‘ Coalgebras in Dependent Type Theory I

Anton Setzer (Swansea), Peter Hancock (Edinburgh)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ Coalgebras in Dependent Type Theory I

Anton Setzer (Swansea), Peter Hancock (Edinburgh)

1. Interactive Programs and why we need Coalgebras.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ Coalgebras in Dependent Type Theory I

Anton Setzer (Swansea), Peter Hancock (Edinburgh)

1. Interactive Programs and why we need Coalgebras.

2. Rules for Coalgebras.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ Coalgebras in Dependent Type Theory I

Anton Setzer (Swansea), Peter Hancock (Edinburgh)

1. Interactive Programs and why we need Coalgebras.
2. Rules for Coalgebras.

3. Some Operations on Coalgebras.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ Coalgebras in Dependent Type Theory I

Anton Setzer (Swansea), Peter Hancock (Edinburgh)

1. Interactive Programs and why we need Coalgebras.
2. Rules for Coalgebras.
3. Some Operations on Coalgebras.

4. The p-Operator and Coalgebras.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

1. Interactive Programs
and why we need Coalgebras

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

1. Interactive Programs
and why we need Coalgebras

-

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

1. Interactive Programs
and why we need Coalgebras

§

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

1. Interactive Programs
and why we need Coalgebras

Y

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

1. Interactive Programs
and why we need Coalgebras

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

1. Interactive Programs
and why we need Coalgebras

<—<J

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

1. Interactive Programs
and why we need Coalgebras

§

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

1. Interactive Programs
and why we need Coalgebras

Y

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

1. Interactive Programs
and why we need Coalgebras

- -

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

1. Interactive Programs
and why we need Coalgebras

Y

Ty

- =

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

e Assume

- C': Set (set of commands)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

e Assume

- C': Set (set of commands)
- R(c) : Set for ¢ : C' (set of responses for command c).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

e Assume

- C': Set (set of commands)
- R(c) : Set for ¢ : C' (set of responses for command c).

e | = set of non-well-founded trees with

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

e Assume

- C': Set (set of commands)
- R(c) : Set for ¢ : C' (set of responses for command c).

e | = set of non-well-founded trees with

- nodes labeled by ¢ : C,

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

e Assume

- C': Set (set of commands)
- R(c) : Set for ¢ : C' (set of responses for command c).

e | = set of non-well-founded trees with

- nodes labeled by ¢ : C,

- node with label ¢ has branching degree R(c)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

e Assume

- C : Set (set of commands)
- R(c) : Set for ¢ : C' (set of responses for command c).

e [O = set of non-well-founded trees with

- nodes labeled by c: C,

- node with label ¢ has branching degree R(c)

cH

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

e Assume

- C : Set (set of commands)
- R(c) : Set for ¢ : C' (set of responses for command c).

e [O = set of non-well-founded trees with

- nodes labeled by c: C,

- node with label ¢ has branching degree R(c)

cH

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

e Assume

- C : Set (set of commands)
- R(c) : Set for ¢ : C' (set of responses for command c).

e [O = set of non-well-founded trees with

- nodes labeled by c: C,

- node with label ¢ has branching degree R(c)

cH

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

e Assume

- C : Set (set of commands)
- R(c) : Set for ¢ : C' (set of responses for command c).

e [O = set of non-well-founded trees with

- nodes labeled by c: C,

- node with label ¢ has branching degree R(c)

cH

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

e Assume

- C : Set (set of commands)
- R(c) : Set for ¢ : C' (set of responses for command c).

e [O = set of non-well-founded trees with

- nodes labeled by c: C,

- node with label ¢ has branching degree R(c)

c4d c6 cH

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Representation of Interactive Programs: 10-Trees

e Assume

- C': Set (set of commands)
- R(c) : Set for ¢ : C' (set of responses for command c).

e | = set of non-well-founded trees with

- nodes labeled by ¢ : C,

- node with label ¢ has branching degree R(c)

c4 c6 ch

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problem

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problem

e \What do we mean by the set of non-well-founded trees?

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problem

e \What do we mean by the set of non-well-founded trees?

e In predicative dependent type theory, only inductive data types available.

- Only well-founded trees directly definable.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problem

e \What do we mean by the set of non-well-founded trees?

e In predicative dependent type theory, only inductive data types available.

- Only well-founded trees directly definable.

