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Abstract. We prove two results concerning approximate counting of independent sets in graphs
with constant maximum degree ∆. The first implies that the Markov chain Monte Carlo technique is
likely to fail if ∆ ≥ 6. The second shows that no fully polynomial randomized approximation scheme
can exist for ∆ ≥ 25, unless RP = NP.
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1. Introduction. Counting independent sets in graphs is one of several com-
binatorial counting problems which have received recent attention. The problem is
known to be #P-complete, even for low-degree graphs [5]. On the other hand, it has
been shown that, for graphs of maximum degree ∆ = 4, randomized approximate
counting is possible [9, 5]. This success has been achieved using the Markov chain
Monte Carlo method [8] to construct a fully polynomial randomized approximation
scheme (fpras). This has led to a natural question of how far this success might
extend.

Here we consider in more detail this question of counting independent sets in
graphs with constant maximum degree. We prove two results. The first, in section 2,
shows that the Monte Carlo Markov chain method is likely to fail for graphs with
∆ = 6. This leaves open only the case ∆ = 5.

Our second result gives an explicit value of ∆ above which approximate counting,
using any kind of polynomial-time algorithm, is impossible unless RP = NP. The
bound we obtain is ∆ = 25, though we suspect that the true value is in single figures,
probably 6.

We note that Berman and Karpinski [2] have recently given new explicit bounds
for the approximation ratio for the maximum independent set and other problems
in low-degree graphs. These directly imply an inapproximability result for counting.
(See Luby and Vigoda [9], specifically the proof of their Theorem 4.) However, the
bound on ∆ obtained this way is larger than ours by at least two orders of magnitude.

The questions we address in this article could also be studied in a more general
setting in which vertices included in an independent set have weights or “fugacities”
other than 1. In this setting, the weight of an independent set of size k is deemed to
be λk for some constant k, and the goal is to compute the sum of the weights of all
independent sets. One could then ask, for each ∆, at what exact λ an fpras ceases to
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exist (assuming such a λ exists). This question is a more precise version of the one
we ask: for λ = 1, what is the largest ∆ for which an fpras exists?

A reasonable guess is that the critical λ just identified is greater than 1 when
∆ ≤ 5, and less than 1 when ∆ ≥ 6. One might even rashly conjecture (though
we shall not do so) that this critical λ is the same as that marking the boundary
between unique and multiple Gibbs measures in the independent set (hard core gas)
model in the regular infinite tree of degree ∆ (the so-called Bethe lattice). Brightwell
and Winkler have computed the fugacity λ at which multiple Gibbs measures appear
in the Bethe lattice [3]. The only observation we offer here is that our results are
consistent with the critical λ’s being the same in both situations.

2. Markov chain Monte Carlo. For a graph G, let I(G) denote the collection
of independent sets of G. Let M(G) be any Markov chain, asymptotically uniform
on I(G), with transition matrix PG. In this section, G will be a bipartite graph with
a vertex bipartition into classes of equal size n. Let b(n) ≤ n be any function of n,
and suppose we have PG(σ1, σ2) = 0 whenever |σ1 ⊕ σ2| > b(n), where ⊕ denotes
symmetric difference. We will say that M(G) is b(n)-cautious. Thus a b(n)-cautious
chain is not permitted to change the status of more than b(n) vertices in G at any
step. Ideally, for ease of implementation, we would wish to have b(n) a constant (as
in [9, 5]). However, we will show that no b(n)-cautious chain on I(G) can mix rapidly
unless b(n) = Ω(n). Thus any chain which does mix rapidly on M(G) must change
the status of a sizable proportion of the vertices at each step.

Before stating our result, we need to formalize what we mean by mixing, rapid
or otherwise. Let M be an ergodic Markov chain with state space Ω, distribution pt
at time t, and asymptotic distribution p∞ = π. Let x0 ∈ Ω be the initial state of M,
so that p0 assigns unit mass to state x0. Define the mixing time τ(x0) of M, with

initial state x0 ∈ Ω, as the first t for which dTV(pt, π)
def
= 1

2 ||pt − π||1 ≤ e−1; then
define the mixing time τ as the maximum of τ(x0) over choices of initial state x0. We
are able to show the following.

Theorem 2.1. Suppose ∆ ≥ 6 and b(n) ≤ 0.35n. Then there exists a constant
γ > 0 and a bipartite graph G0, regular of degree ∆, on n+n vertices (more precisely
a sequence of such graphs parameterized by n) with the following property: any b(n)-
cautious Markov chain on I(G0) has mixing time τ = Ω(eγn).

Since, of course, there does exist a 2n-cautious chain which mixes rapidly, our
result cannot be strengthened much further. Although we do not identify a specific
initial state x0 satisfying τ(x0) = Ω(eγn), our proof does provide a definite (and
natural) initial distribution p0 from which τ = Ω(eγn) steps are required to achieve
dTV(pτ , π) ≤ e−1. The remainder of this section is devoted to the proof of Theo-
rem 2.1.

