A New “Feasible” Arithmetic

S. Bellantoni* Martin Hofmann'

January 19, 2000

Abstract

A classical quantified modal logic is used to define a “feasible” arith-
metic A3 whose provable functions are exactly the polynomial-time com-
putable functions. Informally, one understands (Ja as “a is feasibly
demonstrable”.

A} differs from a system As that is as powerful as Peano Arithmetic
only by the restriction of induction to ontic (i.e. O-free) formulas. Thus,
A} is defined without any reference to bounding terms, and admitting in-
duction over formulas having arbitrarily many alternations of unbounded
quantifiers. The system also uses only a very small set of initial functions.

To obtain the characterization, one extends the Curry-Howard iso-
morphism to include modal operations. This leads to a realizability trans-
lation based on recent results in higher-type ramified recursion. The fact
that induction formulas are not restricted in their logical complexity, al-
lows one to use the Friedman A translation directly.

The development also leads us to propose a new Frege rule, the “Modal
Extension” rule: if - a then F A <+ « for new symbol A.

1 Introduction

In recent years considerable effort has been dedicated to defining and exploring
logical and arithmetic systems in which the reasoning involved is not only con-
structive but “feasibly constructive”. In most cases this is understood to mean
that the constructive content of the proof — however that might be defined — is
polynomial time computable. In any case, an important litmus test for feasiblity
of a first order arithmetic is that the functions for which a suitable convergence
statement can be proved, are at most the polynomial time computable functions.
For this test to be of any significance, of course, the system must have enough
expressive power to discuss a wider class of functions, say all the primitive re-
cursive functions. Buss’s system S of bounded arithmetic [7] is fundamental
to this subject; see Krajicek [21] for a discussion of related work.

*Department of Computer Science, University of Toronto. The assistance of the Fields
Institute for Research in Mathematical Sciences is gratefully acknowledged.
TLaboratory for Foundations of Computer Science, University of Edinburgh.

At the same time, researchers in recursion theory have developed systems
in which computational complexity is controlled by type information rather
than by explicit resource bounds [29], [3], [23], [17], [4]. Each of the various
types ¢, ot, oot, ... in a ramified system is a different intension for the same
extensional values. Typically, one may recurse on a value that is comprehended
through a type ot reference, while one may only access a few low-order bits
from a value referred to by a type ¢ variable. A related area of work is the
“descriptive complexity” characterizations such as those of Immerman [19] and
others — again, no explicit resource bounds appear.

The two lines of research collide due to the well known functional translation
based on the Curry-Howard isomorphism between formulas and types. Logical
deductions are like derivations of terms in a lambda calculus: modus ponens
corresponds to functional application, and induction corresponds to recursion.
The type of the recursion interpreting an induction instance is the type of the
formula in the induction if the formula contains “D” then it is of higher
type. Thus, to generate a feasible logic through research in ramified recursion,
one must solve the problem of restricting higher type recursion schemes (e.g.
in Godel’s system T') so that only polytime functions are definable. This has
recently been achieved [4], [16], [17], [18]. In this work we use a system 75
which can be translated into one of these [17]. TH is a lambda calculus that
restricts recursion in higher types by a ramification system defined by a modal
operator. A ramification step in this system refers simultaneously to two forms
of knowledge: that which allows a higher-type object to be used non-linearly, and
that which allows a ground-type object to be used as the pattern for recursion.

Interesting discussions of realizability, intuitionism, knowledge, and diffi-
culties in the application of [3] to arithmetic, were given by Nelson in [26] and
[27]. These have guided our reasoning. Nelson also applied predicative concepts
to define a constructive arithmetic in [25].

Shapiro [28] used modal logic to define an “epistemic arithmetic” FA. He
proved that it is as strong as H A under a Godel-style mapping, while Goodman
[15] used an infinitary cut elimination argument to show its conservativity over
HA under a similar mapping. In contrast, we use Friedman’s “A” translation
to prove a form of conservativity, we do not use a Godel mapping, and we do
not require cut elimination.

