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It is only relatively recently that in computer science we have begin to exploit the
idea that proofs are essentially executable programs, although it emerged from intu-
itionistic mathematics some decades before the first digital computers ran programs.
One application, as it were from logic to computer science, has been in the design of
ever more expressive type systems for programming. The situation is currently that
type-checkers have been written for a range of experimental functional programming
languages in which the type systems are sufficiently rich to express propositions, logi-
cal connectives, predicates, quantifiers, relations, predicate transformers, temporal and
modal operators, and everything any one has ever asked for to write fully precise math-
ematical specifications, or the reasoning that underlies the construction of a program to
meet a precise specification.

The kind of programs we can write using these type systems are programs that
denote mathematical values; they do not of themselves actuallydo anything or exhibit
behaviour1. Rather, we do something with them, or make practical application of them,
or somehow use a mathematical value as a guide to action. Put crudely, the puzzles
that underlie this paper are of the following kind. What kind of proof is it that ‘does’
something, for example one which when set in motion runs an internet server to book
plane-flights and hotel rooms, or one which prevents the brakes on a bus from locking
in a skid? What kind of proposition does the proof prove, and how is this connected
with a specification of the desired behaviour?

In practice, the software components of complex systems are (and forever will be)
written in a variety of imperative languages, which exchange information by issuing
and responding to invocations of procedures or methods. An important task for com-
puter science is to capture mathematically the notion of an imperative ‘interface’, or of
command-response interaction between components, whatever the technologies with
which they are implemented. The problem is to devise mathematical structures with
which to model handshaken command-response interfaces or service specifications,
and to organise the design of software to meet specifications expressed in terms of
those structures.

The question we want to address here, from the perspective of the theory of depen-
dent types, specifically the predicative type system developed by Martin-Löf, is

What is the logical form of the interface between a component in a sys-
tem and its environment, where communication is by commands and re-
sponses?

By a command-responseinterface I mean an ‘imperative’ interface, in which com-
munication between a component and its environment takes the form of a succession

1Actually it could be argued that there is at least one such system, namely Lennart Augustsson’s language
Cayenne, with which one can write programs that do more than display values.
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of bi-partite command/response, handshaken interactions. One party, agency or agent
(called the client, user, master, commander, initiator, stimulator, actor, ...) initiates
an interaction by issuing a command, and the other (called the server, system, slave,
obeyer, commitor, responder, re-actor, ...) completes it by making a response appropri-
ate to the command. There is astate, which determines the interactions that are possi-
ble at any point of time; the interface moves or evolves to or is assigned a new state as
each interaction takes place, as it were instantaneously and destructively. The state can
always be computed from the history of interactions. The combination of sequential
execution and destructive assignment is characteristic of imperative programming.

The paradigm of clients and servers pervades the design of computer systems at all
levels. No doubt there are many other vitally important patterns of interaction between
components, but none as deservedly popular as that between clients and servers.

• In its simplest form, the client (a flesh-and-blood human being to whom com-
puters are a necessary evil) makes a request for a service, or action in a certain
repertoire of a device, by clicking on a button perhaps. If the necessary condi-
tions are met, the server returns some results, and moves (as it were in a single
instant) to a new state in which the user’s bank balance has been debited and
goods of some kind have been dispatched. The extreme simplicity of this picture
(with its abrupt transition from future to past, initiated by the user and commit-
ted by the system) is highly appropriate at the level of user interfaces that can be
used by frail and impatient flesh and blood clients.

• At a lower level, the same paradigm accommodates a common kind of procedu-
ral interface to an ‘object’, or component comprising a collection of procedures
and data. A call to a procedure passes control and input data values or arguments
into a program module which (with luck) subsequently returns control and out-
put data values or results to the caller, after the pattern that calls are eventually
followed by matching responses. Here a call means passing control/data, and a
response means return of control/data.

• At a lower level still, another application of the same paradigm is to represent
the fetch-execute cycle of an interpreter for a certain machine code, or instruction
set. Instructions are fetched, then performed, producing results that can influence
the effect of later instructions.

It is important to distinguish interfaces from their implementations.
An interface, or a good one should permit a variety of different implementations.

The implementation should have latitude in responding to requests, subject only to the
constraint that the legality of subsequent requests, and of responses to such requests,
should be deducible from the sequence of commands and responses.

By the logical form of a specification, I mean to exclude resource requirements,
operating conditions, details of coding or marshaling, and other issues like ergonomics,
performance and tasteful styling. It seems to be necessary to clarify how one should
saywhat is supposed to happen before it is worth talking about the evil necessary to
get it to happen, or abouthow fastor how frequentlyit will happen.

Constructivity... The specific interest of constructivity in applied mathematics is
that the models of real-world phenomena that we set up and reason about in construc-
tive mathematics are ‘without more ado’workingmodels. Suitable encoded, they are
programs that can in principle be run on a machine – though this might exhaust all the
resources of the universe. This is a comprehensive picture of what is fundamentally
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going on in writing programs, a recommendation about how to think of that process
rather than a recommendation about how to write programs.

The question pursued in this article is this: if proofs are programs, then what kind
of proposition is it that is proved by an interactive program – a program that does
something more than merely calculate the value of an expression, but actually has an
effect on and is affected by its environment? My ambition is not to answer this question
in general, but only for those kinds of interactive program which communicate with
their environment through command response interfaces.

Even a program which displays the value of an expression has an effect on the
device that is used to display it. The communication between the program and its
device is (following the command-response paradigm) modelled here as some kind of
client-server interface, in which the display is one of the agents.

The model here is that all unsolicited messages are matched one for one by ac-
knowledgements, which is probably not strictly true in real input-output systems.

Predicativity...Dependent type theories may be impredicative (Coq, Lego) or pred-
icative (Alf, Half, Alfa, Agda, Cayenne). The difference this makes is that in the former
kind of type system, the quantifier domains are closed under an operation analogous to
the power-set operation of classical ZF set theory, that assigns to a set its set of subsets.
In the predicative kind the power operator exists, but crosses a size boundary, as the
power of a set (the collection of statements that can be made about its elements) is
not a (small) set but a (large, proper) type. In these predicative systems this lack of a
power-set operator may be addressed to some extent by ‘internalised’ approximations,
expressed using ‘universe’ sets. The predicative systems incorporate strong princi-
ples of inductive definition, taken as primitive rather than as justified by impredicative
quantification over power sets.

The restriction to predicative methods has an advantage of conceptual simplicity.
One can think of a value, or an element of a set or data type as ‘built up from below’,
or inductively. One can think of a set (or data-type) itself as something inductively
defined, as it were with no vicious circularity. This is sometimes referred to as the
‘well-foundedness’ of standard predicative type theory.

To say that a value is ‘built up from below’ is of course only to use a metaphor.
The underlying idea is perhaps that such a value is a ‘fit’, or satisfactory argument for a
certain definitional scheme, or computation rule – in a sense of ‘fit’ that needs analysis,
but implies termination. This is not a sharp, formal notion, and it may be that there
is in fact a mixture of distinct elements2 Yet it provides a single overall principle or
paradigm that is instantiated over and over again in the rules of type-correctness and
computation for data-types of all forms, including product types and function spaces3.
The existence of this overall pattern provides a basis for an implementation of a type-
checker that can assist with many combinatorial details of defining functions on data-
types.

On the other hand the impredicative notion of subset is of quite a different character.
It goes far beyond the idea of something ‘built up from below’, in any sense. It is fair to

2Kreisel remarks [15, p. 171] that the naı̈ve notion of set was a ‘crude mixture’ containing (three) different
elements. Even before the set theoretic paradoxes were discovered, it was criticised for its ambiguity. These
criticisms were eventually met by making the necessary distinctions.

3In category theory, products and function spaces are usually characterised by ‘finality’ properties, that is
asdestinationsof certain kinds of universal arrow. On the other hand in predicative type theoryall sets are
inductively defined, thoughSet itself is not. Even products and function spaces are characterised rather by
‘initiality’ properties, that is asorigins for a certain kind of universal arrow. This presents a subtle problem
in categorical treatments of type theory.
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say that it is enormously difficult to attach an effective meaning to statements involving
nested impredicative quantification.

Predicativity and imperativity...A particular theoretical problem arises in connect-
ing imperative programming with predicative type theory. One of the most convincing
and practical approaches to developing imperative programs from their specifications
(Morgan [19], Dijkstra [9] [8], Back and von-Wright [4],..) takes a specification to be
a predicate transformer,i.e.an operator on the power-set of a state-space. Applied to a
predicate representing a goal to be established, such an operator yields another predi-
cate, namely the weakest predicate which ensures both that the program terminates and
establishes the desired goal predicate in any state in which it terminates. Programming
constructs such as assignment, sequential composition, branching, block structure and
procedure calls are defined in terms of operators on predicate transformers. The theory
of predicate transformers is based partly on the algebraic structure of subsets of or pred-
icates over a set, and partly on the structure induced by composition or transformers
over any type.

To deal with recursive constructions the literature on the refinement calculus ex-
ploits particularly the Knaster-Tarski theorem concerning the existence of least and
greatest fixed points of monotone functions on a complete lattice. It seems problem-
atic to justify the Knaster-Tarski theorem in its full generality from a predicative point
of view. This makes it a challenge to develop a theory of imperative programming in
predicative type theory.

1 Modeling command-response interfaces

A complete description of the interface presented by a real device tells you everything
you need to know to use it, and therefore to implement it. It is sensible to divide this
into parts, a syntactical part and a semantical part.

One ‘syntactical’ part of the description will be about precisely how things are
encoded, such as that a logic ‘1’ is represented by a certain voltage on a certain wire,
or that the command is issued by the rising edge of a particular signal, or that numbers
are represented by ASCII strings stored in a certain way. This is the evil necessary to
make use of the device. I simply assume that . . .

The other ‘semantical’ part of the specification concerns the functionality of the
interface. It tells you why you might want to use it, or in other words what it is good
for, or its practical value. It is the ‘logical’ notion, as it applies to command-response
interfaces which we want to capture with a mathematical structure.

The fundamental notion on which this analysis is based isstate. To describe the
functionality of an interface, we first of all need a set whose elements represent states
or configurations of the device that might arise as interactions take place. (The state is
not in general directly visible.) The set of states is called thestate space. The device
moves discretely from state to state, tracing out a trajectory, orbit or path through the
state-space.