The counterexample graph G0 is just a random regular graph of degree ∆. Specif-
ically, let Kn,n denote the complete bipartite graph with vertex bipartition V1, V2,
where |V1| = |V2| = n, and let G be the union of ∆ perfect matchings selected in-
dependently and uniformly at random in Kn,n. (Since the perfect matchings are
independent, they may well share some edges.) Denote by G(n, n,∆) the probability
space of bipartite graphs G so defined. Where no confusion can arise, we simply write
G for this class below. Note that G is a class of graphs with degree bound ∆. It is
well known (see [1]) that, provided ∆ is taken as constant, ∆-regular graphs occur in
G(n, n,∆) with probability bounded away from 0. Since we prove that almost every
graph G ∈ G(n, n,∆), for ∆ ≥ 6, has the property we seek, it will follow that almost
every ∆-regular graph (in the induced probability space) has the property too.
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Let 0 < α, β < 1 be chosen values. For G ∈ G, we consider the collection IG(α, β)
of σ ∈ I(G) such that |σ ∩ V1| = αn and |σ ∩ V2| = βn. We will call σ ∈ IG(α, β)
an (α, β)-set. Using linearity of expectation, we may easily compute the expected
number E(α, β) = E(|IG(α, β)|) of (α, β)-sets in G: it is just the number of ways of
choosing an αn-subset from V1 and a βn-subset from V2, multiplied by the probability
that all ∆ perfect matchings avoid connecting the αn-subset to the βn-subset. Thus,
using Stirling’s formula,

E(α, β) =
(
n

αn

)(
n

βn

)[(
(1− β)n

αn

)/(
n

αn

)]∆

=

(
(1− β)(∆−1)(1−β)(1− α)(∆−1)(1−α)

ααββ(1− α− β)∆(1−α−β)

)n(1+o(1))

= eϕ(α,β)n(1+o(1)),(1)

where

ϕ(α, β) = ϕ∆(α, β) = −α lnα− β lnβ −∆(1− α− β) ln(1− α− β)

+ (∆− 1)((1− α) ln(1− α) + (1− β) ln(1− β)
)
.(2)

Mostly, ∆ will be treated as a constant, and we shall suppress the subscript of ϕ
except when we want to emphasize the dependence on ∆.

We shall treat ϕ as a function of real arguments α and β, even though a combina-
torial interpretation is possible only when αn and βn are integers. Then ϕ is defined
on the triangle

T = {(α, β) : α, β ≥ 0 and α+ β ≤ 1}

and is clearly symmetrical in α, β. (The function ϕ is defined by (2) on the interior
of T and can be extended to the boundary by taking limits.) Moreover, the following
facts are established in the appendix about the stationary points of ϕ on T .

Claim 2.2.
(i) The function ϕ has no local minima in the interior of T , and no local maxima

on the boundary of T .
(ii) All local maxima of ϕ satisfy α+ β +∆(∆− 2)αβ ≤ 1.
(iii) If ∆ ≤ 5, ϕ has only a single local maximum, which is on the line α = β.
(iv) If ∆ ≥ 6, ϕ has exactly two local maxima, symmetrical in α, β, and a

single saddle-point on α = β. The maximum with α < β occurs at
(α, β) ≈ (0.03546955, 0.40831988) when ∆ = 6 and at (α, β) ≈ (0.01231507,
0.45973533) when ∆ = 7.

Suppose, for the sake of discussion, we had the additional information that the
number |IG(α, β)| of (α, β)-sets is reasonably well concentrated about its expectation
E(α, β). Then it would follow from (iii) and (iv) that a “typical” independent set in
a random graph G ∈ G(n, n,∆) undergoes a dramatic change in passing from ∆ = 5
to ∆ = 6. For ∆ ≤ 5, a typical independent set σ would be balanced, i.e., the sets
|σ ∩ V1| and |σ ∩ V2| would be of nearly equal size, whereas for ∆ ≥ 6 it would be
unbalanced.

Unfortunately, we have not been able to prove a concentration result, and it is
unclear whether such a result should be expected. Therefore, in examining the first
(apparently) unbalanced case, ∆ = 6, we must make a slight detour. First, observe
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that a knowledge of ϕ does at least provide an upper bound on |IG(α, β)| via Markov’s
inequality. In this way we can bound from above the number of (α, β)-sets that lie
in the strip |α − β| ≤ η for some η > 0. Then, we use a quite crude lower bound to
show that the number of (α∗, β∗)-sets—for some chosen α∗, β∗ with β∗ − α∗ > η—is
much greater that this.

We shall first deal with the boundary case ∆ = 6. Once this has been done,
it will be easy to dispense with the remaining cases, i.e., ∆ ≥ 7, which are less
finely balanced. So suppose for the time being that ∆ = 6. Consider the function
ϕ restricted to the region D = T ∩ {(α, β) : |α − β| ≤ η}, where η = 0.18. Since
the two local maxima of ϕ on T lie outside D (see Claim 2.2(iv)), it must be the
case that the maxima of ϕ on D all lie on one or the other (and hence, by symmetry,
both) of the lines |α − β| = η. Numerically, the (unique) maximum with β − α = η,
achieved at (α, β) ≈ (0.10021227, 0.28021227), is a little less than c = 0.70824602.
(The uniqueness of the maximum may be verified by calculus; then the location of
the maximum may be found to arbitrary precision by repeated evaluation of the
derivative of ϕ(α, α + 0.18) with respect to α. Only simple function evaluations are
required.)

Now define

θ(α) = −α lnα− (1− α) ln(1− α) + (ln 2)(1−∆α)

for ∆α < 1. Then, for any graph G ∈ G, the total number of independent sets σ with
|σ ∩ V1| = αn is (crudely) at least

|IG(α, ∗)| ≥ eθ(α)n(1−o(1)).

