A Prefetching Technique for Object-Oriented
Databases

Nils Knafla

Dept. of Computer Science
University of Edinburgh
United Kingdom
Email: nk@dcs.ed.ac.uk

Abstract. We present a new prefetching technique for object-oriented
databases which exploits the availability of multiprocessor client work-
stations. The prefetching information is obtained from the object rela-
tionships on the database pages and is stored in a Prefetch Object Table.
This prefetching algorithm is implemented using multithreading. In the
results we show the theoretical and empirical benefits of prefetching.
The benchmark tests show that multithreaded prefetching can improve
performance significantly for applications where the object access is rea-
sonably predictable.

Keywords: prefetching, object-oriented databases, distribution, perform-
ance analysis, multithreading, application access pattern, storage man-
agement

1 Introduction

Two industry trends in the performance/price ratio of hardware systems have
implications for the efficient implementation of object-oriented database man-
agement systems (OODBMSs) in a client/server computing environment. Firstly,
the continuing fall in price of multiprocessor workstations means that such ma-
chines are cost effective as client hosts in OODBMSs. Secondly, although the
performance/price ratios of both processors and disks are improving, the rate
of improvement is greater for processors. Hence, the disk subsystem is emerging
as a bottleneck factor in some applications. Recent advances in high bandwidth
devices (e.g. RAID, ATM networks) have had a large impact on file system
throughput. Unfortunately, access latency still remains a problem due to the
physical limitations of storage devices and network transfer latencies.

In order to reduce access latency database systems cache pages in the buffer
pools of both the client and server. Prefetching is an optimisation technique
which reads pages into the database buffer before the application requests them.
A successful prefetching technique is dependent on the accuracy of predicting
the future access. If accuracy is high, performance can be improved since the
penalty of waiting for the completion of a page fetch is so high. If accuracy
is poor, the performance can actually decrease due to cache pollution, channel
congestion and additional workload for the server.

The fate of OODBMSs will largely depend on their performance in compar-
ison to relational databases. The simple tabular structures of relational data-
bases and the set-at-a-time semantics of retrieval languages such as SQL make
it easy to parallelise relational database servers. However, in an OODBMS the
structures are complex and typically the retrieval chases pointers. Furthermore,
in most OODBMSs the bulk of the processing occurs on the client: the server
merely serves pages.

In this paper, we present a new prefetching technique for page server systems.
The prediction information is obtained from the object structure on the database
pages and is stored in a Prefetch Object Table (POT) which is used at run time
to start prefetch requests. Our technique is different from existing techniques in
the fact that we use an adaptive mechanism that prefetches pages dependent
on the navigation through the object net. We implemented this technique in
the EXODUS storage manager (ESM) [1]. We also incorporated Solaris threads
into ESM to have the application thread and the prefetching thread running on
different processors in the client multiprocessor.

In section 2 we give an overview of the related work in the area of prefetching.
How we predict pages to prefetch and store this information is described in
section 3. The prefetching architecture is explained in section 4. In section 5 we
present the theoretical results and the performance measurements. Finally, in
section 6 we conclude our work and give an idea of future work.

2 Related Work

The concept of prefetching has been used in a variety of environments including
microprocessor design, virtual memory paging, compiler construction, file sys-
tems, WWW and databases. Prefetching techniques can be classified by many
dimensions: the design of the predictor, the unit of /O transfer in prefetching,
the start time for prefetching or the data structures for storing prediction in-
formation. According to [7] predictors can be further classified as strategy-based,
training-based or structure-based.

Strategy-based prefetching has an explicit programmed strategy which is used
internally (One Block Lookahead [9]) or by a programmer’s hint [14]. In the Thor
[12] database, an object belongs to a prefetch group. When an object of this group
is requested by the client, the whole object group is sent to the client.

Training-based predictors use repeated runs to analyse access patterns. For
example, Fido [13] prefetches by employing an associative memory to recognise
access patterns within a context over time. Data compression techniques for
prefetching were first advocated by Vitter and Krishnan [17]. The intuition is
that data compressors typically operate by postulating a dynamic probability
distribution on the data to be compressed. If a data compressor successfully com-
presses the data, then its probability distribution on the data must be realistic
and can be used for effective prediction.