At each state, the device has a certain potential for interaction. We represent this
potentiality, or functionality as a function assigning to each states a collection of sets
of states.

{ { s[c/r] | r ∈ R(s, c) } | c ∈ C(s) }
Heres[c/r] is convenient notation for the new state of the interface, when a command-
response interaction〈c, r〉 (initiated by c, completed byr, also writtenc/r) occurs
starting in states ∈ S.
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The functionC assigns sets to states, and so can be interpreted as a propositional
function, or predicate of states. The predicate (which is in some sense a guard) holds
if the device can be activated. (This is in a sense of ‘activate’ according to which a
device may be activated in some states for which no reaction is possible; it may be
better to say ‘an interaction with the system can be initiated’). If the device is properly
activated, a proof that the guard predicate holds can be supplied, and we can think of
this proof as a command that is issued to the device.

The functionR assigns sets to statess ∈ S and commandsc ∈ C(s). Considered
as a predicate, it holds if the commandc terminates, or can be performed, obeyed or
carried out to termination. We might also say: if it is effective, or feasible. We can
think of a proof of that this predicate holds as a response that is returned by the system.

The function assigns to each states and interactionc/r the next states[c/r]. Note
that the next state is fully determined by the sequence of interactions leading from an
initial state to the current state. We can think of these interactions as ‘bi-partite’ events
in the history of the interface.

In practice (in Z, VDM, TLA,etc.), the state space is most conveniently described
as a set of records, with fields or coordinates that divide the state space, or factor it.
In general the records are not independent, but are constrained to satisfy an ‘invariant’
relation with one term (argument place) for each state-variable. For example, if we
describe a file system interface (as for example in Morgan and Sufrin [20]), the state-
space will comprise all possible configurations of files, directories, and other entities
in the interface such as channels, which satisfy the invariant.

Note that the structure

S : Set
C : (s ∈ S)→ Set
R : (s ∈ S, c ∈ C(s))→ Set
[ / ] ∈ (∀ s ∈ S, c ∈ C(s), r ∈ R(s, c))→ S

is in its first three lines the very paradigm of a dependent context

A1 : Set
A2 : (x1 ∈ A1)→ Set
A3 : (x1 ∈ A1, x2 ∈ A2(x1))→ Set
. . .

So type-dependency is used in an essential way.
Because of type-dependency, we can express two different notions of termination;

interaction terminates if there are no commands that can be issued in the current state
(i.e.C(s) is empty), and also when a commandc is issued for which no response is
possible (i.e.R(s, c) is empty). However these are both species of failure, and there
is also successful termination in which an interaction is complete, and the new state
attained.

The structure(S,C,R, .[./.]) is well known, though perhaps not very widely. It has
applications in connection with formal grammars (Petersson and Synek [24]), as well
as with covering structures in formal topology (See Mac Lane and Moerdijk [17, page
534 Ex. 5] for the notion of covering system, and Coquand, Sambin, Smith, Valentini
[7]) for closely related material. No doubt other applications can be cited.

It is well known that the 4-part structure above can also be used to model inferential
systems of a certain kind, such as the rule sets of Peter Aczel [3], or generalised4 forms

4(The generalisation is that the rules can be infinitary: there are no ‘cardinality’ restrictions on any of the
index sets.)
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of Post system. In the inferential applications the elements ofS represent statements,
while the rest of the structure represents a system of first-order5 inference rules for
inferring statementss ∈ S.

r:R(s,c)

· · · s[c/r] · · ·
c:C(s)

s

In this case, the ‘commands’c : C(s) index the inferences with conclusions, and the
‘responses’r : R(s, c) index the premisess[c/r] for which proof is required in order
to concludes by inferencec.

Another application of the structure is to represent multi-sorted algebras; by the
Curry-Howard correspondence, this is really the same as the inferential interpretation.
In this more algebraic interpretation the elements ofS represent sorts, the commands
represent constructors (which partition values of a given sort into their possible alterna-
tive forms), and the responses represent selectors (which pick out a field or conjunctive
subcomponent from a value formed with a particular constructor). These sorts can be
for example syntactical categories in a formal grammar, as in [24].

When we think of inferential structures (proofs) in this way, it is natural to try to
model proofs as strategies for winning certain kinds of ‘logical’ game. The Player in
such a game (a server, or service provider) claims a statement, while the Opponent
(a client) is sceptical and probes more and more deeply into the reasoning behind the
claim. Indeed, connections between proof systems and certain kinds of game or di-
alogue have had a long history in logic. (Some important papers are: Novikov [23],
Hintikka [14], Moschovakis [21], Aczel [2], Coquand, [6], Abramsky [1].)

Since the 4-part structure defined above has so many applications, it isn’t surprising
that it should also admit applications in programming. One of these seems to be that
the structure(S,C,R, .[./.]) represents an command-response interface.

2 The programming firmament

In this section we try to map out the structures with which we propose to model
command-response interfaces with respect to other entities in a programmer’s ‘men-
tal constellation’.

The objects with which we deal everywhere in programming are, roughly speaking,
either

• functions that transform values in one set into values in another, or

• relations (which may be more or less inclusive) between values, or

• predicate transformers (which may be stronger or weaker).

There are three ‘levels’ here, as it were of increasing abstraction or latitude. The levels
can be thought of as categories in the mathematical sense, and each of the three kinds
of entity (functions, relations or predicate transformers) as morphisms in the respective
category. They even have extra structure on the hom-sets.

Functions are concrete and deterministic. We can delegate the evaluation of a (con-
structive) function to a machine. Functions are ‘code’6. But code is only the precipitate

5i.e. inference rules which do not discharge hypotheses
6In somewhat the sense of Carroll Morgan’s text-book on the refinement calculus [19, section 1.5].
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of the process of figuring out a program. In the middle of the ‘figuring out’, there may
be considerable latitude in choosing (for example) what value a function should have,
and some virtue in postponing the choice. What one wants is as it were, an ideal or vir-
tuous entity, that is ‘not yet’ a function; and for this, if relations did not exist, we would
have at this point to invent them. By themselves, functions are awkward to manipulate
algebraically. For example the converse of a function is a relation, seldom a function.
For another example, without some form of compatibility restriction (directedness) it
may not be possible to combine partial functions should their domains overlap. Con-
verses, conjunctions, and other algebraic operations are important for a smooth and
practical calculus.

Relations are amenable to useful operations such as converse and intersection. If
they are expressed in a certain form (described below in section 2.3), their textual
expression can be used as mechanically executable ‘code’7. The machine is not self-
standing, but relies on an external agency (the outside world or environment) to choose
the transition by which it advances to a new state. But relations too are awkward.
They admit at most one level of non-determinism, whereas in reality there is often a
non-trivial degree of choice on both sides of an interface.

Predicate transformers provide a maximally user-oriented, or environment focussed
form of specification, directly connected with the user’s goals and concerns. To find
out how to use a device, we want to know how we can use it so as to accomplish certain
things, and at the same time avoid certain other things. However the specification of
a service is represented, the use that we want to get out of it is a calculation with
predicates: for example to work out for a given goal predicate what initial state has
to hold if the goal is to be established, or to perform other calculations necessary to
maintain safe use of a service.

The three levels are systematically related to each other. In a sense, the step from
relations to predicate transformers is the same as or analogous to that from functions
to relations. A description of this systematic relationship in terms of the theory of
enriched categories may be found in de Moor, Gardiner and Martin “An algebraic con-
struction of predicate transformers” [11]. To indicate it briefly, the morphisms in each
successive level level can be constructed fromspansof morphisms in the lower level,
while in the other direction, the morphisms in the lower level can be identified with cer-
tain morphisms in the upper level that are especially well-behaved. Well-behaved rela-
tions aremaps, while well-behaved predicate transformers are universally conjunctive,
meaning that they commute with intersection of arbitrary indexed families of predi-
cates.

This elegant 1-dimensional picture becomes more intricate and 2-dimensional when
we examine it from the perspective of type theory (see figure 1).

Note thatP (B) → P (A) is isomorphic toA → P (P (B)), by transposition of
arguments.

2.1 Predicates and families

In type theory as in real life there are two notions of subset, that are reflected by the two
different notations in common use for writing subsets of a given setS. They correspond
to the separation and replacement axioms of set theory.

separation { s ∈ S | P (s) }
whereP is a predicate (propositional function) with domainS.

7[4, section 9.5])
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Functions
f : A→ B
f = (λ a)b(a)

Relations Transition structures
R : A→ P (B) φ : A→ F (B)
R(a) = { b ∈ B | a R b } φ(a) = { a[i]φ | i ∈ Tφ(a) }

Predicate transformers Interaction structures
F : P (B)→ P (A) Φ : A→ F (F (B))
F (P ) = { a ∈ A | F (P, a) } Φ(a) = { { a[c/r]Φ | r ∈ RΦ(a, c) } | c ∈ CΦ(a) }

Each ‘box’ represents a category, gives a typical variable for a morphism in that
category, and a canonical form for such a morphism.

Figure 1: Three levels.

replacement { s(i) | i ∈ I }
whereI is an index set ands is anS-valued function with domainI.

These two notions of subset can be expressed as two operators on types, whose
values and arguments areproper (large) types8. The values are proper types, even if
the arguments are sets. The two notions (more precisely their set-level analogues) are
discussed in Martin-L̈of’s Bibliopolis book [18, p. 64].

F (A) = (I : Set)× I → A
P (A) = A→ Set

morphisms The operatorsF andP act not only on types but also on functions be-
tween types. With some overloading of notation,

F : (A→ B)→ F (A)→ F (B)
F (f)({ a(i) | i ∈ I }) = { f(a(i)) | i ∈ I }

P : (A→ B)→ P (B)→ P (A)
P (f)({ b ∈ B | P (b) }) = { a ∈ A | P (f(a)) } .

Note thatP is contravariant;P (f) is the inverse image operatorf−1 or substitution
operator( · f) acting on predicates. HoweverF ( ) is covariant.

examples Some simple (if degenerate) examples are provided using

• the empty set9 { } . We have the empty family{ } = { | ∈ { } }, and the
empty predicateNone = NoneA = { a ∈ A | { } } which has constant value
{ } throughout the setA.

8I use(x : α) → β as notation for type levelΠ, and(x : α) × β for type levelΣ. The prefixes(x :
α) → . . . and(x : α)×. . . bind (free) occurrences ofx as far to the right as possible. So(I : Set)×I → A
parses the same as(I : Set)× (I → A).