(Choose αn vertices from V1; then choose any subset of vertices from the at least
(1−∆α)n unblocked vertices in V2.) Set α

∗ = 0.015. Then, by numerical computation,
θ(α∗) is a little greater than 0.70864644 > c. Thus, with high probability, the number
of (α, β)-sets in G ∈ G lying in either connected component of T \D is greater than the
number lying within D by an exponential factor, specifically eγn, where γ = 0.0004.
The graph G0 of Theorem 2.1 is any graph G0 ∈ G that exhibits the exponential
gap just described. (A randomly chosen graph will do with high probability.) The
remainder of our argument concerns G0.

Now consider a 0.35n-cautious chain M(G0) = M0 on I(G0). Let A comprise
all (α, β)-sets with α ≥ β, i.e.,

A =
{
σ ∈ I(G0) : |σ ∩ V1| ≥ |σ ∩ V2|

}
,

and assume without loss of generality that A is no larger than its complement A =
I\A. Denote byM the set of (α, β)-sets with (α, β) ∈ D. SinceM0 is 0.35n-cautious,
it cannot make a transition from A to A except by using a state in M . Now, we have
already seen that

|A| ≥ eγn |M |.(3)

Intuitively, since M is very small in relation to A, the mixing time of M0 must be
very large. This intuition is captured in the following claim, which is implicit in a line
of argument used by Jerrum [7].

Claim 2.3. Let M be a Markov chain with state space Ω, transition matrix P ,
and stationary distribution π. Let A ⊂ Ω be a set of states such that π(A) ≤ 1

2 , and
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M ⊂ Ω be a set of states that form a “barrier” in the sense that Pij = 0 whenever
i ∈ A \M and j ∈ A \M . Then the mixing time of M is at least π(A)/8π(M).

For completeness, a proof using “conductance” is provided in the appendix. The-
orem 2.1, in the boundary case ∆ = 6, follows from Claim 2.3 and inequality (3)
because the sets A and M that we defined earlier satisfy the conditions of the claim.
Note that the proof of Claim 2.3 actually provides an explicit initial distribution p0

from which the mixing time is large, namely, the uniform distribution on A.
Finally, suppose ∆ ≥ 7. We shall see presently that

ϕ∆(α, β) < 0.6763 < ln 2 for all ∆ ≥ 7 and (α, β) ∈ D.(4)

On the other hand, there are at least 2n (α, β)-sets in either connected component
of T \ D: this comes simply from considering independent sets with α = 0 or β = 0.
Once again, with high probability, the number of (α, β)-sets in G ∈ G lying in either
connected component of T \ D is greater than the number lying within D by an
exponential factor, specifically eγn, where γ = 0.015. Theorem 2.1, in the general
case ∆ ≥ 7, follows as before.

It remains only to verify (4). By calculus, ϕ∆(α, β) as a function of ∆ is mono-
tonically decreasing over the whole region T ; thus we need check only the case ∆ = 7.
(The partial derivative ∂ ϕ∆(α, β)/∂∆ is a function of α and β only; it is zero on
α = 0 and monotonically decreasing as a function of β.) We now argue, as before,
that the maxima of ϕ on D all lie on the lines |α − β| = 0.18. (Here we again use
Claim 2.2(iv).) Once again, by calculus, ϕ has a unique maximum on each of these
lines, and direct calculation yields (4).

3. Hardness of approximate counting. The result of the previous section
implies that the usual approach to approximating the number of independent sets in
a low-degree graph must fail when ∆ ≥ 6, at least in the worst case. Here we show
that, if the degree bound is somewhat larger, then any approach to approximating
the number of independent sets is doomed to failure, under a reasonable complexity
assumption. Precisely, the remainder of this section is devoted to proving the following
theorem.

Theorem 3.1. Unless RP = NP, there is no polynomial-time algorithm that
estimates the logarithm of the number of independent sets in a ∆-regular graph (∆ ≥
25) within relative error at most ε = 10−4.

We give a randomized reduction from the following problem E2LIN2, analyzed by
H̊astad. The input is a system A of m equations over Z2 in n variables x1, x2, . . . , xn,
such that each equation has exactly two variables. (Thus each equation is of the form
xi+xj = 0 or xi+xj = 1.) The objective is to find a maximum cardinality consistent
subset of equations in A, i.e., to assign values to the variables so as to maximize the
number mC of satisfied equations. H̊astad [10] showed, using the powerful theory of
probabilistically checkable proofs (PCPs), that it is NP-hard to estimate mC within
any constant factor smaller than 12/11.1 Therefore consider an instance A of E2LIN2,
as above. We will construct (by a randomized algorithm) a graph G = (V,E), regular
of degree ∆. We then show that, if we can approximate the logarithm of the number
of independent sets in G to within the required relative error, we can (with high
probability) approximate the size ofmC inA to within a factor 12/11−ε. Theorem 3.1
will then follow.

1In other words, determining a number in the range [(11/12+ε)mC ,mC ] is as hard as determining
mC exactly. Following convention, H̊astad normalizes approximation ratios to be greater than 1,
taking the reciprocal in the case of a maximization problem.
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Let us write [n] = {1, 2, . . . , n}. We construct the graph G = G(A) as follows. We
assumem ≥ n; otherwise, A is decomposable or consistent. LetM = m6 and, for each
i ∈ [n], let Ai be the multiset of equations containing xi, with (multiset) cardinality
di. We represent xi by a regular bipartite graph Hi of degree δ = ∆− 1, with vertex
partition (Li, Ri) and edge set Fi. Here Li =

⋃
a∈Ai

Li,a, Ri =
⋃

a∈Ai
Ri,a, where the

sets Li,a, Ri,a partition Li and Ri, respectively, and for all i, a, |Li,a| = |Ri,a| = M .
Thus Hi is bipartite with both its vertex sets of size Mdi. Later, we will associate Li

with the assignment xi = 0, and Ri with xi = 1.
The graph Hi = (Li, Ri, Fi) will be sampled from G(Mdi,Mdi, δ), where G is

the class of random graphs defined in section 2. Just as in that section, and for the
same reason, we are at liberty to reject graphs which are not δ-regular. Clearly, the
property of being δ-regular can be checked in polynomial time.

