The strength of non-size increasing computation

Martin Hofmann*

Abstract

We study the expressive power non-size increasing recursive definitions over lists. This
notion of computation is such that the size of all intermediate results will automatically
be bounded by the size of the input so that the interpretation in a finite model is sound
with respect to the standard semantics. Many well-known algorithms with this property
such as the usual sorting algorithms are definable in the system in the natural way. The
main result is that a characteristic function is definable if and only if it is computable in
time O(2P(™) for some polynomial p.

The method used to establish the lower bound on the expressive power also shows
that the complexity becomes polynomial time if we allow primitive recursion only. This
settles an open question posed in [1, 6].

The key tool for establishing upper bounds on the complexity of derivable functions
is an interpretation in a finite relational model whose correctness with respect to the
standard interpretation is shown using a semantic technique.

Keywords: computational complexity, higher-order functions, finite model, semantics
AMS Classification: 03D15, 03C13, 68Q15, 68Q55

1 Introduction
Consider the following recursive definition of a function on lists:

twice(nil) = nil (1)
twice(cons(z,l)) = cons(tt, cons(it, twice(l)))

Here nil denotes the empty list, cons(z,[) denotes the list with first element 2 and remaining
elements [. tt, ff are the members of a type T of truth values. We have that twice(l) is a list
of length 2 - |I| where |I| is the length of [. Now consider

exp(nil) = cons(tt, nil) @)

exp(cons(z,l)) = twice(exp(l))

We have |exp(l)| = 2l and further iteration leads to elementary growth rates.
This shows that innocuous looking recursive definitions can lead to enormous growth. In

order to prevent this from happening it has been suggested in [2, 9] to rule out definitions

like (2) above, where a recursively defined function, here twice, is applied to the result of a

recursive call. Indeed, it has been shown that such discipline restricts the definable functions

*Fachbereich Mathematik, TU Darmstadt,Schlossgartenstr. 7, 64289 Darmstadt, Germany,
mhofmann@mathematik.tu-darmstadt.de

to the polynomial-time computable ones and moreover every polynomial-time computable
function admits a definition in this style.

Many naturally occurring algorithms, however, do not fit this scheme. Consider, for
instance, the definition of insertion sort:

insert(z, nil) = cons(z, nil)

insert(z, cons(y,l)) = if z <y then cons(z,cons(y,!)) else cons(y, insert(z,!))
sort(nil) = nil

sort(cons(z,l)) = insert(z, sort(l))

3)

Here just as in (2) above we apply a recursively defined function (insert) to the result of a
recursive call (sort), yet no exponential growth arises.

It has been argued in [3] and [6] that the culprit is definition (1) because it defines a
function that increases the size of its argument and that non size-increasing functions can be
arbitrarily iterated without leading to exponential growth.

In [3] a number of partly semantic criteria were offered which allow one to recognise when
a function definition is non size-increasing. In [6] we have given syntactic criteria based on
linearity (bound variables are used at most once) and a so-called resource type < which counts
constructor symbols such as “cons” on the left hand side of an equation.

This means that cons becomes a ternary function taking one argument of type <, one
argument of some type A (the head) and a third argument of type L(A), the tail. There
being no closed terms of type ¢ the only way to apply cons is within a recursive definition;
for instance, we can write

append(nil,ly) = [y

append(cons(d, a,l1),l2) = cons(d, a, append(ly,ls) (4)

Alternatively, we may write
append(l1,l2) = match [with nil=ls | cons(d, a,l})=-cons(d, append(l;, I2) (5)

We notice that the following attempted definition of twice is illegal as it violates linearity
(the bound variable d is used twice):

twice(nil) = nil
twice(cons(d, z,l)) = cons(d,tt, cons(d, t, twice(l)))

(6)

The definition of insert, on the other hand, is in harmony with linearity provided that
insert gets an extra argument of type & and, moreover, we assume that the inequality test
returns its arguments for subsequent use.

The main result of [6] and [1] was that all functions thus definable by structural recursion
are polynomial-time computable even when higher-order functions are allowed. In [7] it has
been shown that general-recursive first-order definitions admit a translation into a fragment
of the programming language C without dynamic memory allocation (“malloc”) which on the
one hand allows one to automatically construct imperative implementations of algorithms on
lists which do not require extra space or garbage collection. More precisely, this translation
maps the resource type < to the C-type void * of pointers. The cons function is translated
into the C-function which extends a list by a given value using a provided piece of memory.
It is proved that the pointers arising as denotation of terms of type ¢ always point to free
memory space which can thus be safely overwritten.

This translation also demonstrates that all definable functions are computable on a Turing
machine with linearly bounded work tape and an unbounded stack (to accommodate general
recursion) which by a result of Cook! [4] equals the complexity class DTIME(29(™). Tt was
also shown in [7] that any such function admits a representation.