9Another notation isN0.
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• the singleton set10 {∗} with exactly one element:∗. We have the singleton
families{a} = { a | ∈ {∗} } for eacha : A, and the vacuously true predicate
All = AllA = { a ∈ A | {∗} } which has constant value{∗} throughout the set
A.

• a propositional equality relationa =A a′ on an underlying setA. One may also
write thisIdA = (=A) : A → P (A). If a : A, then we can form a predicate, or
propositional function onA, written

{a} = { a′ ∈ A | a =A a
′ }

Intuitively {a} is the strongest statement that can be made about the elementa
– propositional equality witha. We shall see that use of singleton predicates of
this form entails a certain ‘loss of innocence’. As it were, the singleton predi-
cates are apples on the tree of knowledge; by using them, you agree to leave the
(computational) garden of Eden.

Further examples of predicates and are provided by quantification over indexed
families. Both families and predicates are closed under unions of indexed families,
with respect the natural notion of inclusion. Predicates (but not families) are also
closed under operations such as intersection, complementation, and so forth; in a sense
predicates give a more flexible notion of ‘subset’ than families. Yet, the notion of
a predicate is in a certain sense negative: the underlying setA occurs negatively in
P (A) = A→ Set . This means that it is not acomputationalnotion of subset; whereas
families provide a mechanism for computing a subset exhaustively.

conversion between predicates and families If S is a small type or data-type, a
predicate{ s ∈ S | P (s) } of a set can be written in the form of an indexed subset
{ out

L
i | i ∈ (∃ s ∈ S)P (s) }. This makes use of the(∃ s : S) construction on state-

indexed families of sets and its left projectionout
L
. I call this reducinga predicate to

an indexed subset, on the grounds that projection is a kind of reduction.
Conversely, an indexed subset{ t(i) | i ∈ I } can be written in the form of the

predicate
⋃
i∈I{t(i)}, which is a union of singleton predicates.

[INNOCENCE.]
In certain respects discussed below, the identity relation is not altogether ‘innocent’.
[TERMINOLOGY.] As something not altogether innocent has to be combined with

a family to produce a predicate which reduces to it, it seems appropriate to to call the
predicate-based notion of subset ‘full-blooded’. (This has a nasty fascistic connotation.
I should think of some less spin-some terminology to mark the distinction: catholic
versus protestant, green versus orange, contravariant versus covariantetc..)

[THE FOLLOWING NEEDS HEAVY REWORK.]
Now I should try to substantiate the allegation that there is something not quite ‘in-

nocent’ about the notion of a uniform and general substitutive equality relation which
makes sense for an arbitrary set. First, there is the question of whether it should be
extensional or intensional.

Extensional equality, as in Martin-Löf’s Bibliopolis book [18, p. 61] (see also the
Eq relation in [22, pp. 61 – 67]) reflects at the level of sets and propositions the judge-
mental equality between objects of a type. A consequence of this reflection is that it is
no longer possible to characterise all set-forming operators by the validity of a certain

10Another notation isN1 with sole element01
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scheme of definition by recursion on the build-up of the elements of a set. (In cate-
gorical terms, this is a kind of initiality; the point is thatEq is not associated with any
kind of catamorphism.) Moreover equality judgements are not mechanically decidable
in extensional type theory; developing programs in such a system (writing well-typed
expressions) involves providing explicit proofs of certain equality judgments; the prob-
lem of type-checking cannot be delegated to a machine.

And are universes characterised by initiality properties? Or are they only
fixed points? It is interesting that the only two methods we have for the in-
troduction of dependent (small) types are equality, or the use of (recursion
into) a universe.

And whatabout the non-mechanical nature of type-checking? Isn’t that
actually what we implement? What more do we expect than machineas-
sistancein writing working programs? To expect anything more is just
wishful thinking. At any rate, this is a point of view which it is difficult to
criticise.

[INTENSIONAL.] On the other hand, if the equality relation is taken to be inten-
sional (see also theId relation in [22, pp. 61 – 67]), as in other publications of Martin-
Löf’s, then it has (especially at function types and in datatypes in which constructors
may have functional parts) a strangely unmathematical character.

Whether equality is taken to be extensional or intensional, it requires special treat-
ment in the design and implementation of type-checkers. Some basic choices in the
formulation of type-theory hinge on the extent to which we can treat the definition of
predicates (propositional functions or set-valued functions) on a par with the definition
of functions of other kinds.

Moreover the computational or information content, or practical use of a proof of
identity is dubious. What does one do with it?

Propositional identity is asingletype constructor that is to make senseuniformlyat
arbitrary setsA. Through its set, argument, it somehow comprehends the whole notion
of inductively defined set, and yet itself forms sets. (What does this really mean? Does
A→ . . . “somehow comprehend the whole notion of inductively defined set”?)

[ALLEGATIONS GIVEN.] Whether equality is ‘guilty’ or ‘innocent’, it is at least
interesting from the perspective of type theory to distinguish between the two forms of
power-set functor, and to investigate the boundaries of what can be done without resort
to a general propositional identity or equality relation. Abstention from unnecessary
or profligate use of the equality relation isnot like denying a boxer the use of their
fists11. (Perhaps it is a little more like encouraging a southpaw to reserve their left fist
for knock-out blows.)

If we abstain entirely from use of an equality relation, we cannot actuallysay, i.e.
express with a small12 proposition that a given element occurs in a family, or that one
family includes another. However itis possible to say two things about a family with
respect to a (full-blooded) predicate; firstly that a family is included in a predicate,
and secondly that it ‘meets’ it (i.e. overlaps with, or has non-empty intersection with
it, written X )( Y ). These statements can be expressed by means of the following

11To allude to Hilbert’s famous sound-bitea proposof the law of excluded middle.
12Of course we can do this using quantification over predicates: one way is to define Leibnitz equality;

second order quantification can also be used in other ways than via Leibnitz equality.
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propositions.

{ b(i) | i ∈ I } ⊆ { b ∈ B | P (b) } = (∀ i ∈ I)P (b(i))
{ b(i) | i ∈ I } )( { b ∈ B | P (b) } = (∃ i ∈ I)P (b(i))

It is then possible to express that one family is included in another by means of a
large type, as in the following equivalent definitions. It is of course well-known that
one can define an equalitytypebetween elements of a set by means of quantification
over predicates, using so called ‘Leibnitz’ equality.

φ ⊆ ψ = (P : P (B))→ ψ ⊆ P → φ ⊆ P
= (P : P (B))→ φ )( P → ψ )( P

Using a large type in the same way we can represent the notion of one family intersect-
ing with or meeting with another.

φ )( ψ = (P : P (B))→ ψ ⊆ P → φ )( P ∧
φ ⊆ P → ψ )( P

13

2.2 Relations and transition structures

If we keep the two kinds of powerset distinct, there is a bifurcation or splitting in the
notion of a binary relation between two setsA andB. On the one hand, we have
‘full-blooded’ relations, which are propositional functions (the semantic counterpart of
a predicate) defined over the product setA×B, or equivalently functions of type

A→ P (B) .

On the other hand we have what might be called ‘weak-blooded’ relations, but I would
prefer to calltransition structures. These are functions of type

A→ F (B) .

A transition structure can always be written in the form

(λ a)〈T (a), (λ t)a[t]〉

where
T : A→ Set
[ ] ∈ (∀ a ∈ A)T (a)→ B .

One can think of elementst of T (a) as ‘transitions’ with sourcea and destinationa[t].
A transition structure is a ‘computational’ representation of a relation. We can

use it, in combination with an environment that chooses and supplies the indicest,
to pass froma ∈ A for which T (a) is non-empty toa[t] ∈ B. The price paid for
this ‘computationality’ is awkwardness. A transition structure is an asymmetric (or

13Another way of expressing the inclusion relation between families is with a transition structure on fam-
ilies themselves; after all, transition structures can often replace full-blooded relations: that is to say, a
particularly nice way of expressing a relation is with a transition structure and the equality relation. To avoid
size problems, we have to define an isotope of the notion of family, localised to a given universe or family of
sets in the sense that the sets which are used as index sets must belong to the universe. The resulting notion
of inclusion is thus relativised or localised to such a universe. This is off-topic.
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one-way-round) representation of a relation. Transition structures don’t have a natural
notion of converse; also they are closed under joins, but not meets.

Many everyday relations and operations on them are quite naturally modeled as
transition structures and operations on them. When one thing is related to another, the
‘reason why’ can often be identified with an element of some data-type, whose ele-
ments witness the relation holding, and embody the computational core of the proof.
For example, a reduction relation between expressions generated by some computa-
tion rules (i.e. schemas for rewriting expressions) is naturally indexed by the locations
within an expression to be rewritten at which a computation rule is applied, together
with an indication of the rule (in case there is any ambiguity). Many ordinal notation
systems used in proof theory since Gentzen [12] (such as Cantor Normal Form for or-
dinals belowε0) are naturally described in this way – the notationα[ ] used above for
the indexing function of a family was suggested to me by its usage for fundamental
sequences assigned to limit ordinalsα.

Many operations that one habitually defines for ‘full-blooded’ relations, such as
composition, reflexive and transitive closure, or the well-founded part of a relation
make equally good, if not better sense when recast as operations on transition struc-
tures. However, some operations cannot be recast in this way, without essential use of
singleton predicates. One counterexample is the converse operation; transition systems
are ‘one-way round’. Another is meets.

When comparing transition structures with full-blooded relations and with each
other, the situation resembles comparison of families and predicates, lifted pointwise.
We have a way to state (with a small proposition) that the image of a argument for
transition structure is included in, or (dually) meets a predicate.

[PTs associated with a TS.] Associated with an transition structure is a pair of dual
monotone predicate transformers{φ} and [φ]. The first tells you what has to hold if
you can choose the next transition and have to establish a given predicate in the next
state, while the second (a form of ‘weakest liberal precondition’) tells you what has to
hold if you have no choice as to the next transition, but have to ensure that it leads only
to states satisfying a given predicate – if there are any transitions from the current state
at all. The second predicate transformer is thus connected with partial correctness.

{φ}, [φ] : P (B)→ P (A)
{φ}(P : P (B)) = { a ∈ A | φ(a) )( P }
[φ](P : P (B)) = { a ∈ A | φ(a) ⊆ P }

We can formulate the idea that one transition structure is included in another, using
a large type.

