Anton Setzer (Swansea), Peter Hancock (Edinburgh)

1. Interactive Programs and why we need Coalgebras.

- 1. Interactive Programs and why we need Coalgebras.
- 2. Rules for Coalgebras.

- 1. Interactive Programs and why we need Coalgebras.
- 2. Rules for Coalgebras.
- 3. Some Operations on Coalgebras.

- 1. Interactive Programs and why we need Coalgebras.
- 2. Rules for Coalgebras.
- 3. Some Operations on Coalgebras.
- 4. The μ -Operator and Coalgebras.

Assume

- C : Set (set of commands)

- C : Set (set of commands)
- R(c): Set for c: C (set of responses for command c).

- C : Set (set of commands)
- R(c): Set for c: C (set of responses for command c).
- IO = set of non-well-founded trees with

- C : Set (set of commands)
- R(c): Set for c: C (set of responses for command c).
- IO = set of non-well-founded trees with
 - nodes **labeled** by c:C,

- C : Set (set of commands)
- R(c): Set for c: C (set of responses for command c).
- IO = set of non-well-founded trees with
 - nodes **labeled** by c:C,
 - node with label c has branching degree R(c)

- C : Set (set of commands)
- R(c): Set for c: C (set of responses for command c).
- IO = set of non-well-founded trees with
 - nodes **labeled** by c:C,
 - node with label c has branching degree R(c)

- C : Set (set of commands)
- R(c): Set for c: C (set of responses for command c).
- IO = set of non-well-founded trees with
 - nodes **labeled** by c:C,
 - node with label c has branching degree R(c)

- C : Set (set of commands)
- R(c): Set for c: C (set of responses for command c).
- IO = set of non-well-founded trees with
 - nodes **labeled** by c:C,
 - node with label c has branching degree R(c)

- C : Set (set of commands)
- R(c): Set for c: C (set of responses for command c).
- IO = set of non-well-founded trees with
 - nodes **labeled** by c:C,
 - node with label c has branching degree R(c)

- C : Set (set of commands)
- R(c): Set for c: C (set of responses for command c).
- IO = set of non-well-founded trees with
 - nodes **labeled** by c:C,
 - node with label c has branching degree R(c)

- C : Set (set of commands)
- R(c): Set for c: C (set of responses for command c).
- IO = set of non-well-founded trees with
 - nodes **labeled** by c:C,
 - node with label c has branching degree R(c)

• What do we mean by the set of non-well-founded trees?

- What do we mean by the set of non-well-founded trees?
- In predicative dependent type theory, only inductive data types available.
 - Only well-founded trees directly definable.

- What do we mean by the set of non-well-founded trees?
- In predicative dependent type theory, only inductive data types available.
 - Only well-founded trees directly definable.
- ⇒ Need for representation of coinductive data types.

- What do we mean by the set of non-well-founded trees?
- In predicative dependent type theory, only inductive data types available.
 - Only well-founded trees directly definable.
- ⇒ Need for representation of coinductive data types.
 - If IO is defined, we will have a function

$$\underline{\text{elim}}: IO \to (\Sigma c: C.R(c) \to IO)$$

- What do we mean by the set of non-well-founded trees?
- In predicative dependent type theory, only inductive data types available.
 - Only well-founded trees directly definable.
- ⇒ Need for representation of coinductive data types.
 - If IO is defined, we will have a function

$$\underline{\text{elim}}: IO \to (\Sigma c: C.R(c) \to IO)$$

- What do we mean by the set of non-well-founded trees?
- In predicative dependent type theory, only inductive data types available.
 - Only well-founded trees directly definable.
- ⇒ Need for representation of coinductive data types.
 - If IO is defined, we will have a function

elim: IO
$$\rightarrow \underbrace{(\Sigma c: C.R(c) \rightarrow IO)}_{F(IO)}$$

- What do we mean by the set of non-well-founded trees?
- In predicative dependent type theory, only inductive data types available.
 - Only well-founded trees directly definable.
- ⇒ Need for representation of coinductive data types.
 - If IO is defined, we will have a function

elim: IO
$$\rightarrow \underbrace{(\Sigma c: C.R(c) \rightarrow \text{IO})}_{F(\text{IO})}$$
,
 $F:=\lambda X.\Sigma c: C.R(c) \rightarrow X$

Generalization

• Many functions $F: \mathbf{Set} \to \mathbf{Set}$ isomorphic to $\lambda X.\Sigma c: C.R(c) \to X$ for some C, R.

- Many functions $F: \mathbf{Set} \to \mathbf{Set}$ isomorphic to $\lambda X.\Sigma c: C.R(c) \to X$ for some C, R.
 - $\lambda X.X.$

- Many functions $F: \mathbf{Set} \to \mathbf{Set}$ isomorphic to $\lambda X.\Sigma c: C.R(c) \to X$ for some C, R.
 - $\lambda X.X.$
 - $\lambda X.C.$

- Many functions $F: \operatorname{Set} \to \operatorname{Set}$ isomorphic to $\lambda X.\Sigma c: C.R(c) \to X$ for some C, R.
 - $\lambda X.X.$
 - $\lambda X.C.$
 - If F, G are isomorphic to it, so is $\lambda X.F(X) + G(X)$.