One precursor to this work in ramified arithmetic is the “intrinsic theory”
of Leivant [22]. There, ramification predicates Ny, N1, ... are used to delineate
the tiers. Provability is obtained for the elementary-time computable functions
when induction is allowed over formulas referring to tier 0 (i.e. Np) only. Addi-
tional restrictions on the quantifiers in the induction formula lead to provability
of polytime functions in Leivant’s system.

Another precursor is the ramified arithmetic and corresponding model theory
by Bellantoni [2]. The arithmetic in [2] demonstrated the possibility of admitting
arbitrarily many alternations of unbounded quantifiers in induction while still
obtaining “polytime provability”. However, the actual system defined there was
inadequate as a working logic e.g. it was awkwardly defined and not closed
under modus ponens.

For background in ramified recursion, see the systems of [3], [5], [4], [16] [17],
[18], and Leivant [23], [24] and further references cited there.

Although it is carried out more in the tradition of ramified recursion than
linear logic, this work has obvious and important connections to linear logic. In
linear logics, one introduces special operators to control and track the usage of
formulas. See Abramsky [1] and Girard, Scedrov, and Scott [13] for prototypical
discussions in linear logic. In the polytime system in [13], one attaches explicit
polynomials to the occurrences of the modal operator in order to bound the
complexity of a proof. The “light linear logic” of Girard [14] includes a polytime
system using new connectives that have modal features. Although the work
is relevant, we do not attempt a direct detailed comparison here because of
differences in the defining frameworks.

The main result is stated in Corollary 5.6 below.

2 Arithmetic A}

Now we define an arithmetic A} based on a classical modal logic. Contraction
will be admitted for modal formulas; that is, nonlinear usage will be allowed for
formulas of the form O ¢. Induction will be admitted only for ontic formulas,
i.e. those whose type does not contain (0. Hence the induction hypothesis can
be used at most once. As well, property O ¢(x) will be required of the induction
variable.

Following Leivant [22] we will admit arbitrary equational programs such as
Vay.foyg = hay(fxg). No ramification type conditions are imposed; this allows
definition of all partial recursive functions. Therefore the system is not restricted
a priori to predicatively definable functions.

2.1 Language

Terms are constructed as usual from a given first-order signature containing
the constant ¢ (the empty string) and unary function symbols sg, s1 (binary
string successors). One also admits into the language countably many arbitrary
function symbols, of all arities.

Atomic formulas are s =t where s, ¢ are terms and ¢(t) where ¢ is a term.

If ¢, are formulas so are =@, ¢ D ¥, d A, Va.¢, and O¢. By convention,
O and — bind stronger than A and A binds stronger than D. The formula
Va..(z) D ¢ is abbreviated by Vz'.¢, and Vo.Ou(z) D ¢ by Valt.¢. We may
write s;z for s;(x).

A formula is ontic if it does not contain the modality O0. A formula is modal
if it is of the form 0 ¢. By ¢(x) one understands that z is a number; by O ¢(x),
that z is a “feasible” number.

2.2 System Al

Al is a classical first-order modal arithmetic with contraction for modal formulas
and ¢(t) only; with modal axioms, and restricted induction. The axioms and
rules are as follows.

(1) Classical first-order logic with equality but without contraction:

(K) aDdfBDa

(B) (827)D(@>B) > (D7)
(C) (@DBD7)DBDady
(AT) aDfD(anp)

(NE) (@>827)2(anp) D,
(CLass) (maD>-B)DfFDa«

(MP) From « and a D (3, deduce S.
(V) From a D 3, deduce o D V.3, provided z is not free in .
(VE) (Vz) D (afr/z]), provided r is a term free for z in a.
(REFL) z=z

(Sym) r=ydDy==2a

(TRANS) z=yDy=zDzx==z

(SUB) =y > rlz/e] = rly/]

(Sus,) =y Duz)Duy)

(2) Modal axiom and rule schemes:

(an From o deduce O«
(OE) Oada

(O0O) OaD> 00«

(D) O@>pB)>0aeD>0Op

(3) Contraction for modal formulas and for ¢(¢):

(OCoNTR) OaDOaADa
(tCoNTR) t(z) D t(z) A t(z)

(4) Axioms of generation, separation, and surjectivity in ¢:

GeNs) o)

(GENp) Vz.o(z) D t(so(z))

(GENy) Vz.(z) D u(si(z))

(SEP.) Vat.=(e = sgz) A —(e = s12)

(SEPg) Vo, Vyt.sor = Sy Dx =1y

(SEP1) Vo', Vytsiz =s1y Dx =1y

(SEP()]) Vﬂ?LﬁSOIL‘ =8S1T

(SURJ) Vet VYt (mz =¢e Az = spy A -z = s1y)

(5) Induction over ontic (i.e. O-free) formulas a:

(IND) a(e) D OWzE a(z) D a(se(z))) D OVzH .a(z) D a(si(x))) D Vzbt.a(z)

If T is a (possibly infinite) multiset of formulas and ~ is a formula then
we write I' F + to mean that ay A --- A, D = is derivable for some finite
sub-multiset {aq,...,an} of T.

One has the following derived rules:

Lemma 2.1

1. Linear deduction: If T, a bk v thenT'Fa D v;
Generalisation: If '+ « and x is not free in ' then I' F Vz.a;
Necessitation: If '+ « and all formulas in T' are modal then T' + Oa.
Contraction: If T,a,at v and « is o(s) or Oa’ then T',a b v

FOaAOBDO(aAB)

S o

FOVzt.a) D V2Bl.Oa

Proof. Linear deduction is by induction on derivations similar to the usual
proof of deduction lemma, for Hilbert style proof systems. The others are direct.
a

A waluation, 7, is an assignment of a function over the finite binary strings
{0,1}* for each function symbol, together with an assignment of a finite binary
string for each variable; such that 7(e) is the empty string, and (n(sg))(w) = w0,
and (n(s1))(w) = wl. This defines n(t) € {0,1}* for each A} term ¢t. Given a
valuation, 7, satisfaction 1 = « of formula « is defined as for ordinary classical
first-order logic with equality, judging that O« is true iff « is true, and that
t(t) is always true. In this way, for the purposes of this paper attention has
been restricted to valuations over a one-world standard model. An analogous
simplification will later be made in the denotations of functional A\ terms.

2.3 Equational specifications

An equational specification is a finite conjunction of closed universally quantified
equations. If @ is an equational specification then a convergence statement is a
formula of the form O ® D VZH*.(f(F)) where f is a function symbol. We say
that ® defines f using f if {n(f): n E ¢} = {f}.

For example, the following defines an exponentially growing function using
f (with helper function f*):

Va.f*(e,a) = s1a
Vl‘ava-f*(sol“a a) = f*(xa f*(I, a))
Ve, Va.f*(s1z,a) = f*(x, f
Va.f(z) = f*(z,¢)

The same function could also be defined (with helper function +) by:

Va.c+a=a

Va,Va. (sox) + a = so(z + a)
Va,Va. (s1z) + a = si1(z + a)
f(e) =s1e

V. f(sox) = f(x) + f(2)

V. f(s1z) = f(x) + f(2)

On the other hand, one may also define a polynomially growing function using
X by:

Ve.xxe=c¢

Vo, Vy. & X spy = + (z X y)

Ve, Vy. & X s1y = + (2 X y)

3 Functional calculus

To carry out the realizability translation we use a simply-typed modal/linear
lambda calculus TH which is a simplified version of the system [17]; see also [4].

The types of TH are given by the grammar 7 ::== 1 | 1j—o72 | Ti®7 | OT
The constants with their types are:

gt

So : L—oL

S1:t—ot

p:t—otL

d, : 7—o(t—oT)—o(t—oT)—ot—oT
R, : 7—oO(0Ot—oT—oT)—0 [t—oT, where 7 is O-free
() 1 O—0T—00RT

Ho’,‘r,p : (U_OT_OP)_OU(X)T_OP
Ky :d7T—oT

W 1—ou®1

B, :Or—Or®0OT

O

FiT—odT

A context (or type assignment) O is a finite partial function from variables
to types. A context © is modal if ©(x) is of the form OO 7 for each x € dom(0).