The equations a of A determine the edges connecting the Hi in G, as follows. If a
is the equation xi+xj = 1 (xi+xj = 0, resp.), we add an arbitrary perfect matching
between Li,a and Lj,a (Rj,a, resp.) and another between Ri,a and Rj,a (Lj,a, resp.).
Thus G is a regular graph of degree ∆. We will show that approximating the logarithm
of the number of independent sets in G to within a factor (1 + 10−4) will allow us to
approximate the E2LIN2 instance within the H̊astad bound.

Before returning to the issue of approximation, we will need to establish some
crucial properties of the “typical” independent set in G. For this purpose, let I be
sampled uniformly from I(G), the set of all independent sets in G. First we show
that I “occupies about half the available space” in each Li,a or Ri,a.

Let Li,a be the set of vertices in Li,a with no neighbor in I, and let Li =⋃
a∈Ai

Li,a.
Lemma 3.2. Suppose that I is sampled uniformly at random (u.a.r.) from I(G).

Then, except for probability e−Ω(m2), either |Li,a| < m4 or |Li,a| = (2 ± O(1/m))×
|I ∩ Li,a|.

Proof. If we condition on I ∩ (V \ Li,a), then I ∩ Li,a is a random subset of Li,a.
If |Li,a| ≥ m4, then Chernoff’s bound implies that

Pr

[
|I ∩ Li,a| /∈ 1

2

(
1± 1

m

)
|Li,a|

]
≤ 2 exp

(
−1
3
m2

)
,

from which the lemma follows.
Clearly, we may define Ri,a and Ri symmetrically and prove an analogous result.

It is also clear that we may claim Lemma 3.2 for all i, a simultaneously, since there are
fewer than m2 such pairs. Now imagine that we choose an independent set I ∈ I(G)
u.a.r. in two steps: first the part of I that lies outside Hi, followed by the restriction
of I to Hi. We now deduce from Lemma 3.2 that, with high probability, at least
around half of Li is “available” to I in the second step.

Let L′
i be the set of vertices in Li with no neighbor in I outside of Hi.

Lemma 3.3. Suppose that I is sampled u.a.r. from I(G). Except for probability
e−Ω(m2),

|L′
i| ≥

(
1

2
−O

(
1

m

))
|Li|.(5)

Proof. If Li,a is joined by a matching to Vj,a (V ∈ {L,R}), then, from Lemma 3.2,
M ≥ (2−O(1/m))|I ∩ Vj,a|. Hence∣∣{v ∈ Li,a : {v, w} ∈ E \ Fi implies w /∈ I

}∣∣ ≥ (
1

2
−O

(
1

m

))
|Li,a|.
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Summing this over all a ∈ Ai gives the lemma.
Again, we may define R′

i and prove a corresponding result. We now show that for
each i either |Li| or |Ri| is “small.” We will temporarily drop the suffix i and write
H rather than Hi, etc. Let N = |L| = dM ≤ m7, a = |L′|/N , b = |R′|/N . Write
σ = I ∩H, where I is a uniformly chosen independent set in G. We will say that σ
is an (α, β)-set if |σ ∩ L| = αaN , |σ ∩R| = βbN .

Lemma 3.4. Let δ ≥ 24. If I is a uniformly chosen independent set in G, then,
except for probability e−Ω(m2),

min(|Li|, |Ri|) ≤ λN,(6)

where λ = 0.009.
Proof. We focus attention on a particular H in G (corresponding to a particular

variable in the E2LIN2 instance). Suppose that the whole of G aside from the edges
within H has been fixed (i.e., the random choices have already been made), except
that we have not chosen the edges of H itself. Ultimately, we want to argue about a
random independent set I. However, for the time being, suppose that we simply fix the
portion of I that lies outside of H; doing this fixes the sets L′ and R′ of vertices in H
that have no neighbor in I. About I, we assume only that it satisfies inequality (5)
of Lemma 3.3 so that a ≥ b ≥ 1

2 − O( 1
m ), where, without loss of generality, we have

taken a ≥ b.
We now reveal H and examine the number of extensions of I to H as a function

of α and β. It is easy to see that there are at least 2aN independent sets in H in total.
We will show that, for α, β not satisfying the condition of the lemma, the number of
(α, β)-sets is so much smaller than this that they appear with probability e−Ω(m2).
It will be sufficient to show that the expected number of (α, β)-sets in such a case is

2aN−Ω(m2), because Markov’s inequality will then imply the required inequality for
the actual number. Now the expected number of (α, β)-sets in H is

E(α, β) =
(
aN

αaN

)(
bN

βbN

)[(
(1− bβ)N

αaN

)/(
N

αaN

)]δ
≤

(
aN

αaN

)(
bN

βbN

)[
[(1− bβ)N ]αaN

(αaN)!
× (αaN)!