In the presence of higher-order functions the translation into C breaks down as C does not
have higher-order functions. Of course, higher-order functions can be simulated as closures,
but this then requires arbitrary amounts of space as closures can grow proportionally to
the runtime. In a system based on structural recursion such as [6] this is not a problem
as the runtime is polynomially bounded there. The hitherto open question of complexity of
general recursion with higher-order functions is settled in this paper and shown to require a
polynomial amount of space only in spite of the unbounded runtime.

We thus demonstrate that a function is representable with general recursion and higher-
order functions iff it is computable in polynomial space and an unbounded stack or equiva-
lently (by Cook’s result) in time O(2P(™)) for some polynomial p. The lower bound of this
result also demonstrates that indeed all characteristic functions of problems in P are definable
in the structural recursive system. This settles a question left open in [1, 6].

In view of the results presented in this paper, these systems of non size-increasing com-
putation thus provide a very natural connection between complexity theory and functional
programming. There is also a connection to finite model theory in that—as will be shown
below—programs admit a sound interpretation in a finite model. This improves upon earlier
combinations of finite model theory with functional programming [5] where interpretation
in a finite model was achieved in a brute-force way by changing the meaning of constructor
symbols, e.g. successor of the largest number NV was defined to be N itself. In those systems it
is the responsibility of the programmer to account for the possibility of cut-off when reasoning
about the correctness of programs. In the systems studied here linearity and the presence of
the resource types automatically ensure that cutoff never takes place. Formally, it is shown
that the standard semantics in an infinite model agrees with the interpretation in a certain
finite model for all well-formed programs.

Another piece of related work is Jones’ [8] where the expressive power of cons-free higher-
order programs is studied. It is shown there that first-order cons-free programs define polyno-
mial time , whereas second-order programs define EXPTIME. This shows that the presence of
“cons”, tamed by linearity and the resource type changes the complexity-theoretic strength.
While loc. cit. also involves Cook’s abovementioned result (indeed, this result was brought to
the author’s attention by Neil Jones) the other parts of the proof are quite different.

!This result asserts that if L(n) > log(n) then DTIME(2°(F()) equals the class of functions computable
by a Turing machine with an L(n)-bounded R/W-tape and an unbounded stack.

2 Syntax and typing rules

The terms of the languag are given by the following grammar:

en= z variable
| fler,.-.,en) function application
|, ff boolean constant
| if e then €' else ¢’ conditional
| e1®ez pairing
| nil empty list
| cons(ep,ez,e3) cons with res. arg.
| match e; with nil=-e2 | cons(d, h,t)=>e3 list elimination
| match e; with z ® y=e pair elim.
| Az.e linear lambda abstraction
| eres linear function application

The match constructs as well as A bind variables.
The types are given by the following grammar.

A:T‘<>|L(A)|A1®A2|A1—OA2

Here T is the type of truth values, L(A) stands for lists with entries of type A, A; ® Az is the
type of pairs with first component of type A; and second component of type As. The type
Ay —o Ay is the type of functions from A to A, and finally < is the resource type. The
heap-free types contain T and are closed under ®. Variables of heap-free type may be used
more than once as described by rule CONTR below.

In [7] also tree types and disjoint union types were considered. We refrain from doing
so here for the sake of simplicity. However, it has been checked that all the constructions
presented here carry over to this richer setting.

A signature ¥ maps a finite set of function symbols to expressions of the form (44,..., A,)—B
where A; ... A, and B are types.

A typing context T is a finite function from variables to types; if z ¢ dom(I") then we
write T',z:A for the extension of T' with z — A. More generally, if dom(T') N dom(A) = (
then we write I', A for the disjoint union of I' and A. If such notation appears in the premise
or conclusion of a rule below it is implicitly understood that these disjointness conditions are
met. We write e[z/y] for the term obtained from e by replacing all occurrences of the free
variable y in e by z after suitable renaming of bound variables so as to prevent capture. We

consider terms modulo renaming of bound variables.
Let X be a signature. The typing judgment T Fx e : A read “expression e has type A in
typing context I and signature 3" is defined by the following rules.

z € dom(T")

_ VA
Thy z:D(x) (VAR)
E(f):(Al,,An)—)B T ks 6i:AifOI'i:1...TL (SIG)
Fl,...,I‘n }_E f(el,...,en) : B
Iz:A,y:AFye: B A heap-free (ConTR)

T,z:A by e[z/y]: B

4

c € {t, ff}

_— CONST
Fl—EC:T ()
Fl—geiT AI—EGI:A AI—EGI’:A
- (Ir)
ILAFsifethene elsee” : A
Fl—ge:A Al—gel:B
(PAIR)
INMAbse®e :A®B
l'tre:A® B Az:A,y:Bbge : C
- (SPLIT)
I', A by match e with z @ y=¢€' : C
Tty nil: L(A) (N1L)
I'yk+ : O 'y + : A Iy - :L(A
itz eq h s en tFx e L(A) (Cons)