= Need for representation of coinductive data types.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problem

e \What do we mean by the set of non-well-founded trees?

e In predicative dependent type theory, only inductive data types available.

- Only well-founded trees directly definable.
= Need for representation of coinductive data types.

e If 1O is defined, we will have a function

elim : 10 — (Xc: C.R(c) — 10)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problem

e \What do we mean by the set of non-well-founded trees?

e In predicative dependent type theory, only inductive data types available.

- Only well-founded trees directly definable.
= Need for representation of coinductive data types.

e If 1O is defined, we will have a function

elim : IO — (Xc¢: C.R(c) — 10)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problem

e \What do we mean by the set of non-well-founded trees?

e In predicative dependent type theory, only inductive data types available.

- Only well-founded trees directly definable.
= Need for representation of coinductive data types.

e If 1O is defined, we will have a function

elim : 10 — (Xc: C.R(c) — 10)

J,

~"

F(10)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problem

e \What do we mean by the set of non-well-founded trees?

e In predicative dependent type theory, only inductive data types available.

- Only well-founded trees directly definable.
= Need for representation of coinductive data types.

e If 1O is defined, we will have a function

elim : 10 — (Xc: C.R(c) — 10)

J,

F(10)
F:=XX%c:CR(c)— X

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generalization

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generalization

e Many functions F': Set — Set isomorphic to AX.Yc: C.R(c) — X
for some C, R.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generalization

e Many functions F': Set — Set isomorphic to AX.Yc: C.R(c) — X
for some C, R.

- A X . X.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generalization

e Many functions F': Set — Set isomorphic to AX.Yc: C.R(c) — X
for some C, R.

- A X . X.
- M X.C.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generalization

e Many functions F': Set — Set isomorphic to AX.Yc: C.R(c) — X
for some C, R.

- A X.X.
- AX.C.
- If F', G are isomorphic to it, so is AX.F(X) + G(X).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generalization

e Many functions F': Set — Set isomorphic to AX.Yc: C.R(c) — X
for some C, R.

- A X . X.
- M X.C.

If I', G are isomorphic to it, so is AX.F(X) + G(X).
If A: Set, F, is isomorphic to it (a : A), so are

* AX.Ya: A.F,(X).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generalization

e Many functions F': Set — Set isomorphic to AX.Yc: C.R(c) — X
for some C, R.

- A X . X.

- AX.C.

- If F', G are isomorphic to it, so is AX.F(X) + G(X).
If A: Set, F, is isomorphic to it (a : A), so are

* AX.Ya: A.F,(X).
*x AX.Ila : A.F,(X) (use of axiom of choice).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generalization

e Many functions F': Set — Set isomorphic to AX.Yc: C.R(c) — X
for some C, R.

- A X . X.

- AX.C.

- If F', G are isomorphic to it, so is AX.F(X) + G(X).
If A: Set, F, is isomorphic to it (a : A), so are
* AX.Ya: A.F,(X).
* AX.Ila : A.F,(X) (use of axiom of choice).

e Call such operations strictly positive functors.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generalization

e Many functions F': Set — Set isomorphic to AX.Yc: C.R(c) — X
for some C, R.

- A X . X.

- AX.C.

- If F', G are isomorphic to it, so is AX.F(X) + G(X).
If A: Set, F, is isomorphic to it (a : A), so are
* AX.Ya: A.F,(X).
* AX.Ila : A.F,(X) (use of axiom of choice).

e Call such operations strictly positive functors.

e Notion could be extended to include F* (inital algebra functor) and F*°
(final coalgebra functor; see below) for F' strictly positive.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Operation on Morphisms

e Operation on morphisms for FF = AX.%c: C.R(c) — X:

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Operation on Morphisms

e Operation on morphisms for FF = AX.%c: C.R(c) — X:

-Iff: X =Y, F(f): F(X)— F(Y),

F(f)({e,n) = (¢, fon) .

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Notation

Co(A) 4+ C(B) :=data{Cp(a: A) | C1(b: B)}

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 2. Rules for Coalgebras. I

Let F' be strictly positive.
We need rules expressing

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 2. Rules for Coalgebras. I

Let F' be strictly positive.
We need rules expressing

* Iy~

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 2. Rules for Coalgebras. I

Let F' be strictly positive.
We need rules expressing

o [7° is (semi-) largest set s.t. there exists

elim : F{° — F(F§°) .