- Many functions $F: \operatorname{Set} \to \operatorname{Set}$ isomorphic to $\lambda X.\Sigma c: C.R(c) \to X$ for some C, R.
 - $\lambda X.X.$
 - $\lambda X.C.$
 - If F, G are isomorphic to it, so is $\lambda X.F(X) + G(X)$.
 - If A : Set, F_a is isomorphic to it (a : A), so are
 - * $\lambda X.\Sigma a: A.F_a(X)$.

- Many functions $F: \operatorname{Set} \to \operatorname{Set}$ isomorphic to $\lambda X.\Sigma c: C.R(c) \to X$ for some C, R.
 - $\lambda X.X.$
 - $\lambda X.C.$
 - If F, G are isomorphic to it, so is $\lambda X.F(X) + G(X)$.
 - If A : Set, F_a is isomorphic to it (a : A), so are
 - * $\lambda X.\Sigma a: A.F_a(X).$
 - * $\lambda X.\Pi a: A.F_a(X)$ (use of axiom of choice).

- Many functions $F: \operatorname{Set} \to \operatorname{Set}$ isomorphic to $\lambda X.\Sigma c: C.R(c) \to X$ for some C, R.
 - $\lambda X.X.$
 - $\lambda X.C.$
 - If F, G are isomorphic to it, so is $\lambda X.F(X) + G(X)$.
 - If A : Set, F_a is isomorphic to it (a : A), so are
 - * $\lambda X.\Sigma a: A.F_a(X).$
 - * $\lambda X.\Pi a: A.F_a(X)$ (use of axiom of choice).
- Call such operations strictly positive functors.

- Many functions $F: \operatorname{Set} \to \operatorname{Set}$ isomorphic to $\lambda X.\Sigma c: C.R(c) \to X$ for some C, R.
 - $\lambda X.X.$
 - $\lambda X.C.$
 - If F, G are isomorphic to it, so is $\lambda X.F(X) + G(X)$.
 - If A : Set, F_a is isomorphic to it (a : A), so are
 - * $\lambda X.\Sigma a: A.F_a(X)$.
 - * $\lambda X.\Pi a:A.F_a(X)$ (use of axiom of choice).
- Call such operations strictly positive functors.
- Notion could be extended to include F^* (inital algebra functor) and F^{∞} (final coalgebra functor; see below) for F strictly positive.

Operation on Morphisms

• Operation on morphisms for $F = \lambda X.\Sigma c: C.R(c) \rightarrow X$:

Operation on Morphisms

• Operation on morphisms for $F = \lambda X.\Sigma c: C.R(c) \rightarrow X$:

- If
$$f:X\to Y$$
, $F(f):F(X)\to F(Y)$,

$$F(f)(\langle c, n \rangle) = \langle c, f \circ n \rangle$$
.

Notation

$$C_0(A) + C_1(B) := \text{data}\{C_0(a:A) \mid C_1(b:B)\}$$

Let F be strictly positive. We need rules expressing

Let F be strictly positive. We need rules expressing

• F_0^∞

Let F be strictly positive. We need rules expressing

• F_0^{∞} is (semi-) largest set s.t. there exists

$$\mathbf{elim}: F_0^{\infty} \to F(F_0^{\infty})$$
.

(F strictly positive).

Let F be strictly positive. We need rules expressing

• F_0^{∞} is (semi-) largest set s.t. there exists

$$\mathbf{elim}: F_0^{\infty} \to F(F_0^{\infty}) .$$

(F strictly positive).

Idea from Peter Aczel, non-well-founded set theory:
 Elements introduced as graphs.

 $\{\{\{\cdots\}\}\}$ given by

 $\{\{\{\cdots\}\}\}$ given by

Assume $F(X) = \Sigma c : C.R(c) \rightarrow X$.

ullet A graph for F consists of

- ullet A graph for F consists of
 - a set A,

- \bullet A graph for F consists of
 - a set A,
 - a labelling function $c:A\to C$,

- A graph for F consists of
 - a set A,
 - a labelling function $c: A \to C$,
 - a next function $n:(a:A,R(c(a)))\to A.$

- A graph for F consists of
 - a set A,
 - a labelling function $c: A \to C$,
 - a next function $n:(a:A,R(c(a)))\to A.$
 - a starting node a:A.

ullet A graph for F consists of

- ullet A graph for F consists of
 - a set A,

- A graph for F consists of
 - a set A,
 - an $f:A \to (\Sigma c:C.R(c) \to A)$,

- A graph for F consists of
 - a set A,
 - an $f:A \to \underbrace{(\Sigma c:C.R(c) \to A)}_{F(A)}$,

- A graph for F consists of
 - a set A,
 - an $f:A \to \underbrace{(\Sigma c:C.R(c) \to A)}_{F(A)}$,
 - an a:A.

- A graph for F consists of
 - a set *A*,
 - an $f:A \to \underbrace{(\Sigma c:C.R(c) \to A)}_{F(A)}$,
 - an a : A.
- Introduction rule for F_0^{∞} :

- A graph for F consists of
 - a set A,
 - an $f:A \to \underbrace{(\Sigma c:C.R(c) \to A)}_{F(A)}$,
 - an a : A.
- Introduction rule for F_0^{∞} : every graph introduces an element of F_0^{∞} .

- A graph for F consists of
 - a set A,
 - an $f:A \to \underbrace{(\Sigma c:C.R(c) \to A)}_{F(A)}$,
 - an a : A.
- Introduction rule for F_0^{∞} : every graph introduces an element of F_0^{∞} .
- However: no full elimination Only: $\operatorname{elim}: F_0^{\infty} \to F(F_0^{\infty})$.