The typing judgment © F e : 7 (read e is a term given type T by context O)
is inductively defined by the following rules.

c: T a constant other than any O,

OFc:T (Cons)
x € dom(0)
OFz:0(x) (VaR)

O,x:0ke:T

(Lam)
OF Mt%.e:0—0T
O1Fe1:0—oT Ookes:o dom(@l) n dOTTL(@z) =0 (APP)
01,0 Feren: T
OFe:T © modal
(NEC)

OF0O.(e):Or

By a closed term e : T we mean a closed term e together with a typing judgment
concluding F e : 7. To each type 7 we associate a set [7] by

[] = {0,1}*
[ri—om] = [n] — [r]
[ri®7] = [m] x [7]

[Or]=17]

To each constant ¢ : 7 an element [¢] € [7] is associated by

sol](w) = w0

s1](w) = wl

pl(e) =¢

pJ(w0) = w

pJ(wl) =w

d-,—ﬂ(,h(],hl,E) =g

dTH(,ho,hl,’wO) = ho(w)
dTH(,ho,hl,wl) = hl(w)

(g,h,s) =g
(g, h, w0) = h(w0, [
(9, hywl) = h(wl,[R,
(

SRR

R

~ e = =

(s)orl(z,y) = [2,9]
HU,T,P]](fa [x,y]) = f(=, y)
[(z) ==
W](z) = [, 2]
[B](x) = [z,]
Using this definition we obtain [t] for all closed terms t.

The translation into the system in [17] interprets ¢ as N with the under-
standing that only numbers greater than 0 are taken on by the translation to
avoid the fact that sg is non-injective in that system. Accordingly, ¢ is inter-
preted as the constant 1; the translations of d and R must be appropriately
changed to provide default values for the values not taken on by the transla-
tion. Alternatively, one can apply the semantic technique described in [17] dir-
ectly to the present system. Whichever route is taken, it follows that whenever
e:Ot—oOt—o---—o[Jt—o¢ is a closed term then [e] is a polynomial time com-
putable function.

=
3

IS lrs i loelharhenbadslrulrsl sl el

4 Realisability

Although our end result holds for A3, the functional realizability translation
requires an intuitionistic logic. Let Z3 be the logic defined in the same way
as A} but replacing classical negation (CLASS) by intuitionistic negation (INT):
—a D a D 3. The terms and formulas of Z3 are the same as those of A3.

We will now interpret proofs in the intuitionistic system by terms in the
functional system.

To each formula ¢ a type t(¢) is assigned by

t(s=t) =1

t(u(t) =

t(—¢) =1

t(¢ DY) = t(¢)—ot(v)
t(p A) =t(g)t(v)
t(Vz.9) = t(o)

t(d¢) = Ot(e)

If w € {0,1}*, then write n[z +— w] for the valuation which maps z to w and
behaves like 1 otherwise. When e is a term of type 7 ®7», introduce the abbre-
viations me for I, -, -, (Az™ . Ay™.x)(e) and mae for I -, - (Az Ay™.y)(e).
We have m;e : 7;.

Let ¢ be a formula, n a valuation, and let e be a closed term of type t(¢).
The relation erz, ¢ read e realises ¢ under valuation 7 is defined inductively as
follows:

erz, s=t < n(s) =n(t)

erzyu(t) & [e] =n(t)

erz, —¢ & there does not exist €’ s.t. € rz, ¢
erz, D1 < forall € s.t. €' rz, ¢ one has ee’ rz, ¢
erz, o Ny <& merz,¢ and merz,y

erz,Vr.p & erzyp ., ¢ for allw € {0,1}*
erz,d¢ & Ryg)(e)rz, d

Notice that t(Vz'.¢) = 1—o¢ and erz, Var'.¢ iff ewrz, . [, ¢ for each closed
term w : ¢. Similarly for VaU*.¢.

Lemma 4.1 (Isomorphism) If formula « is provable in I3 then there is a
closed term e : t(a) such that erz, o for every valuation 7.

Proof. Define: ¢* = ¢; e77°7 = \27.67; el = 0, ¢7; and %7 = (¢7,¢7).
To prove the lemma, one proceeds by induction on the Z3 proof concluded by
«. Omitting type information, the closed term e : t(«) in each case is as follows.