φ ⊆ ψ = (P : P (B))→ [ψ](P ) ⊆ [φ](P )

Equivalently, one could define, again with a large type

φ ⊆ ψ = (P : P (B))→ {φ}(P ) ⊆ {ψ}(P )

The intuition is that ifψ ⊆ φ, then all predicates that include the image ofφ for some
argument also include the image ofψ for that argument. Similarly, all predicates that
intersect with the image ofφ for some argument also intersect with the image ofψ for
that argument.

In fact we can interpret expressions in the following language as transition struc-
tures, so that the expected laws14 hold with respect to the inclusion relation.

14Be less vague.
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∪iφi Union
φ ; ψ Sequential composition
〈f〉 Map, assignmentf : A→ B, e.g.〈id〉 = skip
|P | Test, conditionP : P (S).
φ∗ Reflexive-transitive closure

The interpretation is as follows. I defer the treatment of reflexive-transitive closure.

• (∪iφi) : A→ F (B) where φi : A→ F (B)
(∪iφi)(a)

∆= ∪i(φi(a))

• (φ ; ψ) : A→ F (C) where φ : A→ F (B)
ψ : B → F (C)

(φ ; ψ)(a) ∆= ∪t∈Tφ(a)ψ(a[t]φ)

• 〈f〉 : A→ F (B) where A→ B
〈f〉(a) ∆= {f(a)}

• |P | : S → F (S) where P : P (S)
|P |(s) ∆= { s | ∈ P (s) }

Reflexive transitive closure φ∗ : S → F (S) where φ : S → F (S)
In this case, we defineφ∗ to be the least solutionψ : S → F (S) of

ψ(s) ∆= {s} ∪
⋃
t:Tφs

ψ(s[t]φ)
∆= (skip ∪ (φ ; ψ))(s)

Another way of making the essentially same definition is to define first the index
predicate to be the least solutionT : P (S) of

T (s) = { ∗ }+ {φ}(T, s)

Then we define the indexing function by well-founded (structural) recursion on the
second argument. (The first is just a parameter.)

[ ] ∆= rec f : (s : S)→ T (s)→ S .
(λ s, t) case t of

in
L
∗ 7→ s

in
R
〈t0, t′〉 7→ f(s[t0]φ, t′)

Other orders Beside the inclusion relation, there is another partial order of interest
between transition structures, namely the following relational refinement relation. The
relationφ v ψ means thatψ refinesφ in the sense that it is ‘more defined’, and ‘more
deterministic’. It can be defined from the inclusion relation using the domain operator
domφ = {φ}(All) and the restriction operatorφ |̀P = |P | ; φ. (It lacks a general
supremum operation, except for directed families.)

domφ ⊆ domψ
ψ |̀domφ ⊆ φ .
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2.3 Predicate transformers and interaction structures

Just as there are two ways of analysing the notion of relation, namely as ‘full-blooded’
relationsversusas transition structures, so there are (at least) two ways of analysing
the notion of predicate transformer. On the one hand we have ‘full-blooded’ predicate
transformers, that are functions from one power set to another. If we swap the argu-
ments to an operator from predicates overB to predicates overA (nothing is essentially
different)15, what we have is a function fromB to the type of predicates of predicates
overA.

A→ P (P (B)) .

On the other hand we have what I called in section 1interaction structures, which are
functions of type

A→ F (F (B)) .

An interaction structure can always be written in the form

(λ a)〈C(a), (λ c)〈R(a, c), (λ r)a[c/r]〉〉

where
C : A→ Set
R : (∀ a ∈ A)C(a)→ Set
[ / ] ∈ (∀ a ∈ A)(∀ c ∈ C(a))R(a, c)→ B .

Associated with an interaction structure given as above there is a pair of dual mono-
tone predicate transformers which tell how to ensure or establish a given predicate in
the next state, from the user’s and system’s respective sides of the interface.

Φ◦,Φ• : P (B)→ P (A)
Φ◦(P : P (B)) = { a ∈ A | (∃ c ∈ C(a))(∀ r ∈ R(a, c))P (a[c/r]) }
Φ•(P : P (B)) = { a ∈ A | (∀ c ∈ C(a))(∃ r ∈ R(a, c))P (a[c/r]) }

In fact the definitions can be written as follows.

Φ◦(P : P (B)) = { a ∈ A | (∃ c ∈ C(a))Rn(a, c) ⊆ P }
Φ•(P : P (B)) = { a ∈ A | (∀ c ∈ C(a))Rn(a, c) )( P }

A proof thatΦ•(All) holds in a statea is in essence a function in(∀ c ∈ C(a))R(a, c)
that the system can use as a strategy to respond to any command issued in statea. A
proof of Φ◦(P, a) can be used by the user as a strategy to ensure that the system ter-
minates only in a state satisfyingP . On the assumption that the system makes use of
a proof ofΦ•(All , a) as a strategy for responding to commands, a proof ofΦ◦(P, a)
can be used by the user as a strategy actually to establishP , not just to ensure that
the system terminates only in a state such thatP . The predicate transformer◦ is the
weakestliberal precondition operator for the interaction structureΦ. It is much more
important than •. Instead ofΦ◦(P ), I write simply Φ(P ); the interaction system is
coerced to a predicate transformer by an implicit◦.

We can formulate the idea that one interaction structure is refined by another, using
a large type.

Φ v Ψ = (P : P (B))→ Φ◦(P ) ⊆ Ψ◦(P )

15Precisely this point is discussed in Back and von Wright [4, page 250]
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3 Refinement calculus

The refinement calculus is an elegant and for some purposes quite practical ‘algebra of
contracts’ ([4, section 1.4]).

The forms of contract in the refinement calculus that I shall discuss are shown in
the table below.

0 – abort 1 – magic
Φ tΨ – binary angelic choice Φ uΨ – binary demonic choice
tiΦi – indexed angelic choice uiΦi – indexed demonic choice
{R} – angelic relational update [R] – demonic relational update

skip – no-op
Φ ; Ψ – sequential composition

I shall also discuss two forms of recursion, which are respectively inductive and coin-
ductive. The ‘bullet’ notationΦ•, which is a kind of dual or inversion will be discussed
later.

Φ∗ – reflexive-transitive closure µΨ. skip t (Φ ; Ψ)
Φ∞ – interior νΨ. skip u (Φ• ; Ψ)

[CAUTION: The notation in the table above clashes with the notation of Back and von
Wright’s book on the refinement calculus, where one finds
Φ∞ = µΨ.Φ ; Ψ,
Φ∗ similar toΦ∞ in my notation,
Φω = µΨ. skip u Φ ; Ψ which is a ‘µ-full’ version of Φ∞ in my notation. ]

These expressions are interpreted as predicate transformers. Under this interpre-
tation, they satisfy a host of elegant algebraic laws (something close to, but not quite
a quantale – we don’t have commutation of join with sequential composition – see
[26, definition 12.2.1, p. 183]), which can be expressed in terms of a partial orderv
called refinement, interpreted as pointwise inclusion between predicate transformers.
By pointwise inclusion (writtenv) is meant the following universal quantification over
predicates.

Φ v Ψ ≡ ∀X : P (S).Φ(X) ⊆ Ψ(X)

The refinement calculus in this abstract form serves as a basis on which to define
a number of more familiar programming constructs – local variables, assertions, as-
signments, conditionals, procedures, recursion, loops and so on. The programming
constructs satisfy laws familiar from Hoare logic. They producefeasiblepredicate
transformers in a certain sense implying a kind of executability. In fact the formstiΦi,
uiΦi, [R], {R} and(Φ ; Ψ) form a sufficient basis.

Interpretation as interaction systems There are two ways to interpret an interaction
structure as a predicate transformer. If we are given an interaction structureΦ : S →
F (S′), then we can define two monotone predicate transformers as follows.

Φ◦,Φ• : P (S′)→ P (S)
Φ◦(P, s) = ∃c ∈ C(s).∀r ∈ R(s, c). P (s[c/r])
Φ•(P, s) = ∀c ∈ C(s).∃r ∈ R(s, c). P (s[c/r])

Of these, the first (Φ◦) is more fundamental: it enjoys better properties, and the second
can be defined as a special case of the first, using a form of dualisation or inversion.
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We show in the following table how to interpret the basic constructions of the re-
finement calculus as operations on interaction structures. In the case of the relational
updates, I have taken the argument to be a transition system, which is the more general
course.

tiΦi : A→ F (F (B))
where Φi : A→ F (F (B))
C(a) = (∃ i ∈ I)Ci(a)
R(a, 〈i, c〉) = Ri(a, c)
a[〈i, c〉/r] = a[c/r]i

uiΦi : A→ F (F (B))
where Φi : A→ F (F (B))
C(a) = (∀ i ∈ I)Ci(a)
R(a, f) = (∃ i ∈ I)Ri(a, f(i))
a[f/〈i, r〉] = a[f(i)/r]i

{φ} : A→ F (F (B))
where φ : A→ F (B)
{φ}(a) ∆= { {a[t]φ} | t ∈ Tφ(a) }

[φ] : A→ F (F (B))
where φ : A→ F (B)
{φ}(a) ∆= {φ(a)}

(Φ ; Ψ) : A→ F (F (C))
where Φ : A→ F (F (B))

Ψ : B → F (F (C))
(Φ ; Ψ)(a) ∆= {∪r∈RΦ(a,c)RnΨ(a[c/r]Φ, f(r)) | 〈c, f〉 ∈ Φ(CΨ, a) }

The interpretation of a refinement calculus expression as a predicate transformers
can be factored into the following two steps; first interpret it as an interaction structure,
and then apply the operator◦.

Note: an inclusionφ ⊆ ψ between transition structures is equivalent to a converse
inclusion[ψ] v [φ] between interaction systems. In factφ◦ = [φ] andφ• = {φ}. So

φ ⊆ ψ ≡ [ψ] v [φ] ≡ {φ} v {ψ} .

Note: the refinement calculus notations are very handy, even outside of program-
ming. For example, if〈S : Set , γ : S → F (S)〉 is a homogeneous transition structure,
then the predicate[γ]∗(None) describes the accessible (well-founded) points of the
coalgebra.