Formation

Formation

 $F_{\theta}^{\infty}: \operatorname{Set}$

Formation

 $F_{\theta}^{\infty}: \operatorname{Set}$

Introduction

Formation

$$F_{\theta}^{\infty}: \operatorname{Set}$$

Introduction

$$\frac{A: \operatorname{Set} \quad \gamma: A \to F(A) \quad a: A}{\operatorname{intro}'(A, \gamma, a): F_0^{\infty}}$$

Formation

$$F_{\theta}^{\infty}: \operatorname{Set}$$

Introduction

$$\frac{A: \operatorname{Set} \quad \gamma: A \to F(A) \quad a: A}{\operatorname{intro}'(A, \gamma, a): F_0^{\infty}}$$

Elimination

Formation

$$F_0^\infty: \mathrm{Set}$$

Introduction

$$\frac{A: \operatorname{Set} \quad \gamma: A \to F(A) \quad a: A}{\operatorname{intro}'(A, \gamma, a): F_0^{\infty}}$$

Elimination

$$\frac{p: F_0^{\infty}}{\operatorname{elim}(p): F(F_0^{\infty})}$$

Formation

$$F_0^\infty: \mathrm{Set}$$

Introduction

$$\frac{A: \operatorname{Set} \quad \gamma: A \to F(A) \quad a: A}{\operatorname{intro}'(A, \gamma, a): F_0^{\infty}}$$

Elimination

$$\frac{p: F_0^{\infty}}{\operatorname{elim}(p): F(F_0^{\infty})}$$

Formation

$$F_0^\infty: \mathrm{Set}$$

Introduction

$$\frac{A: \operatorname{Set} \quad \gamma: A \to F(A) \quad a: A}{\operatorname{intro}'(A, \gamma, a): F_0^{\infty}}$$

Elimination

$$\frac{p: F_0^{\infty}}{\operatorname{elim}(p): F(F_0^{\infty})}$$

elim(intro'(A,
$$\gamma$$
, a)) = $F(\lambda x.intro'(A, \gamma, x))(\gamma(a))$
: $F(F_0^{\infty})$

Easier to define successor — Definable using Coiteration

Formation

Formation

 $F_{\theta}^{\infty}: \operatorname{Set}$

Formation

 $F_{\theta}^{\infty}:\operatorname{Set}% \left(F_{\theta}^{\infty}\right) =\operatorname{Set}\left(F_{\theta}^{\infty}\right) =\operatorname{Set}\left($

Introduction

Formation

 $F_0^\infty:\operatorname{Set}$

Introduction

$$\frac{A: \operatorname{Set} \quad \gamma: A \to F(\operatorname{cont}(A) + \operatorname{fin}(\mathbf{F}_{\mathbf{0}}^{\infty})) \quad a: A}{\operatorname{intro}(A, \gamma, a): F_{\mathbf{0}}^{\infty}}$$

Formation

 $F_0^\infty:\operatorname{Set}$

Introduction

$$\frac{A: \operatorname{Set} \quad \gamma: A \to F(\operatorname{cont}(A) + \operatorname{fin}(\mathbf{F}_{\mathbf{0}}^{\infty})) \quad a: A}{\operatorname{intro}(A, \gamma, a): F_{\mathbf{0}}^{\infty}}$$

Elimination

Formation

 F_0^∞ : Set

Introduction

$$\frac{A: \operatorname{Set} \quad \gamma: A \to F(\operatorname{cont}(A) + \operatorname{fin}(\mathbf{F}_{\mathbf{0}}^{\infty})) \quad a: A}{\operatorname{intro}(A, \gamma, a): F_{\mathbf{0}}^{\infty}}$$

Elimination

$$\frac{p: F_0^{\infty}}{\operatorname{elim}(p): F(F_0^{\infty})}$$

Formation

 $F_0^\infty: \mathrm{Set}$

Introduction

$$\frac{A: \operatorname{Set} \quad \gamma: A \to F(\operatorname{cont}(A) + \operatorname{fin}(\mathbf{F}_{\mathbf{0}}^{\infty})) \quad a: A}{\operatorname{intro}(A, \gamma, a): F_{\mathbf{0}}^{\infty}}$$

Elimination

$$\frac{p: F_0^{\infty}}{\operatorname{elim}(p): F(F_0^{\infty})}$$

Formation

 $F_0^\infty: \mathrm{Set}$

Introduction

$$\frac{A: \operatorname{Set} \quad \gamma: A \to F(\operatorname{cont}(A) + \operatorname{fin}(\mathbf{F}_{\mathbf{0}}^{\infty})) \quad a: A}{\operatorname{intro}(A, \gamma, a): F_{\mathbf{0}}^{\infty}}$$

Elimination

$$\frac{p: F_0^{\infty}}{\operatorname{elim}(p): F(F_0^{\infty})}$$

$$\operatorname{elim}(\operatorname{intro}(A, \gamma, a)) = F(f)(\gamma(a)) : F(F_0^{\infty})$$

Formation

 $F_0^\infty:\operatorname{Set}$

Introduction

$$\frac{A: \operatorname{Set} \quad \gamma: A \to F(\operatorname{cont}(A) + \operatorname{fin}(\mathbf{F}_{\mathbf{0}}^{\infty})) \quad a: A}{\operatorname{intro}(A, \gamma, a): F_{\mathbf{0}}^{\infty}}$$

Elimination

$$\frac{p: F_0^{\infty}}{\operatorname{elim}(p): F(F_0^{\infty})}$$

$$\begin{array}{l} \operatorname{elim}(\operatorname{intro}(A,\gamma,a)) = F(f)(\gamma(a)) : F(F_0^\infty) \\ \operatorname{where} \ f(\operatorname{cont}(a)) = \operatorname{intro}(A,\gamma,a) \\ f(\operatorname{fin}(p)) = p \end{array}$$

• Want to construct a functor based on F_0^{∞} .

