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Given the existence of powerful multiprocessor client workstations in many client-
server object database applications, the performance bottleneck is the delay in trans-
ferring pages from the server to the client. We present a prefetching technique that
can avoid this delay, especially where the client application requests pages from
several database servers. This technique has been added to the EXODUS storage
manager. Part of the novelty of this approach lies in the way that multithreading
on the client workstation is exploited, in particular for activities such as prefetching
and flushing dirty pages to the server. Using our own complex object benchmark,
we analyze the performance of the prefetching technique with multiple clients and
multiple servers. The technique is also tested under a variety of client host workload

levels.
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1. Introduction

Much of the research and development effort in high-performance database
systems has focused on exploiting parallel computing on the database server plat-
form. However, with the rapidly improving performance/price ratios for shared-
memory multiprocessors it is now feasible to use parallel computers as client
hosts. This raises the question of how a multiprocessor client machine can be

exploited to improve database response time. In one approach [8] used so-called
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ParSetsin the OO7 benchmark traversals [4] to invoke a method on every object
in a set in parallel. This approach can boost performance where the application
is CPU-bound. However, for some applications, the performance bottleneck is
dominated by the delay that results from the client waiting for the transfer of

pages from the server and writing pages to the server.
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Figure 1. Performance/price development

In this paper, we examine the way in which prefetching can exploit paral-
lelism. Prefetching has been studied before in many areas of computing such as
operating systems, microprocessor design, compiler construction, the world wide
web and databases. Although prefetching has been studied for a long time, the
problem prefetching is facing has changed over the years as a result of techno-
logy advances. Fig. 1 shows the performance/price development of semiconductor
memories and magnetic disks. There is a two-order of magnitude gap in access
time between memory and disks. Memory access is faster and the rate of im-

provement is also higher. The prices of memory are falling which makes database
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caches cheaper and buffer replacement less of a problem. Prices of disks are also
falling dramatically which is good for cheap secondary storage, allowing increased
use of RAIDs.

CPU performance improves at an even higher rate than memory (fig. 2).
CPU is doubling its performance every 18 months whereas disk retrieval time only
improves about 5% per year. Memory access time improves at about 10 to 12%
per year. Client workstations will become powerful multi-processors machines
with high speed CPUs, most of which will tend to be idle most of the time.
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Figure 2. Performance improvement in %

Gray [12] asked “What happens when processors are infinitely fast and stor-
age is free?” He predicts that technology trends promise to give us processors
with pico-second clock speeds. These pico-processors will spend much of their
time waiting for information from the storage hierarchy. Similar trends will bless
us with peta-byte online stores with exa-byte near-line stores.

So the client-server system of the very near future is one in which the client
is a chronically under-utilised multiprocessor that spends most of its life waiting
for disk blocks to arrive from a remote server.

We address this problem by using multithreading to parallelise the 1/O for
prefetching and flushing. Various techniques of buffer management [1], [2] have

been used to reduce traffic between the client and the server. However, in this
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paper, we concentrate on techniques that attempt to effect page transfers in a
more timely fashion.

The fate of object-oriented database management systems (OODBMSs) will
largely depend on their performance in comparison to relational databases. The
simple tabular structures of relational databases and the set-at-a-time semantics
of retrieval languages such as SQL make it easy to parallelise relational database
servers. However, in an OODBMS the structures are complex and typically the
retrieval chases pointers. Furthermore, in most OODBMSs the bulk of the pro-
cessing occurs on the client: the server merely serves pages. With the increasingly
powerful client workstations OODBMSs take a lot of work from the server to the
client.

Early work on prefetching in relational databases [18] was able to exploit
sequential access patterns. In object-oriented databases, the object relationships
are often used to predict future accesses. The object structure and the pointer
relationships provide important information for object access patterns.

Chang and Katz [5] predict future accesses from the data semantics in terms
of inheritance and structural relationships. Objects are stored in pages and they
prefetch the immediate object reference only. Due to the high cost of a page
fetch, this technique has only a limited effect on reducing elapsed time. Cheng
and Hurson [6] extended this work by adding multiple hints, a prefetching depth
and physical storage considerations. Instead of using a single hint, a series of
hints are given for all types of relationships. Prefetch depths were added to the
prefetching hints according to the semantics of each relationship. For example,
an application may require the access to follow configuration links recursively
or to follow version links at a maximum of three levels away. Physical storage
considerations are used to impose a limit on high cost /0.