In each case of this structural induction one proves that Vn.erz, «.

(K) Az, y.x

(B) Az, y, z.x(yz)

(€) Az, y, z.(22)y

(AD) Az, y.(, y)

(AE) I

(MP) Given e : t(a D) and e; : t(a), generate (egeq)
(VI) Given e : t(a D), the same term is e : t(a D Vz.)
(VE) \z.x

(Sus,) Az, Y.y

(o0 Given e : t(a) obtain Oe : t(0)

(OE) A\L.KT

(oo Az.Ox

(O2) Az, y. O((5) (ky))

(OCoNTR) B

(tCONTR) W

(GEN,) €

(GENp) A\Z.SoT

(GENy) A\z.s1x

(IND) R

In the cases (INT), (REFL), (SYM), (TRANS), (SUB=), (SEP.), (SEPy), (SEP1),
(SEPg;) and (SURJ), the realizing term is £(®). O

Theorem 4.2 Let ® be an equational specification for £ using f, such that I3
proves O® D VZH .u(f(T)). Then there is a closed term e : di—o - -+ —o [1—ot
such that [e] = £ (and therefore £ is polynomial-time computable).

Proof. 1t ® is satisfied by 7 then any term eg of type t(O®) satisfies
eorz, d®. So, by the isomorphism lemma 4.1 we obtain a term e such that
erz, VZI ' .(f(Z)). Unravelling the definition reveals that [e] (@) = (n(f)) (@) =
f () for all @. The polytime property is a feature of e typeable in 70, O

It is instructive to see what happens if we were to allow arbitrary specific-
ations not merely equational ones. Consider for instance the specification ®
given by

Vo (f(z) = 0V f(z) =) A (f(z) = 0= K(z))

where K () is a ¥p-formula defining the halting set and V (disjunction) and =
(biimplication) are defined as usual from A, D,—. We can easily prove in A}
that VzU..(f(z)), however the function f defined by ® is not computable.

But notice that ® is not an equational specification and hence does not have
the property of being arbitrarily realisable if true.

Theorem 4.3 (Adequacy) For every polynomial-time computable function f,
there is a closed equational program ® defining f using f, such that both T3 and
A} prove O ® D VaB .u(f(F)).

Proof. If ® is an equational specification corresponding to a function defin-
ition in the system of [3] then for each function symbol f(Z;) with normal vari-
ables 7’ and safe variables ¢/, the convergence statement O ® D VZ2 Vit .o(f (Z; 7))
is provable. For example, to prove Vol VyH ¢ (2 x y) under the definition given
earlier, one proves (JzH* D AA B AC where A, B, C are the antecedents of an
induction on y having the conclusion VyH*.c(x x y). Cutting A, B and C with
(Ind) leads to the proof of convergence.

The result follows since all polynomial time computable functions are ex-
pressible in the system of [3]. [

It is interesting to see what happens when one tries to prove convergence of
the exponentially-growing function f for which two definitions were given earlier.
If one tries to prove (Va*.u(f*(x,a))) D (Va*.o(f*z, f*(z,a))) then two uses of
the antecedent are required. This is ruled out by the absence of contraction
(nonlinearity) for the non-modal formula (Va*.c(f*(x,a))). On the other hand,
if one tries to prove ¢(f(x,a)) D «(f(z,a)+ f(z, a)) then one finds that a required
antecedent is O ¢(f(z,a)) due to the fact that convergence of + was proved by
induction. But this modalised antecedent is not available in an ontic (O-free)
induction statement.

5 Friedman Translation

The most interesting aspect of A} distinguishing it e.g. from Bounded Arith-
metic is that the logical complexity of induction formulas is not restricted.

One pleasing application of this is that the classical system A} can be easily
translated into the intuitionistic Z3 system using Friedman’s translation. This
translation was originally developed to provide a simple proof that Peano arith-
metic is I19-conservative over its intuitionistic version (see Coquand [9] for an
exposition). Since the translation increases the logical complexity of formulas
it cannot be applied to systems with induction restricted to ¥;-formulas as is
the case in Bounded Arithmetic.