- Want to construct a functor based on F_0^{∞} .
- Idea: start from atomic elements (a:A) and "build possibly non-well-founded many construtors of F on top of it".

 $lackbox{f F}^{\infty}(A)$

- Want to construct a functor based on F_0^{∞} .
- Idea: start from atomic elements (a:A) and "build possibly non-well-founded many construtors of F on top of it".
- More precisely: Let $F_A := \lambda X.at(A) + do(F(X))$.

- Want to construct a functor based on F_0^{∞} .
- Idea: start from atomic elements (a:A) and "build possibly non-well-founded many construtors of F on top of it".
- More precisely: Let $F_A := \lambda X.at(A) + do(F(X))$.
- $\mathbf{F}^{\infty}(\mathbf{A}) := (F_A)_0^{\infty}$.

Graphs for $\mathbf{F}^\infty(\mathbf{A})$

Atoms

Atoms

Atoms

For a:A let $\mathrm{At}(a):=\mathrm{intro}(\{\star\},\lambda x.\mathrm{cont}(\mathrm{at}(a)),\star):F^{\infty}(A)$.

B : Set

$$B: Set \qquad g: B \to F(F^{\infty}(cont(B) + fin(F_0^{\infty})))$$

$$B: Set \qquad g: B \to F(F^{\infty}(cont(B) + fin(F_0^{\infty})))$$

$$B: Set \qquad g: B \to F(F^{\infty}(cont(B) + fin(F_0^{\infty})))$$

$$B: Set \qquad g: B \to F(F^{\infty}(cont(B) + fin(F_0^{\infty})))$$

$$B: Set \qquad g: B \to F(F^{\infty}(cont(B) + fin(F_0^{\infty})))$$

$$B: Set \qquad g: B \to F(F^{\infty}(cont(B) + fin(F_0^{\infty})))$$

$$B: Set \qquad g: B \to F(F^{\infty}(cont(B) + fin(F_0^{\infty})))$$

$$B: Set \qquad g: B \to F(F^{\infty}(cont(B) + fin(F_0^{\infty})))$$

$$B: Set \qquad g: B \to F(F^{\infty}(cont(B) + fin(F_0^{\infty})))$$

$$B: Set \qquad g: B \to F(F^{\infty}(cont(B) + fin(F_0^{\infty})))$$

 ${f repeat}({f B},{f g},{f b})$

• Assume $B: \mathrm{Set},\ g: B \to F(F^{\infty}(\mathrm{cont}(B) + \mathrm{fin}(F_0^{\infty}))),\ b: B.$

- Assume $B: \mathrm{Set}, \ g: B \to F(F^{\infty}(\mathrm{cont}(B) + \mathrm{fin}(F_0^{\infty}))), \ b: B.$
- Define $\operatorname{repeat}(B,g,b) := \operatorname{intro}(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_{0}^{\infty})), f, \operatorname{At}(\operatorname{cont}(b)))$

- Assume $B : \operatorname{Set}, g : B \to F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty}))), b : B$.
- Define repeat $(B, g, b) := \operatorname{intro}(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})), f, \operatorname{At}(\operatorname{cont}(b)))$
- where we define

$$f: F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})) \to (\operatorname{cont}(F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})))) + \operatorname{fin}(F_0^{\infty}))$$

- Assume $B : \operatorname{Set}, g : B \to F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty}))), b : B$.
- Define $\operatorname{repeat}(B,g,b) := \operatorname{intro}(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_{0}^{\infty})), f, \operatorname{At}(\operatorname{cont}(b)))$
- where we define

$$f: F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})) \to (\operatorname{cont}(F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})))) + \operatorname{fin}(F_0^{\infty}))$$

- if elim(a) = at(cont(b)),

- Assume $B : \operatorname{Set}, g : B \to F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty}))), b : B$.
- Define repeat $(B, g, b) := \operatorname{intro}(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})), f, \operatorname{At}(\operatorname{cont}(b)))$
- where we define

$$f: F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})) \to (\operatorname{cont}(F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})))) + \operatorname{fin}(F_0^{\infty}))$$

- if
$$\operatorname{elim}(a) = \operatorname{at}(\operatorname{cont}(b))$$
, then $f(a) = \operatorname{cont}(\underbrace{g(b)}_{:F(F^{\infty}(\operatorname{fin}(F_{0}^{\infty}) + \operatorname{cont}(B)))})$

- Assume $B : \operatorname{Set}, g : B \to F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty}))), b : B$.
- Define repeat $(B, g, b) := \operatorname{intro}(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})), f, \operatorname{At}(\operatorname{cont}(b)))$
- where we define

$$f: F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})) \to (\operatorname{cont}(F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})))) + \operatorname{fin}(F_0^{\infty}))$$