(F strictly positive).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 2. Rules for Coalgebras. I

Let F' be strictly positive.
We need rules expressing

o [7° is (semi-) largest set s.t. there exists

elim : F{° — F(F§°) .

(F strictly positive).

e |dea from Peter Aczel, non-well-founded set theory:
Elements introduced as graphs.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Examples of Non-Wf Sets

{{{---}}} given by

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Examples of Non-Wf Sets

{{{---}}} given by Q

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Examples of Non-Wf Sets

{{{---}}} given by Q
AU} -+ 1) given by

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Examples of Non-Wf Sets

{{{---}}} given by Q
{UAUHAY - -1 1) given by

AN
A

AN
)

t

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Examples of Non-Wf Sets

{{{---}}} given by Q
{UAUHAY - -1 1) given by

N e |
SN

AN
)

t

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Graphs for F§°

Assume F'(X) =Yc: C.R(c) — X.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Graphs for F§°

Assume F'(X) =Yc: C.R(c) — X.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Graphs for F§°

Assume F'(X) =Yc: C.R(c) — X.

- aset A,

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Graphs for F§°

Assume F'(X) =Yc: C.R(c) — X.

- aset A,
- a labelling function c: A — C,

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Graphs for F§°

Assume F'(X) =Yc: C.R(c) — X.

- aset A,
- a labelling function ¢: A — C,
- a next function n: (a : A, R(c(a))) — A.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Graphs for F§°

Assume F'(X) =Yc: C.R(c) — X.

aset A,

a labelling function c: A — C,

a next function n: (a : A, R(c(a))) — A.
a starting node a : A.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

More Abstractly

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

More Abstractly

e A graph for F' consists of

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

More Abstractly

e A graph for F' consists of

- aset A,

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

More Abstractly

e A graph for F' consists of

- aset A,
-an f: A— (3Xc:C.R(c) — A),

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

More Abstractly

e A graph for F' consists of

- aset A,
-an f: A— (Xc: C.R(c) — A)

F(A) ”

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

More Abstractly

e A graph for F' consists of

- aset A,
-an f: A— (Yc: C.R(c) — A),
F(A)

-ana: A.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

More Abstractly

e A graph for F' consists of

- aset A,
-an f: A— (Yc: C.R(c) — A),
F(A)

-ana: A.

e Introduction rule for Fi5°:

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

More Abstractly

e A graph for F' consists of

- aset A,
-an f: A— (Yc: C.R(c) — A),
F(A)

-ana: A.

e Introduction rule for Fi5°:
every graph introduces an element of F*.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

More Abstractly

e A graph for F' consists of

- aset A,
-an f: A— (Yc: C.R(c) — A),
F(A)

-ana: A.

Introduction rule for F§°:
every graph introduces an element of F*.

However: no full elimination — Only: elim

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Coiteration

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Coiteration

Formation

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Coiteration

Formation

F§° @ Set

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Coiteration

Formation

F§° @ Set

Introduction

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Coiteration

Formation
F§° @ Set

Introduction

A:Set v:A—F(A) a:A
intro’ (A, v, a) : F§°

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Coiteration

Formation
F§° @ Set

Introduction

A:Set v:A—F(A) a:A
intro’ (A, v, a) : F§°

Elimination

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Coiteration

Formation
F§° @ Set

Introduction

A:Set v:A—F(A) a:A
intro’ (A, v, a) : F§°

Elimination
p: Fg°

elim(p) : F(F5°)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Coiteration

Formation
F§° @ Set

Introduction

A:Set v:A—F(A) a:A
intro’ (A, v, a) : F§°

Elimination
p: Fg°

elim(p) : F(F5°)

Equality

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Coiteration

Formation
F§° @ Set

Introduction
A:Set v:A—F(A) a:A

intro’ (A, v, a) : F§°

Elimination
p: Fg°

elim(p) : F(F5°)

Equality

elim(intro’(A,~, a)) = F(Az.intro’(A4,~,z))(v(a))
- F(FG)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Easier to define successor Definable using Coiteration