Definition 5.1 (A-translation) Let A be an arbitrary ontic formula of I3,
and let = 4(¢) stand for ¢ D A. For arbitrary formula ¢, a formula ¢ called
the A-translation of ¢, is given inductively by the following clauses:

o4 = —amad when ¢ is atomic
(=) = ¢4DA

AL = —amale? A

(oY)t = ¢* Dy?

(Vo.¢)* = Va4

(O¢)4 = —a-ma00?

This translation is usually (e.g. in Troelstra and van Dalen [30, Def. 3.4, Def.
5.2]) presented in two steps: the Godel-Gentzen negative translation which cor-
responds to our A-translation for A = | and another translation which replaces
L by A, i.e. more generally replaces atomic ¢ by 1 V A. Our combined version

10

also follows Coquand [9]. A notable difference from this standard presentation
is our treatment of conjunction; see the proof of the next Lemma.

Lemma 5.2
I3+ (-0 D ¢)*

for arbitrary formula ¢ and ontic A.

Proof. By structural induction on ¢. The cases (atomic),—, A, are in-
stances of the formula —4—4—-4a D —4a which is provable in intuitionistic
propositional calculus without contraction (LIPC). The “realiser” which may
provide an intuition is)\Hﬁi’p)\p’pH()\qﬂ“pqp).

When ¢ is ¢1 D ¢ we use the induction hypothesis on ¢o plus an instance of
the proposition =4—4(cv D) D @ D =44 which again is provable in LIPC
the “realiser” being NH (@28 \g@ Nk~ ABH(Af2Pk(fx))

When ¢ is V2.4 we first establish =4—aVz.0p4 D =449 from (VE) and
LIPC. Then the induction hypothesis for ¢ and an instance of (VI) give the
result.

Notice our treatment of conjunction: had we defined (pAY)? = ¢ AY4 as is
usually done (e.g. by Coquand [9]) then, together with the induction hypothesis,
we would need an instance of the formula —4—4(aAB) D =4—4aA= 440 which
does not seem to be provable without contraction. 0O

The main property of the A-translation is that it models classical reasoning.

Proposition 5.3 If AL - ¢ then T3 F ¢*.

Proof. By induction on the proof of ¢ using Lemma 5.2 in various places.
Most cases are standard; we only treat those which significantly differ from the
case of Peano arithmetic.

Rule (O1): if A} - « then by hypothesis Z3 + a?, so 73 —a—aOa? by
(OI) and LIPC.

For the translation of axiom (OE) we start with Oa” D o? (OE) from
which we conclude —a—4(0a?) D —a—aa? using LIPC. The desired result
then follows with Lemma 5.2 on «.

The translation of axiom OO is —4—40a? D —4—40-4—4Oc?. To
prove this, we start from —4—4 Oo? D —4—400a4 which is a LIPC con-
sequence of an instance of (0. The result then follows by combining this with
—4—a00a? D =44 0-4—4 Oa? which in turn follows from LIPC and ne-
cessitation.

The translations of (0 D) and (OCONTR), (¢CONTR) are direct (LIPC) con-
sequences from their companions in Z3. In the latter two cases we rely again on
our nonstandard treatment of conjunction.

Finally, for (CASE) and (IND) we use their Z3-companions with formula a*
(which is ontic if « is) and Lemma 5.2. O

Lemma 5.4 If ® is an equational specification then I3 - O ® D (O ®)*

Proof. Omitted. 0O

11

Theorem 5.5 If A} proves convergence of f, then so does I3; that is, if AL+
O® > VED . (f(Z)) then I3 - O® D VI .u(f(Z)).

Proof. Let A = u(f(z)). By Proposition 5.3 we have 73 F (O®)4 > A4,
hence 73 = O® O («(f(z)) D «(f(z))) D ¢(f(z)) by Lemma 5.4 and expansion
of the definition. The desired conclusion follows by LIPC. O

The main result now follows.

Corollary 5.6 Let ® be an equational specification for f using f. Then A}
proves the convergence statement O ® D VZH'.u(f(Z)) if and only if £ is a
polynomial-time computable function.