- if elim(a) = at(cont(b)), then $f(a) = cont(\underbrace{g(b)}_{:F(F^{\infty}(fin(F_0^{\infty}) + cont(B)))})$
- if elim(a) = at(fin(p)),

- Assume $B: \mathrm{Set}, g: B \to F(F^{\infty}(\mathrm{cont}(B) + \mathrm{fin}(F_0^{\infty}))), b: B.$
- Define repeat $(B, g, b) := \operatorname{intro}(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})), f, \operatorname{At}(\operatorname{cont}(b)))$
- where we define

$$f: F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})) \to (\operatorname{cont}(F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})))) + \operatorname{fin}(F_0^{\infty}))$$

- if $\operatorname{elim}(a) = \operatorname{at}(\operatorname{cont}(b))$, then $f(a) = \operatorname{cont}(\underbrace{g(b)}_{:F(F^{\infty}(\operatorname{fin}(F_{0}^{\infty}) + \operatorname{cont}(B)))})$
- if elim(a) = at(fin(p)), then f(a) = fin(p).

- Assume $B: \mathrm{Set}, g: B \to F(F^{\infty}(\mathrm{cont}(B) + \mathrm{fin}(F_0^{\infty}))), b: B.$
- Define repeat $(B, g, b) := \operatorname{intro}(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})), f, \operatorname{At}(\operatorname{cont}(b)))$
- where we define

$$f: F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})) \to (\operatorname{cont}(F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})))) + \operatorname{fin}(F_0^{\infty}))$$

- if $\mathrm{elim}(a) = \mathrm{at}(\mathrm{cont}(b))$, then $f(a) = \mathrm{cont}(\underbrace{g(b)}_{:F(F^{\infty}(\mathrm{fin}(F_0^{\infty}) + \mathrm{cont}(B)))})$
- if elim(a) = at(fin(p)), then f(a) = fin(p).
- if $\operatorname{elim}(a) = \operatorname{do}(\underbrace{p}_{:F(F^{\infty}(\operatorname{fin}(F_{0}^{\infty}) + \operatorname{cont}(B)a))})$

- Assume $B: \mathrm{Set}, g: B \to F(F^{\infty}(\mathrm{cont}(B) + \mathrm{fin}(F_0^{\infty}))), b: B.$
- Define repeat $(B, g, b) := \operatorname{intro}(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})), f, \operatorname{At}(\operatorname{cont}(b)))$
- where we define

$$f: F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})) \to (\operatorname{cont}(F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F_0^{\infty})))) + \operatorname{fin}(F_0^{\infty}))$$

- if $\operatorname{elim}(a) = \operatorname{at}(\operatorname{cont}(b))$, then $f(a) = \operatorname{cont}(\underbrace{g(b)}_{:F(F^{\infty}(\operatorname{fin}(F_{0}^{\infty}) + \operatorname{cont}(B)))})$
- if elim(a) = at(fin(p)), then f(a) = fin(p).
- if $\operatorname{elim}(a) = \operatorname{do}(\underbrace{p}_{:F(F^{\infty}(\operatorname{fin}(F_{0}^{\infty}) + \operatorname{cont}(B)a))})$, then $f(a) = \operatorname{cont}(p)$.

• NStream = F_0^{∞} , where $F(X) = \text{data}\{\cos(n: N, x: X)\}$ ($\approx N \times X$)

- NStream = F_0^{∞} , where $F(X) = \text{data}\{\cos(n: N, x: X)\}$ ($\approx N \times X$)
- Elements of NStream have the form $cons(n_1, cons(n_2, cons(n_3, \cdots))).$

- NStream = F_0^{∞} , where $F(X) = \text{data}\{\cos(n: N, x: X)\}$ ($\approx N \times X$)
- Elements of NStream have the form $cons(n_1, cons(n_2, cons(n_3, \cdots))).$
- Would like to define elements of NStream recursively.

- NStream = F_0^{∞} , where $F(X) = \text{data}\{\cos(n: N, x: X)\}$ ($\approx N \times X$)
- Elements of NStream have the form $cons(n_1, cons(n_2, cons(n_3, \cdots))).$
- Would like to define elements of NStream recursively. E.g.
 - $f: \mathbb{N} \to \mathbb{N}$ Stream, $f(n) = \cos(n, f(n+1))$.

- NStream = F_0^{∞} , where $F(X) = \text{data}\{\cos(n: N, x: X)\}$ ($\approx N \times X$)
- Elements of NStream have the form $cons(n_1, cons(n_2, cons(n_3, \cdots))).$
- Would like to define elements of NStream recursively. E.g.
 - $f: \mathbb{N} \to \mathrm{NStream}, \ f(n) = \cos(n, f(n+1)).$
- In this form non-normalizing.

• Instead try a constructor μ . (Idea from T. Coquand).

• Instead try a constructor μ . (Idea from T. Coquand). Assume $A: \operatorname{Set}, \ g: (A \to \operatorname{NStream}) \to A \to \operatorname{NStream}$. Then $\mu_A(g): A \to \operatorname{NStream}$.

- Instead try a constructor μ . (Idea from T. Coquand). Assume $A : \operatorname{Set}, g : (A \to \operatorname{NStream}) \to A \to \operatorname{NStream}$. Then $\mu_A(g) : A \to \operatorname{NStream}$.
- f as above can be defined as $\mu_N(\lambda g, n.\cos(n, g(n+1)))$.