A complex assembly operator to load component objects recursively in ad-
vance was introduced by Keller et al [14]. The application traversal was performed
by three different scheduling algorithms, depth-first, breadth-first and an elevator
algorithm (which schedules disk access to objects based on their physical loca-
tion). Objects were clustered (according to their type or to the composite object
structure) or unclustered. This technique is suitable for small object nets; in lar-
ger object nets, recursively prefetched objects might already have been replaced
by the buffer replacement strategy.

In the Fido system [17], the prefetching technique employs an associative

memory to recognize access patterns within a context over time. In training
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mode, object access information is gathered and stored with a nearest-neighbor
associative memory. In prediction mode, this information is used to recognize
previously encountered situations.

Gerlhof developed an architecture for prefetching [10] and a so-called Pre-
fetch Support Relation (PSR) [11]. The PSR stores the precomputed page answer
of an operation, i.e. the identifiers of all pages that were accessed during the ex-
ecution of an operation. [13] developed an extensible file system, ELFS, in which
they used user hints to predict the file access pattern.

In Thor [7] each fetch request from the client causes the server to select
a prefetch group containing the object requested and possibly some other ob-
jects. A fetch request is processed to completion, determining all members of the
prefetch group, before any objects are sent to the client. The disadvantage of
this approach is that the server is already a bottleneck and additional prefetch
requests further increase the server workload.

Our prefetching technique observes the client processing on the object net.
If the application moves towards a non-resident object, the page of the object
is a candidate for prefetching. We try to time the prefetch request so that the
request is not started too early but the page arrives before application access. We
implemented this technique by extending the EXODUS storage manager (ESM)

In section 2 we describe the design of our prefetching technique and of our
buffer replacement strategy. An overview of ESM and the prefetching architecture
is given in section 3. In section 4 we present the theoretical results and present
the empirical results from our benchmark. Finally, in section 5 we conclude our

work and give an outlook for future work.

2. The Prefetching Design
2.1. Prefetch Object Table

OODBMSs can store and retrieve large, complex data structures which are
nested and heavily interrelated. Examples of OODBMS applications are CAD,
CAM, CASE and Office automation. These applications consist of objects and
relationships between objects containing a large amount of data. A typical sce-
nario is laid out by the OO7 benchmark [4]. It comprises a very complex assembly

object hierarchy and is designed to compare the performance of object-oriented
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databases.

In a page server, like ESM, objects are clustered into pages. Good cluster-
ing is achieved when references to objects in the same page are maximized and
references to objects on other pages are minimized. In our benchmark we use a
composite object clustering technique.

The general idea of our technique is to prefetch references to other pages in a
complex object structure net (e.g. OO7). We obtain the prefetch information from
the object references without knowledge of the object semantics. Considering the
object structure in a page, we identify the objects which have references to other
pages (Out-Refs). One page could possibly have many Out-Refs but sometimes
it is not possible to prefetch all pages because of time and resource limitations.
Instead, we observe the client navigation through the object net. We know which
objects have Qut-Refs and when we identify that the application is processing
towards such an Qut-Ref-Object (ORO) the Out-Ref page becomes a candidate
for prefetching.

The prefetch starts when the application encounters a so-called Prefetch
Start Object (PSO). Although the determination of OROs is easy, determining
PSOs is slightly more complicated. There are two factors that complicate finding
PSOs:

1. Prefetch Object Distance (POD)

For prefetching a page it is important that the prefetch request arrives at
the client before application access to achieve a maximum saving. The POD
defines the optimal distance of n objects from the PSO to the ORO object
which is necessary to provide enough processing to overlap with prefetching.
Let ()¢ denote the cost of a page fetch and let C,, denote the cost of object
preparation. The cost of object preparation is the ESM client processing time
before the application can work on the object!. Then POD is computed as
follows:

POD = ¢!

If the prefetch starts before the POD, a maximum saving is guaranteed,
however, if it starts after the POD, but before access, some saving can still

be achieved (see section 4.2).