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Corecursion

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Corecursion

Formation

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Corecursion

Formation F§° : Set

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Corecursion

Formation F§° : Set

Introduction

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Corecursion

Formation Fg© @ Set

Introduction

A:Set v:A— F(cont(A)+fin(Fy°)) a:A
intro(A4,~v, a) : F§°

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Corecursion

Formation F§° : Set

Introduction

A:Set v:A— F(cont(A)+ fin(Fy°)) a:A
intro(A4,~v, a) : F§°

Elimination

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Corecursion

Formation F§° : Set

Introduction

A:Set v:A— F(cont(A)+ fin(Fy°)) a:A
intro(A4,~v, a) : F§°

Elimination
p: Fp©

elim(p) : F(F5°)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Corecursion

Formation F§e : Set

Introduction

A:Set v:A— F(cont(A)+fin(Fy°)) a:A
intro(A4,~v, a) : F§°

Elimination
p:Ig°

elim(p) : F(F§°)

Equality

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Corecursion

Formation F§e : Set

Introduction

A:Set v:A— F(cont(A)+fin(Fy°)) a:A
intro(A4,~v, a) : F§°

Elimination
p:Ig°

elim(p) : F(F§°)

Equality

elim(intro(A4, v, a)) = F(f)(v(a)) : F(F§°)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Rules for Corecursion

Formation F§e : Set

Introduction

A:Set v:A— F(cont(A)+fin(Fy°)) a:

A

intro(A4,~v, a) : F§°

Elimination
p:Ig°

elim(p) : F(F§°)

Equality

elim(intro(4, 7, @) = F(f)((a)) : F(F5°)
where f(cont(a)) = intro(A,y, a)
f(fin(p)) = p

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Fo(A)

e Want to construct a functor based on F{§*.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

F>(A)

e Want to construct a functor based on F{§*.

e |dea: start from atomic elements (a : A) and “build possibly non-well-founded
many construtors of F' on top of it".

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

F>(A)

e Want to construct a functor based on F{§*.

e |dea: start from atomic elements (a : A) and “build possibly non-well-founded
many construtors of F' on top of it".

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

F>(A)

Want to construct a functor based on Fy*.

|dea: start from atomic elements (a : A) and “build possibly non-well-founded
many construtors of F' on top of it".

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Graphs for F>°(A)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 3. Some Operations on Coalgebras I

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 3. Some Operations on Coalgebras I

Atoms

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

3. Some Operations on Coalgebras

Atoms

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

3. Some Operations on Coalgebras

Atoms

For a : A let At(a) := intro({x}, Azx.cont(at(a)),*) : F>°(A) .

- Ieff(a)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

B b0 bl b2
2NN

B : Set g: B — F(F>(cont(B) + fin(Fg°)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

A’N M

cont(bOxont(b2)

B : Set g: B — F(F>(cont(B) + fin(Fg°)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

B : Set g: B — F(F>(cont(B) + fin(Fg°)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

B : Set g: B — F(F>(cont(B) + fin(Fg°)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

B : Set g: B — F(F>(cont(B) + fin(Fg°)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

B : Set g: B — F(F>(cont(B) + fin(Fg°)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

cont(b0) cont(b2) lfin(p)

B : Set g: B — F(F>(cont(B) + fin(Fg°)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

B : Set g: B — F(F>(cont(B) + fin(Fg°)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

B : Set g: B — F(F>(cont(B) + fin(Fg°)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

B : Set g: B — F(F>(cont(B) + fin(Fg°)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

repeat(B,g,b)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)))

e where we define

f: F®(cont(B) + fin(F)) — (cont(F(F>(cont(B) + fin(F)))) + fin(FLo))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)))

e where we define

f: F®(cont(B) + fin(F)) — (cont(F(F>(cont(B) + fin(F)))) + fin(FLo))

- if elim(a) = at(cont (b)),

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)))

e where we define

f: F®(cont(B) + fin(F)) — (cont(F(F>(cont(B) + fin(F)))) + fin(FLo))

- if elim(a) = at(cont(b)), then f(a) = cont(g(b)).
B (P (fin(F) +cont(B)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)))

e where we define

f: F®(cont(B) + fin(F)) — (cont(F(F>(cont(B) + fin(F)))) + fin(FLo))

- if elim(a) = at(cont(b)), then f(a) = cont(g(b)).
B (P (fin(F) +cont(B)))

- if elim(a) = at(fin(p)),

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)))

e where we define

f: F®(cont(B) + fin(F)) — (cont(F(F>(cont(B) + fin(F)))) + fin(FLo))