NαaN

]δ
≤

(
aN

αaN

)(
bN

βbN

)
(1− bβ)αaδN

≤
[(

αα(1− α)(1−α)
)−a (

ββ(1− β)(1−β)
)−b

e−αβabδ

]N(1+o(1))

= eψ(α,β)N(1+o(1)),(7)

where an underlined superscript denotes “falling factorial power,” and

ψ(α, β) = −a(α lnα+ (1− α) ln(1− α))

− b(β lnβ + (1− β) ln(1− β))− αβabδ.(8)

Note that ψ is defined in the unit square U = {(α, β) : 0 ≤ α, β ≤ 1}. As before, we
shall treat α and β (and indeed a and b) as real variables, even though a combinatorial
interpretation requires aN , bN , αaN , and βbN to be integers. The key property of ψ
is captured in the following claim, whose proof can be found in the appendix.
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Claim 3.5. Let δ = 24, η > 0 be sufficiently small, and suppose 1
2 − η ≤ b ≤

a ≤ 1. For any (α, β) ∈ U , the inequality ψ(α, β) ≥ a ln 2− η entails min{αa, βb} ≤
0.004.

Recall the crude lower bound 2aN on the total number of independent sets σ
extending I to H. The claim tells us that only very unbalanced independent sets—
those with either |σ ∩ L| ≤ 0.004 or |σ ∩R| ≤ 0.004—make a significant contribution
to that total. All of the above argument was for an independent set I that is fixed
outsideH, so we have not yet proved Lemma 3.4. Nevertheless, all the key calculations
are out of the way, and we can complete the proof with a little algebra.

Let I be the set of all independent sets on V (G) \ V (H). Let Igood ⊆ I be the
independent sets I that satisfy inequality (5) of Lemma 3.3, and Ibad = I \Igood. Let
N(I,H) be the number of independent sets in H consistent with I, and let N∗(I,H)
be the number of such that do not satisfy inequality (6) of Lemma 3.4. Denote by H
the (multi)set of all possible choices for the graph H viewed as a disjoint union of δ
perfect matchings. (Thus each possible graph H will occur with multiplicity µ, where
µ is the number of 1-factorizations of H—i.e., decompositions into disjoint perfect
matchings—of H. Note that our reduction requires us to select uniformly from H.)
For convenience, set ε = e−Ω(m2). We have shown in Lemma 3.3 that∑

I∈Ibad

N(I,H) ≤ ε
∑
I∈I

N(I,H) for all H ∈ H.(9)

(Note that the sum on the right-hand side is the total number of independent sets
in G, while that on the left-hand side is the number violating inequality (5).) We will
show below that a random H satisfies∑

I∈Igood

N∗(I,H) ≤ ε
∑

I∈Igood

N(I,H)(10)

with high probability, specifically, with probability at least 1−ε. Putting (9) and (10)
together, a random H satisfies∑

I∈I N
∗(I,H)∑

I∈I N(I,H)
≤

ε
∑

I∈Igood
N(I,H) +

∑
I∈Ibad

N(I,H)∑
I∈I N(I,H)

≤ ε+ ε = 2ε

with high probability, which is what we require.
We now prove (10). Claim 3.5 taken in conjunction with Lemma 3.2 shows that∑

H∈HN∗(I,H)
|H| ≤ ε2N̂(I) (I ∈ Igood)

for some N̂(I) satisfying N̂(I) ≤ N(I,H) for all H ∈ H. (Specifically, N̂ = 2aN will
do here.) Summing this over I ∈ Igood gives

1

|H|
∑
H∈H

∑
I∈Igood

N∗(I,H) ≤ ε2
∑

I∈Igood

N̂(I),

giving

1

|H|
∑
H∈H

∑
I∈Igood

N∗(I,H)∑
I∈Igood

N̂(I)
≤ ε2,
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which implies that

1

|H|
∑
H∈H

∑
I∈Igood

N∗(I,H)∑
I∈Igood

N(I,H)
≤ ε2.(11)

Let

H∗ =

H ∈ H :
∑

I∈Igood

N∗(I,H) ≥ ε
∑

I∈Igood

N(I,H)

 .

Then, from (11),

1

|H| ε |H
∗| ≤ ε2,

so

|H∗|
|H| ≤ ε,

as is required to establish (10) and complete the proof.
We now establish the relationship between the number of independent sets in G

and the maximum size of a consistent subset of A. Let I = I(G). For σ ∈ I let
Sσ ⊆ [n] be defined by

Sσ = {i : |Li ∩ σ| > |Ri ∩ σ|, i ∈ [n]}.

For S ⊆ [n] let IS = {σ ∈ I : Sσ = S} and let µS = |IS |. Recall that m is the
number of equations in A.

Lemma 3.6. For S ⊆ [n] let θ(S) be the number of equations in A satisfied by
the assignment xi = 1 (i ∈ S), xi = 0 (i /∈ S). Then

4Mθ(S)3M(m−θ(S)) ≤ µS ≤ 4Mθ(S)3M(m−θ(S))22λmM (1 + o(1)),(12)

where λ is as in Lemma 3.4.
Proof. Fix S ⊆ [n], and for σ ∈ IS let Jσ = σ ∩ (⋃

i∈S Li ∪
⋃

i/∈S Ri

)
. Informally,

Jσ restricts σ to the left or right of each subgraph Hi, according to which side contains
the larger part of σ. Let

µ̂S = |{Jσ : σ ∈ IS}| ≤ µS .