! Additionally we could use the expected amount of processing from the application.
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2. Branch Objects
A complex object has references to other objects. The user of the application
decides at a higher level the sequence of references with which to navigate
through the object net. We define a Branch Object as an object which has
at least two references to other objects. Objects that are referenced by a
Branch Object are defined as a Post-Branch Object. For example in fig. 3 we
have a complex object hierarchy. The object with the OID (Object Identifier)
1 would be defined as a Branch Object because it contains a branch in the
tree of objects. Objects with OID 2, OID 7 and OID 12 would be defined
as Post-Branch Objects because they are the first objects de-referenced by a
Branch Object.

o ’l_%l

Page 2
OoID 1
oID 2 oIDb 7 oIlD 12
v v v
oID 3 OoIDb 8 oIlD 13
v v v
oID 4 OoID 9 oID 14
v v v
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Page 3
Page 5
Page 4

Figure 3. Object relationship

For every identified ORO in the page we compute the PSO by the following

algorithm:
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1. Retrieve the OID of the ORO and of the object in the next page referenced
by the ORO.

2. Compute the POD to define the distance of n objects from PSO to ORO.

3. Determine the PSO by following the object reference n objects backwards
from the ORO. If there are not enough objects in the reference chain before
the ORO, then we will identify the first object in the page from the reference

chain to achieve at least some saving.

4. If the object is already identified as a PSO and the previously identified PSO
has a different Post-Branch Object then we would identify the Post-Branch
Objects of the object as PSOs?.

Defining Post-Branch Objects as PSOs can improve the accuracy for the
prediction and reduces the number of adjacent pages to prefetch. For example in
fig. 3 we would identify OID 5, OID 10 and OID 15 as OROs. In this example
we assume a POD of 4 objects. On analyzing page 2 we would identify OID 5
as an ORO. From OID 5 we would go through the chain backwards by 4 objects
and identify OID 1 as a PSO. Then we would do the same for the OROs OID 10
and OID 15 and identify OID 1 as the PSO for both. After analyzing the whole
page we would find out that OID 1 has three PSOs with different Post-Branch
Objects. In this case we would identify the Post-Branch Objects of OID 1 (OID
2, OID 7 and OID 12) as PSOs instead of OID 1.

The novel idea about our technique is to make prefetching adaptable to the
client processing on the object net. Because the cost of a page fetch is high
we try to start the prefetch early enough to achieve a high saving but not too
early to prefetch inaccurately. In contrast to the work of [14], we do not prefetch
all references recursively; instead we select the pages to prefetch, dependent on
the client processing. Recursive object prefetching has also the problem that
prefetched pages can be replaced again before access. Adaptive object prefetching
limits the number of prefetch pages to the adjacent pages. In contrast to [5], we
look further ahead for objects to prefetch than the immediate object.

Each page of the database is analyzed off-line. The Analyzer stores this
information in the POT for every database root®. Fig. 4 depicts the layout of

2 This step is executed after we have defined all PSOs from the OROs in a page.
® This is important because objects on the same page could belong to different roots.
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Figure 4. Entry in POT

one entry in the POT. Entries for one page are clustered together on disk. The
overhead for this table is quite low as it only contains a few objects of the page.

At run time, the information from the POT is used to start the prefetch
requests. The run time system allocates enough threads for prefetching. If essen-
tial pointers for the navigation are updated in a transaction we would invalidate
the POT for this page and modify it after the completion of the transaction.

This prefetching technique is not only useful for complex objects, it can
also be used for collection classes (linked list, bag, set or array) in OODBMSs.
Applications traverse an object collection with a cursor. With PSO and ORO
it would be possible to prefetch the next page from a cursor position. In the
description of our technique, the object size is assumed to be smaller than the
page size. If the object is larger than a page, prefetching can be used to bring
the whole object into memory.

In future work we want to investigate performance and behaviour of the
object navigation using probability values. If the POD has many objects and the
fan-out of the objects is high then the probability that the navigation will be from
the PSO to the ORO is low. We will compare performance under a variety of
assumptions (a) the probability of the navigating to the ORO and (b) the benefit

of a correct prefetching and the cost of an incorrect prefetch.