Note: there are two interesting monotone predicate transformers which seem to
lack a natural representation asΦ-structures. Letf : A → B. Then〈f〉 = f−1 :
P (B)→ P (A). If we define∃f ,∀f : P (A)→ P (B) by

∃f (P ) = { b ∈ B | f−1{b} )( P }
∀f (P ) = { b ∈ B | f−1{b} ⊆ P }

then we have
P ⊆ f−1(Q) ≡ ∃f (P ) ⊆ Q
f−1(P ) ⊆ Q ≡ P ⊆ ∀f (Q)
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Intuitively, ∃f (P ) is the range of values attained byf |̀P , while∀f (P ) consists of those
elements of the range which are attained only as values off for arguments satisfyingP .
Neither of these predicate transformers have an obvious representation as an interaction
structure (unless we allow singleton predicates, or to put it another way the equality
relation).

Its foundations rest on impredicative higher order classical logic16.

Recursion In the refinement calculus, we may form new expressions using variable
binding operationsµ andν, which are defined by recursion;µ returns the least fixed-
point of a monotone function, andν its greatest. I call theserecursiveexpressions.

The foundation for the semantics of recursive expressions (involving bothµ andν)
is given in two ways in Back and von Wright’s book; firstly ([4, pp. 317–321])µ can
be defined as a meet andν as a join via the Knaster-Tarski theorem; second ([4, pp.
321–322]) via a form of Hartog’s Lemma which can be adapted to justify the use of
even non-monotone inductive definitions; in this caseµ is defined as a join andν as a
meet.

We are instead going to introduce only two special forms ofµ andν.

(minimal) (maximal)

p : P ∪ Φ(C) ⊆ C
p∗ : Φ∗(P ) ⊆ C

p : C ⊆ P ∩ Φ(C)

p∞ : C ⊆ Φ∞(P )

in : P ∪ Φ(C) ⊆ C
whereC = Φ∗(P )

ex : C ⊆ P ∩ Φ(C)
whereC = Φ∞(P )

c∗ · in = c · (1P ∪ Φ(c∗)) ex · c∞ = (1P ∩ Φ(c∞)) · c

Recursion rather than iteration:

p : P ∪ Φ(Φ∗(P ) ∩ C) ⊆ C
p∗ : Φ∗(P ) ⊆ C

p : C ⊆ P ∩ Φ(Φ∞(P ) ∪ C)

p∞ : C ⊆ Φ∞(P )

c∗ · in = c · (1P ∪ Φ〈1Φ∗(P ), c
∗〉) ex · c∞ = (1P ∩ Φ[1Φ∞(P ), c

∞]) · c

Least fixed points The operator ∗ which makes the reflexive and transitive closure
Φ∗ of a homogeneous interaction structureΦ : S → F (F (S)).

[ WARNING: the∗ notation I use clashes with the notation in back and von Wright.]
This satisfies the following minimality property.

skip t (Φ ; Φ∗) v Φ∗

skip t (Φ ; Ψ) v Ψ⇒ Φ∗ v Ψ
.

GivenΦ : S → F (F (S)), we defineΦ∗ : S → F (F (S)) in two steps. First we
define the index set to be the least solutionC : P (S) of

C(s) = { exit }+ { call 〈c, f〉 | 〈c, f〉 ∈ Φ◦(C, s) }
16Only certain parts depend on classical logic; for example the parts connected with the complementation

operator, such as the dual of a predicate transformer. Impredicativity, via the Knaster-Tarski theorem is used
to handle recursion.
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The family of states associated with a states and a commandp : C(s) is then defined
by well-founded (structural) recursion onp.

Rn = µ X : (s : S)→ C(s)→ F (S) .
(λ s, p) case p of

exit 7→ {s}
call 〈c, f〉 7→ ∪r:RΦ(s,c)X(s[c/r]Φ, f(r))

The intuition is to think ofΦ as an instruction set. From these, we build up pro-
grams in which the instructions are ‘composed’ sequentially; this is a kind of plugging
together, or wiring up. There is an empty composite, which is theexit program.

Think of the commands as ‘male’, plugging into ‘female’ sockets, and of each
command as containing a family of leads terminating in female sockets: now ‘wire
together’ or compose zero or more of these components, without any looping. Each
command (positively) or socket (negatively) has a shape/sort, and these must be the
same if a command is to fit a socket.) The ‘responses’ to these programs are sequences
of responses inΦ that lead in the end to an exit command, rather than (as might be the
case) to a command for which there is no response. These sequences of responses are
logs of complete execution traces, for executions that terminate successfully. (The exit
command could well be written with a ‘tick’

√
, as in Hoare’s CSP notation.)

The next state function gives the state in which an exit, leaf or ‘leave’ command is
executed.

We can imagine a programmer-friendly notation in whichcall 〈c, f〉 is written with
a bound variable resembling the target of an assignment

do r ← call c
; f(r)

andexit is writtendone.
Φ∗ is a kind of closure under of the instructions inΦ under sequential composition,

or formation of transactions. (A transaction is a program which appears to execute in
isolation, for which there is a notion of successful completion.)

Greatest fixed points We would like to construct from anyΦ : S → F (F (S))
an interaction structureΦ∞ analogous toΦ∗, but satisfying a maximality rather than
a minimality property. The operation∞ should be an interior rather than a closure
operator.

[WARNING: ∞ is not Back and von Wright’s notation. What I writeΦ∞ they
seem to writeΦ∗ ([4][page 347]), and call it weak iteration. What I writeΦ∗ they
call the dual of weak iteration, or iterative choice ([4][page 378]). The treatment of
recursion in the refinement calculus is obscure to me, and I find many things puzzling
in it.]

Φ∞ v skip u (Φ• ; Φ∞)
Ψ v skip u (Φ• ; Ψ)⇒ Ψ v Φ∞

The blob • refers to the client-server inversion ofΦ defined somewhere later. I
don’t know whether to include it in the definition ofΦ∞, and am probably inconsistent
about it.

Unfortunately, I don’t see how to do constructΦ∞ without crossing a ‘size’ barrier.
At this point, I simply suppose there is some way to do thus. If there is, I probably

don’t want to know exactly how to do it17.
17People applying mathematics (as in signal processing) cheerfully assume that there’ll be some way
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Need for coinduction What do we want the ‘infinite things’ for? A possible answer
is that we would prefer to imagine that there is justonecoalgebra, which is universal,
in the sense that ‘all’ pointed coalgebras, in some safe sense, can be represented as
states in it. So we can forget about all the different state spacesS, with all the different
C ’s,R’s andn’s, and pretend that there is just one. It makes methodological sense.

This pretence should be safe, in the sense that we never need any vicious circu-
larity. (Something as weak as a recursion theorem.) Somehow, we can throw all the
instruction sets we can think of into one – there’s always room for more. Accumulation.

Similarly (refers to definition of simulation later), we would prefer to imagine that
there is justonesimulation, which is can be treated as if it were maximal. Somehow
we throw all the different possibilities into one – there is some kind of unioning going
on, but we probably don’t want to know exactly what the subterfuge is.

Justification of coinduction One approach to dealing with infinite objects is to use
the impredicative existential quantifier in the form

{ s : S | ∃X.(X ⊆ Φ(X)) ∧ X(s) } =
⋃
{X : P (S) | X ⊆ Φ(X) } .

The elements of a type∃X.(X ⊆ Φ(X)) ∧ X(s) are pointed coalgebras forΦ. (The
category here is of predicates overS, with morphisms fromA to B functionsf :
S → S such thatA ⊆ f−1(B), under extensional equality. ) There may be a general
argument that limited use of the second order existential quantifier is harmless; one
thing to discover is what the limitations amount to.

(In a sense, there must be a certain limitation on the use of the second order ex-
istential quantifier that renders it harmless to predicativity. The first question is then:
what limitation? )

4 System and user

[TRANSACTION.] The ‘normal’ kind of program is something with a designated entry
point, which is run until it exits, that may interact with resources.

Instead of ‘exit’, we could have ‘commit’. (As if the updates to resources were held
pending, invisible to others. A transaction.)

Another idea is to treat this as a special case; in the general case that there are many
entry-points, and these are activated one after each other in response to a sequence of
activation codes (remembering the state) by the run-time system. This is something
like a server program or action system: a collection of programs of the first kind in a
loop. A transaction server.

[INVERSE.] This is probably connected with the idea that parts of the run-time
library are concerned with supporting one or more server-interfaces: get first command,
reply to last and get another (or, more handshaken, accept/entry giving commands,
reply/return returning results); part is concerned with the client-interface.

to make sense of some useful calculus or artefact, such as distribution functions like Dirac’s delta whose
measure is concentrated at a point. Probably a satisfactory foundation for distribution functions took a
long time, maybe a hundred years, and required a deep rethinking of the foundations of measure theory.
Meanwhile, the applied mathematicians continue to make use of a formal calculus of distribution functions,
in the cheerful expectation that the considerations that make sense of it will be of nightmarish subtlety, of
interest only to the truely obsessed. The calculus works so well that theremustbe some way to make sense
of it.
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Somehow it isa ⊕ b⊥, wherea is the client interface, andb⊥ is the inverse of the
server interfaceb. (Many such expressions in papers on game semantics.) But this is
not very ‘structured’: nothing says that things are kicked off by a command toa.

In reality, we don’t have a sharp separation between two kinds of programs; most
programs have a ‘dual’ aspect, in that they require one interface, and on this provide or
implement another. My idea is that such a program is a simulation, or more precisely, a
proof that a simulation relation obtains between the initial states of the two interfaces.
Somehow I have to reconcile this with the possibility of inverting an interface, so that
the r̂oles of the agents are exchanged. That means we have one big (but bi-partite)
client interface.

[TWO SIDES] There are two sides to an interface of the kind we are considering,
namely the user’s and the system’s. The notion of a program (other words: strategy,
script) makes sense on both sides.

On the one hand there are (user-side) programs which when they are run (carried
out or performed), the agent issues a command, waits for a response, then when a re-
sponse is obtained passes control to an appropriate continuation program that in general
depends on the response. These areuser programs18.

On the other hand there are (system-side) programs which when they are run (car-
ried out or performed), the agent waits for a command from a user program, then after
some internal calculation returns a result code to the agent running the user program
and passes control to an appropriate continuation program. Both the result code and
the destination of control may depend on the command. These aresystem programs19.

A user program tells the user what commands to issue, and how to continue if/when
there results have been returned. A system program tells the system how to deal with
commands, meaning what results to return, and how to react to the next command.

It should appear as if returning the response, and moving to the next state are events
that occur simultaneously.

(It is possible that the response can be lost.)