Structure-based predictors obtain information from the object structure.
Chang and Katz’s technique [3] predicts the future access from the data se-

mantics in terms of structural relationships, e.g. inheritance, configuration and
version history. They prefetch the immediate component object or immediate
ancestor/descendent in a version history. An assembly operator for complex ob-
jects to load sub-objects recursively in advance was introduced by Keller [10].
The traversal was performed by different scheduling algorithms (depth-first and
breadth-first). Our prefetching technique [11] also belongs to the structure-based
approach.

In object-oriented databases the unit of 1/O is an object (Object Server) or a
page (Page Server) or a larger conglomeration, e.g. a segment. An object server
prefetches an object or a group of objects [5] and a page server prefetches one
or more pages ([4], [8]). Another possible classification of prefetching is the time
factor. Smith [16] proposed two policies: (a) prefetch only when a buffer fault
occurred (demand prefetch), (b) prefetch at any time (prefetch always).

3 The Prefetching Design

3.1 Prefetch Object Table

OODBMSs can store and retrieve large, complex data structures which are
nested and heavily interrelated. Examples of OODBMS applications are CAD,
CAM, CASE and Office automation. These applications consist of objects and
relationships between objects containing a large amount of data. A typical sce-
nario is laid out by the OO7 benchmark [2]. It comprises a very complex assembly
object hierarchy and is designed to compare the performance of object-oriented
databases.

In a page server, like ESM, objects are clustered into pages. Good clustering
is achieved when references to objects in the same page are maximized and
references to objects on other pages are minimized. In our benchmark we use a
composite object clustering technique.

The general idea of our technique is to prefetch references to other pages in
a complex object structure net (e.g. OOT). We obtain the prefetch information
from the object references without knowledge of the object semantics. Consider-
ing the object structure in a page, we identify the objects which have references
to other pages (OQut-Refs). One page could possibly have many Out-Refs but
sometimes it is not possible to prefetch all pages because of time and resource
limitations. Instead, we observe the client navigation through the object net. We
know which objects have Qut-Refs and when we identify that the application is
processing towards such an Out-Ref-Object (ORO) the Out-Ref page becomes a
candidate for prefetching.

The prefetch starts when the application encounters a so-called Prefetch Start
Object (PSO). Although the determination of OROs is easy, determining PSOs is
slightly more complicated. There are two factors that complicate finding PSOs:

1. Prefetch Object Distance (POD)
For prefetching a page it is important that the prefetch request arrives at
the client before application access to achieve a maximum saving. The POD

defines the optimal distance of n objects from the PSO to the ORO object
which 1s necessary to provide enough processing to overlap with prefetching.
Let Cp; denote the cost of a page fetch and let C,, denote the cost of object
preparation. The cost of object preparation is the ESM client processing time
before the application can work on the object’. Then POD is computed as
follows:

CP
POD = g

s

If the prefetch starts before the POD, a maximum saving is guaranteed,
however, if it starts after the POD, but before access, some saving can still
be achieved (see section 5.2).

2. Branch Objects

A complex object has references to other objects. The user of the application
decides at a higher level the sequence of references with which to navigate
through the object net. We define a Branch Object as an object which has at
least two references to other objects. Objects that are referenced by a Branch
Object are defined as a Post-Branch Object. For example in fig. 1 we have a
complex object hierarchy. The object with the OID? 1 would be defined as
a Branch Object because it contains a branch in the tree of objects. Objects
with OID 2, OID 7 and OID 12 would be defined as Post-Branch Objects
because they are the first objects de-referenced by a Branch Object.

For every identified ORO in the page we compute the PSO by the following
algorithm:

1. Retrieve the OID of the ORO and of the object in the next page referenced
by the ORO.

2. Compute the POD to define the distance of n objects from PSO to ORO.

3. Determine the PSO by following the object reference n objects backwards
from the ORO. If there are not enough objects in the reference chain before
the ORO, then we will identify the first object in the page from the reference
chain to achieve at least some saving.