2.2. Replacement Policy

In the ESM client it is possible to open buffer groups with different re-
placement policies (LRU and MRU). Freedman and DeWitt [9] proposed a LRU
replacement strategy with one chain for demand reads and one chain for pre-
fetching. We also plan to use two chains with the difference that when a page
in the demand chain is moved to the top of the chain, the prefetched pages for
this page are also moved to the top. The idea of this algorithm is that when the
demand page is accessed, it is likely that the prefetched pages are accessed too.

If a page from the prefetch chain is requested it is moved into the demand chain.
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3. System Architecture
3.1. The EXODUS Storage Manager

We implemented the prefetching technique in ESM. The EXODUS client-
server database system [3] was developed at the University of Wisconsin. It aids
a database implementor in the task of generating a DBMS by providing a storage
manager, a programming language E (an extension of C++4), a library of access-
method implementations, a rule-based query optimizer generator, and tools for
constructing query-language optimizers.

The basic representation for data in the storage manager is a variable-length
byte sequence of arbitrary size, incorporating the capability to insert or delete
bytes in the middle of the sequence. In the simplest case, these basic storage
objects are implemented as contiguous sequences of bytes. As the objects be-
come large, or when they are broken into non-contiguous sequences by editing
operations, they are represented using a B-tree of leaf blocks, each containing a
portion of the sequence. Objects are referenced using structured OIDs?.

On these basic storage objects, the storage manager performs buffer manage-
ment (LRU or MRU), concurrency control, recovery, and a versioning mechanism
that can be used to provide a variety of application-specific versioning schemes.
Transactions are implemented using a shadowing and logging technique. Cli-
ent and server communicate via the socket interface. The client specifies the
requested data in a message structure and sends it to the server. The server

updates this structure and responds with the attached 8K page.

3.2. The Prefetching Architecture

In this section we describe how prefetching is incorporated into ESM. For
the concurrent execution of the application and the prefetch system we used the
Solaris thread interface [19]. Multithreading combined with prefetching has the
benefits of:

1. Increased application throughput and responsiveness;
2. Performance gains from multiprocessing hardware (parallelism);
3. Efficient use of system resources.

* Object identifiers containing a physical and logical component (in ESM page number and slot

number).
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Figure 5. Prefetching architecture

As depicted in fig. 5, the database client is multithreaded. The AppThread is
responsible for the processing of the application program and the PrefetchThread
is responsible for fetching pages in advance into the buffer pool. A SupportThread
has the same task as the PrefetchThread with the only difference being that it
is scheduled by the PrefetchThread. Each thread has one associated socket. The
POT informs the PrefetchThread which pages are candidates for prefetching from
the current processing of the application. The Prefetch Listis a list of pages which
are currently prefetched. A FlushThread is responsible for flushing dirty pages to
the server.

At the beginning of a transaction the AppThread requests the first page from
the server by a demand read. The PrefetchThread always checks which objects
the AppThread is processing. Having obtained this information, it consults the
POT for a page to prefetch and checks if this page is already resident. If not, the
page is inserted in the Prefetch List and the request is sent to the server. The
server responds with the demanded page and the client inserts the page into its
buffer pool. Eventually the page is removed from the Prefetch List and inserted
into the hash table of the buffer pool.

If the POT predicts multiple pages, Support Threads help the PrefetchThread,
this is useful when the prefetch object distance is short. The number of Support-

Threads is determined by the number of simultaneous prefetch requests. Each
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Support Thread tuns on its own LWP® and while one SupportThread blocks on
1/O, another SupportThread can insert its page into the buffer pool.

When the AppThread requests a new page, it first checks if the page is in
the buffer pool. If the page is not resident then it checks the Prefetch List. If
the page has been prefetched the AppThread waits on a semaphore until the page
arrives, otherwise it sends a demand request to the server.

The ESM server is not multithreaded® and performs each request sequen-
tially. But the server forks a new process for the disk management. The server
and disk manager communicate via shared memory. The server puts a request
for a new page in a disk queue and the disk manager reads the page from disk
and copies it into the buffer pool of the server. Incorporating threads into the
server would further improve the whole systems performance and is part of future
work.