User programs The environment for which a user program is written is sometimes
called a ‘run-time system’. The run-time system makes available a library (i.e. or-
ganised collection) of procedures to (for example) read and write characters (using
paper tape for example), read the time from a time service, read successive entries in
a pseudo-random sequence, read the Geiger counter, raise the under-carriage, rotate
the rudder through 15 degrees,etc.. The question is: what is the logical form of the
specification (for someone writing a user program that uses it, or a system program that
implements it) of the interface between the user program and the run-time system?

It appears that two predicate transformers are involved. These are akin to the two
predicate transformers which Dijkstra suggests (see for example [10, p. 127]) together
represent the semantics of an imperative ‘batch’ program. By a batch program I mean
one for a single interaction (or one which appears as an atomic single interaction),
where there is an initial state and (perhaps) a final state.

wlp Gives for any postconditionG (goal predicate) the weakest predicate of an initial
state which guarantees that execution terminates only in a state satisfying that
predicate. This is concerned with (so-called)partial correctness20. It is not so

18or Moore machines
19or Mealy machines
20Partial correctness of a programc with respect to a precondition predicateP and a postcondition predi-

cateQ, which was originally written by Hoare{P} c {Q}, is equivalent toP ⇒ wlpc(Q)
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much a matter of bringing it about thatP , but rather of evadingP {. (There is
some kind of double negation here.)

wp Gives for any postcondition (goal predicate) the weakest predicate of an initial state
which guarantee that execution terminates in a state satisfying that predicate.

Dijkstra remarks that of these predicate transformers, it iswlp which is more basic; if
we know it, then all that remains is only the termination conditionwp(All). We can
replacewp by a single predicatewp(All).

wp(P ) = wp(All) ∩wlp(P )

[RELATE SAFETY AND LIVENESS.] The specification of a command-response
interface consists of two parts: a safety specification (for the client), and a liveness
specification (for the server).

The safety specification is given by an initial predicate and a next-state relation or
(more generally) predicate transformer. It tells the user how to use the system so as to
stay out of bad situations. However, the system might get into a deadlocked state, and
fail to respond to any command. The interface just stays (and will stay forever) in the
launch state.

The liveness specification is given by a predicate representing those states in which
(any proposed) interaction is guaranteed to terminate – or at any rate, a failure to ter-
minate is the fault of the computer, not the program. It tells the user how to use the
system to bring about good situations.

The point of separating the specification into a safety part and a liveness part: they
have different logical forms; different techniques are used to deal with them.

The point of separating the specification into system and environment is that we can
then describe both the behaviours in which the system behaves correctly (misbehaves
only after the user misbehaves) as well as the behaviours in which both the system and
environment behave correctly. )

We will denote the two predicate transformersIO andOI .
IO is reflexively and transitively closed, which is equivalent toIO∗ v IO .
The operatorIO is a closure operator.

X ⊆ IO(X)
∧ X ⊆ IO(Y )⇒ IO(X) ⊆ IO(Y )

The operatorOI is, dually, an interior operator.

OI (X) ⊆ X
∧ OI (X) ⊆ Y ⇒ OI (X) ⊆ OI (Y )

It is not required thatIO is inductively defined (i.e. Φ∗ for some interaction struc-
ture Φ), nor thatOI is coinductively defined (i.e. Φ∞ for someΦ). It is not even
required that these operators ‘sandwich’ aΦ21.

The first predicate transformerIO tells the user how to makesafeuse of the re-
source. Applied to a postconditionP , it gives the strongest (least) predicateQ weaker
than (including)P which ensures that an interaction initiated in a state satisfyingQ ter-
minates successfully (effectively) only in a state satisfyingP . It does not guarantee that
the interactionwill terminate successfully;IO(None) need not beNone; IO(None)

21This means something like:Φ∗ ⊆ IO , OI ⊆ Φ∞.
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holds precisely when there are (non-terminating, or ‘winning’) commands for which
the system has no response; the system ‘loses’, or deadlocks.IO is not strict.

The second predicate transformerOI tells the user how to makeeffectiveuse of
the resource. It gives for any predicateP the weakest invariantQ stronger thanP
which ensures that an interaction initiated in a state satisfyingQ terminates success-
fully (effectively) in a state satisfyingP . It does not guarantee that there are any such
commands. There may be no commands that the user can issue in a given state – for
example a state reached when the user has signalled that it has no further use for the
resource. SoOI (None) need not beNone. The user can lose, or be deadlocked.

Each individual predicate transformer is not very exciting; it is too weak. It is the
conjunction that is important: state regions in which ‘nobody loses’.

Here, an invariant is a predicate that holds perpetually.
Deadlocking is connected with some kind of concavity in the state space. But states

from which it is possible to deadlock the system are convex.
[FOLLOWING: NEEDS INITIALISING GUARDS.]

User programs The user program is something of typeP ⊆ IO(Q), i.e. something
which when run from a state in whichP holds terminates only (if at all) in states which
satisfyQ. As it were, it does not necessarily establishQ, only evadesQ{ (something
bad we want to avoid), whereQ{ is the complement ofQ. If P is an invariant main-
tained by the system, in the strong sense that the system executes a program which
responds to any command so that the invariant holds in the new state (which must ex-
ist), if it held in the old (so there is a kind of liveness guarantee, if the mechanism
executing the system eventually performs all performable instructions), then the user
program can actually be used to establishQ, so long as it is carried out to the bitter
end.

To showP ⊆ IO(Q) is to show that for all predicatesX which satisfyQ∪Φ(X) ⊆
X we haveP ⊆ X,

To showP )( OI (Q) is to provide a predicateX which satisfiesX ⊆ Q ∩ Φ(X)
and a state which satisfies bothP andX.

System programs A system program is something of typeP )( OI (Q), i.e. a predi-
cateX such thatX ⊆ Q ∩ Φ(X) together with a proof thatP )( X.

Initialising guards

A : P (S)
B : (∀ s : S)→ A(s)→ P (S)

We callA the guard andB the effect. Then

client : (∀ s : S, p : A(s))Φ∗(B(s, p))
server : (∃ s : S, p : A(s))Φ∞(B(s, p))

Note that the effect depends on (can refer to) the proof that the guard holds. This will
typically be an existential statement, so that the effect can refer to ‘things in the initial
state’, by projecting them out from the proof of the guard holding. We have to support
the common practice of distinguishing initial values by a0 or to final values by a′.

Now what happens to the execution rule?
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5 Running system programs as user programs

There are two ways of running system programs as user programs.

• It is possible, by grace of the the axiom of choice, to ‘invert’ system programs,
so that they too can be regarded as issuing commands. (This is, we can run
them as user programs.) The inverse (in this sense) of the interaction structure
Φ : A→ F (F (B)) is the following interaction systemΦ• : A→ F (B).

C = { a : A | (∀ c : CΦ(a))RΦ(a, c) }
R(a, ) = CΦ(a)
a[f/c] = a[c/f(c)]Φ

The commands of this interaction structure are in effect entire arrays contain-
ing the ‘precomputed’ responses ofΦ for any possible command, while the re-
sponses (which are the commands ofΦ) select one of these precomputed re-
sponses.

We have classically thatΦ• is dual toΦ.

The bullet operator• provides a way to run system programs as user programs.
It is not fully satisfactory, because it is (at any rateprima facie) unrealistically
‘eager’: the response of the server to any request is precomputed, albeit lazily,
by the runtime. It is also unsettling that the response sets do not depend on the
commands. However, one thing to be said in favour of this ‘inversion’ is that the
state space is unaltered.

• Another ‘inverse’ construction that is closer to what one does in practice (in
operating systems) enriches the state space visible to the system to contain a
copy of the last command, if there was one. Starting with an interaction structure
Φ : S → F (F (S)), one enlarges the state space to contain, either an indication
that no command has been issued, or the last such command. More precisely,
one changes to the state-spaceS′ = S+(∃ s ∈ S)CΦ(s) (which is equivalent to
(∃ s ∈ S)({∗}+ CΦ(s)), which can be written(∃ s ∈ S)Maybe(CΦ(s)))), and
constructs a new interaction structure with typeS′ → F (F (S′)) as follows.

C(in
L
s) = {GetFirst }

R(in
L
s,GetFirst) = CΦ(s)

in
L
s[GetFirst/c] = in

R
〈s, c〉

C(in
R
〈s, c〉) = {GetNext r : RΦ(s, c) }

R(in
R
〈s, c〉,GetNext r) = CΦ(s[c/r]Φ)

in
R
〈s, c〉[GetNext r/c′] = in

R
〈s[c/r]Φ, c′〉

The initial state of the new system should bein
L
s0.

In this way we can run a system program as a user program with a slightly dif-
ferent interface.

It is worth noticing that this introduces state-dependency in an essential way: the
set of commands depends on the current state, since the commands are actually
responses to a pending command.

The system gets going by requesting the first request from the client; after that
each request for the next request from the client “piggy-backs” the response to
the one that was delivered last.
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The piggy-backing might be regarded as an optimisation. Here is a 4-message
de-optimisation. There is something canonical about this. We have a ‘hello’, the
inverse of the server interaction (2 messages), then a ‘goodbye’. There are two
‘handshakes’.

C(in
L
s) = {Accept }

R(in
L
s,Accept) = {Call c | c ∈ CΦ(s) }

in
L
s[Accept/Call c] = in

R
〈s, c〉

C(in
R
〈s, c〉) = {Return r | r ∈ RΦ(s, c) }

R(in
R
〈s, c〉,Return r) = {Ack }

in
R
〈s, c〉[Return r/Ack] = in

L
s[c/r]Φ

In fact it would probably be better to give the state-space as a data-type with
constructed forms{ Idle s | s ∈ S } and{Pending s c | s ∈ S, c ∈ C(s) }

C(Idle s) = {Accept }
R(Idle s,Accept) = {Call c | c ∈ CΦ(s) }
(Idle s)[Accept/Call c] = Pending s c
C(Pending s c) = {Return r | r ∈ RΦ(s, c) }
R(Pending s c,Return r) = {Ack }
(Pending s c)[Return r/Ack] = Idle s[c/r]Φ

There is something to prove about this inverse construction; I don’t quite see
what it is. It is about the relationship betweenΦ• and(Φ′ ; Φ′)◦, the second of
which has a richer state-space, which is projectible onto the first. Perhaps it is
this:

Φ• = i−1 ; Φ′ ; Φ′ ; p−1

Herei : S → S′ mapss to 〈s, ∗〉 andp : S′ → S is a projection ofS′ = (∃ s ∈
S){∗}+ C(s) to S, such thatp · i is the identity onS.