Fd, Fh, Ft [—2 cons(ed, €h, et) : L(A)

Fkye:L(A)
A l—z €nil - B
A,d:O,h:A t:L(A) by econs : B
T, A by match e with nil=-en | cons(d, h,t)=>€econs : B

(L1sT-ELIM)

Iz:Atyse: B (Law)
M
'Xze:A—B
'k :A—oB Aley: A
z €1 €2 (App)

I'Atbs ejes: B

Application of function symbols is linear in the sense that several operands must in gener-
alnot share common free variables. This is because of the implicit side condition on juxtapo-
sition of contexts mentioned above. In view of rule CONTR, however, variables of a heap-free
type may be shared and moreover thesame free variable may appear in different branches of a
case distinction as follows e.g. from the form of rule Ir. It follows by standard type-theoretic
techniques that type checking for this system is decidable in linear time. More precisely, we
have a linear time computable function which given a context I', a term e in normal form?,
and a type A either returns a minimal subcontext A of I' such that A F e : A or returns
“failure” in the case where I' - e : A does not hold. This function can be defined by primitive
recursion over e.

A program consists of a signature ¥ and for each symbol f : (A1,...,A4,)—B contained
in ¥ a term ey such that z1:44,...,z,:4, Fx e : B.

2i.e. one that does not contain instance of match applied to constructors (nil, cons, ®) or A-abstractions in
applied position

3 Denotational semantics

In order to specify the purely functional meaning of programs we introduce a denotational
semantics following [10].

A partially ordered set D = (D, <) is a complete partial order, cpo for short, if each
increasing chain zg < ;1 < ... has a least upper bound VZ z; in D. A function from cpo D to
cpo F is continuous if it is monotone and preserves these least upper bounds. Any set forms
a (discrete) cpo. If D is a cpo its lifting D, is formed by freely adjoining a least element L.
For cpos D and E we have their cartesian product D X F with the component-wise ordering.
We write (z,y) for the pair with components z and y and if p = (x,y) we write p.1 = z and
p.2 = y for the first and second projections. We assume that X associates to the right so that
e.g. the second component of p € D x E x F is obtained as p.2.1. We have the continuous
function space D — E consisting of continuous functions from D to E with the point-wise
ordering. Elements of D — E may be defined using A-notation if continuity is ensured. For
instance, if e € FE the expression Az.e denotes the constant function in D — E.

The cpo L(D) consists of finite lists of elements of D with lists of equal length ordered
component-wise and lists of different length being incomparable. We use the notation [| for
the empty list, a :: [for the list with first element ¢ and remaining elements [, we write
[a1,...,ay] for the list with members a1,...,a, and 1 @ [y for the concatenation of lists [y
and ly. We write |/| for the length of a list /.

We assign a cpo to each type by

[T]={&,} [oI={0} [L(A)] = L([A])
[A@ Bl =[A] x[B] [A— B]=[A] = [B],

To each program P = (3, (ef) fedom(x)) We can now associate a mapping [P] such that [P](f)
is a continuous map from [A;] x -+ x [4,] to [B], for each f: (Ai,...,A,)—=B.

This meaning is given in the standard fashion as the least fixpoint of an appropriate
compositionally defined operator, as follows.

A waluation of a context I' is a function 7 such that n(z) € [I'(z)] for each z € dom(T");
a valuation of a signature ¥ is a function p such that p(f) € [Ai1] x --- x [4,] — [B],
whenever f € dom(X).

To each expression e such that ' Fx e : A we assign a function mapping a valuation 7 of T’
and a valuation p of ¥ to an element [e], , € [A] in the obvious way, i.e. function symbols and
variables are interpreted according to the valuations; basic functions and expression formers
are interpreted by the eponymous set-theoretic operations, ignoring the arguments of type <
in the case of constructor functions. The formal definition of [-], ; is by induction on terms.

Here are a few representative clauses.

[2],,,, = n(x)

[F(e1s- - en)ly , = p(F)lerly - - - [enly)
[cons(e1, ez, e3)], , = [e2],, , = [es],,,
[match e with nil=>e; | cons(d, h,t)=e2], ,

= [[62 n[d—0,h=>vy tvi],p0

when [e], , = vp 2 vt
[[)\x'e]]n’p(,u) = He]]n[zi—)'u],p
[ere2],,, = lei]y,,([e2]y)

A program (%, (ef) fedom(x)) is interpreted as the least upper bound of the following (point-
wise) increasing sequence of valuations: po(f)(¥) = L and

pist ()1, vm) = [eg], 7
where 7(z;) = v;, for any f € dom(X). Notice that p =/, p; satisfies
p(f)(vl,"',vn) = IIef]]p,n (8)

and is minimal with this property.