For the parallel execution of threads on the client, synchronization mecha-
nisms are required. The access to the buffer pool is protected by mutexes, which
means that only one thread at a time is able to make a residency check or ma-
nipulation. When either the AppThread or PrefetchThread are idle they wait on
a semaphore. A semaphore informs the SupportThread that there is a page to
prefetch.

Prefetch threads are mostly idle as they await the completion of 1/0O. This
means that several threads can be allocated to a single processor and the threads
will not have to wait for an operating system time-slice to complete before they
can execute. The Solaris thread interface provides a function to give the threads
priorities. The AppThread has the highest priority to make sure that the ap-
plication processing always gets scheduling priority on one of the CPUs before
the prefetch threads.” The PrefetchThread has a 50 percent priority® and the

Support Threads have low priorities.

® Lightweight process (LWP) can be thought of as a virtual CPU that is available for executing
code.

6 But ESM runs many tasks, as concurrent processes, on one processor.

" On a uniprocessor, a subtler approach to allocating priorities would be needed in order to
strike a balance between application processing and prefetching.

8 Priorities in Solaris are integer values from 0 to 127.
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Table 1
Computer performance specification
Parameter Server Client
SPARCstation 20 Model 612 10 Model 514
Main Memory 192 MB 224 MB
Virtual Memory 624 MB 515 MB
Number of CPUs 2 4
Cycle speed 60 MHz 50 MHz
Table 2
Disk controller performance
Parameter Disk controller
External Transfer Rate 9 Mbytes/sec
Average Seek (Read/Write) 8 msec
Average Latency 4.17 msec

4. Performance Evaluation
4.1. System Fnvironment

In table 1 we give a specification of the computers used in our experiments.
The client machine has 4 processors. The Ethernet network is running at 10
Mb/sec. The performance of the disk controller (Seagate ST15150W) is presented
in table 2.

4.2. Theoretical Results

The success of prefetching is dependent on the accuracy of the prediction
and the completion of the prefetch before access. We define the cost of object
processing to be C,. Let C,, denote the cost of preparing one object for appli-
cation access and let C,, denote the cost of processing on the object from the

application plus waiting time. C, is calculated by:

Co = Cop + Coa (1)

The cost of a page fetch, C), is dependent on client and server processing
and the network. Cl; denotes the cost of client processing on the buffer pool; Ny

denotes the cost of network transfer; Sy is the cost of server processing on the
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buffer pool; S, is the server queueing cost and Sy is cost for the disk access. (),

is calculated by:

Cp=Cly+ N+ Sy + 5,4+ Sa+ Ne+Cly, (2)

The saving for one out-going reference S,, is dependent on the number of
objects between the start of the prefetch and application access to the prefetched
object (N,) and C):

(3)

g _ Cp if(Cy- Ny > C))
o C,-N, otherwise

If there is enough processing (i.e. C, - N,) to overlap then the saving is the
cost of a page fetch. If not, there is also, albeit lower, saving of the amount of
processing from prefetch start to access (C, - N,). Pages normally have many
out-going references. The number of references to different pages is denoted by

n. Sy, the saving for a whole page, is given by:

Sp = Z Sor (1) (4)

Finally, the saving of the total run is defined by S, which is influenced by
the cost of the thread management (C}), by the cost of the socket management

(Cs) and by the number of pages in the run (q):

S, = (Zsp(j))—ct - C. (5)

4.3. Benchmark description

For the evaluation of the prefetching technique we created a benchmark with
complex objects. The requirements for the benchmark were:
e The application access pattern should be dynamic and different for every run;
e The sizes of the objects should be fairly uniform;

e Object references should be complex;
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e The number of pages accessed in one run should be equal to, or less than, the

number of pages in the buffer pool at the client and server.

Branch Object
Page 1

Normal
OID 2 OID 12 Object
= T - = ~
1 T
oD 3 OID 13

P Y

a ﬂ Out-Ref Object

Page 4 Page 7

Y

OID 6

A/J\A

Page 2 @ Page 3

.