- Instead try a constructor μ . (Idea from T. Coquand). Assume $A : \operatorname{Set}, g : (A \to \operatorname{NStream}) \to A \to \operatorname{NStream}$. Then $\mu_A(g) : A \to \operatorname{NStream}$.
- f as above can be defined as $\mu_N(\lambda g, n.\cos(n, g(n+1)))$.
- μ is a constructor \Rightarrow recursion evaluated only when applying elim.

- Instead try a constructor μ . (Idea from T. Coquand). Assume $A : \operatorname{Set}, g : (A \to \operatorname{NStream}) \to A \to \operatorname{NStream}$. Then $\mu_A(g) : A \to \operatorname{NStream}$.
- f as above can be defined as $\mu_N(\lambda g, n.\cos(n, g(n+1)))$.
- μ is a constructor \Rightarrow recursion evaluated only when applying elim.
- In order to define elim , we need to apply elim to the body of μ .

- Instead try a constructor μ . (Idea from T. Coquand). Assume $A : \operatorname{Set}, g : (A \to \operatorname{NStream}) \to A \to \operatorname{NStream}$. Then $\mu_A(g) : A \to \operatorname{NStream}$.
- f as above can be defined as $\mu_N(\lambda g, n.\cos(n, g(n+1)))$.
- μ is a constructor \Rightarrow recursion evaluated only when applying elim.
- In order to define elim, we need to apply elim to the body of μ . Better: replace the type of g above by:

$$g: (A \to \text{NStream}) \to A \to F(\text{NStream})$$
.

- Instead try a constructor μ . (Idea from T. Coquand). Assume $A : \operatorname{Set}, g : (A \to \operatorname{NStream}) \to A \to \operatorname{NStream}$. Then $\mu_A(g) : A \to \operatorname{NStream}$.
- f as above can be defined as $\mu_N(\lambda g, n.\cos(n, g(n+1)))$.
- μ is a constructor \Rightarrow recursion evaluated only when applying elim.
- In order to define elim, we need to apply elim to the body of μ . Better: replace the type of g above by:

$$g: (A \to \text{NStream}) \to A \to F(\text{NStream})$$
.

• Now define $\operatorname{elim}(\mu_A(g,a)) = g(\mu_A(g),a)$.

Problems with the $\mu\text{-}\mathrm{Operator}$

• Example: $f = \mu_{\{*\}}(\lambda g, x. \operatorname{elim}(g(x))).$

- Example: $f = \mu_{\{*\}}(\lambda g, x. \operatorname{elim}(g(x))).$
 - $\operatorname{elim}(f(x)) = (\lambda g, x.\operatorname{elim}(g(x)))(f, x) = \operatorname{elim}(f(x)).$

- Example: $f = \mu_{\{*\}}(\lambda g, x. \text{elim}(g(x))).$
 - $\operatorname{elim}(f(x)) = (\lambda g, x. \operatorname{elim}(g(x)))(f, x) = \operatorname{elim}(f(x)).$ Not normalizing.

- Example: $f = \mu_{\{*\}}(\lambda g, x.\operatorname{elim}(g(x))).$
 - $\operatorname{elim}(f(x)) = (\lambda g, x.\operatorname{elim}(g(x)))(f, x) = \operatorname{elim}(f(x)).$ Not normalizing. Instead demand
 - * In $\mu_A(\lambda g, x.t)$, elim should not be applied to a term depending on g.

- Example: $f = \mu_{\{*\}}(\lambda g, x.\operatorname{elim}(g(x))).$
 - $\operatorname{elim}(f(x)) = (\lambda g, x.\operatorname{elim}(g(x)))(f, x) = \operatorname{elim}(f(x)).$ Not normalizing. Instead demand
 - * In $\mu_A(\lambda g, x.t)$, elim should not be applied to a term depending on g.
- Thierry Coquand calls such t guarded.
 (He demands as well one constructor to the outside.
 Automatically fulfilled because of the type of t).

- Example: $f = \mu_{\{*\}}(\lambda g, x.\operatorname{elim}(g(x))).$
 - $\operatorname{elim}(f(x)) = (\lambda g, x.\operatorname{elim}(g(x)))(f, x) = \operatorname{elim}(f(x)).$ Not normalizing. Instead demand
 - * In $\mu_A(\lambda g, x.t)$, elim should not be applied to a term depending on g.
- Thierry Coquand calls such t guarded.
 (He demands as well one constructor to the outside.
 Automatically fulfilled because of the type of t).
- Principle of guarded induction: Elements of $F^{\infty}(A)$ are introduced by μ applied to guarded μ -terms.

- Example: $f = \mu_{\{*\}}(\lambda g, x.\text{elim}(g(x)))$.
 - $\operatorname{elim}(f(x)) = (\lambda g, x.\operatorname{elim}(g(x)))(f, x) = \operatorname{elim}(f(x)).$ Not normalizing. Instead demand
 - * In $\mu_A(\lambda g, x.t)$, elim should not be applied to a term depending on g.
- Thierry Coquand calls such t guarded.
 (He demands as well one constructor to the outside.
 Automatically fulfilled because of the type of t).
- Principle of guarded induction: Elements of $F^{\infty}(A)$ are introduced by μ applied to guarded μ -terms.
- μ generalizes to arbitary F^{∞} .