4. If the object is already 1dentified as a PSO and the previously identified PSO
has a different Post-Branch Object then we would identify the Post-Branch
Objects of the object as PSOs?.

Defining Post-Branch Objects as PSOs can improve the accuracy for the
prediction and reduces the number of adjacent pages to prefetch. For example
in fig. 1 we would identify OID 5, OID 10 and OID 15 as OROs. In this example
we assume a POD of 4 objects. On analysing page 2 we would identify OID 5
as an ORO. From OID 5 we would go through the chain backwards by 4 objects
and identify OID 1 as a PSO. Then we would do the same for the OROs OID 10

! Additionally we could use the expected amount of processing from the application.
2 OID = Object Identifier
% This step is executed after we have defined all PSOs from the OROs in a page.

oID 13

7 7

oID 14

oIDb 15

Page 3

Page 5

Page 4

Fig. 1. Object relationship

and OID 15 and identify OID 1 as the PSO for both. After analysing the whole
page we would find out that OID 1 has three PSOs with different Post-Branch
Objects. In this case we would identify the Post-Branch Objects of OTD 1 (OID
2, OID 7 and OID 12) as PSOs instead of OID 1.

The novel idea about our technique is to make prefetching adaptable to the
client processing on the object net. Because the cost of a page fetch is high
we try to start the prefetch early enough to achieve a high saving but not too
early to prefetch inaccurately. In contrast to the work of [10], we do not prefetch
all references recursively; instead we select the pages to prefetch, dependent
on the client processing. Recursive object prefetching has also the problem that
prefetched pages can be replaced again before access. Adaptive object prefetching
limits the number of prefetch pages to the adjacent pages. In contrast to [3], we
look further ahead for objects to prefetch than the immediate object.

Each page of the database is analysed off-line. The Analyzer stores this in-
formation in the POT for every database root*. The overhead for this table is
quite low as it only contains a few objects of the page.

At run time, the information from the POT is used to start the prefetch re-
quests. The run time system allocates enough threads for prefetching. If essential
pointers for the navigation are updated in a transaction we would invalidate the
POT for this page and modify it after the completion of the transaction.

* This is important because objects on the same page could belong to different roots.

This prefetching technique i1s not only useful for complex objects, it can
also be used for collection classes (linked list, bag, set or array) in OODBMSs.
Applications traverse an object collection with a cursor. With PSO and ORO
it would be possible to prefetch the next page from a cursor position. In the
description of our technique, the object size is assumed to be smaller than the
page size. If the object is larger than a page, prefetching can be used to bring
the whole object into memory.

In future work we want to investigate performance and behaviour when the
POT predicts a large number of pages. For this case we could use a multiple page
request. To further reduce the number of pages, we could maintain information
about a frequency count on how often the referenced page is accessed from this
ORO. The total frequency count for a page would be computed by adding up
all frequency count values of the OROs having the same referenced page. This
total frequency count combined with a threshold makes the prefetch decision.
Another possibility is to declare special data members of the object which are
as important for prefetching.

3.2 Replacement Policy

In the ESM client it is possible to open buffer groups with different replacement
policies (LRU and MRU). Freedman and DeWitt [6] proposed a LRU replace-
ment strategy with one chain for demand reads and one chain for prefetching.
We also plan to use two chains with the difference that when a page in the de-
mand chain is moved to the top of the chain the prefetched pages for this page
are also moved to the top. The idea of this algorithm is that when the demand
page is accessed, it is likely that the prefetched pages are accessed too. If a page
from the prefetch chain is requested it is moved into the demand chain.

4 System Architecture

4.1 The EXODUS Storage Manager

For the evaluation of the prefetching technique we chose the EXODUS storage
manager to implement this idea. The EXODUS Client/Server database system
was developed at the University of Wisconsin. The basic representation for data
in the storage manager is a variable-length byte sequence of arbitrary size. Ob-
jects are referenced using structured OTDs®. On these basic storage objects, the
storage manager performs buffer management, concurrency control, recovery,
transactions and a versioning mechanism.