We show that

µ̂S = 4
Mθ(S)3M(m−θ(S)).(13)

This immediately proves the lower bound in (12). Furthermore, Lemma 3.4 implies

that for a fixed value J of Jσ there are (up to a factor (1 + e−Ω(m2))) at most∏
i∈[n]

2λdiM = 2λM
∑

i di = 22λmM

sets σ ∈ IS with Jσ = J . The upper bound then follows.
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To prove (13) we consider the number of possible choices for J ∩ Li,a, J ∩ Ri,a,
J ∩ Lj,a, and J ∩Rj,a for every equation a : xi + xj = za (za ∈ {0, 1}). For given S,
let us define

Xi,a =

{
Li,a if i ∈ S;

Ri,a if i /∈ S.

Then there are two cases, determined by the status of a.
(1) Equation a is satisfied by the assignment derived from S. Then there are 2M

choices for each of J ∩Xi,a, J ∩Xj,a, giving 4
M in all.

(2) Equation a is not satisfied by the assignment derived from S. Then the
subgraph of G induced by Xi,a ∪ Xj,a is a matching of size M and hence
contains 3M independent sets.

Multiplying the estimates from the two cases over all a ∈ A proves (13) and the
lemma.

We now proceed to the proof of Theorem 3.1. Let ZI = ZI(G) denote the
logarithm of the number of independent sets of G(A). Let ZC = ZC(A) denote
the maximum number of consistent equations in A.

Let YI be some estimate of ZI satisfying |YI/ZI − 1| ≤ ε = 10−4. Using YI , we
define

YC =

(
YI
M

−m ln 3

)
1.001

ln(4/3)
.

A simple calculation will then show that 1 ≤ YC/ZC ≤ 12/11 − ε, so that YC deter-
mines ZC with sufficient accuracy to beat the approximability bound for E2LIN2.

From Lemma 3.6 we see that

YI ≥ (1− ε)M(ZC ln(4/3) +m ln 3).

Hence, since ZC ≥ m/2,

YC
1.001

≥ (1− ε)ZC − εm ln 3

ln(4/3)
≥ ZC

(
1− ε ln 12

ln(4/3)

)
≥ 0.9991ZC ,

which implies that YC ≥ ZC . On the other hand, Lemma 3.6 also implies that

YI ≤ (1 + ε)
[
M

(
ZC ln(4/3) +m ln 3 + 2mλ ln 2

)
+ n ln 2

]
,

where λ ≤ 0.009. Hence
YC
1.001

≤ (1 + ε)ZC +
εm ln 3

ln(4/3)
+
(1 + ε)2mλ ln 2

ln(4/3)
+
(1 + ε) ln 2

n ln(4/3)

≤ ZC

(
1 + ε+

2ε ln 3

ln(4/3)
+
4(ln 2)(1 + ε)λ

ln(4/3)
+O

(
1

n2

))
≤ ZC

(
1.0877 +O

(
1

n2

))
,

which implies that YC/ZC is bounded away from 12/11 for n large enough. Sum-
marizing, the existence of a polynomial-time algorithm, meeting the specification in
Theorem 3.1, for estimating the number of independent sets in a 25-regular graph
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would entail the existence of a randomized (two-sided error) algorithm for approx-
imating the solution to an E2LIN2 instance with relative error better than 12/11.
(The algorithm is randomized because the reduction is too.) Because the latter prob-
lem is NP-hard, we could deduce that NP ⊆ BPP. But this inclusion in turn implies
that RP = NP (see Papadimitriou [11, Problem 11.5.18]). Thus we have established
Theorem 3.1.

Appendix.
Proof of Claim 2.2. We start by computing partial derivatives of ϕ up to order

two:

∂ϕ

∂α
= − lnα− (∆− 1) ln(1− α) + ∆ ln(1− α− β),(14)

∂ϕ

∂β
= − lnβ − (∆− 1) ln(1− β) + ∆ ln(1− α− β),(15)

∂2ϕ

∂α2
= − 1

α
+
∆− 1
1− α

− ∆

1− α− β
,(16)

∂2ϕ

∂β2
= − 1

β
+
∆− 1
1− β

− ∆

1− α− β
,(17)

∂2ϕ

∂α∂β
= − ∆

1− α− β
.(18)

Parts (i)–(iv) of Claim 2.2 may then be verified as follows:
(i) From (16), it can easily be checked that ∂2ϕ/∂α2 < 0 on the interior of T ,
and hence ϕ can have no interior local minima. On α = 0, ϕ has a maximum
at β = 1

2 using (15), but then from (14) we find ∂ϕ/∂α = +∞ at α = 0,
β = 1

2 . Similarly β = 0. On α+ β = 1, both ∂ϕ/∂α, ∂ϕ/∂β = −∞, so ϕ can
have no maximum.

(ii) Since both ∂2ϕ/∂α2, ∂2ϕ/∂β2 < 0, ϕ has a maximum if and only if the
Hessian of ϕ has a positive determinant. The condition for this is α + β +
∆(∆− 2)αβ ≤ 1, as may be checked from (16)–(18).

(iii) From (14) and (15), the conditions for a stationary point of ϕ may be written

β = f(α), α = f(β),

where

f(x) = 1−x−x1/∆(1−x)1−1/∆ = (1−x)

[
1−

(
x

1− x

)1/∆
]

(0 ≤ x ≤ 1).