• We had:

- We had:
 - If $B: Set, f: B \to F(F^{\infty}(cont(B) + fin(F^{\infty}(A)))), b: B$, then $repeat(B, f, b): F^{\infty}(A)$.

- We had:
 - If $B: Set, f: B \to F(F^{\infty}(cont(B) + fin(F^{\infty}(A)))), b: B$, then $repeat(B, f, b): F^{\infty}(A)$.
- Define for f above

- We had:
 - If B : Set, $f : B \to F(F^{\infty}(cont(B) + fin(F^{\infty}(A))))$, b : B, then $repeat(B, f, b) : F^{\infty}(A)$.
- Define for f above

$$\widetilde{f}$$
 : $(B \to F^{\infty}(A)) \to B \to F(F^{\infty}(A))$,

- We had:
 - If B : Set, $f : B \to F(F^{\infty}(cont(B) + fin(F^{\infty}(A))))$, b : B, then $repeat(B, f, b) : F^{\infty}(A)$.
- Define for f above

$$\widetilde{f}$$
 : $(B \to F^{\infty}(A)) \to B \to F(F^{\infty}(A))$,
 $\widetilde{f}(g,b) = F(h_0)(F(F^{\infty}(h))(f(b)))$,

- We had:
 - If B : Set, $f : B \to F(F^{\infty}(cont(B) + fin(F^{\infty}(A))))$, b : B, then $repeat(B, f, b) : F^{\infty}(A)$.
- Define for f above

$$\begin{split} \widetilde{f} & : \quad (B \to F^\infty(A)) \to B \to F(F^\infty(A)) \ , \\ \widetilde{f}(g,b) & = \quad F(h_0)(F(F^\infty(h))(f(b))) \ , \\ \text{where} & \qquad h \quad : \quad (\operatorname{cont}(B) + \operatorname{fin}(F^\infty(A))) \to F^\infty(A) \ , \\ h(\operatorname{cont}(b)) & = \quad g(b) \ , \\ h(\operatorname{fin}(p)) & = \quad p \ . \end{split}$$

- We had:
 - If $B: Set, f: B \to F(F^{\infty}(cont(B) + fin(F^{\infty}(A)))), b: B$, then $repeat(B, f, b): F^{\infty}(A)$.
- Define for f above

$$\begin{split} \widetilde{f} & : \quad (B \to F^\infty(A)) \to B \to F(F^\infty(A)) \ , \\ \widetilde{f}(g,b) & = \quad F(h_0)(F(F^\infty(h))(f(b))) \ , \\ \text{where} & \qquad h \quad : \quad (\operatorname{cont}(B) + \operatorname{fin}(F^\infty(A))) \to F^\infty(A) \ , \\ & \qquad h(\operatorname{cont}(b)) \quad = \quad g(b) \ , \\ & \qquad h(\operatorname{fin}(p)) \quad = \quad p \ . \\ \text{and} & \qquad h_0 : F^\infty(F^\infty(A)) \to F^\infty(A) \ . \end{split}$$

- We had:
 - If $B: Set, f: B \to F(F^{\infty}(cont(B) + fin(F^{\infty}(A)))), b: B$, then $repeat(B, f, b): F^{\infty}(A)$.
- Define for f above

$$\begin{array}{cccc} \widetilde{f} & : & (B \to F^\infty(A)) \to B \to F(F^\infty(A)) \ , \\ \widetilde{f}(g,b) & = & F(h_0)(F(F^\infty(h))(f(b))) \ , \\ \text{where} & h & : & (\operatorname{cont}(B) + \operatorname{fin}(F^\infty(A))) \to F^\infty(A) \ , \\ & h(\operatorname{cont}(b)) & = & g(b) \ , \\ & h(\operatorname{fin}(p)) & = & p \ . \\ \text{and} & h_0 : F^\infty(F^\infty(A)) \to F^\infty(A) \ . \end{array}$$

• Then repeat $(B, f, b) = \mu_B(\widetilde{f}, b)$.

• Consider for $f: B \to F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F^{\infty}(A))))$ $\widetilde{f} := \lambda g, b.F(h_0)(F(F^{\infty}(h))(f(b))).$

- Consider for $f: B \to F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F^{\infty}(A))))$ $\widetilde{f} := \lambda g, b.F(h_0)(F(F^{\infty}(h))(f(b))).$
- Now \widetilde{f} is "extended guarded": no elim applied to a term containing g.

- Consider for $f: B \to F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F^{\infty}(A))))$ $\widetilde{f} := \lambda g, b.F(h_0)(F(F^{\infty}(h))(f(b))).$
- Now \widetilde{f} is "extended guarded": no elim applied to a term containing g.
 - But now infinitely many constructors of F (even unbounded chains) can be applied to it.

- Consider for $f: B \to F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F^{\infty}(A))))$ $\widetilde{f} := \lambda g, b.F(h_0)(F(F^{\infty}(h))(f(b))).$
- Now \widetilde{f} is "extended guarded": no elim applied to a term containing g.
 - But now infinitely many constructors of F (even unbounded chains) can be applied to it.
 - No longer syntactic condition.

