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Problem

e \What do we mean by the set of non-well-founded trees?

e In predicative dependent type theory, only inductive data types available.

- Only well-founded trees directly definable.
= Need for representation of coinductive data types.

e If 1O is defined, we will have a function

elim : 10 — (Xc: C.R(c) — 10)

J,

F(10)
F:=XX%c:CR(c)— X
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Generalization

e Many functions F': Set — Set isomorphic to AX.Yc: C.R(c) — X
for some C, R.

- A X . X.

- AX.C.

- If F', G are isomorphic to it, so is AX.F(X) + G(X).
If A: Set, F, is isomorphic to it (a : A), so are
* AX.Ya: A.F,(X).
* AX.Ila : A.F,(X) (use of axiom of choice).

e Call such operations strictly positive functors.

e Notion could be extended to include F* (inital algebra functor) and F*°
(final coalgebra functor; see below) for F' strictly positive.
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Operation on Morphisms

e Operation on morphisms for FF = AX.%c: C.R(c) — X:

-Iff: X =Y, F(f): F(X)— F(Y),

F(f)({e,n) = (¢, fon) .
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Notation

Co(A) 4+ C(B) :=data{Cp(a: A) | C1(b: B)}
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‘ 2. Rules for Coalgebras. I

Let F' be strictly positive.
We need rules expressing

o [7° is (semi-) largest set s.t. there exists

elim : F{° — F(F§°) .

(F strictly positive).

e |dea from Peter Aczel, non-well-founded set theory:
Elements introduced as graphs.
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Graphs for F§°

Assume F'(X) =Yc: C.R(c) — X.

aset A,

a labelling function c: A — C,

a next function n: (a : A, R(c(a))) — A.
a starting node a : A.
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More Abstractly

e A graph for F' consists of

- aset A,
-an f: A— (Yc: C.R(c) — A),
F(A)

-ana: A.

Introduction rule for F§°:
every graph introduces an element of F*.

However: no full elimination — Only: elim
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Rules for Coiteration

Formation
F§° @ Set

Introduction
A:Set v:A—F(A) a:A

intro’ (A, v, a) : F§°

Elimination
p: Fg°

elim(p) : F(F5°)

Equality

elim(intro’(A,~, a)) = F(Az.intro’(A4,~,z))(v(a))
- F(FG)
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Easier to define successor Definable using Coiteration
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Rules for Corecursion

Formation F§e : Set

Introduction

A:Set v:A— F(cont(A)+fin(Fy°)) a:A
intro(A4,~v, a) : F§°

Elimination
p:Ig°

elim(p) : F(F§°)

Equality

elim(intro(A4, v, a)) = F(f)(v(a)) : F(F§°)
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Rules for Corecursion

Formation F§e : Set

Introduction

A:Set v:A— F(cont(A)+fin(Fy°)) a:

A

intro(A4,~v, a) : F§°

Elimination
p:Ig°

elim(p) : F(F§°)

Equality

elim(intro(4, 7, @) = F(f)((a)) : F(F5°)
where f(cont(a)) = intro(A,y, a)
f(fin(p)) = p
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F>(A)

Want to construct a functor based on Fy*.

|dea: start from atomic elements (a : A) and “build possibly non-well-founded
many construtors of F' on top of it".
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Graphs for F>°(A)
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3. Some Operations on Coalgebras

Atoms

For a : A let At(a) := intro({x}, Azx.cont(at(a)),*) : F>°(A) .

- Ieff(a)
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B b0 bl b2
2NN

B : Set g: B — F(F>(cont(B) + fin(Fg°)))
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B : Set g: B — F(F>(cont(B) + fin(Fg°)))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory




repeat(B,g,b)

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory




repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory




repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)) )

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory




repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)) )

e where we define

f: F®(cont(B) + fin(F)) — (cont(F(F>(cont(B) + fin(F)))) + fin(FLo))

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory




repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)) )

e where we define

f: F®(cont(B) + fin(F)) — (cont(F(F>(cont(B) + fin(F)))) + fin(FLo))

- if elim(a) = at(cont (b)),
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repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.

e Define repeat(B, g, b) := intro(F°°(cont(B) + fin(Fy°)), f, At(cont(b)) )

e where we define

f: F®(cont(B) + fin(F)) — (cont(F(F>(cont(B) + fin(F)))) + fin(FLo))

- if elim(a) = at(cont(b)), then f(a) = cont( g(b) ).
B (P (fin(F ) +cont(B)))
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repeat(B,g,b)

e Assume B : Set, g : B — F(F*(cont(B) + fin(£5°))), b: B.
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‘ 4. The p-Operator and Coalgebras I

o NStream = Fj°, where
F(X) =data{cons(n: N,z : X)} (=N xX)

e Elements of NStream have the form
cons(ny, cons(ng, cons(ng, - --))).

e Would like to define elements of NStream recursively. E.g.