- if elim(a) = at(cont(b)), then f(a) = cont(g\(ﬁ)_)/).
B (P (fin(F) +cont(B)))
- if elim(a) = at(fin(p)), then f(a) = fin(p).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)))

e where we define

f: F®(cont(B) + fin(F)) — (cont(F(F>(cont(B) + fin(F)))) + fin(FLo))

- if elim(a) = at(cont(b)), then f(a) = cont(g(b)).
B (P (fin(F) +cont(B)))
- if elim(a) = at(fin(p)), then f(a) = fin(p).
- if elim(a) = do(p),
B (Fo°(fin(Fg°)+cont(B)a))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)))

e where we define

f: F®(cont(B) + fin(F)) — (cont(F(F>(cont(B) + fin(F)))) + fin(FLo))

- if elim(a) = at(cont(b)), then f(a) = cont(g(b)).
B (P (fin(F) +cont(B)))
- if elim(a) = at(fin(p)), then f(a) = fin(p).
- if elim(a) = do(p), then f(a) = cont(p).
B (Fo°(fin(Fg°)+cont(B)a))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 4. The p-Operator and Coalgebras I

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 4. The p-Operator and Coalgebras I

o NStream = Fj°, where
F(X) =data{cons(n: N,z : X)} (=N xX)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 4. The p-Operator and Coalgebras I

o NStream = Fj°, where
F(X) =data{cons(n: N,z : X)} (=N xX)

e Elements of NStream have the form

cons(ny, cons(ng, cons(ng, - --))).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 4. The p-Operator and Coalgebras I

o NStream = Fj°, where
F(X) =data{cons(n: N,z : X)} (=N xX)

e Elements of NStream have the form
cons(ny, cons(ng, cons(ng, - --))).

e Would like to define elements of NStream recursively.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 4. The p-Operator and Coalgebras I

o NStream = Fj°, where
F(X) =data{cons(n: N,z : X)} (=N xX)

e Elements of NStream have the form
cons(ny, cons(ng, cons(ng, - --))).

e Would like to define elements of NStream recursively. E.g.

- f:N — NStream, f(n) = cons(n, f(n+1)).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

‘ 4. The p-Operator and Coalgebras I

o NStream = Fj°, where
F(X) =data{cons(n: N,z : X)} (=N xX)

e Elements of NStream have the form
cons(ny, cons(ng, cons(ng, - --))).

e Would like to define elements of NStream recursively. E.g.

- f:N — NStream, f(n) = cons(n, f(n+1)).

e In this form non-normalizing.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

The p-Operator

e Instead try a constructor u. (ldea from T. Coquand).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

The p-Operator

e Instead try a constructor u. (ldea from T. Coquand).
Assume A : Set, g : (A — NStream) — A — NStream.
Then pa(g) : A — NStream.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

The p-Operator

e Instead try a constructor u. (ldea from T. Coquand).
Assume A : Set, g : (A — NStream) — A — NStream.
Then pa(g) : A — NStream.

e f as above can be defined as un(Ag, n.cons(n, g(n + 1))).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

The p-Operator

Instead try a constructor . (ldea from T. Coquand).
Assume A : Set, g : (A — NStream) — A — NStream.

Then pa(g) : A — NStream.

e f as above can be defined as un(Ag, n.cons(n, g(n + 1))).

e (i is a constructor = recursion evaluated only when applying elim.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

The p-Operator

Instead try a constructor . (ldea from T. Coquand).
Assume A : Set, g : (A — NStream) — A — NStream.
Then pa(g) : A — NStream.

f as above can be defined as un(Ag, n.cons(n,g(n +1))).

{4 1S a constructor = recursion evaluated only when applying elim.

In order to define elim, we need to apply elim to the body of L.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

The p-Operator

Instead try a constructor . (ldea from T. Coquand).
Assume A : Set, g : (A — NStream) — A — NStream.
Then pa(g) : A — NStream.

f as above can be defined as un(Ag, n.cons(n,g(n +1))).
{4 1S a constructor = recursion evaluated only when applying elim.

In order to define elim, we need to apply elim to the body of L.
Better: replace the type of g above by:

g: (A — NStream) — A — F(NStream) .

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

The p-Operator

Instead try a constructor . (ldea from T. Coquand).
Assume A : Set, g : (A — NStream) — A — NStream.
Then pa(g) : A — NStream.

f as above can be defined as un(Ag, n.cons(n,g(n +1))).
{4 1S a constructor = recursion evaluated only when applying elim.