Proof. One direction follows from Theorem 5.5 and 4.2. The other follows
by Theorem 4.3. 0O

6 Remarks

6.1 Strength of Al

A} proves convergence of the same functions as Buss’s S3. It remains to be seen
what other relationships hold between these systems.

If the ramification hierarchy explored in [5] is any guide, one might speculate
that generalizations A% lead to systems at the various levels of the Grzegorczyk
hierarchy. One would also expect that replacing induction-on-notation and bin-
ary successors, with ordinary primitive induction and the ordinary successor,
would result in a linear-space system.

Consider the system As obtained by removing the restriction that « must
be ontic in IND. As is as strong as Peano arithmetic under a translation which
places O in front of each subformula of the proof (and which accounts for the
difference between induction on notation and Peano induction).

6.2 Propositional System

A fundamental principle underlying this work is that when a formula has been
proved, then it can be used as many times as one would like; but when a
formula is a hypothesis (and the hypothesis does not include the assertion that
the formula is provable) then it can only be used once.

The number of uses of a formula has been extensively explored in the context
of propositional proof systems. The extension ruleis: - A < «, where A is a new
propositional letter not used earlier in the proof. Essentially, A is a new name
for a. By using A repeatedly, one can refer repeatedly to a without incurring
the cost (in formula size) associated with «. In this sense, the extension rule is
analogous to the principle that formulas can be used as many times as desired.
The Extended Frege system is defined like the Frege system but including the
extension rule. For a discussion of Frege proof systems see Krajicek [21].

In the Frege and Extended Frege systems the extension principle is either
withheld or admitted for all formulas at once. In contrast, a guiding idea in

12

the present work is that free re-use (i.e. contraction) should be allowed just for
formulas which have been proved. This suggests a new definition.

The modal extension rule is: if F «, then A < «, where A is a new
propositional letter not used earlier in the proof. The Modal FExtended Frege
system is defined like the Frege system but including the modal extension rule.

This definition is open for investigation. Of course one can try directly to
prove various statements about the strength of Modal Extended Frege. Another
approach is to try to adapt the mapping between uniform Frege proofs and first-
order proofs, to get a mapping between uniform Modal Extended Frege proofs
and proofs in A3. This might imply complexity results in the uniform case.

6.3 Summary

An extension of the Curry-Howard isomorphism to include a modal O oper-
ator has led to a functional interpretation of a modal arithmetic. The simple
structure of the inductions, with no bounding terms, has allowed the use of
a Friedman translation. We thereby have proved that the classical quantified
modal logic A} has polynomial strength (Corollary 5.6).

The absence of any bounds or restrictions at all on the quantifiers, seems
remarkable. The “feasible” system A} is obtained from A — a system as strong
as Peano arithmetic — simply by excluding [0 from the induction formula.

In addition to the areas mentioned above, one might investigate A} with
respect to the provability interpretation (cf. Boolos and Sambin, [6]).

References

[1] S. Abramsky, ”Computational interpretations of linear logic”, in Theoret-
ical Computer Science, v. 111, p. 3-57, 1993.

[2] S. Bellantoni, “Ranking Arithmetic Proofs by Implicit Ramification”, in
Proof Complexity and Feasible Arithmetics, P. Beame and S. Buss, eds.,
DIMACS Series in Discrete Mathematics, v. 39, 1998.

[3] S. Bellantoni and S. Cook, “A New Recursion-Theoretic Characterization
of the Polytime Functions”, in Computational Complexity, v. 2, p. 97-110,
1992.

[4] S. Bellantoni, K.H. Niggl, and H. Schwichtenberg, “Ramification, Modality,
and Linearity in Higher Type Recursion”, to appear in Annals of Pure and
Applied Logic.

[5] S. Bellantoni, K.H. Niggl, “Ranking Recursions: the Low Grzegorczyk Hier-
archy Reconsidered”, to appear in SIAM Journal of Computing.

[6] G. Boolos, G. Sambin, “Provability: the emergence of a mathematical mod-
ality”, in Studia Logica, 1. 1, p. 1-23, 1991.