- f:N — NStream, f(n) = cons(n, f(n+1)).

e In this form non-normalizing.
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The p-Operator

Instead try a constructor . (ldea from T. Coquand).
Assume A : Set, g : (A — NStream) — A — NStream.
Then pa(g) : A — NStream.

f as above can be defined as un(Ag, n.cons(n,g(n +1))).
{4 1S a constructor = recursion evaluated only when applying elim.

In order to define elim, we need to apply elim to the body of L.
Better: replace the type of g above by:

g: (A — NStream) — A — F(NStream) .

e Now define elim(ua(g,a)) = g(pa(g),a).
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Problems with the ;-Operator

o Example: f = pg.y(Ag, z.elim(g(x))).

- elim(f(x)) = (Ag, z.clim(g())) (f, ) = elim(f(x)).
Not normalizing. Instead demand
% In pa(Ag,x.t), elim should not be applied to a term depending on g.

(He demands as well one constructor to the outside.
Automatically fulfilled because of the type of t).

Elements of F"*°(A) are introduced by p applied to guarded p-terms.

e /i generalizes to arbitary F'*°.
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Generating u-Terms

e \We had:

- If B:Set, f: B — F(F*>(cont(B) + fin(F*°(A)))), b : B, then
repeat(B, f,b) : F*°(A).

e Define for f above

(B — F>*(4)) = B — F(F>(A)) ,

F(ho)(F(E>(h))(£(0)))
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Generating u-Terms

e \We had:

- If B:Set, f: B — F(F*>(cont(B) + fin(F*°(A)))), b : B, then
repeat(B, f,b) : F*°(A).

e Define for f above

~

;oo (4))

~

flg,b) = F(ho)(F FOO(.h))((f(b))),

cont(B) + fin(F®(A4))) — F®(A4)
h(cont(b)) = g(b) ,
h(fin(p)) = p .

where
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Generating u-Terms

e \We had:

- If B:Set, f: B — F(F*>(cont(B) + fin(F*°(A)))), b : B, then
repeat(B, f,b) : F*°(A).

e Define for f above

~

foo: (B=F*(4))—=B— F(F>*(A)),

~

f(g,0) = F(ho)(F(F*>(h))(f(D))) ,
where ho o (cont(B) + fin(F®(A))) — F®(A) ,

h(cont(b)) = g(b) ,
h(fin(p)) = p .
ho : F(F®(A)) — F>(A) .
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Generating u-Terms

e \We had:

- If B:Set, f: B — F(F*>(cont(B) + fin(F*°(A)))), b : B, then
repeat(B, f,b) : F*°(A).

e Define for f above

~

(B2 F®(A) > B F(F>(4)) ,
f(g,b) = F(ho)(F(F>(h))(f())) ,
where h ¢ (cont(B) + fin(F®(A4))) — F®(4A)
h(cont(b)) = g(b) ,
h(fin(p)) = p .
and ho : F(F®(A)) — Fo(A) .

e Then repeat(B, f,b) = ugn(f,b).
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Comparison of ;1 and repeat

e Consider for f : B — F(F°°(cont(B) + fin(F'>°(A))))
f = Ag,b.F(ho)(F(F>(h))(f(0))).

e Now fis “extended guarded’: no elim applied to a term containing g.

- But now infinitely many constructors of F' (even unbounded chains) can
be applied to it.

- No longer syntactic condition.

- Subsumes all cases of functions definable by guarded induction principle,
but extends this notion.

o If we replace type of f by F'(cont(B) + fin(F>(A4)))
then f can be defined by the guarded induction principle.

- Suffices (together with At) to define intro.
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Introduction Rules
Formal rules =
implemented ones.
(Constructor).
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e Therefore functions definable by guarded induction principle and by our rules
are the same.

Formal Calculus and Implementations

Algebras Coalgebras
Introduction Rules Elimination Rules
Formal rules = Formal rules =
implemented ones. implemented ones.
(Constructor). (elim or case distinction)
Elimination Rules Introduction Rules
Formal rules = recursion operator. | Formal rules =intro.
Implemented ones= Implemented ones=
pattern matching 1t + guardedness check
+termination check +At (Atom)

Syntactic condition. Syntactic condition.
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Conclusion

Rules for coiteration seem to be the appropriate ones.

(-operator = correct principle for implementations.

Both allow to define non-terminating programs in a hopefully normalizing
type theory.

Model can be defined.
Normalization still to be shown.

Extension to dependent coalgebras exists.
Dependent introduction rule for (dependent) coalgebras
= analogue of dependent elimination rule for algebras.

Anton Setzer, Peter Hancock: Coalgebras in dependent type theory
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