In order to define elim, we need to apply elim to the body of L.
Better: replace the type of g above by:

g: (A — NStream) — A — F(NStream) .

e Now define elim(ua(g,a)) = g(pa(g),a).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problems with the ;-Operator

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problems with the ;-Operator

o Example: f = pg.y(Ag, z.elim(g(x))).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problems with the ;-Operator

o Example: f = pg.y(Ag, z.elim(g(x))).
_ elim(f(z)) = (A, @.elim(g(2))) (,) = elim(f(z)).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problems with the ;-Operator

o Example: f = pg.y(Ag, z.elim(g(x))).
_ elim(f(z)) = (A, @.elim(g(2))) (,) = elim(f(z)).

Not normalizing.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problems with the ;-Operator

o Example: f = pg.y(Ag, z.elim(g(x))).
_ elim(f(z)) = (A, @.elim(g(2))) (,) = elim(f(z)).

Not normalizing. Instead demand
% In pa(Ag,x.t), elim should not be applied to a term depending on g.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problems with the ;-Operator

o Example: f = pg.y(Ag, z.elim(g(x))).
_ elim(f(z)) = (A, @.elim(g(2))) (,) = elim(f(z)).

Not normalizing. Instead demand
% In pa(Ag,x.t), elim should not be applied to a term depending on g.

(He demands as well one constructor to the outside.
Automatically fulfilled because of the type of t).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problems with the ;-Operator

o Example: f = pg.y(Ag, z.elim(g(x))).
_ elim(f(z)) = (A, @.elim(g(2))) (,) = elim(f(z)).

Not normalizing. Instead demand
% In pa(Ag,x.t), elim should not be applied to a term depending on g.

(He demands as well one constructor to the outside.
Automatically fulfilled because of the type of t).

Elements of F"*°(A) are introduced by p applied to guarded p-terms.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Problems with the ;-Operator

o Example: f = pg.y(Ag, z.elim(g(x))).

- elim(f(x)) = (Ag, z.clim(g())) (f,) = elim(f(x)).
Not normalizing. Instead demand
% In pa(Ag,x.t), elim should not be applied to a term depending on g.

(He demands as well one constructor to the outside.
Automatically fulfilled because of the type of t).

Elements of F"*°(A) are introduced by p applied to guarded p-terms.

e /i generalizes to arbitary F'*°.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generating u-Terms

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generating u-Terms

e \We had:

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generating u-Terms

e \We had:

- If B:Set, f: B — F(F*>(cont(B) + fin(F*°(A)))), b : B, then
repeat(B, f,b) : F*°(A).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generating u-Terms

e \We had:

- If B:Set, f: B — F(F*>(cont(B) + fin(F*°(A)))), b : B, then
repeat(B, f,b) : F*°(A).

e Define for f above

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generating u-Terms

e \We had:

- If B:Set, f: B — F(F*>(cont(B) + fin(F*°(A)))), b : B, then
repeat(B, f,b) : F*°(A).

e Define for f above

~

foo: (B=F*(4))—=B— F(F>*(A)),

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generating u-Terms

e \We had:

- If B:Set, f: B — F(F*>(cont(B) + fin(F*°(A)))), b : B, then
repeat(B, f,b) : F*°(A).

e Define for f above

(B — F>*(4)) = B — F(F>(A)) ,

F(ho)(F(E>(h))(£(0)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generating u-Terms

e \We had:

- If B:Set, f: B — F(F*>(cont(B) + fin(F*°(A)))), b : B, then
repeat(B, f,b) : F*°(A).

e Define for f above

~

;oo (4))

~

flg,b) = F(ho)(F FOO(.h))((f(b))),

cont(B) + fin(F®(A4))) — F®(A4)
h(cont(b)) = g(b) ,
h(fin(p)) = p .

where

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generating u-Terms

e \We had:

- If B:Set, f: B — F(F*>(cont(B) + fin(F*°(A)))), b : B, then
repeat(B, f,b) : F*°(A).

e Define for f above

~

foo: (B=F*(4))—=B— F(F>*(A)),

~

f(g,0) = F(ho)(F(F*>(h))(f(D))) ,
where ho o (cont(B) + fin(F®(A))) — F®(A) ,

h(cont(b)) = g(b) ,
h(fin(p)) = p .
ho : F(F®(A)) — F>(A) .