We stress that this order-theoretic semantics does not say anything about computational
complexity. Its only purpose is to pin down the functional denotations of programs so that
we can formally state what it means to implement a function. Accordingly, the resource type
is interpreted as a singleton set, ® and —o are interpreted as ordinary product and function
space disregarding linearity.

If f is a function symbol in defined in a program P that is clear from the surrounding
context then we may abbreviate [P](f) to [f]-

3.1 Examples

Reverse:
rev_aux : (L(N),L(N))—L(N)
reverse : (L(N))—L(N)
erev_aux(l, acc) = match [with nil=-acc | cons(d, h,t)=>rev_aux(t, cons(d, h, acc))
ereverse (I) = rev_aux(/, nil)

Insertion sort
insert : (O, N,L(N))—L(N)
sort : (L(N))—L(N)
€insert (d, a,l) = match [with
nil=nil
| cons(d',b,t)=ifa < b
then cons(d, a,cons(d’, b, 1))
else cons(d, b, insert(d’, a,t))
esort (I) = match [with
nil=-nil
| cons(d, a,t)=>insert(d,a, sort(t))

Apply a function to the tail of a list

AppTail: (A — A,L(A))—L(A)
eapprail(f,a,l) = match [with
nil=nil
| cons(d, b, t)=>match ¢ with nil=-cons(d, f(b), nil)
| cons(d’,b',t")=AppTail(cons(d’, V', "))

Composing all functions in a list

ComposeList : (L(OC® A) — A))—A —- A
€ComposeList ([, @) = match [with

nil=-Aa.a

| cons(d, f,t)=>Aa.f(d ® ComposeList(t)(a))

Higher-order tail recursion

Contrived: (4,4 — A)—A
eContrived(-T:f) = If P(x) then f(.'L')
else if g(z) then Contrived(a(x), A\y.g(f(g(x))))
else Contrived(b(z), Ay.h(f(h(z))))

In the last example, p,q : (A)—=T and a,b,g,h : (A)—A are arbitrary function symbols
defined independently or indeed simultaneously with Contrived. The point of the example
is that under a functional evaluation strategy the intermediate term denoting the currently
accumulated function grows arbitrarily. Many more examples are given in [6, 7].

4 Expressivity

In this section we characterise the functions of type (L(T))—L(T) definable in the system.
We will say nothing about higher-order functionals definable in the system, notice, however,
that a first-order function may involve a higher-order functional as part of its definition. This
situation is encompassed by our characterisation.

Let us write W for the type L(T) and T for the set {tt,ff} and W for the set T = [L(T)] =
[W]. For a set A we define L,(A) = {w € A* | |lw| = n} as the set of lists of length n over
A. We write W, = L,,(T) so that W,, C W. Elements of W,, will be identified with the set
{0,...,2™ — 1} using the binary encoding. E.g. W5 > [ff, i, tt, ff, ff] = 12.

If Ay,...,Ap, B are types and f : [A;1] x--- x [A,] — [B], is a function then we say that
f is representable if there exists a program containing a function symbol f : (A44,...,A,)—B
such that [f] = f. Our aim in this section is to prove the following result.

Theorem 4.1 Let f : W — W be a function such that |f(w)| < |w| and such that f(x) is
computable in time 0(27’('“”')) for some polynomial p. Then [is representable.

Definition 4.2 Let s : N — N be a function with s(n) < 2" and ¥ € N be a number. A
(k, s)-storage device is given by the following data:

e aset S = [S] for some type S

a family of subsets S, C .S forn € N.

e a representable function (a constant) init :— S, i.e. there is init : ()—8 with [init] =
init,

e 3 representable function read : W x W xS - W x W x T x S, i.e., there is read :
(L(T),L(T),8)=L(T) ® L(T) ® T ® S with [read] = read,

e 3 representable function write : W x W xT x S - W x W x S, i.e., there is ...

such that for all n € N and w, wy, ws, w3 € Wiy, a,a’ € W, and s € S,, the following are
satisfied:

o init() € Sy

e read(w,a,s) = (w',a’,b,s') implies w' € Wy,,a' € W,,,s' = s

o write(w,a,b,s) = (w',d’,s") implies w' € Wy,,a' € Wy,,s" € S,
o read(w1,a, write(ws, a, b, $).2.2) = b provided that a < s(n)

e read(w1,a, write(ws, a’, b, s).2.2) = read(ws, a, s) provided that a,a’ < s(n) and a # o'
O

This means that an element of S, is capable of holding s(n) bits of information. The call
read(w, a, s) reads the a-th bit contained in s; the call write(w,a,b,s) sets it to b when
a < s(n). Otherwise, the behaviour of these functions is left unspecified.

The first argument w plays the role of a “scratch pad”; its contents are unimportant; it
is used as an item of auxiliary space to perform reading and writing. Both read and write
return an equally long list for possible subsequent use as a scratch pad. Similarly, the address
a and (in case of read the store s itself) are being returned as part of the result. In a linear
setting this is crucial as otherwise these arguments would be lost.