Page 5

e

Page 6

~

oIb9

OID 16

OID 19

ATA

ATA

A/J/\;

OID 20

oIb 7 OID 10 OID 17

= = = = = =
z N
oibs8 A OID 18 OID 21

P14 P15 P16 P17 P18 P19

Page (Py8 P9 P10 P11 P12 P13

Figure 6. Benchmark structure of one page

In fig. 6 we depict the design of one page®. There are three types of objects:
Branch Objects, Out-Ref-Objects (ORO) and Normal Objects. A Branch Object
decides by a random operator which object reference to follow in the tree. An
ORO has pointers to objects in different pages which are all accessed when en-
countered. A Normal Object points to three other objects in the same page. The
type for all objects has four pointers and a size of 72 bytes. In one run 195 pages
are accessed and each page contains 112 objects.

The application starts with one root object from the first page. The Branch
Objects decide the navigation in the page. When a reference to another page
from the upper level (e.g. Pages 2 to 7) is encountered only the first object from

? Every page has the same structure.
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the other page is dereferenced and then the application continues in page 1. At
the lower levels (e.g. Pages 8 to 19) two pages are dereferenced with 1 object
(the same as at the upper level) and in one page the application continues the
navigation. Having two or three references to other pages gives us the possibility
to test prefetching under strict time conditions. It also means that the program
is quite I/O intensive and the savings in percentage terms will be high. In [15],
[16] we presented a benchmark which was less [/O intensive.

Fig. 6 needs some explanation concerning the number of Normal Objects.
The number of Normal Objects before an Qut-Ref-Object is 15. The cost of pro-
cessing 20 objects is equal to the cost of one page fetch in our system environment.
Every object is fetched into memory with no computation or waiting time on the

object.

4.4. Performance Measurements

All the tests were made in a multi-user environment. Because we were
unable to get exclusive access to the machines and network it is not possible
to compare the absolute times of different figures. Nevertheless, we made the
tests at a time when the workload was low. Savings in percent mean the percent
saving of a prefetching version compared with a version without prefetching and
multithreading (Demand).

In fig. 7a we present the results of our benchmark. Prefetchl means one
PrefetchThread supports the application; Prefetch2 means there is one Prefetch-
Thread and one SupportThread and Prefetch3 has one PrefetchThread and two
SupportThreads. Fig. 7a shows that with an increased number of prefetch threads
the elapsed time of the applications is reduced. Recall from the benchmark struc-
ture that an ORO has three references to other pages, therefore Prefetch3 has
the best performance because it achieves the optimal number of prefetch threads
for page requests. Fig. 7b shows the savings of the prefetching versions in per-
cent. Prefetchl1 only provides a 5% improvement, compared with Prefetch3 which
achieves a saving of 23%.

The effect of additional clients (Demand versions running on other machines)
is shown fig. 8. Prefetch2 always performs better than Demand. At the level of
3 clients, Prefetchl performs worse than Demand. This is because the cost of
the thread management is higher than the benefit of prefetching. In general each

client increases the network workload, the server processing and the work for the
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disk manager. If the prefetch request is completed before client access the savings
in percent would increase in a multi-client environment. If the prefetch request
would be served at the same time at the server or even later, prefetching would
decrease performance due to the additional costs of the thread management.

In fig. 9 we present the results of our distributed database test. Prefetching
always generates additional workload for the server, so that a multi-server envi-
ronment is more suitable for prefetching. For this test we split the database into
two databases, each managed by one server. The servers both run on the same
machine so as to have the same conditions for the hardware. Fig. 9 shows that
all versions improve performance in the distributed environment.

The size of the buffer pool has an important impact on the performance of
the prefetch technique. We compared performance for 10, 100 and 200 frames in
the buffer pool. The update versions write just one object on the page, which
causes the page to be marked dirty. The time for this test was stopped just before
the commit of the transaction. Comparing both read versions in fig. 10, the
Prefetch version can increase slightly the amount of saving with increased buffer
size. The elapsed time of the Demand version increases whereas the elapsed time
of the Prefetch version stays almost constant. The Prefetch version performs
better with a larger number of buffer frames because this reduces locking of
synchronization variables. The write versions behave very similarly. A higher
number of available frames reduces the number of server flushes at transaction
time, which has a direct effect on the response time.