4.2 The Prefetching Architecture

In this section we describe how prefetching is incorporated into ESM. For the
concurrent execution of the application and the prefetch system we use the So-
laris thread interface. As depicted in fig. 2, the database client is multithreaded.

5 Object identifier containing a physical and logical component (in ESM page number
and slot number)

Client Server

L AppThread ~—le—— <> |

— PrefetchList (— —

PrefetchThread [~ —R€———>#&

POT |—

SupportThread [>Me—————>fi<—>

Buffer
pool L

—! Buffer pool

Network

Fig. 2. Architectural Overview

The AppThread is responsible for the processing of the application program and
the PrefetchThread is responsible for fetching pages in advance into the buffer
pool. A SupportThread has the same task as the PrefetchThread with the only
difference being that it is scheduled by the PrefetchThread. Each thread has
one associated socket. The POT informs the PrefetchThread which pages are
candidates for prefetching from the current processing of the application. The
Prefetch List is a list of pages which are currently prefetched. The ESM server
is not multithreadedS.

At the beginning of a transaction the AppThread requests the first page from
the server by a demand read. The PrefetchThread always checks which objects
the AppThread is processing. Having obtained this information, it consults the
POT for a page to prefetch and checks if this page is not already resident. If not,
the page is inserted in the Prefetch List and the request is sent to the server. The
server responds with the demanded page and the client inserts the page in its
buffer pool. Eventually the page is removed from the Prefetch List and inserted
into the hash table of the buffer pool.

If the POT predicts multiple pages, Support Threads help the PrefetchThread.
The number of SupportThreads is determined by the number of simultaneous
prefetch requests. Each SupportThread runs on its own LWP” and while one
Support Thread blocks on 1/0, another SupportThread insert its page into the
buffer pool.

6 But ESM runs many tasks, as concurrent processes, on one processor
7 Lightweight process (LWP) can be thought of as a virtual CPU that is available for
executing code

When the AppThread requests a new page, it first checks if the page is in the
buffer pool. If the page is not resident then it checks the Prefetch List. If the
page has been prefetched the AppThread waits on a semaphore until the page
arrives, otherwise it sends a demand request to the server.

5 Performance Evaluation

5.1 System Environment

For the ESM server we need a machine (called Dual-S®) configured with a large
quantity of shared memory and enough main memory to hold pages in the buffer
pool. To take full advantage of multithreading we chose a four processor machine
(called Quad) for the client. Table 1 presents the performance parameters of
the machines. Dual-C and Uni are also used as database clients. The network
is Ethernet running at 10Mb/sec. The disk controller is a Seagate ST15150W
(performance parameters in table 2).

Parameter Dual-S | Quad Dual-C | Uni |

SPARCstation |20 Model 61210 Model 514|20 Model 502|ELC (4/25)

Main Memory 192 MB 224 MB 512 MB 24 MB

Virtual Memory [624 MB 515 MB 491 MB 60 MB

Number of CPUs|2 4 2 1

Cycle speed 60 MHz 50 MHz 50 MHz 33 MHz
Table 1: Computer performance specification

|Parameter

Disk controller|

External Transfer Rate |

9 Mbytes/sec

Average Seek (Read/Write)]

8 msec

Average Latency

4.17 msec

Table 2: Disk controller performance

5.2 Theoretical Results

The success of prefetching is dependent on the completion of the prefetch request
before access. We define the cost of object processing to be C,. Let C,, denote

8 The names of the machines indicate the number of processors

the cost of preparing one object for application access and let C,, denote the
cost of processing on the object from the application plus waiting time. C, is
calculated by:

Co - Cop + Coa (1)

The saving for one out-going reference S, is dependent on the number
of objects between the start of the prefetch and application access to the
prefetched object (N,) and the cost of prefetching a page (C):

. Cp if (Co - No > Cp))
Sor = {CO -N, otherwise (2)