Lemma 4.3 Let c € N be a constant. There is a (0, An.c)-storage device.

Proof. Forn e Nweput §=5,=T¢
We put

init = (tt,...,t)

read(w, a, 8) = (w,a, by, s), ifa <c

read(w, a, s) = (w, a, tt, s), otherwise

write(w, a, b, s) = (w,a, (by,-..,bq-1,0,bq4+1,---,bc-1)), if a < ¢
write(w, a, b, s) = (w, a, s), otherwise

when s = (bg,...,bc—1).

We have S = [S] where S = T® ... ® T) with ¢ factors. Since c is a constant we can
“hardwire” all possible ¢ addresses, i.e., we use a case distinction on a of depth log(c) to
distinguish all possible different values of a. We omit the details. O

The key to larger sizes is the following lemma which shows how to “hide” information
inside a (constant) function:

Lemma 4.4 Let S be any type and put S = [S]. There is a representable functional
D:L(S) — (W—-L(S))xW (9)
with the property

(1) = (frw) = | = lI] AV Ju'| = [1]= f(w') =1 (10)

Proof. The following program represents f:

es(l) = match [with
nil=(Az.nil) @ nil
cons(d, s,1")=match ®(I') with
fw=
(Az.match z with
nil=-nil
cons(d’, b,w')=cons(d', s, f(w'")))
®cons(d, t, w)

O

The idea is that if ®(I) = (f,w) then f holds all the information contained in [yet the
abstract space (in the form of ¢-values) occupied by [is returned as w. Of course, in order
to read the information contained in f we need an argument of size |I|.

Lemma 4.5 If there exists a (k, s)-storage device then there exists a (k+1, An.n-s(n))-storage
device.

Proof. Suppose the storage device of size s is given by the sets S, C S and the functions
init, read, write. We define the desired storage device on

S'=W = L(S),L = [L(T) — L(9)] (11)

where [S] = S and

S ={f|Vw € Wy.f(w) € Lp,(Sp)} C & (12)
We put
it ([]) =[]

init' (z 2 w) = init() :: inat (w)

so that init’ € S'.
Notice that we have init' = [init’] where

€init’ = Aw.match w with nil=nil | cons(d, z, w;)=>cons(d, init(),init’ (w1))

10

The definition of read’ will be given as a sequence of intermediate results assuming the exis-
tence of certain helper functions whose definition we omit.

For read (w,a, f) we start with w,a € W and f € S'. We intend that w € W1y,
ae€W,, feS] for somen e N

We split w into wq, wy such that |wi| + |we| = |w| and |wq|/|we| = 1/k. If this is
impossible we immediately produce some default result. Notice that if |w| = (K + 1)n as
intended then such decomposition is possible and |wi| = |a| = n, |we| = kn. We now apply

f to wy yielding | € L(S), actually | € L,(S,) in case f € S,. We decompose [into
li,l € L(S),s € S,d € O where [; Q[s]@ly = and s is the (a mod |a|)-th entry of I. We let a4
be adiv|a| where |a;| = |a] = n and call read(ws, a1, s). This yields the desired boolean value
b which forms the main result of read’ (w2, a, s). The other return values comprise s and a list
wh with |wh| = kn = |we|. From s,l1,l2,d we reconstruct | and then—using Lemma 4.4—we
reconstruct f and obtain w] with |w]| = |wi| = n. We return w}] @ wh, a1, b, f.

The definition of write' is analogous. O

Proof of Theorem 4.1 Suppose that f : W — W is a function such that f(I) is computable
on a Turing machine M in time 2P(!). Let k be the degree of p. By Lemmas 4.3 and 4.5
there exists a (k, An.p(2kn))-storage device S.

This means that in the presence of a list w € W, /5 serving as a scratch pad we can store
p(n) bits.

Starting from the input presented as an element [€ W where n = |I| we first construct
by recursion on [an element (w,l') € W, 12 X Ly /2(T x T) such that I’ contains the entire
information of [. Notice that this is possible as a diagonal map diag : T — T x T with
diag(xz) = (z,z) is definable by egiag(2) = if z then t @ tt else ff @ ff. Alternatively, we can use
rule CONTR.

Thus w can be used as a scratch pad for the storage device to store the required amount
of p(n) bits occurring as work tape inscriptions. Additionally we can simulate an unbounded
stack by general recursion, see [7] for details.

Thus, by Cook’s result [4] the function f is representable. O

The above can also be used to solve a question left open in [1, 6]. In those papers a
restriction of the described language has been studied which confines recursion to structural
recursion. This means that the function symbols are totally ordered; in the function body
es may contain function symbols less or equal to f only. Moreover, if e; mentions f then f
must have one argument z; of type L(A) for some A and ey must be of the form

ef(...,xi,...) = match z; with nil=ey; | cons(d, h,t)=econs

where e, does not contain f and econs contains f at most once and then with argument x;
equal to t.