In the next test (fig. 11) we stopped the time after the commit of the trans-
action. For the read versions the result are the same as in fig. 10, the Demand
version increases slightly and the Prefetch version stays almost constant. For
the write versions we created one version, called Prefetch write, which flushes
all dirty pages at the end of the transaction sequentially and another version,
called Prefetch write mt flush with has two FlushThreads to do the flushing in
parallel. All write versions reduce elapsed time with a buffer size of 50 compared
with 10, but their elapsed time increases after 50. Over a buffer size of 100 the
multithreaded flush version outperforms the sequential flush version (at a buffer
size of 200 the advantage of the multithreaded version is 1.23 seconds). This test
proves that multithreading is not only useful for prefetching; flushing dirty pages
to the server is also a suitable application for multithreading.

In fig. 12 we compared our presented prefetching technique (using a POT
table) with the technique presented in [5] which prefetches only adjacent refer-
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ences from the current object. The prefetch adjacent version achieved quite a
surprisingly good result because of the structure of the benchmark. All three
page fetches are from one object. Two prefetches can be made at the same time
as the first page is prefetched. Therefore only the first page fetch has a sufficiently
large penalty to arrive late.

The problem of prefetching is when prediction accuracy is low, prefetching
can actually decrease performance. We used the same benchmark for this to
test the effect of incorrect prefetch requests, with the only difference being that
we navigate only to one page from the ORO. The other two pages can be used
for incorrect prefetches. In fig. 13 Two incorrect means prefetching two pages
incorrectly from an ORO; One incorrect means prefetching one incorrectly and
Correct means optimal prefetching. The Inter-Reference Time (IRT) simulates
overhead for client processing. The values of the IRTs are the number of loop
iterations after every object access. The elapsed time of 3560 iterations is equal
to the elapsed time of one object preparation for client access. 1675 iterations
are equal to half of one object preparation and 850 iterations are equal to a
quarter. Additional overhead for client processing could be produced by a pointer
swizzling technique, application client processing or waiting time. One incorrect
and Correct always perform better than Demand. After an IRT value of 850,
Two incorrect can also improve performance.

The workload of the database client is important for the scheduling of the
prefetch threads. If the prefetch thread is scheduled after encountering a PSO
and the operating system time slice ends after sending the prefetch request to the
server, prefetching can be even more successful under a high workload. Otherwise,
if the prefetch thread is not scheduled before application access the prefetch
request is unnecessary and produces processing overhead. In fig. 14 we varied
the workload on the client workstation. A workload of 4 means that all four
processors are fully utilized and the idle time is almost 0%. The Prefetch version
performs well under the workload of 2.8 and even better above the workload of
5, i.e. where there is queueing for CPU resources. At the workload level around
4, i.e. just at the point where all processors are busy, the performance of the
prefetch threads suffers as a result of operating system scheduling and therefore
prefetch requests are arriving late or after the object fault.

Multithreading on the database client side can be used not only for I/O but
also for very expensive CPU functions. On analyzing the client code we found

out that there is an expensive function to calculate the free slot space in the
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EXODUS client software. This function is called on every object access and then
calculates the free slot space of the whole page. We created another thread for
this function and the result of the performance test is presented in fig. 15 and

fig. 16. In the test of fig. 15 we varied the number of objects accessed in a leaf

page'C.

speeds up. All the pages that have to be checked by the Audit Thread are put

into a queue and then the application thread continues with processing. If the

With an increasing number of objects in access the Audit application

audit page is already in the queue it is not inserted again which reduces the
amount of client processing!!. Fig. 16 shows that the Audit Thread has actually
a higher number of buffer misses because we used the same POD but the total
amount of overhead is less.

Increasing the number of SupportThreads also increases the total synchro-
nization time of the application. We analyzed an application with one Support-
Thread (table 3) and an application with two SupportThreads (table 4) using the
Solaris Thread Analyzer [20]. The first four rows show the 1/O per second. Most
of the 1/0O is done by the prefetch threads. In the 1 SupportThread application,
the 1/O work is divided over 2 threads and in the 2 SupportThreads application
over 3 threads. The PrefetchThread waits on a condition variable when there
is no work to do. The highest increase in synchronization time was caused by
the mutex wait time. Two SupportThreads have a total mutex wait time of 7.05
seconds whereas the 1 SupportThread version only requires 5.02 seconds. When
the SupportThreads are idle they are waiting on a semaphore.