‘Janus’ interfaces Somehow related to the question of running servers as clients or
vice versa is the notion of an interface as apair of states〈a0, b0〉 ∈ A× B, given two
state spacesA,B : Set and mapsφ : A → F (B) andψ : B → F (A). One can
think of such an object as a pair of interfaces – it certainly determines a pair of pointed
interaction structures〈A,Φ, a0〉 and〈B,Ψ, b0〉 where

Φ(a) = { {ψ(t′) | t′ ∈ Tψ(a[t]φ) } | t ∈ Tφ(a) }
Ψ(b) = { {φ(t′) | t′ ∈ Tφ(b[t]ψ) } | t ∈ Tψ(b) }

Such a structure is reminiscent of a Conway game (in which it is not yet known whether
‘left’ or ‘right’ is to begin); but while with Conway games evolution of states must
eventually terminate, with Janus-structures such a sequence of states may proceed in-
definitely.

There is a natural ‘converse’ operation on such objects, reminiscent of the represen-
tation of (signed) integers by pairs of naturals, and the minus operation. The definition
of converse is a form of unfold, or corecursion.

These ‘Janus’ interfaces may be of interest, because the components we usually
have to write have two interfaces (high-level and low-level). At one interface the com-
ponent appears to be a server; at the other it appears to be a client.

The chief problem with this notion is that it is far from clear what we should require
for initial states (one? two?). What too about morphisms?
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6 Execution rule

What will the programming environment (ie. run-time library) look like when we are
writing a component program in type theory? By a component program I mean one
which makes use of certain services in a run-time library or system call interface, and
makes available a service or services of some other ‘added value’ kind. So it has a
positive and a negative interface - as it were two poles, or an anode and cathode.

Some speculations..
We might abstract the entire programming environment (or library interface) to

a pair of predicate transformersIO andOI which are formally closure and interior
operations respectively. The predicate transformersIO andOI typically arise asΦ∗

andΦ∞ for someΦ.
In Sambin’s words, the gist ofIO(A) is ‘I want to bring aboutA’ (a kind of goal,

or liveness requirement, that one positively wants to bring about), while the gist of
OI (B) is ‘I want to stay withinB’ (a kind of safety requirement, which one wants
to stay inside). Violation of a requirement of the first kind is a sin of omission, while
violation of the second is a sin one actually commits.

The system programmer (who implements the run-time interface) writes a program
of typeA )( OI (B). The predicatesA andB are respectively theinitial predicate and
the invariant22 predicate. An implementation of a run-time interface is a proof of such
a proposition.

The application programmer writes a program of typeA ⊆ IO(B). The predicates
A andB are respectively theinitial and thefinal predicate. An application of a run-time
interface (API) is a proof of such a proposition.

[NOTION OF INVARIANT.] The notion of invariant here is strong in the sense that
if the invariant holds, there should actuallybea next state. It has some connection with
liveness and/or deadlock freedom. (Thus, if we were to run the program on a fault-
tolerant (hardware) computer, or an immortal and perfectly diligent (human) computer,
we can count on actually getting to a next state that also satisfies the invariant.)

When we run a program we put together a program of typeC ⊆ IO(A) with a
program (the run-time system) of typeC )( OI (B). If the current state of the interface
is s, then we have an object of typeC(s) → IO(A, s), and objects of typeC(s)
andOI (B, s). Putting the first together with the second, we get a proof ofIO(A, s).
Together, the proofs ofIO(A, s) andOI (B, s) can be jointly executed. We wind up in
a state which satisfiesA (as well asOI (B)). This is Sambin’s compatibility rule23

IO(A) )( OI (B)
A )( OI (B)

The compatibility rule above says that if the closure of a setA intersects with the
interior of a setB, or in other words there is a state (the ‘current’ state) which lies in
the intersection, then the setA itself must in fact intersect with that open set, or in other
words there is a state (the ‘future’ state) which lies in the intersection of the original set
with the open set. We obtain the future state by running simultaneously the proofs that
IO(A) andOI (B) hold in the current state. (To ‘run’ a proof means to interpret it as,
or use it as, or to put it into service as a strategy, either (client) for issuing commands
and reading responses or (server) for reading commands and issuing responses.)

22This may be an awful word. Itincludesthe invariant, whittled away fromB by OI .
23See for example [25]. Sambin’s notation iss 〈|X or X |〉 s for IO(X, s), ands |〉〈X or X 〉〈| s for

OI (X, s).
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In some sense Sambin’s compatibility law is the basis for applying the refinement
calculus. It is the point of connection between the mathematical values, and real ac-
tions, events and eventualities. We give the logical inference a temporal interpretation.

Forgetting for the moment about initialising guards, and thinking of a specific in-
terfaceΦ, we can recast Sambin’s rule by using a couple of definitions:

ClientΦ(A,B) = A ⊆ Φ∗(B)
ServerΦ(A,B) = A )( Φ∞(B)

The compatibility rule is then something like this

ClientΦ(A,B) ServerΦ(A,C)
ServerΦ(B,C)

Note that we have (weakening of initial predicate)

A ⊆ B ServerΦ(A,C)
ServerΦ(B,C)

(weakening of invariant)

ServerΦ(A,B) B ⊆ C
ServerΦ(A,C)

and a number of other rules . . . .

7 Use of refinement calculus, feasibility

The party line, if I understand it, about how one uses the refinement calculus is that one
constructs a chain of refinement steps, starting with a monotone predicate transformer
that expresses the specification, and finishing with a predicate transformer which is not
merely monotone, butexecutable, or feasible. These adjectives can be compared with
effective; executability doesn’t carry the mechanical connotation of effectivity. Feasible
doesn’t carry the connotation of polynomially bounded resource consumption, still less
reasonable, affordable consumption in practice. The connotation of ‘feasible’ is just
‘performable’, non-miraculous, logically possible in a very weak sense (especially with
classical logic). Nevertheless, feasible specifications are ‘code’, as Carroll Morgan
calls it. They are executable, performable, followable, can serve as guides to action.

Some ‘healthiness’ conditions are placed on feasible specifications. A feasible
predicate transformer is (I think) characterised as being at least strict,Φ(None) =
None (which is Dijkstra’s law of the excluded miracle, that rules out amagic device to
accomplish the impossible). Strictness means commutation with empty unions. More
generally, we can consider commutation with some class (empty, finite, countable, di-
rected, totally ordered, unrestricted) of intersections and/or unions.

In the refinement calculus literature, the concept of feasibility is also given osten-
sively, by examples; we considertheseforms (assignment, guarded ‘if’ and ‘do’, etc)
to be feasible.

Perhaps the above is ‘feasibility’ for batch programs. Feasibility is not so often
discussed in connection with interactive programs. (Not in Morgan.) I think it means:
continuity. An interactive program need not be conjunctive. And continuity means
commuting with directed limits.
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Whatever the correct characterisation, if a predicate transformer is feasible (exe-
cutable as a batch program), this should imply that the text of some expression for this
predicate transformer is a kind of pseudo-code that can be translated into the syntax of
some programming language and run autonomously (ie. without need of anything else,
any intervention or input, beyond being properly installed/loaded) by a machine.

While the final, executable specification is what Morgan calls ‘code’, the initial
specification frequently takes the form of a ‘specification statement’, or ‘transition
specification’{pre∼} ; [post], wherepre andpost are (full-blooded) relations such
that for some setC, pre : C → P (A) andpost : C → P (B) , and ∼ denotes the
converse operator on (full-blooded) relations. One can also write this

〈C, 〈pre, post〉〉 : F (P (A)× P (B))

It is a spanin the (poset enriched) category of sets and binary relations. The (hidden)
middle terms are thought of as remaining constant while the state changes from the
initial to the final value. The relationpre is usually a restriction of the equality relation.

(There is a lot of discussion of whether a specification specification has a ‘frame’,
which exhibits the variables which may change, or another construction which exhibits
the constants.) [RELATED TO INITIALISING GUARDS.] This is how one refers to
the initial state in the postcondition.

The manner in which one might use the refinement calculus as a calculus supported
by type-theory seems to be rather different. The type-theoretical view is that programs
are proofs, not predicate transformers. On the other hand, the view from the refine-
ment calculus literature is that programs are something propositional, like predicates,
relations or predicate transformers. The relation between these two may be that for
certain predicate transformers which are (for example) sufficiently healthy, the rele-
vant proofs24 are immediately apparent from the form of those predicates.

[FORMAL SYSTEM]. Need something formal, citable as ‘the’ refinement calcu-
lus.

The refinement calculus is a formal system for establishing inclusionsA ⊆ B,
where theA and theB are predicate expressions, that may contain variables of cer-
tain kinds – predicate variables in particular, perhaps also predicate transformers. We
establish such inclusions in a context: a sequence of hypotheses that themselves are
inclusions.

If we use it with intuitionistic logic, then to inclusions we may need to add state-
ments of non-emptiness, such as Sambin’s statement formA )( B. This is to be thought
of as making a positive, existential statement from two predicates. (Note: there is a
similar existential import connected with relational composition; also non emptiness
of a predicateP can be rendered byP )( P .).

The refinement calculus is used to prove judgements of one of these two forms,
primarily between predicate transformers, but also lifted versions between relations
and predicates.

If the refinement calculus is used with intuitionistic logic, it seems useful to extend
the judgement forms to incorporate claims that an intersection is non-empty (in the
positive, existential sense), as with Sambin’s )( notation.

As it were, we try never to mention the ‘points’, or individual states.
The development of a program largely consists of demonstrations of such state-

ments, and related statements (pointwise inclusions, and maybe extensions of )(to pred-
icate transformers and relations). That is an abominably vague statement, and anyone

24What might those be?
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would like to know precisely what more is involved, and precisely what role is played
by proofs of inclusion and overlap in the development/delivery of the final program.

One idea may be this: there are two kinds of programs. A program which runs as a
client of an interfaceΦ is a proof of an inclusion of the formA ⊆ Φ∗(B). A program
which provides the serviceΦ is a proof of the ‘overlaps’ statementA )( Φ∞(B). In the
case of a client programA is the precondition, or conditions under which the program
is required to terminate, whileB is a predicate which must hold in the final state. In the
case of a server programA is the initial condition of a system, whileB is an invariant.