13

[7]
8]

[12]

13]

S. Buss, Bounded Arithmetic, 1986, Naples, Bibliopolis.

S. Buss, “The propositional pigeonhole principle has polynomial size
bounded Frege proofs”, in Journal of Symbolic Logic, 1987, v. 52, p. 916-
927.

T. Coquand, “Computational Content of Classical Proofs”, in A. Pitts
and P. Dybjer, eds.,Semantics and Logics of Computation, Cambridge Uni-
versity Press, 1997.

T. Coquand and M. Hofmann, “A new method for establishing conservativ-
ity of classical systems over their intuitionistic version”, in Math. Struct.
Comp. Sci., to appear.

J. Garson, “Quantification in Modal Logic”, in Handbook of Philosophical
Logic, Vol. II, p. 249-307, D. Gabbay and F. Guenthner, eds., D. Reidel
Publishing Co., 1984.

K. Goédel, “An Interpretation of the Intuitionistic Sentential Logic”, in
The Philosophy of Mathematics, J. Hintikka, ed., series Ozford Readings in
Philosophy, Oxford University Press, 1969.

J.Y. Girard, A. Scedrov, and P.J. Scott, “Bounded linear logic: a modu-
lar approach to polynomial-time computability”, in Theoretical Computer
Science, v. 97, p. 1-66, 1992.

J.Y. Girard, “Light linear logic” in Information and Computation, 143,
1998.

Nicolas Goodman, “Epistemic Arithmetic is a Conservative Extension of
Intuitionistic Arithmetic”, in Journal of Symbolic Logic, v. 49, n. 1, March
1984.

Martin Hofmann, “A mixed modal/linear lambda calculus with applic-
ations to Bellantoni-Cook safe recursion”, in CSL ’97, Springer Lecture
Notes in Computer Science 1414, 1998, pp. 275-294.

Martin Hofmann, “Safe recursion with higher types and BCK-algebras”, to
appear in Annals of Pure and Applied Logic.

Martin Hofmann, “Type systems for polynomial-time computation”. Ha-
bilitationsschrift. Darmstadt University of Technology. 1999. Available as
Edinburgh University LFCS Technical Report ECS-LFCS-99-406 or via
www.dcs.ed.ac.uk/home/mxh/.

N. Immerman, “Languages that capture complexity classes”, in SIAM
Journal of Computing, v. 4, n. 16, August 1987.

S. C. Kleene, Introduction to Metamathematics, North-Holland, Amster-
dam, 1971 (first published 1952).

14

[21]

[22]

[23]

Jan Krajicek, Bounded Arithmetic, Propositional Logic, and Complexity
Theory, Cambridge University Press, 1995.

D. Leivant, “Intrinsic theories and computational complexity”, in Logic and
Computational Complexity, International Workshop LCC °94, Indianapolis
(D. Leivant, editor) Springer LNCS 960, 1995, p. 177-194.

D. Leivant, “Ramified Recurrence and Computational Complexity I: Word
Recurrence and Poly-time”, in Feasible Mathematics II, P. Clote and
J. Remmel, eds., p. 320-343, series Perspectives in Computer Science,
Birkhauser, 1994.

D. Leivant and J.Y. Marion, “Ramified Recurrence and Computational
Complexity IV: Predicative Functionals and Poly-space”, in Information
and Computation, to appear.

Edward Nelson, Predicative Arithmetic, Princeton University Press, Prin-
ceton, N.J., 1986.

Edward Nelson, “Understanding Intuitionism”, presented at the Rencontre
du Reseau Georges Reeb, March 24-28, 1997.

Edward Nelson, “Ramified Recursion and Intuitionism”, manuscript, Prin-
ceton University, 1997.

S. Shapiro, “Epistemic and Intuitionistic Arithmetic”, in Intensional Math-
ematics, S. Shapiro, ed., Studies in Logic and The Foundations of Math-
ematics v. 113, North-Holland, 1985.

Harold Simmons, “The Realm of Primitive Recursion”, in Archive for
Mathematical Logic v. 27, p. 177+, Springer Verlag, 1988.

A.S. Troelstra and D. van Dalen, Constructivism in Mathematics, vol. 1,
North-Holland, 1988.

15