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Generating u-Terms

e \We had:

- If B:Set, f: B — F(F*>(cont(B) + fin(F*°(A)))), b : B, then
repeat(B, f,b) : F*°(A).

e Define for f above

~

(B2 F®(A) > B F(F>(4)) ,
f(g,b) = F(ho)(F(F>(h))(f())) ,
where h ¢ (cont(B) + fin(F®(A4))) — F®(4A)
h(cont(b)) = g(b) ,
h(fin(p)) = p .
and ho : F(F®(A)) — Fo(A) .

e Then repeat(B, f,b) = ugn(f,b).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Comparison of ;1 and repeat

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Comparison of ;1 and repeat

e Consider for f : B — F(F°°(cont(B) + fin(F'>°(A))))
f = Ag,b.F(ho)(F(F>(h))(f(0))).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Comparison of ;1 and repeat

e Consider for f : B — F(F°°(cont(B) + fin(F'>°(A))))
f = Ag,b.F(ho)(F(F>(h))(f(0))).

e Now fis “extended guarded’: no elim applied to a term containing g.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Comparison of ;1 and repeat

e Consider for f : B — F(F°°(cont(B) + fin(F'>°(A))))
f = Ag,b.F(ho)(F(F>(h))(f(0))).

e Now fis “extended guarded’: no elim applied to a term containing g.

- But now infinitely many constructors of F' (even unbounded chains) can
be applied to it.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Comparison of ;1 and repeat

e Consider for f : B — F(F°°(cont(B) + fin(F'>°(A))))
f = Ag,b.F(ho)(F(F>(h))(f(0))).

e Now fis “extended guarded’: no elim applied to a term containing g.

- But now infinitely many constructors of F' (even unbounded chains) can
be applied to it.
- No longer syntactic condition.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Comparison of ;1 and repeat

e Consider for f : B — F(F°°(cont(B) + fin(F'>°(A))))
f = Ag,b.F(ho)(F(F>(h))(f(0))).

e Now fis “extended guarded’: no elim applied to a term containing g.

- But now infinitely many constructors of F' (even unbounded chains) can
be applied to it.

- No longer syntactic condition.

- Subsumes all cases of functions definable by guarded induction principle,
but extends this notion.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Comparison of ;1 and repeat

e Consider for f : B — F(F°°(cont(B) + fin(F'>°(A))))
f = Ag,b.F(ho)(F(F>(h))(f(0))).

e Now fis “extended guarded’: no elim applied to a term containing g.

- But now infinitely many constructors of F' (even unbounded chains) can
be applied to it.

- No longer syntactic condition.

- Subsumes all cases of functions definable by guarded induction principle,
but extends this notion.

o If we replace type of f by F'(cont(B) + fin(F>(A4)))
then f can be defined by the guarded induction principle.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Comparison of ;1 and repeat

e Consider for f : B — F(F°°(cont(B) + fin(F'>°(A))))
f = Ag,b.F(ho)(F(F>(h))(f(0))).

e Now fis “extended guarded’: no elim applied to a term containing g.

- But now infinitely many constructors of F' (even unbounded chains) can
be applied to it.

- No longer syntactic condition.

- Subsumes all cases of functions definable by guarded induction principle,
but extends this notion.

o If we replace type of f by F'(cont(B) + fin(F>(A4)))
then f can be defined by the guarded induction principle.

- Suffices (together with At) to define intro.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

e Therefore functions definable by guarded induction principle and by our rules
are the same.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

e Therefore functions definable by guarded induction principle and by our rules
are the same.

Formal Calculus and Implementations

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

e Therefore functions definable by guarded induction principle and by our rules
are the same.

Formal Calculus and Implementations

Algebras Coalgebras

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

e Therefore functions definable by guarded induction principle and by our rules
are the same.

Formal Calculus and Implementations

Algebras Coalgebras
Introduction Rules
Formal rules =
implemented ones.
(Constructor).

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

e Therefore functions definable by guarded induction principle and by our rules
are the same.

Formal Calculus and Implementations

Algebras Coalgebras
Introduction Rules Elimination Rules
Formal rules = Formal rules =
implemented ones. implemented ones.
(Constructor). (elim or case distinction)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

e Therefore functions definable by guarded induction principle and by our rules
are the same.

Formal Calculus and Implementations

Algebras Coalgebras
Introduction Rules Elimination Rules
Formal rules = Formal rules =
implemented ones. implemented ones.
(Constructor). (elim or case distinction)
Elimination Rules
Formal rules = recursion operator.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

e Therefore functions definable by guarded induction principle and by our rules
are the same.

