 20 (2000), 545-568.

[19] Milena Mihail and Peter Winkler, On the number of Eulerian orienta-
tions of a graph, Proceedings of the 8rd Annual ACM-SIAM Symposium
on Discrete Algorithms, ACM Press, 1992, 138-145.

[20] Henryk Minc, Permanents, Encyclopedia of Mathematics and its Ap-
plications Vol. 6, Addison-Wesley, 1982.

[21] Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms,
Cambridge University Press, 1995.

[22] Hebert J. Ryser, Combinatorial Mathematics, The Carus Mathematical
Monographs No. 14, Mathematical Association of America, 1963.

[23] Jason Schweinsberg, An O(n?) bound for the relaxation time of a
Markov chain on cladograms, Random Structures and Algorithms 20
(2002), 59-70.

[24] Alistair Sinclair, Improved bounds for mixing rates of Markov chains
and multicommodity flow, Combinatorics, Probability and Computing 1
(1992), 351-370.

[25] W. T. Tutte, A short proof of the factor theorem for finite graphs,
Canadian Journal of Mathematics 6 (1954), 347-352.

[26] L. G. Valiant, The complexity of computing the permanent, Theoretical
Computer Science 8 (1979), 189-201.