Theorem 4.6 Let f : W — W be a function such that |f(I)| < || for alll € W. Then f is
representable using structural recursion alone iff f is computable in polynomial time.

Proof. The “only if” direction is the main result of [1, 6]. For the other direction we
use a Lemma from [6] which states that if g : L(A) — L(A) is representable and moreover

11

|g(z)| = || then for any polynomial p the function Az.g?(*)(z) is representable, too. In
order, then, to represent f we package up a storage device s € S, a scratch pad, and the
input, into a single list over some appropriate type A, say A =T ® S ® T. Using for g the
appropriately coded one-step function of a Turing machine then yields the result. O

We will now provide a corresponding upper bound on expressivity:

Theorem 4.7 If f : W — W is representable then f(l) is computable on a deterministic
Turing machine in time O(2p(|l|)) for some polynomial p.

The proof of this result is based on two intuitions: Firstly, due to the linear typing disci-
pline the size of all intermediate results is a priori bounded by a function of the size of the
input. Second, linear functions can be simulated as argument-result pairs if one allows for
nondeterminism: when constructing a linear function one guesses an argument and stores it
together with the corresponding result. When applying such a linear function, one checks
whether the actual argument agrees with the previously guessed one and in this case returns
the precomputed result. Otherwise, the result is undefined.

To make this precise we construct an appropriate finite relational model for the language
and show that evaluation in that finite model yields the same result as evaluation in the
official order-theoretic (infinite) model.

Let N € N be a fixed parameter. We define finite sets (A|) together with functions
| —|a:(A) = {0,...,N} for types A inductively as follows.

(©) = {0} 0o =1

(T) = {t,f} [t =0

(L(A)) = {w € L((AD) | [wl(a) < N} [a1,- s an]Lay = n+ 225 laila
(A® B) ={z € (A) x (B) | [z|agn < N} |(a,0)|agB = lala +[b]B

(A — B) = (A x (B) (@, b)[a—~B = [b]B = |ala

For context I" we define

(T) = {n | Vee dom(T").n(z) € (T(z)) Alnlr < N} nlr = 2Xsedomr) [1(#)Ir@)

When we use, e.g., |z|agp in the definition of (A ® B)) it refers to the defining expression for
| — |agB given afterwards. The “modified difference” z ~ y is defined as z —y if z > y and 0
otherwise. Notice that for nonnegative numbers z,y,z one has x +y > z iff x > 2z = y.

For U C (A| we define |U|4 = maxzey |ala.

A relational valuation of a signature ¥ assigns to each f: (A1,...,A,)—B declared in &
a relation
o(f) C (A1 ®...® Ar) x (B) (13)

such that (ai,...,a,)p(f)b implies |b|lp < Y " | |ai|a;-
Given relational valuation p of 3 we define a relation

(eD, € (T) > (A) (14)

12

by induction on a typing derivation I" -y, e : A as follows:

(CHz:T(x)), ={(n)|v=mn(z)} (VAR)
(Irla---aI‘T'_f(el""aeT):BDp:{(n”U)|
n=md---yYnA

Nimi(Ti b e 2 A vi A (va, ..., 00)p(f)v} (S16)
(T,z:AkFe:BJ),={(n,v) |
n[y— n(z)](T,2:4,y:AF e: B)) v} (CONTR)
(THe:T),={nv)[ne(T)v=[I} (ConsT)
(T, Ak if e then € else e : A)) = {(n,v) |
n=mynA(
m(CEe:T) e An(AF e A) vV
n1(|F|—e:TDp'FF/\772(]AI—e":ADpfu)} (Ir)
(T Fnil: L(A)), = {(n, 1) [n € (LD} (N1L)

(Ta,Tn,Ti b cons(eq, en, er) : L(A)), = {(n,vn = v1) |

N = Na W np Y mpA

nd(|1"d F €q : ODPO/\

Mh(Th b= en = A) junA

ne(Ce b er 2 L(A)) jve} (Cons)
(T, A + match e with nil=ey; | cons(d, h,t)=>econs : B|)p ={(n,v) |

n=mnYn

m(CFe:L(A)),0An(AF ew: B),vV

m (T Fe:L(A)),vn :z veA

N2[d—0, h—vp, t—vy] (A, d: O, h: A, t:L(A) F econs : ADpU} (LisT-ELIM)

(T,AFer®ey: A® B)), = {(n, (v1,v2) |

m(C Fer: A) o1 Am(A ez B ,v2} (PAIR)
(T, A+ match e; with z ® y=es: C|), = {(n,v) |

n = n1 YA

nl(]I‘ Fel:A® BDp(’Ul,vz)/\

melz—vr, yovo] (A, 2:A,y:B k= ez : C)) v} (SpLIT)
(T'+Az.e: A— B),={(n,(a,b)) |

nlz—al(T,z:At+ e : BJ) b} (Lam)
(T,AtFeier: B), ={(n,b) |

n=mnYn

m(T ke : A— B|)(a,b)A

n(AF ey: A)a} (APP)

The thus defined interpretation of a program is non size-increasing in the following sense.