Thus, at any stationary point,

α = f(f(α)).(19)

Clearly f(x) ≤ 0 for x ≥ 1
2 , so α < 1

2 at any stationary point. Similarly

β < 1
2 . To study the roots of (19), the change of variable y = (α/(1−α))1/∆

proves to be convenient. With a little calculation we may express α, f(α),
and f(f(α)) in terms of y:

α =
y∆

1 + y∆
,(20)

f(α) = (1− α)(1− y) =
1− y

1 + y∆
,
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and

f(f(α)) = (1− f(α))− (
f(α)(1− f(α))∆−1

)1/∆
=

(
α+

y

1 + y∆

)
−

(
(1− y)(y + y∆)∆−1

)1/∆
1 + y∆

= α+
y

1 + y∆

[
1−

(
(1− y)(1 + y∆−1)∆−1

y

)1/∆
]
,

and hence (19) is equivalent to

(1 + y∆−1)∆−1 =
y

1− y
(0 ≤ y < 1).(21)

Note that the implicit mapping from α to y is a bijection, so we may legiti-
mately study the solution set of (19) through that of (21). Note also that (21)
has a root y′ satisfying y+ y∆ = 1, and this exists for any ∆ > 0. The reader
may check that y + y∆ = 1 is equivalent to α = f(α), and thus y′ satisfies
α = β. To analyze (21) in general, let

g(y) = (∆− 1) ln(1 + y∆−1) + ln(1− y)− ln y,
so g(y) = 0 has the same roots as (21). Then one may check that g′(y) = 0
if and only if

h(y)
def
= ∆(∆− 2)y∆−1 − (∆− 1)2y∆ − 1 = 0.

But h(0) = −1, h(1) = −2, and h has a single maximum on [0, 1] at y′′ =
(∆ − 2)/(∆ − 1). Now h(y′′) = (∆ − 2)∆/(∆ − 1)∆−1 − 1 > 0 if and only
if ∆ ≥ 6, and h(y′′) < 0 otherwise. Therefore h has two roots in [0, 1] if
∆ ≥ 6; otherwise, it has no roots. Thus g has a single root in [0, 1] if ∆ ≤ 5;
otherwise, it has at most three roots. In the latter case, however, g(0) = +∞,
g(1) = −∞, g(y′) = 0, and a simple calculation shows

g′(y′) =
(∆− 1)2(1− y′)2 − 1

y′(1− y′)
> 0

if and only if ∆ ≥ 6, and g′(y′) < 0 otherwise. These facts imply that g has
exactly three roots if ∆ ≥ 6.
Now the reader may check that the point (α′, α′) corresponding to y′ (i.e.,
given by solving y′ = (α′/(1− α′))1/∆) satisfies

α+ β +∆(∆− 2)αβ ≤ 1,
i.e., (

1− α

α

)(
1− β

β

)
≥ (∆− 1)2

if and only if y′ ≥ y′′. This holds if and only if ∆ ≤ 5. Thus this point is a
maximum for ∆ ≤ 5; otherwise, it is a saddle-point.
Thus ϕ has one stationary point in T (on α = β) if ∆ ≤ 5, and this is a
maximum.
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(iv) By the above, if ∆ ≥ 6, ϕ has no boundary maximum on T ′ = {(α, β) ∈
T : α ≤ β} and therefore by continuity has a maximum in the interior of
T ′. By symmetry there is also a maximum in T \ T ′. Thus, when ∆ ≥ 6,
ϕ has two symmetrical maxima and a single saddle-point on the line α = β.
Numerical values for the two maximum points can be obtained by solving (21)
for y. Since we are assured that (21) has exactly three roots, we may locate
these roots to arbitrary precision by repeated function evaluations. Once y
is known to adequate precision, α can be recovered from (20).

Proof of Claim 2.3. Let Ω = {1, . . . , N} be an enumeration of the state space.
When x is an N -vector and P an N ×N matrix, we will use xA to mean the vector
(xi : i ∈ A) and PAB to mean the matrix (Pij : i ∈ A, j ∈ B). First note that

dTV(pt+1, pt) = dTV(ptP, pt−1P ) =
1
2 max
||z||∞≤1

(pt − pt−1)Pz

≤ 1
2 max
||w||∞≤1

(pt − pt−1)w = dTV(pt, pt−1),

since ||Pz||∞ ≤ ||z||∞. Hence, by induction, dTV(pt+1, pt) ≤ dTV(p1, p0) and hence,
using the triangle inequality, dTV(pt, p0) ≤ tdTV(p1, p0). Now, for ∅ ⊂ S ⊂ Ω, define

Φ(S) =
∑
i∈S

∑
j∈S

πiPij/π(S).

Thus Φ = min{Φ(S) : S ⊂ Ω and 0 < π(S) ≤ 1
2} is the “conductance” of M.

(Conductance is normally considered in the context of time-reversible Markov chains.
However, both the definition and the line of argument employed here apply to non–
time-reversible chains.) Now∑

i∈A
j∈A

πiPij ≤
∑
i∈A

j∈A∩M

πiPij +
∑

i∈A∩M
j∈A

πiPij ≤ π(A ∩M) + π(A ∩M) = π(M).

So by setting (p0)A = πA/π(A), (p0)A = 0, we have that

dTV(p1, p0) =
1
2 ||πA − πAP ||1/||πA||1 = ||πAPAA||1/||πA||1 = Φ(A) ≤ π(M)/π(A).

But dTV(π, p0) ≥ 1
2 , because π(A) ≤ 1

2 , and hence

dTV(π, pt) ≥ dTV(π, p0)− dTV(pt, p0) ≥ 1
2 − tΦ(A).