- Consider for $f: B \to F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F^{\infty}(A))))$ $\widetilde{f} := \lambda g, b.F(h_0)(F(F^{\infty}(h))(f(b))).$
- Now \widetilde{f} is "extended guarded": no elim applied to a term containing g.
 - But now infinitely many constructors of F (even unbounded chains) can be applied to it.
 - No longer syntactic condition.
 - Subsumes all cases of functions definable by guarded induction principle, but extends this notion.

- Consider for $f: B \to F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F^{\infty}(A))))$ $\widetilde{f} := \lambda g, b.F(h_0)(F(F^{\infty}(h))(f(b))).$
- Now \widetilde{f} is "extended guarded": no elim applied to a term containing g.
 - But now infinitely many constructors of F (even unbounded chains) can be applied to it.
 - No longer syntactic condition.
 - Subsumes all cases of functions definable by guarded induction principle, but extends this notion.
- If we replace type of f by $F(\text{cont}(B) + \text{fin}(F^{\infty}(A)))$ then \widetilde{f} can be defined by the guarded induction principle.

- Consider for $f: B \to F(F^{\infty}(\operatorname{cont}(B) + \operatorname{fin}(F^{\infty}(A))))$ $\widetilde{f} := \lambda g, b.F(h_0)(F(F^{\infty}(h))(f(b))).$
- Now \widetilde{f} is "extended guarded": no elim applied to a term containing g.
 - But now infinitely many constructors of F (even unbounded chains) can be applied to it.
 - No longer syntactic condition.
 - Subsumes all cases of functions definable by guarded induction principle, but extends this notion.
- If we replace type of f by $F(\text{cont}(B) + \text{fin}(F^{\infty}(A)))$ then \widetilde{f} can be defined by the guarded induction principle.
 - Suffices (together with At) to define intro.

 Therefore functions definable by guarded induction principle and by our are the same. 	rules
Anton Setzer, Peter Hancock: Coalgebras in dependent type theory	26a

Algebras	Coalgebras

Algebras	Coalgebras
Introduction Rules	
Formal rules =	
implemented ones.	
(Constructor).	

Algebras	Coalgebras
Introduction Rules	Elimination Rules
Formal rules =	Formal rules =
implemented ones.	implemented ones.
(Constructor).	(elim or case distinction)

Algebras	Coalgebras
Introduction Rules	Elimination Rules
Formal rules =	Formal rules =
implemented ones.	implemented ones.
(Constructor).	(elim or case distinction)
Elimination Rules	
Formal rules $=$ recursion operator.	

Algebras	Coalgebras
Introduction Rules	Elimination Rules
Formal rules =	Formal rules =
implemented ones.	implemented ones.
(Constructor).	(elim or case distinction)
Elimination Rules	
Formal rules $=$ recursion operator.	
Implemented ones=	
pattern matching	
+termination check	

Algebras	Coalgebras
Introduction Rules	Elimination Rules
Formal rules =	Formal rules $=$
implemented ones.	implemented ones.
(Constructor).	(elim or case distinction)
Elimination Rules	
Formal rules $=$ recursion operator.	
Implemented ones=	
pattern matching	
+termination check	
Syntactic condition.	

Algebras	Coalgebras
Introduction Rules	Elimination Rules
Formal rules =	Formal rules =
implemented ones.	implemented ones.
(Constructor).	(elim or case distinction)
Elimination Rules	Introduction Rules
Formal rules $=$ recursion operator.	Formal rules $=$ intro.
Implemented ones=	
pattern matching	
+termination check	
Syntactic condition.	

Algebras	Coalgebras
Introduction Rules	Elimination Rules
Formal rules =	Formal rules $=$
implemented ones.	implemented ones.
(Constructor).	(elim or case distinction)
Elimination Rules	Introduction Rules
Formal rules $=$ recursion operator.	Formal rules $=$ intro.
Implemented ones=	Implemented ones=
pattern matching	$\mu+guardedness$ check
+termination check	$+{ m At}$ (Atom)
Syntactic condition.	

Algebras	Coalgebras
Introduction Rules	Elimination Rules
Formal rules =	Formal rules =
implemented ones.	implemented ones.
(Constructor).	(elim or case distinction)
Elimination Rules	Introduction Rules
Formal rules $=$ recursion operator.	Formal rules =intro.
Implemented ones=	Implemented ones=
pattern matching	$\mu+guardedness$ check
+termination check	+At (Atom)
Syntactic condition.	Syntactic condition.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

• Rules for coiteration seem to be the appropriate ones.

- Rules for coiteration seem to be the appropriate ones.
- μ -operator = correct principle for implementations.

- Rules for coiteration seem to be the appropriate ones.
- μ -operator = correct principle for implementations.
- Both allow to define non-terminating programs in a hopefully normalizing type theory.

- Rules for coiteration seem to be the appropriate ones.
- μ -operator = correct principle for implementations.
- Both allow to define non-terminating programs in a hopefully normalizing type theory.
- Model can be defined.

- Rules for coiteration seem to be the appropriate ones.
- μ -operator = correct principle for implementations.
- Both allow to define non-terminating programs in a hopefully normalizing type theory.
- Model can be defined.
- Normalization still to be shown.

- Rules for coiteration seem to be the appropriate ones.
- μ -operator = correct principle for implementations.
- Both allow to define non-terminating programs in a hopefully normalizing type theory.
- Model can be defined.
- Normalization still to be shown.
- Extension to dependent coalgebras exists.
 Dependent introduction rule for (dependent) coalgebras
 = analogue of dependent elimination rule for algebras.