8 Simulation

8.1 Transition systems

This is a run-through for the interesting case, which is interaction structures.
If we are given two transition structures

φ : A→ F (A′)
ψ : B → F (B′) ,

then we can derive a relation transformer[φ, ψ] : P (A′×B′)→ P (A×B) as follows:

[φ, ψ](R, a, b) ∆= (∀ t ∈ Tφ(a))(∃ t′ ∈ Tψ(b))R(a[t]φ, b[t′]ψ)

One can also write this as follows:

[φ, ψ](R, a, b) ∆= [φ]({ a′ ∈ A′ | {ψ}(R(a′), b) }, a) .

That doesn’t seem very enlightening, but if we give a very point free version it is, using
flipR for the operation ‘converse’ of swapping the argument places of a binary function
R, we get

[φ, ψ](R) = flip([φ] · flip({ψ} ·R))

That is at least prettier. (Another pretty form is((/φ) · (ψ; ))R.)
The intuition is that if[φ, ψ](R) holds betweena andb, then choices for transitions

from a can be mapped to choices for transitions fromb in such a way thatR holds
between the destination states.

If A = A′ andB = B′, asimulation relationis a relationR such that

R ⊆ [φ, ψ](R) .

Because simulations are post-fixed points (coalgebras, invariants), they are closed un-
der arbitrary

⊔
(disjunction).

A particularly important case is that in whichA = B, andψ = φ∗.
Because of the alternating quantifiers, there is an interaction structure (on pairs of

states) connected with a simulation relation. If this is equipped with a point (i.e. a pair
of states), then what we have is a pair of pointed interaction systems.25

25Definitions.

1. A transitionstructurefrom setA to setB is an element ofA → F (B). I reserveφ, ψ, φ′, φi,
etc.as typical variables for transition structures. So a transition structure is a morphism in the Kleisli
category for the functorF ( ) (which takes types to types). I pick out the components ofφ as follows:
φ = (λa)〈Tφ(a), a[ ]φ〉 .
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8.2 Interactive structures

Suppose we are given interaction structures

Φ : U → F (F (U ′))
Ψ : V → F (F (V ′)) .

Then we can derive a relation transformer[Φ,Ψ] (readΦ mediated byΨ) as follows.

[Φ,Ψ] : P (U ′ × V ′)→ P (U × V )
[Φ,Ψ](Q, u, v) ∆= (∀ c ∈ CΦ(u))(∃ t ∈ CΨ(v))

(∀ p ∈ RΨ(v, t))(∃ r ∈ RΦ(u, c))
Q(u[c/r]Φ, v[t/p]Ψ)

This can also be written as follows.

[Φ,Ψ](Q, u) =
⋂
c∈CΦ(u) Ψ(

⋃
r∈RΦ(u,c)Q(u[c/r]Φ))

The intuition here is that of a ‘one-step delayed’ preimage ofQ. Any Φ-interaction
from u can be simulated by aΨ-interaction fromv, leaving the initial states related.
This means that we can translate a command forΦ into a command forΨ in such a
way that a response forΨ can be translated back to a suitable response forΦ. We have
a ‘jacket’ round calls toΨ, which is made to appear likeΦ.

If U = U ′ andV = V ′, then we say thatQ is a simulation relationprovided
thatQ ⊆ [Φ,Ψ](Q). Because simulation relations are post-fixed points (co-algebras,
invariants) of a certain monotonic operator, they are closed under arbitrary unions (co-
limits). A simulation ofu by v is a simulation relationQ together with a proof that
Q(u, v).

This surely has to do with implementing one interface using another. (Φ is a “high-
level” interface for which we are a server;Ψ is the ‘low-level” interface of which we
are a client.)

A conjecture: the following is a category (in which the homsets have a Heyting
algebra structure).

objects are triples of the form

S : Set
Φ : S → F (F (S))
s0 : S

A transitionsystemis a setS (whose elements are calledstates) together with a transition structure
from S to S. (One should also define a notion of ‘large’ system, in which we do not have a set but a
proper type of states.) A transition system can be written〈S, φ〉.
A pointedtransition system is an transition system〈S, φ〉 with a states0, called theinitial state. It
can be written〈S, φ, s0〉.

2. an interactionstructurefrom setA to setB is an element ofA → F (F (B)). I reserveΦ, Ψ, Φ′,
Φi etc.as typical variables for interaction structures. I pick out the components ofΦ as follows:

Φ(a) = 〈CΦ(a), RnΦ(a)〉 : F (F (B))

whereRnΦ(a, c) = { a[c/r]Φ | r ∈ RΦ(a, c) } : F (B).
An interaction structure is a morphism in the Kleisli category forF (F ( )).
An interactionsystemis a setS (whose elements are calledstates) and an interaction structure from
S to S. So a system is ‘homogeneous’,i.e. from and to the same setS, called its state-space. It can
be written〈S,Φ〉.
A pointedinteraction system is an interaction system〈S,Φ〉 with a states0, called theinitial state.
It can be written〈S,Φ, s0〉.
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In other words, the objects are interaction systems.

morphisms from (S,Φ, s0) to (T,Ψ, t0) are relationsR : P (S × T ) such that

R ⊆ [Φ,Ψ]R
R(s0, t0)

In other words, the morphisms are simulations of the domain’s initial state by
the codomain’s. The morphisms, as relations, are partially ordered by exten-
sional inclusion. Composition is relational composition and therefore monotone
in both components. For identity morphisms we have to take the equality relation
between states.

In some sense this category is the one in which most programmers work. Programs are
morphisms in it.

[QUESTIONS.]
Is reflexive and transitive closure∗ (of an interaction structure) a monadic con-

struction? (What is the multiplication?) What can be said about the Kleisli category?
What about ∞ and comonads?

[TO DO.] This needs to be related to Sambin’s ‘basic picture’, which focuses on
binary relations, and a notion of continuous morphism. What does the basic picture
look like from the perspective of the refinement calculus? Many things are recognisable
. . . . How does the basic picture look if we keep families distinct from predicates? Then
one probably has to reconsider Sambin’s way of writing ‘infinitary relations’, which is
something likeA→ F (P (B)).

[SNIPPETS.]

9 Twice iterated powerset

Structures in which the powerset operator is iterated twice are perhaps not so common
in mathematics (apart from the quantifiers!), though the main examples are of enor-
mous interest. Part of the interest is the foundational problem of formalisation of these
notions in a predicative setting.

point-set topology [16] Usually, a topological space is defined to be a pair〈S,Ω〉
whereS is a set (of points), andΩ ⊆ P (S), i.e.Ω : P (P (S)) is a set of subsets
of S – the open sets of the space.Ω must be closed under finite intersections and
arbitrary unions – there is yet a third level of powerset involved in the notion of
an arbitrary union.

A number of structures related to topological spaces feature a twice-iterated pow-
erset. For example, there is the notion of a covering system [17, page 534 Ex.
5], which has the form〈S,Cov,≤〉, whereS is a set, andCov : S → F (F (S))
and(≤) together satisfy the axioms

1. ≤ is a partial order.

2. X : Cov(s), X(s′)→ s′ ≤ s.
3. (Stability)X : Cov(s), s′ ≤ s → ∃Y : Cov(s′). Y ≤ X whereX ≤ Y

means∀s.X(s)→ ∃s′. Y (s′) ∧ s ≤ s′.

A covering system is essentially an interactive structureΦ : S → F (F (S))
together with a partial order≤ that (among other things) is a simulation relation
with respect toΦ (stability).
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probability space [13] A probability space is a structure〈S,E, µ〉 whereS is a set of
outcomes,E : P (P (S)) is aσ-ring of subsets ofS whose elements are called
events, andµ : E → [0, 1] satisfiesµ(AllS) = 1 and is additive on countable
sequences of disjoint sets.

10 Right factors

If R andS are proper relations, say with

R : A→ P (C)
S : B → P (C)

we might be interested in relations T with the following property.

T : A→ P (B)
T ; S ⊆ R

There is a weakest such relation, and it can be calculated as follows. We have

〈a, b〉 ∈ T
≡ ∀c. 〈b, c〉 ∈ S ⇒ 〈a, c〉 ∈ R
≡ S(b) ⊆ R(a)

So we can defineT , which is usually writtenR/S and called the weakest pre-component
of S within R orR right-divided byS by

T (a) = { b ∈ B | S(b) ⊆ R(a) } .

(Right) division of a relation by a transition structure From this it is evident that
the operation makes good sense whenS (the thing that comes last) is a transition rela-
tion. In other words, ifφ : B → F (C), then(/φ) is an operator on (proper) relations,
taking relations inA→ P (C) to relations inA→ P (B). It is defined by

(/φ)(R, a, b) = φ(a) ⊆ R(b)
= [φ](R(b), a)

We may compare this with the operator(φ ; ) which takes relations inC → P (D) to
relations inB → P (D). It is defined by

(φ ; )(R, b, d) = φ(b) )( R∼(d)
= {φ}(R∼(d), b)

What is astonishing about(/φ) is that in the sequential composition the transition
system comessecond; one might have expected it to come first, since only that way
round does a transition structure compose ‘well’ with a proper relation.

The ‘right division’ operator comes from Conway’s theory of factors [5].
The important point is that one way in which we can refine specifications to pro-

grams using sequential composition is to postulate that they are to be accomplished in
two successive parts, where the second part of the computation (which ‘finishes off’)
takes the form of a transition structure. (Of course another way of breaking down the
task is to postulate something computational to be done first.) The right factor here
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is something computational, and we ‘chase’ the non-computational propositional part
back and back, or back and forth, until it becomes the identity, and so vanishes.

One question arising is, can we do right division of an arbitrary predicate trans-
former by an interactive structure? To what extent do predicate transformers support
division?

Division and simulations A common way to describe simulation relations with re-
spect to transitions system→φ (simulated) and→ψ (simulator) is to say that a relation
S is a simulation relation provided:

(S ;→φ) ⊆ (→ψ ; S)

ThusS(a) is the predicate that holds of something simulated bya. Using rightdivision,
we can re-express this as

S ⊆ (→ψ ; S)/(→φ) .

This makes it clear, if there was ever any doubt, that a simulation relation is a coalgebra
for a transformer on binary relations. A proof that a simulation relation obtains between
a pair of states is something that can be used to perform a simulation of one state by
the other.
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sbovnik, 12(3):353–369, 1943.

[24] K. Petersson and D. Synek. A set constructor for inductive sets in Martin-Löf’s
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