Lemma 4.8 If p is a relational valuation of ¥ and I' b5, e : A then whenever n(I'Fe: A ja
one has |ala < |n|r.

Proof. Direct induction on typing derivations. 0
For a given program P the mapping which sends p to the relational valuation

fr—>q:cl:Al,...,:vn:An}—ef:BDp (15)

13

is clearly monotone (with respect to inclusion) so that we can define the relational semantics
of a program as the least fixpoint of this functional which in view of the finiteness of the
domains is actually reached after a finite number of iterations starting from the relational
valuation assigning the empty relation to each function symbol.

We write (P|)(f) or simply (f]) for the thus obtained interpretation of a function symbol
f in some program P. Since the empty relation is a relational valuation and by the previous
lemma the semantics maps relational valuations to relational valuations, the thus defined
semantics of a program is also a relational valuation, i.e., non size-increasing.

Proposition 4.9 Suppose that P is a program containing some function symbol f : (W)—W
and let | € W where |l| < N (recall that N is a fized parameter). Notice that in this case
e [L(T)] as well as L € (L(T)). Then I(f)' < [f](1) =1 for alll' e W.

This means in particular that (f|) is a partial function.

Before we prove this result let us remark that it allows us to evaluate any function
f : (L(T))—=L(T) in a finite amount of time (regardless of its termination behaviour un-
der an evaluation strategy based on rewriting) by computing (f|) for appropriate parameter
N. We will later estimate the amount of time required for this so as to obtain the desired
characterisation. Let us first come to the proof of the proposition, though:

Proof. For each n < N we define inductively a family of simulation relations
~AC Al x{U C (A) |U#DA|Ua < n} (16)

between elements of [A] and nonempty subsets of (A]) of size < n. Recall that |U|la =
maxzey |Z|4.

To simplify the notation we introduce the following shorthands: if U C (A]) and V C (B))
then U x V :={(a,b) |a € UANb eV} Wehave U xV C (A® B| iff [U|a + |V|g < N and
in this case |U X V|agp = |U|a + |V|B-

IfU C (A) and V C (L(A)) then U::V :={a :w |a € UAw € V} We have UV C
(L(A)) iff [U]a+ |V a) +1 < N and in this case |U :: V| 4y = [U|a +|V|p + 1.

IfUC(A—oB)and V C (A) then U(V) :={b| 3a € V.(a,b) € U} We have |U(V)|p <
[Ula—B + |V]a.

We formally extend ~" by putting L ~" (. Notice that whenever z € [A] U{L} and
z ~% U and z # L then U # 0.

The defining clauses are now given as follows.

() Fon () 0~BT (0} [~y ()

(a,0) Migp W <= In1,n2,U,Vini +na=n
Na~PUANDNZ VAW =UXV

f~% .gU <~ Vny,zn+n <N
ANz ~MV = f(z) ~HMUWV)

a:::ZNE(A)W <~ dniy,no, U Vini+ne+1<n
Az~ U/\ZNTLL?A) VAW =U:=V

Notice that if m < n < N then z ~}' U implies z ~"; U. Notice also that if A is heap-free and

x ~4 U then U has at most one element; exactly one if z # 1. We write n ~% U for n € [I']
and U C (T') if there exist dom(T')-indexed families (ng)s, (Us)z such that 3, cqomry na <

14

and U = [[;cqom(r) Uz and n(z) N?“(”x) U, for all z € dom(T'). If X,Y aresetsand f: X - Y
and U C X we define

fU)={yeY |ImeUyec f(z)} (17)
Similarly, if 'Fe: A and U C (T']) we define
(Tre:Ady,={b|3n € Un(TFe: A) b} (18)

Suppose that we are given a domain-theoretic valuation 7 and a relational valuation p
of a given signature ¥. We will write 9 ~ p to mean that for each function symbol
f:(Aq,...,A)—=B declared in ¥ and whenever n = ny + -+ 4+ n, < N one has A u; N%
Ui = ¢¥(f)(u1,...,u) ~% p(f)™(Un,...,U;) We now have the following sublemma :

Sublemma: Suppose that ¢ ~p. IfT'Fse: A and n ~p U then [e], , ~% (TFe: A)y,

Proof of sublemma: By induction on typing derivations. For rule VAR we use the fact
that U is nonempty.

Rule Sia follows from the assumption made on 1 and p.