Thus we cannot achieve dTV(π, pt) ≤ e−1 until

t ≥ ( 12 − e−1)/Φ ≥ π(A)/8π(M).

By an averaging argument there must exist some initial state x0 ∈ A for which
τ(x0) ≥ π(A)/8π(M).

Proof of Claim 3.5. Differentiating (8), we have

∂ψ

∂α
= a(− lnα+ ln(1− α)− βbδ),

∂ψ

∂β
= b(− lnβ + ln(1− β)− αaδ),(22)
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and

∂2ψ

∂α2
=

−a
α(1− α)

,
∂2ψ

∂β2
=

−b
β(1− β)

,
∂2ψ

∂α∂β
= −abδ.(23)

The following three facts about ψ are easily verified:

ψ(α, β) ≥ ψ(1− α, β) if α ≤ 1
2 ,(24)

ψ(α, β) ≥ ψ(α, 1− β) if β ≤ 1
2 ,(25)

ψ(α, β) ≥ ψ(β, α) if β ≤ α ≤ 1− β.(26)

We wish to determine the regions where ψ ≥ a ln 2. These are connected neighbor-
hoods of the local maxima of ψ. From (22) we see that ψ has no boundary maxima for
α, β in the unit square U . Thus, from (23), ψ has only local maxima or saddle-points
in U , and a stationary point is a local maximum if and only if

α(1− α)β(1− β) ≤ 1/(abδ2).(27)

Thus, at any local maximum, either β(1 − β) ≤ 1/(bδ) or α(1 − α) ≤ 1/(aδ). If
the former holds, this and bδ ≥ 11.5 (which holds for η sufficiently small) imply
that β < 0.1, and hence β < 1.2/bδ. An identical argument holds for α. Let us
denote the rectangle [>α, uα] × [>β , uβ ] by [>α, uα | >β , uβ ]. Thus any local maximum
of ψ must lie in the region [0, 1 | 0, 1.2/bδ] ∪ [0, 1.2/aδ | 0, 1] and hence in the en-
closing region [0, 1 | 0, 1.2/bδ] ∪ [0, 1.2/bδ | 0, 1]. (Recall that a ≥ b.) In the square
[0, 1.2/bδ | 0, 1.2/bδ], we have α, β ≤ 1.2/bδ < 0.11 and hence

ψ(α, β) < 2a(−0.11 ln(0.11)− 0.89 ln(0.89)) < a ln 2.

Then, from (24) and (25), we also have ψ(α, β) < a ln 2 in [1−1.2/bδ, 1 | 0, 1.2/bδ] and
[0, 1.2/bδ | 1 − 1.2/bδ, 1]. Now, if β ≤ 1.2/bδ, let ρ = 1 − 2α and consider the upper
bound

ψ(α, β) ≤ Ψ(ρ, β) def
= a(ln 2− 1

2ρ
2) + bβ(1− lnβ)− 1

2 (1− ρ)βabδ.(28)

For fixed β, it is easily shown that Ψ is maximized if ρ = 1
2bδβ ≤ 0.6. If bδβ = 1.2,

then ρ = 0.6 and

max
ρ
Ψ(ρ, β) ≤ a(ln 2− 0.18) + 0.11a(1− ln(0.11))− 0.24a < a ln 2.

Thus ψ < a ln 2 everywhere on the boundary of [1.2/bδ, 1− 1.2/bδ | 0, 1.2/bδ] (but
not including the shared boundary with U). Hence, by (26), ψ < a ln 2 everywhere
on the boundary of [0, 1.2/bδ | 1.2/bδ, 1− 1.2/bδ]. Moreover, ψ(α, β) ≥ ψ(β, α) for all
points (α, β) in [1.2/bδ, 1−1.2/bδ | 0, 1.2/bδ]. It follows that it is sufficient to determine
β∗ such that ψ(α, β) < a ln 2 everywhere in [1.2/bδ, 1 − 1.2/bδ |β∗, 1.2/bδ]. To this
end, again consider

Ψ0(β) = max
ρ
Ψ(ρ, β) = a ln 2 + bβ(1− lnβ)− 1

2abβδ +
1
8ab

2β2δ2.

Now Ψ0 < a ln 2 if

bβδ2 − 4δ + 8(1− lnβ)/a < 0.
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This inequality is satisfied, provided

2
(
1−

√
1− 2bβ(1− lnβ)/a

)
< bβδ < 2

(
1 +

√
1− 2bβ(1− lnβ)/a

)
.

The right-hand inequality is clearly irrelevant since we are assuming that β ≤ 1.2/bδ.
Thus we need consider only the left-hand inequality; i.e., for fixed γ = bβ < 1.2/δ, we
require that

γδ > 2max
a,b

(
1−

√
1− 2γ(1− ln γ + ln b)/a

)
,

where the maximum is over 1
2 − η ≤ b ≤ a ≤ 1. Considering b first, the maximum

occurs when b = a. So we have

γδ > max
1
2−η≤a≤1

2
(
1−

√
1− 2γ(1− ln γ + ln a)/a

)
.(29)

But, because a ≥ γ, the maximum now occurs when a = 1
2 − η. Thus it is enough to

require that

γδ > 2
(
1−

√
1− 4γ(1− ln γ − ln 2)

)
,

because this will imply (29), provided that η is sufficiently small. To achieve γ = 0.004,
it is sufficient that δ ≥ 23.9.
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