If there is enough processing (C, - N,) to overlap then the saving is the cost
of a page fetch. If not, there is also a lower saving of the amount of processing
from prefetch start to access (C, - N,). Pages normally have many out-going
references. The number of references to different pages is denoted by n. S,, the
saving for a whole page, is given by:

Sp =Y Sl (3

Finally, the saving of the total run is defined by S, which is influenced by
the cost of the thread management (C}), by the cost of the socket management
(C5) and by the number of pages in the run (q):

S = (5 - ¢ -, (4)

j=1

In our performance test we measured the elapsed times for the demand ver-
sion (RTy) and for the prefetching version (RT,). The savings are computed as
follows:

RT; — RT,
RT;

savings = 100 (5)

But the percentage of savings is always dependent on the amount of pro-
cessing required on the page. For example in table 3 a page fetch costs 2 time
units. With 10 CPU time units the saving is only 16 % but with 2 CPU time
units the saving is 50 %. Therefore we plan to use a more accurate formula to

|CPU| Page Fetch| Savings in percent

10 2 16 %
2 2 50 %

Table 3: Savings in percent

compute savings in percent. T;, is the saved time with prefetching and T, is the
total time of all page fetches:

Ts
savings = —& . 100 (6)
Tp

We did not use this formula because it requires a more complicated meas-
urement technique.

5.3 Performance Measurements

For the evaluation of the prefetching technique we created a benchmark with
complex objects. The structure of the benchmark should be complex with many
relationships between objects, but not too complex for comprehension. Every
object in the data structure has two pointers to other objects. Most of the
objects point to another object in the same page; only one object in a page has
two pointers to two different pages. Having this object structure, the pages are
connected like a tree. The size of one object 1s 64 bytes which gives space for 101
objects in one 8K page. In one run 200 pages are accessed (equal to the size of
the buffer pool at the client and server). The application reads only one object
from the first faulted page and then all objects from the second faulted page.
Every object is fetched into memory with no computation or waiting time on
the object.

Although the tests were made in a multi-user environment the workload
of the machines and the network was low. The results of the benchmark are
dependent on the workload of the machines: using busy machines and networks
would increase the page fetch latency. Since there were different workloads during
the tests, it 1s not possible to compare the absolute times in different tests. In
figures 4b to 8 the savings in percent are the savings of the prefetching version
compared with the Demand version (application with no prefetching) elapsed
times.

In fig. 3 we compared the cost of one prefetch request to processing 101
objects in a page. The processing time of 61 milliseconds is about 5 times higher
than the time to prefetch one page which took 11 milliseconds. Most of the
processing is due to an audit function that calculates the slot space of the page.

In fig. 4a and 4b we present the results of our benchmark. The prefetching
version 1s always faster than the Demand version. The best result was made on

the slow Uni machine because of its longer network connection and slower access
to the socket. Quad has the same cycle speed as Dual-C but a higher saving.
Dual-C and Quad have, in contrast to Uni, two processors or more, allowing
threads to run on different processors concurrently. This would be more beneficial
with more prefetch requests at the same time. In this test every prefetch is done
with 100% accuracy to see the maximum speedup of prefetching.

As mentioned in section 5.2 the saving of prefetching is dependent on the
percentage amount of processing of the application. Having 101 objects on one
page, we compared the elapsed-time savings under varying object access rates
from the application (from 10 objects to 100 objects accessed). Fig. 5 shows the
highest saving is with an object access of 20 because the object processing cost
is almost equal to the page fetch cost. For the access of 10 objects there is not
enough CPU overlap for prefetching. Increasing the number of objects gradually
decreases the savings.

When two pages have to be prefetched under strong time restrictions such
that there would only be enough time to prefetch one page successfully, we use
SupportThreads to prefetch simultaneously. We compared different prefetch ob-
ject distance parameters to see under which conditions more Support Threads are
useful. In fig. 6 Prefetchl means a prefetching version with just one Prefetch-
Thread and Prefetch2 means a version with one PrefetchThread and one Sup-
port Thread. Above the distance of 40, both prefetching versions perform equally
well. Then Prefetch2 can improve performance and, even at a distance of 1, is
better than Demand (Prefetchl is worse than Demand at a POD of 1).