Rule CONTR uses the fact that elements of heap-free type have zero size as well as the
observation that whenever v ~4 U for heap-free A then U has at most one element which
implies that whenever 1 ~r 4.4 y:a U where U, = U, and n € U then 1 = nfy — n(z)]. These
are the only two properties of heap-free types used thus allowing for possible extensions. All
other cases are direct.

O

Now let 1)y be the valuation defined by 4 (f)(ZF) = L and py be the relational valuation
that assigns the empty relation to each function symbol. Clearly, 19 ~ pg and so the sublemma
shows that ¥, ~ p, for all m where

Y1 (F) (v, .-y 0r) = [[ef]][levl,---,wrr—wr],dJm (19)
pm—l—l(f)('”la cee ,’UT) = (IefD[wlb—)vl,...,xrb—)vT],pm

As already mentioned, in view of the finiteness of the sets (A| there exists mgy such that
(P)(f) = pmo(f) for all f € dom(X). Therefore, Vm > mg.pm ~ (P)).

Now, [PI(f) =V pm(f) = Vinsmo Pm(f). 1t is readily seen by induction on types that
each relation ~% is continuous in the sense that Vi.z; ~7 U implies (\/,; z;) ~" U assuming
of course that the z; form an ascending chain. We have thus proved that [P] ~ (P| which
yields the desired result when specialised to the type L(T). O

The idea is now to compute for a given N the iterations p,, by stepwise updating a big
value table holding the relations py,(f).

To estimate the size of such a value table we must estimate the number of elements of the
sets (A)). Writing #X for the cardinality of set X we have

log #(T) =1 log #(<) =0 log #(L(A)) < Nlog#(A)

log #(A ® B|) < log #(A|) + log #(B]) log #(A — B)) <log#(A) +log #(B)
(20)

15

Therefore, for a given program P we can find a polynomial p such that log #(A|) < p(N) for
each type A occurring in P.

The space required to store a relational valuation for P in the relational model is therefore
0(2°(M) where the hidden constant involves the number and arities of function symbols.

Now, using the definition of (I' - e : A)) the computation of pp, 41 given a value table
for p,, and space to hold py,+1 can be performed with O(p(IN)) extra space which would be
required e.g. to hold particular elements of (A)).

In order to compute (P|) we maintain space for two value tables initialising both with
the empty relational valuation. If at any time one of the two tables holds p,, we perform
the necessary computations to achieve that the other one holds p,,+1. Thereafter, p,, is not
needed anymore so that we can overwrite it with p,,12 and so forth, until no more changes
take place and we have found (PJ).

Since pm C pm+1 the number of iterations is O(2P(N)) as well (in the worst case each
iteration adds one single tuple to p), so that we have given a DTIME(O(2P(Y))) algorithm for
computing (PJ) hence [P](f)(l) for f: (L(T))—L(T) when |I| < N. This concludes the proof
of Theorem 4.7.

References

[1] Klaus Aehlig and Helmut Schwichtenberg. A syntactical analysis of non-size-increasing
polynomial time computation. In Proceedings of the Fifteenth IEEE Symposium on Logic
in Computer Science (LICS ’00), Santa Barbara, 2000.

[2] Stephen Bellantoni and Stephen Cook. New recursion-theoretic characterization of the
polytime functions. Computational Complezity, 2:97-110, 1992.

[3] Vuokko-Helena Caseiro. Equations for Defining Poly-time Functions. PhD thesis, Uni-
versity of Oslo, 1997. Available by ftp from ftp.ifi.uio.no/pub/vuokko/0Oadm.ps.

[4] Stephen A. Cook. Linear-time simulation of deterministic two-way pushdown automata.
Information Processing, 71:75-80, 1972.

[6] Andreas Goerdt. Characterizing complexity classes by higher type primitive recursive
definitions. Theoretical Computer Science, 100:45-66, 1992.

[6] Martin Hofmann. Linear types and non size-increasing polynomial time computation.
To appear in Theoretical Computer Science. See www.dcs.ed.ac.uk/home/papers/icc.
ps.gz for a draft. An extended abstract has appeared under the same title in Proc. Symp.
Logic in Comp. Sci. (LICS) 1999, Trento, 2000.

[7] Martin Hofmann. A type system for bounded space and functional in-place update.
Nordic Journal of Computing, 2001. To appear, see www.dcs.ed.ac.uk/home/mxh/
papers/nordic.ps.gz for a draft. An extended abstract has appeared in Programming
Languages and Systems, G. Smolka, ed., Springer LNCS, 2000.

[8] Neil Jones. The Expressive Power of Higher-Order Types or, Life without CONS. Journal
of Functional Programming, 2001. to appear.

[9] Daniel Leivant. Stratified Functional Programs and Computational Complexity. In Proc.
20th IEEE Symp. on Principles of Programming Languages, 1993.

16

[10] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction.
MIT Press, 1993.

17