For the last test we created a benchmark in which every ORO has 7 ref-
erences to other pages. This benchmark was designed to test the scalability of
SupportThreads. We varied the number of SupportThreads from 0 to 7. If the
thread overhead is low and all the SupportThreads are scheduled in time by
the operating system, the best result could be achieved with 7 SupportThread.
On the other hand, if the synchronization cost of the threads is high and the
SupportThreads are scheduled late then best performance is achieved by about

2 SupportThreads'. We created 4 prefetching versions which start the prefetch

10 Recall the structure of the benchmark in which we accessed only one object in a page and
then followed the navigation through other pages. We define such a page as a leaf page.

"'To ensure the integrity of the database pages the Audit Thread must be finished before the
commit of the transaction.

2.0V means condition variable.

13 All four threads (App, Prefetch and 2 Support) run on four processors.
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Table 3
Performance Characteristics of a 1 SupportThread application

Prefetch T. Support T. App T.

file reads (bytes) 956,768 643,344 8,248

file reads (ops) 627 412 5

file write (bytes) 6,496 4,368 56

file write (ops) 116 78 1

CPU time 34.01 34.24 31.23

CV'wait time 163.23 0.00 0.00

mutex wait time 3.39 1.61 0.02

read wait time 0.56 0.40 0.00

semaphore wait time 0.70 184.89 0.00

total sync wait time 167.32 186.50 0.02

Table 4
Performance Characteristics of a 2 SupportThreads application

PT. ST. 1 ST. 2 AT.
file reads (bytes) 643,344 486,632 470,136 8,248
file reads (ops) 385 302 297 6
file write (bytes) 4,368 3,304 3,192 56
file write (ops) 78 59 57 1
CPU time 35.75 35.99 35.94 32.67
CV wait time 170.88 0.00 0.00 0.00
mutex wait time 2.57 2.29 2.17 0.02
read wait time 0.28 0.19 0.20 0.00
semaphore wait time 0.74 182.33 180.53 0.00
total sync wait time 174.19 184.61 182.70 0.02

operation with different PODs. We used the values of 20, 30, 40 and 50 as a POD.
Fig. 17 shows the result of this benchmark. All prefetching applications show
the highest decrease from 0 to 1 SupportThread. The best result is achieved at
the level of 2 SupportThreads because all threads are executed on the same pro-
cessor without any context switches. After the level of 2 all applications increase

elapsed time.

5. Conclusions and Future Work

We presented a prefetching technique for object-oriented databases using

multithreading. At run time we observe the application client processing and if
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the application moves towards a page which is not resident we will prefetch this
page using the information of the POT. All information of the POT is collected
off-line by an analyzer. This information is used at run time by the prefetch
threads. We also use multithreading for flushing dirty pages to the server. This
is especially useful at the end of a transaction when many pages have to be flushed
to the server. The results of our benchmark showed that prefetching can improve
performance significantly if object access is reasonably predictable. The fastest
prefetching version achieved a saving of 23%. Even will a prefetch accuracy of
only 33%, performance can still be improved by prefetching. Prefetching is also
successful with additional database clients as long as the server does not become
a total bottleneck. We showed that the organisation of distributed databases is
attractive for prefetching. Increasing the buffer size improved significantly the
response time in a write transaction. To speedup the flush of dirty pages to the
server we also used threads. Above a buffer size of 100 frames the multithreaded
version has a 15% percent advantage over the sequential flush version.

In the future we will compare our technique with other proposed prefetching
techniques. We will implement the OO7 benchmark to see how our technique
will perform in this environment. We also look at real application structures for
prefetching. Another possibility is to make the ESM server multithreaded. The
problem is the synchronization of the threads to access global data concurrently
and safely. For example, if many threads want to access the buffer pool, waiting
time will be increased. If the client demands multiple pages without strict time

restrictions, our system will test the unit of 1/O with a set of pages.
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Fig. 14 Effect of client workstation load
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