The application fetches all objects by OID into memory without any pro-
cessing on the objects or any waiting time. Also a pointer swizzling technique
is necessary for real applications to translate the OID into a virtual memory
pointer. All this would produce more processing overhead for the client. We
simulate this overhead with a loop after every object fetch and called it Inter-
Reference Time (TRT). The results in fig. 7 show that with more processing the
savings in percent get smaller. This is because the application is more and more
dominated by CPU processing (as explained in section 5.2).

In this test we studied the impact of wrong prefetches. We fetched 100 wrong
pages from 200 page fetches. The other important parameter is the prefetch
object distance. We used the distances of 1, 20 and 100. Recall that we always
fetch 2 new pages from one page (one correct and one incorrect page). The
distance of 100 is sufficient to do a wrong prefetch, the distance of 20 is critical
to do one prefetch right on time and with the distance of 1, the prefetch is always
late. Fig. 8 shows the best result of 27 percent savings with a distance of 100,
but even with a distance of 1 there is still a saving albeit of only 4 percent.

The last test measures the effect of additional clients on the Demand and the
prefetching versions. In general each additional client increases the workload of
the server and the network. If the prefetch request is completed before access,
prefetching should improve performance even more with additional clients. If
the server becomes a bottleneck and prefetch requests have to queue up at the
server, prefetching can actually decrease performance. Fig. 9 shows that Demand

decreases performance significantly with 4 clients and the prefetching versions
decrease performance with 7 clients.

6 Conclusions and Future Directions

In this paper we presented a prefetching technique for complex object relation-
ships in a page server. The object structure of the database is analysed and
stored in a Prefetch Object Table. During the run time of the application this
table is consulted to make the right prefetches on time. We used the object
pointers to make predictions for future access. If the application follows such
an object reference chain, we know the object that points to an object in the
next page therefore making this page a candidate for prefetching. We also use
the branch information of the complex relationships to predict the next pages
as accurately as possible. If there are more prefetches to do at the same time we
use more threads to get all prefetches before the application requires access.

In the implementation and performance tests we evaluated the prefetching
technique. The prefetching version was 14% faster on the Quad machine, nearly
9% faster on Dual-C and 18% faster on Uni. Reducing the number of accessed
objects in a page increases the savings. With an access of 20 objects in a page
we achieved a saving of 45%.

This work will be continued in several directions. Firstly, we will look at the
object structure of real applications to see how our technique will perform. We
will test different levels of complexity with varying numbers of Qut-Refs. If the
application makes many updates of pointer references we will evaluate how this
effects the performance of POT. Also, we will implement our buffer management
algorithm to test repeated access to pages. Another possibility is to make the
ESM server multithreaded.

References

1. M.J. Carey, D.J. DeWitt, G. Graefe, D.M. Haight, J.E. Richardson, D.T. Schuh,
E.J. Shekita, and S.L.. Vandenberg. The EXODUS Extensible DBMS Project:
An Overview. In S.B. Zdonik and D. Maier, editors, Readings in Object-Oriented
Database Systems, pages 474-499. Morgan Kaufmann, 1990.

2. M.J. Carey, D.J. DeWitt, and J.F. Naughton. The OO7 Benchmark. In SIGMOD
[15], pages 12-21.

3. E.E. Chang and R.H. Katz. Exploiting Inheritance and Structure Semantics for
Effective Clustering and Buffering in an Object-Oriented DBMS. In Proc. of the
ACM SIGMOD Conference on the Management of Data, pages 348-357, Portland,
Oregon, June 1989.

4. K.M. Curewitz, P. Krishnan, and J.S. Vitter. Practical Prefetching via Data Com-
pression. In SIGMOD [15], pages 257—266.

5. M.S. Day. Client Cache Management in a Distributed Object Database. PhD thesis,
Massachusetts Institute of Technology, Laboratory for Computer Science, 1995.