Formal Calculus and Implementations

Algebras Coalgebras
Introduction Rules Elimination Rules
Formal rules = Formal rules =
implemented ones. implemented ones.
(Constructor). (elim or case distinction)
Elimination Rules
Formal rules = recursion operator.
Implemented ones=
pattern matching
+termination check

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

e Therefore functions definable by guarded induction principle and by our rules
are the same.

Formal Calculus and Implementations

Algebras Coalgebras
Introduction Rules Elimination Rules
Formal rules = Formal rules =
implemented ones. implemented ones.
(Constructor). (elim or case distinction)
Elimination Rules
Formal rules = recursion operator.
Implemented ones=
pattern matching
+termination check
Syntactic condition.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

e Therefore functions definable by guarded induction principle and by our rules
are the same.

Formal Calculus and Implementations

Algebras Coalgebras
Introduction Rules Elimination Rules
Formal rules = Formal rules =
implemented ones. implemented ones.
(Constructor). (elim or case distinction)
Elimination Rules Introduction Rules
Formal rules = recursion operator. | Formal rules =intro.
Implemented ones=
pattern matching
+termination check
Syntactic condition.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

e Therefore functions definable by guarded induction principle and by our rules
are the same.

Formal Calculus and Implementations

Algebras Coalgebras
Introduction Rules Elimination Rules
Formal rules = Formal rules =
implemented ones. implemented ones.
(Constructor). (elim or case distinction)
Elimination Rules Introduction Rules
Formal rules = recursion operator. | Formal rules =intro.
Implemented ones= Implemented ones=
pattern matching 1t + guardedness check
+termination check +At (Atom)

Syntactic condition.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

e Therefore functions definable by guarded induction principle and by our rules
are the same.

Formal Calculus and Implementations

Algebras Coalgebras
Introduction Rules Elimination Rules
Formal rules = Formal rules =
implemented ones. implemented ones.
(Constructor). (elim or case distinction)
Elimination Rules Introduction Rules
Formal rules = recursion operator. | Formal rules =intro.
Implemented ones= Implemented ones=
pattern matching 1t + guardedness check
+termination check +At (Atom)

Syntactic condition. Syntactic condition.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Conclusion

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Conclusion

e Rules for coiteration seem to be the appropriate ones.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Conclusion

e Rules for coiteration seem to be the appropriate ones.

e ,-operator = correct principle for implementations.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Conclusion

e Rules for coiteration seem to be the appropriate ones.

e ,-operator = correct principle for implementations.

e Both allow to define non-terminating programs in a hopefully normalizing
type theory.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Conclusion

Rules for coiteration seem to be the appropriate ones.

(-operator = correct principle for implementations.

Both allow to define non-terminating programs in a hopefully normalizing
type theory.

Model can be defined.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Conclusion

Rules for coiteration seem to be the appropriate ones.

(-operator = correct principle for implementations.

Both allow to define non-terminating programs in a hopefully normalizing
type theory.

Model can be defined.

Normalization still to be shown.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

Conclusion

Rules for coiteration seem to be the appropriate ones.

(-operator = correct principle for implementations.

Both allow to define non-terminating programs in a hopefully normalizing
type theory.

Model can be defined.
Normalization still to be shown.

Extension to dependent coalgebras exists.
Dependent introduction rule for (dependent) coalgebras
= analogue of dependent elimination rule for algebras.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory

	1: Title
	2:1. Interactive Programs
	3: Representation of Interactive Programs: IO-Trees
	4: Problem
	5: Generalization
	6: Operation on morphisms
	7: Notation for +
	8: 2. Rules for coalgebras
	9: Examples of non-wf. sets
	10: Graphs for Finfty0
	11: Picture for Graph for Finfty
	12: More abstractly
	13: Rules for coitaration
	14: Picture: Corecursion
	15: Rules for Corecursion
	16: Finfty(A)
	17: Graphs for Finfty(A)
	18: 3. Some operations on coalgebras
	19: Picture for repeat
	20: Definition of repeat
	21: 4. The mu-operator
	22: Constructor mu
	23: Problems with the mu-operator
	24: Generating mu-terms
	25: Comparison of mu and repeat
	26: Formal calculus and implementations
	27: Conclusion