6. C.S. Freedman and D.J. DeWitt. The SPIFFI Scalable Video-on-Demand System.
In Proc. of the ACM SIGMOD/PODS95 Joint Conf. on Management of Data,
pages 352-363, San Jose, CA, May 1995.

10.

11.

12.

13.

14.

15.

16.

17.

C.A. Gerlhof and A. Kemper. A Multi-Threaded Architecture for Prefetching in
Object Bases. In Proc. of the Int. Conf. on Extending Database Technology, pages
351-364, Cambridge, UK, March 1994.

C.A. Gerlhof and A. Kemper. Prefetch Support Relations in Object Bases. In
Proc. of the Sixth Int. Workshop on Persistent Object Systems, pages 115-126,
Tarascon, Provence, France, September 1994.

. M. Joseph. An analysis of paging and program behaviour. The Computer Journal,

13(1):48-54, February 1970.

T. Keller, G. Graefe, and D. Maier. Efficient Assembly of Complex Objects. In
Proc. of theACM SIGMOD Int. Conf. on Management of Data, pages 148-157,
Denver, USA, May 1991.

N. Knafla. A Prefetching Technique for Object-Oriented Databases. Technical Re-
port ECS-CSG-28-97, Department of Computer Science, University of Edinburgh,
January 1997.

B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari,
A.C. Myers, and L. Shira. Safe and Efficient Sharing of Persistent Objects in
Thor. In Proc. of the ACM SIGMOD/PODS96 Joint Conf. on Management of
Data, pages 318-329, Montreal, Canada, June 1996.

M. Palmer and S.B. Zdonik. Fido: A Cache That Learns to Fetch. In Proc. of
the 17th Int. Conf. on Very Large Data Bases, pages 255-264, Barcelona, Spain,
September 1991.

R.H. Patterson and G.A. Gibson. Exposing 1/O Concurrency with Informed Pre-
fetching. In 3rd Int. Conf. on Parallel and Distributed Information Systems, pages
7-16, Austin, Texas, September 1994.

Proc. of the ACM SIGMOD Int. Conf. on Management of Data, Washington, USA,
May 1993.

A.J. Smith. Sequentiality and Prefetching in Database Systems. ACM Transactions
on Database Systems, 3(3):223-247, September 1978.

J.S. Vitter and P. Krishnan. Optimal Prefetching via Data Compression. In Proc.
32nd Annual Symposium on Foundations of Computer Science, pages 121-130, San
Juan, Puerto Rico, October 1991. IEEE Computer Society Press.

Elapsed time

(microseconds)

Fig. 3 Cost of client processing and a pagefetch
70000 -

61003

60000 -
50000 -

40000

30000 -
20000 -

11577

10000 +

Processing Pagefetch

[.

Elapsed time
(seconds)

Fig. 4a Demand and Prefetching version on different machines

30.61 24,92

M Demand
O Prefetch

Quad Dual-C Uni

Savings in
percent

20

15

10

Fig. 4b Savings of Prefetching version compared with Demand
18:58

14.28

Quad Dual-C

Savings in percent

50
40
30
20

10

Fig. 5 Savings in percent with different object access rates
45.59

32.61 32.2

25.84 229 21.37

40 60

Objects in access

10 20

80 100

Fig. 6 Multiple PrefetchThreads under different PODs

Elapsed time (seconds)

15.00 £

10.00

5.00

i
o
=
8
o —&— Demand
© —— Prefetchl
E —&— Prefetch2
=}
[
1%
o
[
w
Prefetch Object Distance (POD)
Fig. 7 Savings under different IRTs
22.75
£ . 28: 18.68
o8 8.76
S o 10
©
2] 0+
0 1000 10000
Inter-Reference Time
Fig. 8 Prefetching 100 incorrect and 100 correct pages
0 27.76
= P9 18.36
g8 20 3.97
S5 10 :
T Q.
3 0 I
1 20 100
Prefetch Object Distance
Fig. 9 Demand and Prefetching versions with multiple clients
20.00

—&— Demand
—il— Prefetchl
—&— Prefetch2

Number of clients

